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FREE PRODUCTS OF LATTICESf 

H. LAKSER 

1. Introduction. In solving the word problem for free lattices, Whitman [4] 
showed that free lattices admit canonical representations, that is, of all poly
nomials over the generating set representing an element of the lattice, the 
polynomial of shortest length is unique up to commutativity and associativity. 
These well-defined shortest polynomials have proved very important in 
analyzing the internal structure of free lattices in detail; see, e.g., [5]. 

Sorkin [3] proved that the free product of chains also admits canonical 
representations; these were exploited by Rolf [2]. In the above-mentioned 
paper, Sorkin also suggested that the free product of two copies of 22 does not 
admit canonical representations. 

In this paper we show that, except for one pathological case, Sorkin's 
result on canonical representations in free products of chains is optimal for 
free products of lattices (Theorem 4). However, we succeed in characterizing 
minimal polynomials in free products of lattices in general (Theorems 1, 2) 
and, among all minimal polynomials representing an element of the free prod
uct, we choose a well-defined one, the normal representation, unique up to 
commutativity and associativity (Theorem 3). In the study of free products 
of lattices, this normal representation should serve the same purpose as 
canonical representations do in the study of free lattices. 

The principle of duality applies to lattice polynomials as well as to lattices; 
in dualizing, we exchange V and A, Aw and Aw, and replace Ç by D . 
(The notation is explained in § 2.) Consequently, in the following only one 
of the two possible dual forms of each theorem and definition is stated; 
whenever necessary we use the dual of a stated theorem without further 
comment. 

Theorem 4 first appeared in my thesis, Free lattices generated by partially 
ordered sets, the University of Manitoba, 1968. The proof presented in this 
paper is much shorter than that presented in the thesis, as I had not yet 
developed Theorems 1 and 2 at the time I wrote the thesis. 

I am indebted to Professor G. Gràtzer for many helpful and stimulating 
discussions during the preparation of this paper. 

Received February 4, 1969 and in revised form, April 24, 1969. This research was supported 
by the National Research Council of Canada. 

fTheorem 4 was first announced in Notices Amer. Math. Soc. 15 (1968), 383. 
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2. Preliminaries. In this paper we use the notation of [1]. Let (L\\ X G A) 
be a family of mutually disjoint lattices, let Q = U (Lx| X 6 A), and let P(Q) 
denote the set of lattice polynomials over Q. The operational symbols in 
P(Q) are V and A, while V and A denote the operations in a lattice. If 
A G P(Q), then the length of A, written 1(A), is 1 + the number of occur
rences of V and A in A ; thus 1(A) — 1 if and only iî A (z L\ for some X G A. 
The symbol " = " denotes formal equality of polynomials; e.g., i V (BW C) 9^ 
(AW B)V C. A polynomial A G P(Q) is said to be a \l-polynomial if 
A = BW C, B, C G P(Q). The dual concept is a A-polynomial. Thus for each 
A G P(Q) one and only one of the following three holds: 

(i) A <E <2; 
(ii) A is a V-polynomial ; 

(iii) A is a A-polynomial. 
We define an equivalence relation = on P(Q) ; the relation = is the smallest 

equivalence relation satisfying the following two conditions and their duals: 
(i) i 0 V ( i i V i 2 ) = (AoVA1)VA2ioraUA0,Ai,A2 G P(Q); 

(ii) ii A0,Al9 Bo, Bit P(Q) and A0 = Bo, A! = Bl9 tiien A0V A± = BiV Bo. 
If A = B, then 4̂ is said to be equivalent to B up to commutativity and 

associativity. 
The following lemma is proved by a straightforward, but rather lengthy, 

inductive argument. 

LEMMA 1. (i) The relation = is preserved under V and A-
(ii) For all Ao, Ax, Bo, Bx G P (Q) , ^4oV^ i ^ o A f t . 

(iii) If A G P(Q) is a y-polynomial, then A can be written as 

A = AoV . . .V Ar-i, r> 1, 

where, for each i < r, At is not a W-polynomial. This representation is unique 
up to a permutation of the integers 0, . . . , r — 1. 

Let L be the free product of the family (Lx| X G A). Each A G P(Q) 
represents an element (A) of L. Clearly, if A,B G P(Q) and A = B then 
(^4) = (B). A polynomial 4̂ G P(Q) is said to be minimal if no shorter poly
nomial in P(Q) represents (A); we also say that A is a minimal representation 
of <^>. 

We recall several results of [1]. 

Definition A ([1]). For each A G P(Q) and each X G A, existence and the 
value of the lower \-cover of A, A&) G £\, are defined as follows: 

(i) If A G £x, then A(\) exists and A(\) — A] A^ does not exist if n ^ X; 
(ii) If A = BW C, then A(\) exists if and only if at least one of BQ,), C(\> 

exists; A&) = B<M (respectively C(x>) if only JB(X) (respectively C(\)) exists, 
and 4̂(X) = 5(x> V C(X) (join in Lx) if both ^(X) and C(X) exist; 

(iii) If A = B A C, then 4̂(X> exists if and only if Bw and C(X) both exist 
and in this event ^4(X) = J3(X) A C(X) (meet in Lx). 
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The upper X-cover, Aw, is defined dually. 

There is a quasi-order £ on P(Q); A Ç B if and only if (A) ^ (5) in L. 
The equivalence relation ~ on P(Q) is defined similarly; A ~ B if and only if 
(A) = {B), that is, if and only if A C 5 and S Ç i . The major result of [1] 
is the solution of the word problem for free products of lattices, that is, the 
characterization of the quasi-order Ç on P(Q). 

THEOREM A ([1]). If A, B G P(Q), then A Ç B if and only if at least one of 
the following six conditions holds: 

(1) A = B; 
(2) there is a X G A such that ^4(X) and BQO exist and ^4(X) S B(\),' 
(3) A = AoW Ah where Ao £ B and Ai Ç J5; 
(4) A = Ao AAi, where Ao Cl B or ^4i Ç 5 ; 
(5) B = Bo V 5 i , wfore A Q B0 or A ç: Bx; 
(6) B = BoA Bu where A <^ B0 and A CI Bx. 

The following properties of the covers and of the quasi-order C are useful. 

THEOREM B ([1]). (a) If A G P(<2), X £ A, and A w, A™ exist, then A iX) ^A™. 
(b) J/-4 € P(<2), X, /x G A, and A(X), A^ both exist, then X = /x. 
(c) 7/ A consists of only two elements, A = {X, /*}, £/*£», /or eacA 4̂ Ç P(Q), 

if A^ does not exist, then A{X) exists, and dually. 
(d) 7 ^ A, B G P((?) a^d X G A. 7/ 4̂ Ç B and A{X) exists, then B(X) exists 

and A(X) ^ 7>(X), and dually. 

3. Normal representations. In this section we characterize the minimal 
polynomials in P(Q). In general, a minimal representation of an element 
x G L is not unique, but among all the minimal representations of x there is 
a well-defined unique normal representation. 

LEMMA 2. Let A G P(Q), X G A, and suppose that A<M and AiX) exist. If 
4 (X) ^ A{X), then A ^A(X). 

Proof. By (i) of Definition A, (A(X))(X) = (^(X))
(X) = ^ (X) . Thus 

AiX) g (̂ 4(x))(X), and so A Ç ^4(X) by condition (2) of Theorem A. Similarly, 
A{X) Ç A since G4(x))(X) ^ 4(A)! thus ,4 ^ 4 ( X ) . 

THEOREM 1. L ^ (Lx| X £ A) be a family of lattices, Q = U(T*| X G A), awd 
^ G P(Q). 

(a) If 1(A) = 1, tfAew ̂4 w minimal. 
(b) 7/ 4̂ is a V-polynomial, and if A = i 0 V . . . V i r - i , r > 1, with no A t 

a y-polynomial, then A is minimal if and only if the following five conditions 
hold: 

(I) each A{, i < r, is minimal; 
(II) for each i<r,Ai£A0V.. . V ^ M V ^ I V . . . V i M ; 

(III) if i < r, l(Ai) > 1, X G A, and At™, A(X) exist, then A ^ $ AiX); 
(IV) if A i = C A P , then C £ A and D £ A; 
(V) if i, j < r, X G A, and A u Aj G T,x, ^era i = j . 
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Proof. Part (a) is clear. 
We first establish the necessity of the five conditions in part (b). Let A 

be minimal. 
Condition (I) is clearly necessary. 
If condition (II) fails, that is, if, say, A0 Q A\ V . . . V ^ r - i , then, by 

condition (3) of Theorem A, 

A QAiW .. .WAr-iQA. 

This implies that A = A\ V . . . V -4 r-i, a shorter polynomial. 
If condition (III) fails, that is, if, say, l(A0) > 1 and ^4o(X) S 4̂(X), then, 

by condition (2) of Theorem A, A0 Ç ^40
(X) Q A, and so 

A ^ i o ( X ) V i i V . . . V i r _ i . 

Since /(^4o(X)) = 1 < l(A0), the minimality of A is contradicted. 
If condition (IV) fails, we may assume that A 0 = C AD and C Q A. Then 

a similar argument shows that A ^ C V Ai V . . . V AT_\, and 1(C) < l(A0). 
If condition (V) fails, we may assume that A0, A\ Ç L\. Then A0 V A± == 

i o V i i G Lx; thus ,4 ÊË (4 0 V AJVAiV .. . V Ar-i, and 

Z((i4o V i 4 i ) V i 4 2 V . . . V i 4 r - i ) = / (^ ) - 1, 

again contradicting the minimality of A. 
Thus the five conditions are necessary. We now establish their sufficiency. 

Let A satisfy these conditions and let B Ç P(Q) be a minimal polynomial 
such that A ^ B. We shall show that 1(A) = 1(B). 

We first show that 1(B) > 1. If 1(B) = 1, then there is a X 6 A such that 
B Ç Lx; thus, by part (d) of Theorem B, Aw and^4(X) exist and^4(\)=^4(X) =i3. 
Since^4(X) exists, A /X) exists fori < r and^4*(X) ^ ^4(X) = AQ,). By condition (V) 
there is an i < r such that l(At) > 1; this conclusion contradicts condition 
(III) . Thus 1(B) > 1. 

We show next that B cannot be a A-polynomial. If B = BoABx, then, 
since 4̂ C B, we find that, for each i < r, At C 5 . Now we also have B Ç. A; 
this cannot be derived by condition (2) of Theorem A, since BiX) ^ A&) 
implies that JB(X) ^ B(\), contradicting the minimality of B by Lemma 2. 
Thus either condition (4) or (5) of Theorem A applies; either BjQA 
for some j < 2, or B C i4r_lf or 5 C ^40 V . . . V ^4r-2. If X G A and 
(Ao V . . . V ^U-2) (X) exists, then (̂ 40 V . . . V -4r-2)cx) ^ -4(X). Thus the quasi -
inequality 5 Ç i o V . . . V i r - 2 cannot be derived by condition (2) of 
Theorem A. Continuing in this vein we find that either Bj C A for some 
j < 2, or B Ç At for some i < r. If 5 , C 4 , then B QBjQA QB) thus 
5 = 5 ; , contradicting the minimality of B. On the other hand, 5 Ç i 0 , say, 
implies that Ai Ç1 A0, contradicting condition (II). 

Consequently, B is a V-polynomial, say 

B S B O V . . . V B M , * > 1, 
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where no Bj is a V-polynomial. We observe that conditions (I)-(V) apply to 
B since it is a minimal polynomial. 

Let i < r and let l(At) > 1. Now AtQB. Condition (1) of Theorem A 
cannot apply since Ai is a A-polynomial and B is a V-polynomial. Condition 
(2) of Theorem A implies that A^X) ^ B(\) = A&) for some X G A, con
tradicting condition (III) . Similarly, condition (4) of Theorem A contradicts 
condition (IV). Thus condition (5) of Theorem A must apply. Continuing this 
line of argument for several steps, we conclude that there is an f(i) < 5 such 
that At ç Bm. Now l(Bm)) > 1, for if Bfii) Ç Lx, X G A, then At C Bf{i) 

implies that A^ exists and A^X) S -5/co (part (d) of Theorem B); thus 
A^ S Bfd) :S B(\) = Aw, contradicting (III) . Since B also satisfies con
ditions (I)-(V), we find that for each j < s such that l(Bj) > 1 there is a 
g(j) < r such that Bù C AgU); thus g(f(i)) exists and At C Bf{i) C i4 , ( / ( 0 ) . 
By condition (II), g(f(i)) = i, and thus ^ = 5 / 0 ) ; by condition (I), 

/(ilO = / ( J5 / ( o) . 
Thus we have established the following statement. 
(*) For each i < r such that l(At) > 1 there is an f(i) < 5 such that 

-B/(o =Ai and l(Bfii)) = l(At), and, similarly, for each j < s such that 
Z(£y) > 1 there is a g(j) < r such that Ag(j) ^Bj and l(AgU)) = l(Bj); 
furthermore, g(f(i)) = i and f(g(j)) = 7. 

Now let i < r and let l(At) = 1, that is, let A t G £x for some X G A. Since 
Ai C 5 , part (d) of Theorem B implies that J3(X) exists, and thus there is a 
j < s such that C£>y)(X) exists. With no loss of generality we may assume that 
0 < t ^ s and that (Bj)^) exists if and only if j < t. Thus 

BÇK) = (Bo)00 V . . . V CB,-i)(X). 

If l(Bj) > 1 for all j < t, then, applying (*), l(AgU)) > 1 and (Ag(J))iX) = 
(Bj)(X) for all j < t. Thus g (J) ^ i for all j < t, and 

(Bo) 00 V . . . V (B^-Ocx) ^ ( i o V . . . V i M V i i + i V . . . V i , _ i ) ( x ) . 

Thus 4̂ < ̂  (A 0 V . . . V A i_i V A i+1 V . . . V A r_i) (X), contradicting condition 
(II) . Consequently, there is an / ( i ) < s such that (J3/(o)(X) exists and 
IÇftfd)) = 1, that is, such that -£>/(*) 6 L\. 

Similarly, if j < s and Bj G Lx for some X G A, then there is a g(j) < r 
such that Ag(j) € £x. By condition (V), g(f(i)) = i for any i < r such that 
l(Ai) = 1 and f(g(j)) = j for any j < s such that l(Bj) = 1. Thus we have 
established the following statement. 

(**) There are mappings 

/ : {0, . . . , r - 1} -> {0, . . . , 5 - 1}, g: {0, . . . , 5 - 1} -> {0, . . . , r - 1} 

satisfying the conditions: 
(i) if i < r, then g(f(i)) = i and if j < s, then f(g(j)) = j ; 

(ii) if i < r and l{At) > 1, then BfU) ^Af and l(BfU)) = l(At), and 
similarly for any j < 5 such that l(Bj) > 1; 
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(iii) if i < r and At (i L\, X G A, then Bf{i) G Lx, and similarly for any 
j < s such that Bj G Lx, X G A. 

Consequently, r = 5 and / , g are permutations of {0, . . . , r — 1}. Since 
l(At) = l(BfU)) for all i < r, it follows that 1(A) = / (£) . Since 5 is minimal, 
so is A. 

We note that the proof of the necessity in Theorem 1 provides an algorithm 
for reducing any polynomial to a minimal polynomial representing the same 
element of L; by the proof of sufficiency, the resulting polynomial will be 
minimal. 

We now present an algorithm determining when two minimal polynomials 
represent the same element of L. 

THEOREM 2. Let A,B G P(Q) be minimal polynomials. If 1(A) — 1, then 
A ^B if and only if A = B. If A = A0 V . . . V AT-i, r > 1, where no A t is 
a y -polynomial, then A = B if and only if B can be written in the form 
B = Bo V . . . V Br_i such that the following four conditions hold: 

(i) no Bi is a V-polynomial; 
(ii) for each i < r and X Ç A, A t Ç L\ if and only if Bt Ç L\; 
(iii) for each i < r, l(At) > 1 if and only if l(Bt) > 1 and in this event 

At^Bi; 

(iv) for each i < r and X G A, A t G L\ implies that B(\) exists and A t S -B(X), 
and Bt G Lx implies that AÇK) exists and Bt ^ ^4(\). 

Proof. HA = B, then conditions (i), (ii), and (iii) are statement (**) in the 
proof of Theorem 1. Condition (iv) follows since A(\) = J3(X) for all X G A 
such that A (x) exists. 

If conditions (i)-(iv) hold, then, if l(At) > 1, AtQ Bi C B. If At G Lx, 
X G A, then A^ = At ^ 5 ( X ) ; thus AtQ B. Thus 4 , C S for all i < r, 
and so A Q B. By the symmetry of the conditions, B C ^4, and the theorem 
follows. 

In general, an element of L has several different minimal representations 
(see §4) . Of these we choose one, well-defined up to commutativity and 
associativity, which we call the normal representation. 

Definition 1. If A G P(Q) and 1(A) = 1, then A is a normal polynomial. 
If /(^4) > 1, then 4̂ is a normal polynomial if and only if the following two 
conditions hold: 

(i) A is a minimal polynomial; 
(ii) if A is a V-polynomial, that is, if A = A0 V . . . V -4 r-i, r > 1, and no 

4̂ i is a V-polynomial, then each At is normal, and if, for some i < r, At £ L\ 
for some X G A, then At = -4(\), and dually if 4̂ is a A-polynomial. 

We observe that in (ii) it is clear that if A t G L\ for some i < r, then A (x> 
exists. 
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THEOREM 3. (a) Each x G L has a normal representation. 
(b) For each x f L , its normal representation is unique up to commutativity 

and associativity. 

Proof. Let x G L and let B G P(Q) be a minimal representation of x. If 
1(B) = 1, then B is normal. If 1(B) > 1, we may assume, by the principle of 
duality, that B = B0 V . . • V Br_i, r > 1, and no Bt is a V-polynomial. By 
induction on the length of polynomials, we may assume that each Bt is 
normal. For each i < r we will define At G P(Q). If /(£*) > 1, then A t = £>*. 
If /(£*) = 1, then there is a X G A such that Bt G Lx and thus B{\) exists; 
define A{ = -B(X). Let A = 4 0 V . . . \ M r - i . By Theorem 2, ^ ^ 5 and, 
since Z(JB) = 1(A), A is minimal; thus A is a normal representation of x. 

Now let 4 and B be normal, 4 ^ 5 . If Z(4) = 1, then 1(B) = 1 and 
4̂ = 5 . If A is a V-polynomial, then Theorem 2 implies that 4̂ = B, by a 

trivial induction on the length of normal representations. 

4. Canonical representations. L, the free product of the family of 
lattices (L\\ X G A), is said to admit canonical representations if a minimal 
representation of each element of L is unique up to commutativity and 
associativity, that is, if A = B, A, B minimal, imply that A = B. In view of 
Theorem 3, L admits canonical representations if and only if every minimal 
polynomial in P(Q) is normal. 

LEMMA 3. Let |A| > 1 and let the family (L\\ X G A) satisfy one of the following 
three conditions: 

(i) there is a X G A and incomparable x, y G L\ such that x V y is not 
maximal in L\, or dually; 

(ii) there are distinct X, [x G A such that neither L\ nor LM is a chain; 
(iii) |A| ^ 3 and there is a X G A such that L\ is not a chain. 
Then the free product of the (Lx\ X G A) does not admit canonical representations. 

Proof. Let condition (i) hold. Let x V y = z. Then x, y, and z are all distinct 
and there is a w G L\ such that z < w. Let /JL 9e X and let d G i^. Let 
4̂ = x V ((y yd) A w). Applying Theorem 1, 3/ V d is minimal. Since 

w £ yV d (yWd has no upper covers), the dual of Theorem 1 implies that 
(y V d) A w is minimal. Similarly, x Çt (yVd)Aw, and so A is minimal. 
However, ^4(\) = 2 ^ 1 Thus 4̂ is not normal; indeed, the equivalent normal 
representation is z V ((y V d) A w). 

Let condition (ii) hold. Let x, y G £\ be incomparable and let di, d2 G L^ 
be incomparable. Let 4̂ = x V ( ( j V di) A (y V ^2)). Theorem 1 and its dual 
show that A is minimal. However, A(\) = x V y 9^ x; thus 4̂ is minimal but 
not normal. 

If condition (iii) holds, let /*i, /x2 G A be distinct indices different from X. 
Let x, 3/ G L\ be incomparable and let di G L^, d2 G L^2. Let 

,4 = * V ( ( y V < / i ) A 0 y V d 2 ) ) ; 
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A is minimal. Since A&) = x V y ^ x, A is minimal but not normal. 
Consequently, the free product does not admit canonical representations 

under any of the three conditions. 

LEMMA 4. Let X G A, A0 G Lx, and A' 6 P(Q). If A = A0 V A' is minimal 
and either AQO' does not exist or AQ^' is comparable with A0, then AQ,) — A0. 

Proof. If A(\) does not exist, then clearly AQO = AQ. If AQ,) exists and 
A0 ^ A(\)'> then A0 C A'\ thus 4̂ ~Af, contradicting the minimality of A. 
Thus Ao > A(\)', and so AQ,) = A0. 

COROLLARY (Sorkin [3]). If L\ is a chain for each X Ç A, then the free product 
of the family (Lx| X 6 A) admits canonical representations. 

Proof. Since, for each X Ç A, any two elements of L\ are comparable, 
Lemma 4 and its dual show that any minimal polynomial is normal. 

Lemma 3 and the corollary to Lemma 4 cover all non-trivial cases but one: 
|A| = 2, say A = {X, /x}, Lp is a chain, and given incomparable x, y £ L\, then 
x V ^ i s maximal in L\ and # A y is minimal. Thus L\ has a 0 and a 1, and 
L\ — {0, 1} is the disjoint union of unrelated chains. We show that in this 
case the free product of L\ and LM admits canonical representations. 

LEMMA 5. Let A = {X, /z} and /e/ Lx, LM &e as described above. If A £ P((?) 
awd 4̂(M) does wo/ m ^ , then A C 1. If A M exists, J&ew 4̂ C 1 V ̂ 4(M>. 

Proof. If -4(M) does not exist, then, by part (c) of Theorem B, ^4(X) exists. 
Since A<v S 1 = loo, A £ 1-

Now assume that A <M) exists. We prove that A C 1 V 4̂ (M) by induction on 
/ ( i l ) . 

If Z(4) = 1, then A £ LM and .4 = ^(M) Ç 1 V 4 ( / 0 . 
If 4̂ = B A C, then both B(M) and C(M) exist. Since LM is a chain we may 

assume that i3(/x) ^ C(M>. Thus 4̂(M) = 2?(M) and, by the induction hypothesis, 
5 Ç 1 V 5 GO = 1 V AM. Since A CZB, the result follows. 

If i4 = 5 V C, then one of J5(M), C(M) exists. If only £ ( M ) exists, then 4̂ (/x) = B(fi) 

and, by induction, BQlWB^ = 1V^4(M). Since CQO does not exist, 
C Ç l Ç l V i ^ ; thus 4 C 1 V -4 oo. If both B(fi) and C(M) exist, then 

BQIVB^ ç iVi4(M) , C Ç 1 V C ( M ) C l Vila.). 

Thus ,4 C lVi4(M>. 

LEMMA 6. The free product of L\ and LM admits canonical representations. 

Proof. We show that any minimal polynomial is normal. We proceed by 
induction on the length of the minimal polynomials. By definition, any poly
nomial of length 1 is normal. If A £ P(Q) is minimal and J ( i ) > 1 we can 
assume, by the principle of duality, that 

A s 4 0 V . . . \ M r - i , r> 1, 

where no A * is a V-polynomial and, by induction, each A t is normal. 
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If i < r and A t Ç LM then, by Lemma 4, A t = A^) since LM is a chain. 
It i < r and i ^ Ç L\, let 

,4' = i o V . . . V i M V i m V . . . V i M . 

By Lemma 4 we need only consider the case where A^' exists and is incom
parable with Ai. Then AÇK) = 1 and so 1 C A. If ^4(M/ does not exist, then 
-4(M) does not exist and so A C 1 by Lemma 5; thus 4 = 1, contradicting the 
minimality of A. If -4(M/ exists, then A M exists, and so A C 1 Vi ( M ) . Since 
I C i and 4(M> C i , we conclude that 4 = 1 V A{ll). Since both ^4(x/ and 
A^) exist, / ( i ) è 3. However 1(1 V 4GO) = 2, again contradicting the 
minimality of A. Consequently, if A t £ L\, then At = 4<x). Thus A is normal 
and the induction is complete. 

Summarizing Lemma 3, the corollary to Lemma 4, and Lemma 6, we have 
the following. 

THEOREM 4. Let L be the free product of the family of lattices (L\\ À G À). 
L admits canonical representations if and only if one of the following three 
conditions holds: 

(i) |A| _= 1; 
(ii) L\ is a chain for each X £ A; 

(iii) |A| = 2, say A = {X, /x}, LM is a chain, L\ has 0 and 1, and L\ — {0, 1} 
is a disjoint union of unrelated chains. 
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