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ABSTRACT 
Integrated Natural Resource Conservation and Development (INRCD) Projects are efforts at 
worldwide locations to promote economic development of local communities consistent with 
conservation of natural resources. This umbrella term includes Integration Conservation and 
Development Projects (ICDPs) introduced by the World Wide Fund to combine social development 
and conservation s through the use of socio-economic investments, and the Integrated Natural 
Resource Management (INRM) research and development efforts that have employed a systems 
approach for quantitative modeling and optimization. In the spirit of the INRCD framework, we 
describe the development of a system-level agriculture and energy model comprising engineering and 
economic models for crop, irrigation, and energy subsystem designs for a community in Central 
Uganda. The model architecture is modular allowing modifications for different system configurations 
and project locations. We include some initial results and discuss next steps for system optimization, 
refining model assumptions, and modeling community social benefits as drivers of such projects. 
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1 INTRODUCTION 

The UN Sustainable Development Goals include conservation of land, water, and other resources as a 

top priority for sustainable development (UNDP, 2015). Conservation and development seem to be 

conflicting goals, especially as traditional conservation initiatives adopt a non-participatory “fines and 

fences” approach. The World Wide Fund for Nature first introduced the concept of integrated 

conservation and development projects (ICDP) in the mid 1980s, aspiring to combine social 

development and conservation goals through the use of socio-economic investment tools (Hughes and 

Flintan, 2001). Theory, tools and methods evolved considerably since the 1980s, creating 

opportunities to revisit and expand existing approaches to ICDP design. Integrated Natural Resource 

Management (INRM) studies have employed a systems thinking approach suitable for quantitative 

modelling and optimization (Bekalo et al., 2010).  

In this paper we advocate a modular system design optimization framework as a decision support tool 

for the planning and operation of projects combining the ICDP and INRM approaches, which 

collectively we call Integrated Natural Resource Conservation and Development (INRCD) Projects. A 

recent review of INRCD projects identified the use of quantitative tools to support decision making as 

an important factor for project success (Rajski et al., 2021). A system design optimization tool can 

serve this role; its important attributes are modularity to allow tailoring to specific projects, inclusion 

of community needs, and an objective that maximizes community benefits.  

For a concrete demonstration, we consider an ‘Agriculture-Energy’ (Ag-En) project, namely, a 

community that cultivates crops, requires water for irrigation and community use, and operates a local 

electricity grid (microgrid) that draws power from several sources and distributes it for household and 

irrigation needs. In the following sections, we describe a particular Ag-En model representative of a 

community in Central Uganda along with the many modelling assumptions, and provide some 

example results for subsystem optimization. The overall system optimization and the development of a 

social benefit objective function, besides profit, are left as future work. 

2 SYSTEM DESIGN MODEL 

The Ag-En system design model outlined in this paper comprises two main subsystems (i) water 

supply and crop cultivation and (ii) energy supply by a microgrid drawing from a variety of energy 

sources. The water supply provides the required crop irrigation and household water. The microgrid 

powers the irrigation water pumping system and households within the community. A stochastic 

weather model is input to the system, characteristic of the ever-present uncertainty in agriculture. In 

Figure 1, the microgrid subsystem consists of photovoltaic panels, batteries, and a back-up diesel 

generator; weather is an input and energy supply for water pumping and household use is the target to 

be met. The irrigation and crop subsystem comprises pumping equipment, irrigation equipment and 

layout design, and land allocation to different crops. Weather, soil, and an external water supply are 

inputs, while crop yield and energy demand are outputs.  

 

Figure 1. Agriculture-Energy system model flow diagram 
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Figure 2. Agriculture-Energy project optimization model 

Besides technical functionality, the system also has economic functionality. Economic considerations 

include capital equipment, labour, irrigation, and other farming costs, and crop revenue. Capital 

equipment is installed and operated along with the associated costs. Labour is supplied from the 

households for cultivation. Crop yields are sold in the market providing income. Management 

provides decisions on crop allocation in the given land based on local soil and weather conditions, 

crop rotation for sustainability, and crop market prices. 

In a system design optimization framework, see Figure 2, initial decisions (system design variables) 

are made on crop allocation, pump design, and microgrid design. These feed into the crop, irrigation, 

and microgrid models which in turn compute crop yields and system costs. Market demand and cost 

then go into a profit maximization objective for the system, and the optimizer iterates on the initial 

decisions. Project location affects the key inputs (system parameters): weather, soil, market, and 

labour rates. Within each outer optimal design iteration, there are two optimal control operations. The 

microgrid power dispatch operation determines how to meet the energy demand during a time interval 

by allocating the supply from the existing energy sources in order to minimize the total cost of energy 

supply. Similarly, the water scheduler operation determines irrigation schedules and household water 

supply in order to maximize crop yield.  

A typical system optimization strategy will use the Individual Disciplinary Feasible (IDF) architecture 

for system design coordination (Papalambros and Wilde, 2017). The information flow is shown in 

Figure 3, where f, g, and h are the system objectives, inequality and equality functions, respectively, 

and x and y are the system design and linking variables, respectively. The system comprises two 

subsystems, crop-irrigation and microgrid, with maximum profit as overall system objective. The 

subsystems are linked through balancing supply and demand, and also through their contribution to 

overall system cost in the objective. As discussed in Section 4, the preliminary results reported here do 

not include complete system optimization. 

 

Figure 3. System optimization with a generic IDF architecture (Papalambros and Wilde 
2017) 

https://doi.org/10.1017/pds.2021.28 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.28


 

276  ICED21 

In its simplest form, the outlined Ag-En system has seven design variables to be optimized: size of diesel 

generator, and number of batteries and solar panels in the microgrid; number of impeller stages in the 

pump, and pipe diameters of the irrigation submain and lateral branches in the irrigation piping; and 

percent field use per crop for maize, rice, soybean, and open non-cultivated (no-crop) land. The system 

objective is to maximize profit for the community with constraints for social and environmental 

considerations, where profit = (revenue)-(cost). Revenue is calculated from crop sales and the yield      

dedicated to a specific crop, the crop price at harvest, and the yield of crop i (i=1,…, n): 

                             = 

 ∑                        
   +                               , (1) 

         (                       )  (2) 

The system cost is estimated as  

                                          ,  (3) 

where irrigation and pump costs were split to allow for modularity. Other cost details are omitted for 

brevity. 

Several legacy software are used in assembling the system model, notably, AquaCrop OS (AQOS) 

(Foster et al., 2017) developed by the Food and Agriculture Organization (FAO) to simulate yield 

response to water; the Simple Soil-Water Balance (SWB) model (Rao et al., 1988); the Deficit 

Irrigation Toolbox (DIT) developed by the Technical University of Dresden (Schütze and Mialyk, 

2019); the LARS-WG Stochastic Weather Generator (Semenov and Barrow 2002); and the Hybrid 

Microgrid Optimal Design (Hymod) model (Alvarez et al. 2018, Ruiz, 2020). 

3 MODEL ELEMENTS AND ASSUMPTIONS 

We describe some key parts of the system model and the associated assumptions.  

3.1 Community Setting 

The project location is a rural community in Central Uganda. Market access is not modelled at present. 

Household energy demand varies hourly but not daily. The household model parameters include 

hourly water and energy demand, number of people, and available labour. The community daily 

household energy demand curve per hour is assumed fixed throughout the day. We use the average 

household load profile for Ugandan rural villages based on a 2009 study (Prinsloo, 2016), see Figure 

4. The model adjusts, compressing or expanding the curve, based on system parameters.  

Water demand is modelled similarly, but in the absence of data for African locations we adapted data 

from Spain and used the average of the four curves in Figure 5 as baseline for energy demand due to 

warm water consumption (Fuentes et al., 2018). 

 

Figure 4:. Household energy demand, in kW; Prinsloo et al. (2016) from Tinarwo (2009) 
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Figure 5. Warm water consumption in Spain (Sprei, 2002) 

3.2 Microgrid 

We implemented a modification of the Hymod model (Ruiz, 2020) that minimizes cost of energy with 

an hourly dispatching strategy. The modified model uses solar panels, batteries, and a diesel generator, 

see Figure 6. The weather model generates hourly irradiance and temperature as climatological data 

model parameter inputs reflecting site location and equipment used. The model is simulated over a 

length of one year. Energy dispatch is controlled hourly with the design of the controller fixed. There 

is no central electricity grid and the microgrid distribution losses are negligible. To reduce 

optimization run time due to hourly calculations of energy and to extend the capability to longer 

simulations, each day in a month was assumed to be the same.  

We added a cost estimate for the diesel generator and the generator size as a new local variable. 

Battery, generator, and solar panel types were fixed, although the model can accommodate different 

types that can be eventually included in the optimization. Capital cost of the diesel generator is 

modelled as a linear function of generator size, which is not true but sufficient for our present purpose 

(Schienbein et al., 2004).  

 

Figure 6. Modified Hymod operation scheme 

3.3 Crop Yield and Revenue 

We chose three common crops in Uganda, maize, rice, and soybeans, with a no-crop land option 

available. This allows the optimizer to shrink the field if irrigation and energy costs are higher than the 

revenue of the crop. We assumed best practices for crop and field management; any deviations would 

result in yield reduction at increased cost. All labour is assumed to be manual with simple hand tools. 

A rudimentary fertilization model is used.  The crop subsystem consists of irrigation and crop as two 

separate models. The crop model is further divided into a yield model and a cost model.  

The yield model aims to balance accuracy with simplicity, and incorporates the Deficit Irrigation 

Toolbox, AquaCrop OS, and the Simple-Water Balance (SWB) legacy models referenced earlier.  The 

DIT toolbox was used to generate crop yield estimates for maize, rice, and soybeans. To avoid the 

long computation times of AQOS in the scheduler optimization, when there is a water deficit, we use 

SWB to calculate yield. The SWB model calculates only the percent of maximum yield, and so we 
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perform a relatively fast AQOS run to compute the yield in tons per hectare without any constraints on 

the water usage as input to the crop revenue calculation: 

        ∑       
   
   [

   

   
]          [    ]           [

    

    
] . (4)  

The parameters in the yield computation are data on crop, field, soil profile, groundwater, weather, and 

simulation time periods. Maize and soybeans are default crops in AQOS and were left unchanged but 

for rice we used the parameters given in the rice development simulation of Prathumchai et al. (2018). 

AQOS has few options for field management, and most are not used in sub-Saharan Africa, and so we 

used default values for field management parameters, namely, no mulching, bunds or weed 

management. Red and brown soil types were used in the simulation with their profiles created using 

information from the literature (Fungo et al., 2011; Minai, 2015; Veenstra et al., 2009), which was 

provided in standard sand-clay content and we then converted it into general soil types. Veenstra 

(2009) provided soil horizons from a mapping in Central Uganda. We used a soils calculator from the 

United States Department of Agriculture, Natural Resources Conservation Services for Soils to 

calculate each layer’s soil type (Natural Resources Conservation Service, 2020).  The groundwater 

was assumed at 20-25m below surface based on the Africa Groundwater Atlas (Owor et al., 2018). 

Simulation data consists of the time period, initial conditions, off-season conditions, and field data for 

calibration. We assumed the time period to be one year. The other parameters were assumed to be 

negligible or irrelevant for this simplified model. Weather details are provided in Section 3.5. We used 

maize and rice crop prices from historical data in the FAO’s FPMA tool (FAO, 2020a) and soybean 

price from Macrotrends (2020). Monthly prices from January 2020 to December 2020 in Central 

Uganda were used with the Winter-Holt method (FAO, 2020a) to forecast the prices of rice and maize. 

3.4 Irrigation and Pumping 

A single pump type and family is used operating at its optimal flow rate by the scheduler. The 

irrigation layout has main, submains, and lateral branches. The household piping layout comprises a 

single main pipe connected from the water tank to the house. The irrigation can be sprinkler, drip, or 

basin type. Drip irrigation, also referred to as low-flow, trickle, or micro-irrigation in non-commercial 

settings, is considered more sustainable because it uses 20-50 percent less water than conventional 

systems (EPA, 2020b). The irrigation and pumping sub-system have been modelled by considering 

drip irrigation and submersible pumps. The groundwater is pumped by the submersible pump and 

stored in the water tank placed at sufficient height to meet the operating pressure of the drip irrigation 

system. The water from the tank is supplied to meet the total water demand for agricultural and 

household operations. 

The irrigation model consists of equipment design (layout and pump station), controller (daily 

scheduler and hourly scheduler converter), and the energy demand calculation. The irrigation layout is 

based on a square field with a main line, submain pipes, and laterals, with rows spaced at 40 cm. The 

system head is calculated by measuring the major head losses due to friction in the pipes based on 

Darcy-Weisbach Equation (Brown, 2012) and the minor head losses due to presence of fittings and 

valves in the overall piping layout. Only the crop area has irrigation, and so the piping length is a 

function of the crop area. The total head loss is used to create a system curve with varying levels of 

flow based on a maximum flow. This system curve is used in the pump station model to calculate the 

optimal flow rate for the pump. The layout is considered fixed in this model instantiation.  

We calculate the optimal flow rate using the system demand curve and the pump performance curve as 

derived, for example, from Pumpmakers (2020) where flow rate is predicted from curve fitting of the 

pump impeller stages and head. A single pump performance curve is then created from a single pump 

stage and an array of head losses. The intersection between this single pump performance curve and 

the system curve gives the optimal pump operation parameters for a given flow rate and head. 

The optimal schedule is determined using the DIT model modified slightly to act as a subsystem within 

the larger model. The daily irrigation event maxima are dictated by the pump operating flow rate. The 

season maximum is set as a constant that depends on the maximum water legally available to use. We 

assumed the pump operates always at optimal efficiency, and the only variable in the scheduler is the 

time when the pump is turned on or off. The daily optimizer was calculated using the GET-OPTIS built 

into DIT optimizer (Schütze et al., 2012). The daily water schedule is then converted into the hourly 

energy schedule needed for the energy subsystem. To get more robust results in the final profit 
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calculation with the relatively simple system model, we use three different hourly watering schedules: 

when the sun produces the most solar energy, when the evaporation is minimal, and at a given starting 

time; then we select the most effective schedule for system optimization. The hourly schedule is 

converted into energy demand based on pump efficiency, volume pumped, and system head: 

      (
   

 
)      (

   

        )  (
   

 
) , (5) 

where    is electrical energy supplied to the pump motor [kWh],    is hydraulic energy [kWh],   is 

volume of water pumped [m3,   is total pumping head [m], ρ is density of water [1,000 kg m-3], g is 

standard gravity [9.8 m s-2, and η is motor pump efficiency [%]. 

3.5 Weather Model 

We use the LARS-WG Stochastic Weather Generator with 30 years of regional historical data. Using 

site input data for time in years, Julian calendar date, maximum temperature (°C), minimum 

temperature (°C), precipitation (mm) and solar radiation (MJm-2day-1), LARS-WG generates 

synthetic weather time-series data with the same statistical characteristics as the observed weather data 

(Semenov et al., 2002). Using the weather data generated by LARS-WG, we calculate hourly 

irradiance and temperature in Uganda that follow daily temperature curves and solar radiation curves, 

respectively (Okello et al., 2011). These hourly data are inputs to the energy model, and the hourly 

data along with daily minimum and maximum temperature, solar irradiance, and precipitation are 

inputs for the crop model, along with the reference evapotranspiration (mm day-1) used in the crop 

model to calculate evapotranspiration for each crop. 

The required climate parameters are daily minimum and maximum temperatures, irradiance, 

precipitation, and reference evapotranspiration. The parameter values are calculated before each 

optimization run using a stochastic model generated by sampling from a normal distribution where the 

mean and standard deviation are based on historic data from the region. The daily reference 

evapotranspiration is calculated using the Penman-Monteith equation (FAO 2020b) with vapor 

pressures and psychrometric constants estimated using the max and min temperatures:  

    
              (

   

     
)         

             
   (6) 

where    is the reference evapotranspiration [mm day-1],    is net radiation at crop surface [MJ m-2 

day-1],   is soil heat flux density [MJ -2 day-1],   is air temperature at 2 m height [°C],    is wind 

speed at 2 m height [m s--1],   is saturation vapor pressure [kPa],   is actual vapor pressure 

[kPa],       is saturation vapor pressure deficit [kPa],   is the slope vapor pressure curve [kPa °C-

1], and   is the psychrometric constant [kPa °C-1]. 

3.6 Cost Models 

Cost models for crop and irrigation are relatively straightforward and omitted here for brevity. Cost 

components are fixed capital equipment costs for the irrigation and microgrid components, and 

variable costs for water supply, seeds, fertilizer, and labour. Some information on water tariffs in 

Uganda can be found in Motoma (2007). Cost models for the microgrid were briefly discussed in 

Section 3.2; cost is a combination of total yearly system costs and a total yearly system emissions 

penalty, both depending on the elements comprising the grid. The fixed costs are amortized over the 

life span of the components assuming a loan at a standard interest rate is needed to finance the initial 

investment. This ensures that the yearly profit represents a realistic scenario.  

4 PRELIMINARY SUBSYSTEM RESULTS 

The fully assembled system presents several optimization challenges: (i) the two subsystems  in Figure 

3 are coupled optimal design and control or co-design problems (Papalambros and Wilde, 2017), since 

the microgrid dispatcher and the irrigation scheduler are both optimal control problems that must be 

executed for each design generated during the system optimization iterations, see also Seidel et al. 

(2015); (ii) the weather 'parameters' are sets of stochastic quantities and accounting for stochasticity in 

an 'equivalent' deterministic problem is not obvious; (iii) the overall system model likely has 

discontinuities that are not evident when incorporating the legacy codes. Thus, the effectiveness of 
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gradient-based methods is unclear while the computational cost of non-gradient methods may be 

prohibitive.  

These challenges suggest that further analysis must proceed with caution, exploring the problem 

starting with many simplifications and adding complexity gradually by removing simplifications. In 

this spirit, some preliminary results are reported here under many simplifications as first steps. The 

two subsystems shown in Figure 3, crop-irrigation and microgrid, are separated and studied 

individually under the assumption that the microgrid will meet fully the demand from the irrigation. 

No full system optimization results using the IDF architecture are reported here. 

4.1 Crop-Irrigation Subsystem Parametric Study 

For the crop-irrigation subsystem, as a first step we consider the maximum yield and thus maximum 

profit problem with a fixed price of electricity supplied externally, such as from a power grid. Crop 

allocation percentages for maize, rice, soybeans, and no-crop; the number of impeller stages; and the 

diameters of lateral and submain pipes are design decision variables. We consider only drip irrigation 

starting at 6am each morning for a flat, one-hectare field. Using the same row spacing but different 

spacing between each plant of three crops, we estimated the number of plants per hectare to be 75,000, 

170,000, and 330,00 for three crops maize, rice, and soybeans, respectively. The maximum annual 

supply of water is capped at 200 mm, and the external cost of electricity is 0.182 USD/kWh. 

The irrigation model calculates optimal head loss, pump flow rate, and efficiency for the given pump 

and irrigation variables; DIT calculates the maximum yield for a particular irrigation and crop 

allocation with seasonal and daily water usage as constraints. Revenue from crop sales and subsystem 

costs determine profit, thus completing one outer subsystem iteration. For the optimization study, we 

tested seven different initial points as shown in Table 1; every two rows represent a set of the initial 

point and the optimal result from the optimizer. The results reflect higher price of rice dominating crop 

allocation under the assumptions of this example. This is consistent with common practices pushing 

for mono-cultivations to maximize profit without accounting for conservation considerations.  

Table 1. Crop-irrigation subsystem optimization results 

Maize, Rice, 

Soybean, No-crop 

[%] 

No. of  

Impeller 

Stages 

Lateral, 

Submain 

 Pipe Diameter  

(cm) 

Yield per Crop 

[tonne/hectare]  

Total 

Revenue 

(USD) 

Total  

Cost 

(USD) 

Total  

Profit 

(USD) 

80, 20, 0, 0 30 1.78, 7.62     

0, 100, 0, 0 30 1.52, 5.08 0, 13.5, 0, 0 12095 2572 9523 

0, 100, 0, 0 35 2.28, 8.89     

0, 100, 0, 0 35  1.52, 5.08 0, 13.5, 0, 0 12095 2596 9499 

0, 0, 100, 0 40 3.55, 9.65     

0, 100, 0, 0 40 1.52, 5.08 0, 13.5, 0, 0 12095 2615 9480 

50, 50, 0, 0 43 3.55, 10.16     

0, 100, 0, 0 43 1.52, 8.35 0, 13.5, 0, 0 12095 2646 9449 

0, 50, 50, 0 45 3.55, 11.4     

0, 100, 0, 0 45 1.52, 5.08 0, 13.5, 0, 0 12095 2652 9443 

30, 10, 30, 30 50 1.78, 13.9     

0, 100, 0, 0 50 1.52, 5.08 0, 13.5, 0, 0 12095 2734 9361 

25, 25, 25, 25 50 1.78, 12.7     

0, 100, 0, 0 53 1.52, 5.08 0, 13.5, 0, 0 12095 2870 9225 

These initial results require further testing to get more confidence in terms of global optimality. 

4.2 Microgrid Subsystem Optimization 

The subsystem design variables are the numbers of solar panels and batteries and the generator size. The 

modified Hymod model uses the irrigation energy demand and household energy demand as inputs, and 

it computes a dispatch strategy that minimizes microgrid cost.  Branch and Cut (Albert, 1999) and SQP 

(Papalambros and Wilde, 2017) algorithms were used for optimization and the resulting minimized cost 

and dispatch strategy were inputs to the profit model. The SQP optimizer terminated more robustly. The 
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design layout recommended is four sets of three modules at 0.33kW each. The minimized cost of the 

setup is USD 6,969. The solar panel cost is USD 1,674, the batteries cost is USD 859, and the diesel 

generator cost is USD 4,330. The diesel generator cost has the largest impact on system cost and likely is 

an overestimate due to the behaviour of the optimization modelled monthly.  

4.3 Discussion and Limitations 

The results are consistent with expected insights; for example, given all the simplifications, rice 

dominates when water is plentiful and there is little variation in profit. The needs of one household 

over one year were considered in order to obtain these first results. More realistic results will need to 

consider (i) multiple households over a 5-7year period, (ii) more accurate variable costs, (iii) better 

estimates of local community water and energy demand patterns, (iv) pumping from other sources 

than ground water, sprinkler irrigation, and centrifugal pumps, and (v) replacing the diesel generator 

with occasional power grid use and/or wind energy. More importantly, to explore the trade-offs 

between conservation and development a social value objective should replace profit. Other factors of 

INRCD success, such as community involvement and training in project maintenance and 

management (Rajski and Papalambros, 2021) are beyond the current state of the model and will 

require significant new research. 

5 CONCLUSION 

A system design optimization model for an INRCD Project is quite complicated and presents both 

modelling and optimization challenges; these include the multidisciplinary nature of the problem 

calling for diverse expertise in a variety of knowledge domains, the lack of good data, and the 

stochastic, nonlinear, mixed-discrete, and combinatorial nature of the models.  A large number of 

assumptions, as pointed out throughout, allowed development of the particular instantiation here as an 

illustration.  Some next steps include (i) further testing of the subsystem models with different 

parameters and some assumptions relaxed; (ii) integrated system optimization studies; (iii) 

development of an appropriate social value objective for the local community that encompasses 

criteria beyond profit.  
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