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Abstract

Vibration control in structures is essential to mitigate undesired dynamic responses, thereby
enhancing stability, safety, and performance under varying loading conditions. Mechanical
metamaterials have emerged as effective solutions, enabling tailored dynamic properties for
vibration attenuation. This study introduces a convolutional autoencoder framework for the
inverse design of local resonators embedded in mechanical metamaterials. The model learns
from the dynamic behaviour of primary structures coupled with ideal absorbers to predict the
geometric parameters of resonators that achieve desired vibration control performance. Unlike
conventional approaches requiring full numerical models, the proposed method operates as a
data-driven tool, where the target frequency to be mitigated is provided as input, and the model
directly outputs the resonator geometry. A large dataset, generated through physics-informed
simulations of ideal absorber dynamics, supports training while incorporating both spectral and
geometric variability. Within the architecture, the encoder maps input receptance spectra to
resonator geometries, while the decoder reconstructs the target receptance response, ensuring
dynamic consistency. Once trained, the framework predicts resonator configurations that satisfy
predefined frequency targets with high accuracy, enabling efficient design of passive controllers
of the syntonized mass type. This study specifically demonstrates the application of the
methodology to resonators embedded in wind turbine metastructures, a critical context for
mitigating structural vibrations and improving operational efficiency. Results confirm strong
agreement between predicted and target responses, underscoring the potential of deep learning
techniques to support on-demand inverse design of mechanical metamaterials for smart
vibration control in wind energy and related engineering applications.

Introduction

Wind turbines face various challenges, including vibrations caused by environmental phenom-
ena that affect their performance, reduce efficiency, and sometimes lead to significant problems
that can cause systemmalfunctions (Machado andDutkiewicz, 2024). Various approaches can be
employed to overcome this problem. Conventional methods include the use of dampers,
absorbers, and structural reinforcements to control undesired vibrations. However, these
approaches can be inefficient due to their increased weight and complexity. On the other hand,
metamaterials offer an innovative approach by utilizing engineered structures rather than relying
solely on material properties. Metamaterials have the potential to control wave propagation
through specially designed structures that can redirect absorbed energy or even dampen energy
from vibrations. They enable the integration of passive vibration control in various fields, thereby
potentially enhancing both operational performance and lifespan. Metamaterials designed with
dynamic resonators can improve vibrationmitigation in the structure and have been proven to be
efficient in controlling the vibration of wind turbines (Machado et al., 2024).

Mechanical metamaterials exhibit unique mechanical properties and advantages over con-
ventional materials, offering benefits such as negative stiffness and mass density optimized for
specific frequency ranges to enhance vibration isolation (Hussein et al., 2014; Dalela et al., 2022;
Valipour et al., 2022; Sinha and Mukhopadhyay, 2023). These metamaterials typically form
periodic structures with resonators, mass, geometry, and other characteristics, achieving superior
vibration suppression in the bandgap regions compared with traditional absorbers (Brennan,
2006). Based on dynamic vibration absorber concepts, local resonators have been widely
explored. Combining various materials and physics in resonators enhances metamaterial prop-
erties, such as electro-mechanical systems (Machado et al., 2019; de Moura et al., 2024), and
fluid–solid combinations (Zhang et al., 2018; Wu and Li, 2021; Dutkiewicz andMachado, 2019a,
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2019b, 2019c). The design process of those metamaterials begins
with investigating mechanisms at the physical level, followed by
designing dynamic features to achieve the desired tuned frequen-
cies for applications such as vibration control. This involves pro-
posing periodic patterns and determining the physical and
geometrical properties for global-level fabrication, given the sig-
nificant challenges posed by macro-structure complexity (Jiao and
Alavi, 2022). Henceforth, designing the forward dynamic features
of the metamaterial resonators for vibration control applications
can be effortless. Therefore, the physical design associated with the
geometry and mechanical properties of those resonators, following
their dynamic characteristics, can be complex. In Machado et al.
(2024), the authors proposed using mechanical metamaterials with
dynamic absorbers distributed along the length of the turbine in
complex systems such as wind turbines. These absorbers are
designed to dynamically match the turbine’s operational frequen-
cies, enhancing vibration control. However, traditionalmethods for
designing these resonators, which combine numerical simulations
and empirical tuning, are time-consuming, lack generalization
capabilities, and are computationally intensive.

Researchers have employed computational techniques, such as
topology optimization, to design and fabricate complex metama-
terial structures. Conventional optimization techniques, such
as evolutionary algorithms (Colherinhas et al., 2022; Reis and
Karathanasopoulos, 2022; Cerniauskas and Alam, 2023), topology
optimization (Han et al., 2023), and the particle swarm method
(Li et al., 2024), are employed to address the computational com-
plexity associated with metamaterial design problems. Recent stud-
ies have shown the ability of machine learning (ML) approaches to
solve inverse design problems. In this respect, ML models can be
trained to recognize the patterns between input parameters and the
desired output, enabling the rapid prediction of designs that meet
specific specifications. The development of artificial intelligence
techniques, including ML, deep learning (DL), and generative
methods, has recently addressed design engineering problems that
can be complex, costly, and time-consuming to solve using con-
ventional approaches. The inverse design approach systematically
produces a design of metamaterials for specific mechanical object-
ives, such as negative stiffness, geometry, high damping, or targeted
frequency response (Cerniauskas et al., 2024).

ML has received remarkable attention in the last few decades.
These methods can be used in monitoring (Sousa et al., 2023;
Coelho et al., 2024; Soomro et al., 2024) and understanding the
patterns between the parameters and the target. In Otaru (2023),
the author employed artificial neural networks to predict the sound
absorption properties of cellular materials with an accuracy of over
95%, showing the power of ML to analyze the complex relationship
between signals and parameters. Recent advancements in ML
methods focused on both forward prediction and inverse design.
Among these techniques, DL has become a powerful tool in design-
ing and optimizing metamaterials, offering significant advantages
over traditional methodologies. In this approach, neural networks
are exploited to predict the properties of metamaterials, allowing
higher efficiency and accuracy. DL-based inverse design methods
leverage the power of deep neural networks (DNNs) to address the
limitations of traditional approaches. DNNs can learn sophisticated
relationships between input and output, significantly enhancing
forward prediction and inverse design by learning physical pro-
cesses and generating functional designs. This results in reduced
computational time and a better design process. For example,
DL-based models can design and optimize metamaterials that
exhibit different responses, eliminating time-consuming numerical

simulations (Ma et al., 2018; Ashalley et al., 2020; Hou et al., 2020;
Hou et al., 2021; Zhang et al., 2021). Additionally, these models
enable inverse design based on the desired performance criteria. For
instance, researchers have exploited DL methods to create custom-
ized metamaterials, simplifying the design process and allowing
automatic inverse design across different metasurfaces (Chen et al.,
2019; Hou et al., 2020). In Inampudi and Mosallaei (2018), the
authors used a neural network to predict the contact angle and
contact diameter of nanowires with material parameters. They
show the effectiveness of ML techniques in accurately predicting
physical properties. The inverse design based on neural networks
for material and optical design has been proposed in Cerniauskas
et al. (2024) and Jin et al. (2022). In Jin et al. (2022) and He et al.
(2023), researchers conducted a literature review on new develop-
ments in the inverse design ofmetamaterials, highlighting advance-
ments in this field, including controlling vibration (Chen et al.,
2022; Dedoncker et al., 2023; Li et al., 2024), phononic and acoustic
metamaterials and manipulation of waves (Goh and Kallivokas,
2019; So et al., 2020; Wu et al., 2021; He et al., 2022; Jin et al., 2022;
Muhammad and Kennedy, 2022), and acoustic absorption
(Mahesh et al., 2021; Gao et al., 2022), where DL algorithms are
used for managing the vibrational energy.

DL frameworks are particularly effective in providing rapid and
accurate predictions for the design of phononic crystals and elastic
metamaterials, thereby overcoming the limitations of traditional
design methodologies (Liu and Yu, 2023). These models deliver
high prediction accuracy with low computational costs, making
them ideal for tackling complex inverse design challenges (Chen
et al., 2019; Raju et al., 2022). Peurifoy et al. (2018) proposed a fully
connected neural network to approximate the light-scattering
simulations in a supervised manner. Their approach significantly
reduced the computational cost of inverse-designing nanopho-
tonics compared to traditional methods. Yabin et al. (2022)
designed a network based on fully connected layers (FCLs) to
inverse design an Archimedean spiral metastructure, aiming to
find the radius and width of the spiral arm of the metastructure
by feeding the center frequency and the width of the bandgap to the
model. They successfully validated their model using results
obtained from Finite Element Method (FEM) and experiments,
demonstrating the power of DL in the inverse design of meta-
structures. Furthermore, generative adversarial networks and cap-
sule networks facilitate the generation of samples that can be used to
satisfy specific criteria by understanding the underlying patterns
between the features and targets (Guo et al., 2023).

On the other hand, unsupervised learningmethodsmanage data
without labels, so the network tries to extract essential patterns
from the data without requiring labeled outputs. Among DL archi-
tectures, one of the most commonly used architectures in inverse
design is the autoencoder (AE). The AE is an unsupervised DL
network primarily used for image processing, anomaly detection,
and dimensionality reduction. Harper et al. (2020) implemented a
pseudo-AE to predict the metasurface’s design from desired reflec-
tion and transmission spectra. With their proposed methodology,
they improved the efficiency and performance of the metasurface.
Soete et al. 2024 used an AE to extract topological features from
phononic crystals. Then they used these features as input to train a
fully connected dense layer for mapping between topological fea-
tures and band gaps. Their method enabled the inverse design of
phononic crystals to achieve the expected band gaps. Recent
advancements inmechanics-informed AEs have demonstrated that
embedding physical constraints into the latent space can also
enhance performance in structural health monitoring (Soete
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et al., 2024). In addition, generative neural networks and reinforce-
ment learning models have been applied to the inverse design of
acoustic metamaterials (Wang et al., 2020), mechanical metama-
terials with targeted nonlinear deformation (Brown et al., 2023),
and auxetic metamaterials (Zhang et al., 2023), showcasing their
potential to create structures with customized mechanical proper-
ties. Variational AEs further enhance this capability by mapping
complex microstructures into a low-dimensional latent space. A
design simplification for intricate microstructures and multiscale
metamaterial systems was investigated in Amirkulova et al. (2022),
as well as for ultra-broadband acoustic metamaterials by Cho et al.
(2024).

Although FCLs have proven useful in AEs, subsequent devel-
opment has demonstrated the incorporation of convolutional
neural networks (CNNs) and recurrent layers within AE structures
due to the potential of these architectures in extracting spatial and
temporal characteristics. Shi et al. (2020) proposed AMID, a two-
dimensional (2D) CNN-based AE for extracting dimensional fea-
tures from grayscale representations of electromagnetic properties.
These features were then used with an optimized Support Vector
Machine (SVM) to designmetasurfaces inversely based on specified
electromagnetic characteristics. Zhang et al. (2024) employed a
pretrained ResNet18-based CNN backbone as a feature extractor
to learn fault characteristics fromvibrational signals and proposed a
framework for machinery fault diagnosis. Moreover, Ren et al.
(2024) proposed a novel intelligent fault diagnosis method for
bearings using a multihead self-attention CNN. Further, Donda
et al. (2021) proposed a DL approach to derive absorption spec-
trum responses of metasurface absorbers using a 2D CNN archi-
tecture. Not only did they significantly reduce the computational
time compared to FEM, but they also, by exploiting their net-
work, modeled an ultra-thin metasurface with absorption at
extremely low frequencies. Mahesh et al. (2021) and (2024)
utilized one-dimensional (1D) CNNs to design resonators with
an inverse approach, focusing on the absorption coefficient. They
demonstrated the effectiveness of convolutional layers in captur-
ing spatial patterns in the signals. The power of CNNs is not
limited to signals or images, and they can be used to extract
features from all kinds of inputs; for instance, Li et al. (2024)
proposed a character-level TextCNN model to extract features
directly from the sequence of characters in raw data frames,
enabling the automatic construction of information models
needed for industrial system integration. Furthermore, long
short-term memory (LSTM) and bidirectional LSTMs are highly
effective for extracting temporal relations within the data. Pillai
et al. (2021) used LSTM-based neural networks to model the
sequential nature of spectral responses in metamaterials. They
treated the inverse design problem as a sequence-to-sequence
learning task. This approach enabled them to predict structural
parameters from desired electromagnetic properties accurately.
They leveraged the power of LSTM layers to find dependencies
within spectral data. Moreover, Jiang et al. (2023) demonstrated
the ability of LSTM-based models to address complex industrial
problems; their model successfully captured time-dependent
relationships between the robot’s motion history and its power
usage to predict and optimize energy consumption. In a subse-
quent study, Jiang et al. (2025) incorporated 1D-CNN layers to
denoise and extract features from signals before feeding them to
LSTM layers, thereby improving the prediction accuracy in their
hybrid-driven paradigm. These models can optimize different
systems, such as damping systems, actuators, or material

compositions, to improve vibration control performance while
balancing computational complexity with real-time constraints.

There are two conventional methods commonly used by
researchers for inverse design: (1) the binary pixel image-based
approach, which predicts the pixels in an image that correspond to
the shape of the structure for the desired spectrum, and (2) the
parameter-based approach, which predicts the geometric param-
eters corresponding to the desired spectrum. Each of thesemethods
has its advantages and limitations. The binary pixel image-based
approach is suitable for designing complex structures and offers a
broad design space. However, the computational time of this
approach is very high (Cho et al., 2024). On the other hand, the
parameter-based approach ismore computationally efficient. How-
ever, its main limitation is its low design flexibility, as the structure
is defined by a limited number of parameters that make it difficult
for models to relate the parameters to the spectrum. Achieving
on-demand performance with traditional approaches is a signifi-
cant challenge. Inverse designing metamaterials by exploiting AE
can be applied in different applications. However, this article
focuses explicitly on designing mechanical metamaterials tailored
to control vibration responses. To our knowledge, no previous work
has used an AE-based CNN model to design a local resonator of a
mechanical metastructure aiming vibration control.

At the industrial level, dynamic passive control devices, such as
dynamic absorbers, must adopt manufacturable geometries while
meeting specific performance criteria. Transitioning from ideal
dynamic models to physical implementations poses challenges,
particularly in ensuring that device parameters align with desired
dynamic properties for effective control and system reliability.
Although classical closed-form expressions can estimate the ideal
operating frequency and dynamic response, they do not directly
yield viable geometries, as the physical design depends on complex
interactions between material and geometry. Since the primary
structure’s dynamic behavior dictates the configuration of passive
controllers, determining their geometric characteristics becomes an
inherently complex optimization problem. This study proposes a
parametric inverse design model using a CNN-AE to predict the
geometric attributes of dynamic resonators embedded in metas-
tructures, guided by the desired dynamic response of the host
structure to be mitigated. The main contributions of the work
are: (i) the development of a CNN-AE architecture tailored for
on-demand inverse design of passive controller geometries for
vibration control, and (ii) the incorporation of dynamic response
data as input in the DLmodel to establish a direct mapping between
the desired dynamic characteristics and the physical geometry of
ideal controllers. The model is trained, validated, and tested in a
case study involving a wind turbine using a database generated
from a numerical model, including responses from various
dynamic absorbers across a target frequency range. The proposed
DL approach offers a scalable and fast alternative to traditional
analytical or iterative optimizationmethods, enabling non-iterative
prediction of feasible, manufacturable geometries. The CNN-AE
architecture, with its layered design, mitigates the limitations of
parameter-based methods and accelerates the design process. The
model successfully predicted the geometry of a local resonator
embedded in a wind turbine metastructure designed for vibration
attenuation, meeting the required dynamic performance. Valid-
ation showed strong agreement between the resonance frequency of
the predicted geometry and that of the target spectrum, demon-
strating the model’s reliability and highlighting the potential of DL
for tailored passive vibration control solutions.
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Forward design of the metamaterial wind turbine resonator

A 2D metamaterial turbine spectral model was proposed and
validated in Machado et al. (2024) and Machado and Dutkiewicz
(2025). The spectral element method was employed to model the
wind turbine metastructure due to its modeling reduction cap-
abilities compared to the Finite Element Method, efficiency in
computational effort, high accuracy in dynamic solutions, and its
ability to express solutions in the frequency domain. The mono-
pile turbine metastructure is constructed with a tapered-shaped
tower, where the cross-sectional area of each beam element grad-
ually reduces from the base to the top. The first three elements
from the base have a similar cross-section, each with a diameter of
6 m. Their diameters and thicknesses gradually decrease toward
the top of the tower, with the final element (number 13) repre-
senting the smallest diameter. Each element is attached to a
dynamic resonator, and the top element is also coupled to the
lumped mass that represents the nacelle and blades. The weak
form of the beam attached to a resonator element equation of
motion is evaluated under the weighted-integral statement in an
arbitrary variation of the displacement v. Assume there are n-
resonators attached to the beam at locations vzr , with masses mr ,
stiffness kr , natural frequencies ω2

r = kr=mr , and relative displace-
ments ur , it is defined in the frequency domain as (Machado and
Dutkiewicz, 2025).Z t2

t1

Z L

0
EIv00δv00 �ω2

Z L

0
ρAvδv�

Xn
r = 1

mrω
2
r urδ z� zrð Þdz

"

�
Z L

0
Fδ z� zf

� �
δvdz

#
dt = 0 (1a)

Z t2

t1

Xn
r = 1

mr
d2ur
dt2

þkr ur� vzrð Þ
" #

dt = 0 (1b)

where 0 denotes space derivation, δ virtual displacement, EI the
flexural rigidity, ρAmass, and F the external force. The unit cell of
the system for dynamic modeling considers one element of the
mesh. The wind turbine modeling consists of 14 elements in the
global matrix assembly, similar to the finite element method. For
the detailed formulation and modeling, we suggest the recent
development present in Machado et al. (2024) and Machado and
Dutkiewicz (2025). The turbine metastructure numerical model is
employed in the final inverse design stage to test the control
efficiency.

Dynamic modeling of the ideal locally resonator

Tuned mass dampers, which serve as dynamic vibration absorbers,
are commonly implemented as a passive technique to reduce
vibrations in wind turbines due to their simplicity and efficiency.
These systems typically simultaneously address up to two resonant
frequencies, exploring their placement and overall characteristics
within the structure. They operate passively, relying on their inher-
ent damping and stiffness properties to dissipate energy without
requiring external power sources. Activation occurs in response to
vibrations from the primary structure to which they are attached,
ensuring cost-effectiveness and minimal maintenance require-
ments. The initial dynamic design of such a passive dynamic
control resonator typically follows an analytical solution.

The resonant frequencies of the NREL 5 MW offshore wind
turbine exhibit clear separations from one another, with the design
of the control systems and their specific characteristics outlined
individually. In contrast, the metastructure arrangements are com-
posed of an array of resonators as presented in Figure 1. In the
specified subdomain of the turbine metastructure consisting of N-
resonators displaced periodically, where ΔLj =

R
Lj
dL represents the

length of subdomain a= Lj. Furthermore, the spring coefficient of
each cantilever resonator is assumed to be uniform. The mass of
each resonator is determined by mr = ϵmΔL (Sugino and Erturk,
2016), the mass ratio referred to as ϵ=

PN
p= 1mr=

R
Lm xð ÞdL, for

m xð Þ represents the mass density at a specific point within the
domain. The equation of motion that describes the ideal resonators
is given as follows

mrür tð Þþkrur tð Þþmrv̈zr x,p, tð Þ= 0 r = 1,2,…,N (2)

where vzr x,p, tð Þ represents the displacement of a point with
a position vector r to the turbine tower, which is considered
the primary system. The variables kr , mr , and ur tð Þ denote the
stiffness, mass, and displacement of the pth resonator relative to the
primary structure, respectively. The relative displacement, repre-
sented by ur = ur� vzr xp

� �� �
, indicates the displacement of each rth

resonator concerning the relative displacement of the primary
structure, denoted by (vzr xp

� �
). The natural frequency and dis-

placement response of an ideal resonator are defined simply by the
mass and stiffness parameters represented by

ωr =
ffiffiffiffiffiffiffiffiffiffiffiffi
kr=mr

p
r = 1,2,…,N and ur ωð Þ= f

kr�ω2mr
(3)

Hysteretic damping is assumed for the resonator spring,
described by a complex stiffness expressed as kr = kr 1þ iζð Þ,
which is often associated with dry friction in materials. In a real
application, the controller’s tuned frequency should match the
primary system’s desired frequency to be attenuated. For the
parametric design of the resonator, both geometry and material
are required. The position of the lumpedmass in each absorber is
calculated following Dunkerley’s semi-empirical formulation,
which gives a lower band approximation (Jeffcott, 1918) to
satisfy the tuning frequency condition

1
ω2

abj

≃
1

ω2
beam

þ 1
ω2

m0

, j= 1,2,3f g (4)

where

ωbeam = 3:5160

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EbeamIbeam
mbeamL3beam

s
, ωm0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6EbeamIbeam

mabi l
2
abi 3Lbeam� labið Þ

s

Hence, the tuning frequency of the absorber depends on an optimal
parameter: the position of the mass along the absorber beam,
denoted by labi , as well as on the geometry of the beam and the
attached mass. This tuning process involves optimization tech-
niques and requires significant computational and methodological
effort. The dynamic response of the resonator exhibits a multi-
variable dependence on both geometric andmaterial parameters. In
this work, the material properties are predefined, and the geometry
is obtained through inverse design using the CNN-AE model. The
dynamic response of the resonator, in this case, depends on the
parameter vector θ = br ,hr , lr½ � and is characterized by
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ur ω,θð Þ= 3Er
brh

3
r

12

lr
�ω2ρr bm0 θð Þhm0 θð Þlm0 θð Þ

" #�1

f ωð Þ, (5)

where the subscripts r and m0 refer to the beam and the combined
beam and lumpedmass components, respectively. It is important to
note that the total mass is influenced by both the lumped mass and
the geometric mass of the beam. Since no closed-form solution
exists for this system, an optimization method is required to
determine the optimal design parameters.

Evaluation of the local resonant metastructure design

Metamaterials are artificial composite materials composed of peri-
odically arranged unit cells containing internal substructures, such
as resonators or patterns, designed to manipulate properties not
found in natural materials. This periodic tessellation enables con-
sistent dynamic behavior that can be described using homogenized
effective properties, such as negative mass or stiffness (Liu and
Hussein, 2012). For homogenization to hold, the unit cell must be
much smaller than the wavelength, leading to a subwavelength
condition a=λ≪ 1, and the overall structure should be at least an
order of magnitude larger than the unit cell, ensuring sufficient
scale separation.

In finite structures, such as wind turbine towers, where flexural
wave propagation dominates, the resonators must be geometrically
tuned to the target frequency and positioned at subwavelength
intervals. These resonators, initially idealized as mass-spring sys-
tems, are associated with a specific vibration mode (Dedoncker
et al., 2023). When applied in periodic or quasi-periodic arrays,
they can induce locally resonant bandgaps or attenuation bands.

While bandgap formation is often analyzed assuming infinite peri-
odicity and traveling waves, the response of finite structures ismore
closely tied to modal interactions (Cleante et al., 2022). This feature
enables applications such as low-frequency vibration attenuation
and wave filtering analysis, even when the wavelength is larger than
the unit cell size (El-Borgi and Fernandes, 2020). In wind turbine
metastructures, as in other local resonant metamaterial types,
embedding resonators designed for local resonance allows the
formation of effective attenuation bands, enhancing vibration con-
trol within the subwavelength regime (Liu and Hussein, 2012). To
demonstrate analytical insight, the concept of infinite absorbers is
applied and extended to finite structures, following the approach
presented in Sugino and Erturk (2016) Machado and Dutkiewicz
(2024). In this context, resonators are periodically distributed along
the host structure with a unit cell length constant of a= L=10≪ λ,
deliberately chosen to ensure subwavelength spacing relative to the
flexural wavelength λ. This condition is essential for enabling
effective metamaterial behavior through local resonances. The
phase velocity of flexural waves in beam-like structures is
frequency-dependent (dispersive), and the wavelength and unit cell
length are given by

c =
ω
kv

=
EI
ρA

� �1=4

ω1=2, λ=
2π
kv

=
c
f
,

a
≤
λ
5

typical metamaterial limit

≤
λ
10

safe homogenization bound

8><
>: (6)

where E is the Young’smodulus, I is the secondmoment of area, ρ is
the material density, A is the cross-sectional area, ω= 2πf is the

Figure 1. Schematic representation of themetamaterial 5 MWNREL offshore wind turbine (a), zoom details of ideal dynamic resonators used in the forward design (b), and physical
resonators obtained by the inverse design (c).
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angular frequency, and kv is the wavenumber. The standard hom-
ogenization criteria follow the typical metamaterial limit, as defined
in Sridhar et al. (2016) and Ariza et al. (2024).

Hence, to verify whether the local resonator metastructure
operates in the subwavelength regime, a necessary condition for
achieving metamaterial-like behavior in vibration attenuation is
that it is sufficient to ensure that the unit cell length a is significantly
smaller than the λ. This evaluation is conducted using the geometric
and material parameters of the NREL 5-MW reference wind tur-
bine tower (Jonkman et al., 2009), with a focus on the low-
frequency range around 0.3 Hz, where flexural behavior governs
the dynamic response. The flexural stiffness of the wind turbine is
EI = 2:94 × 1012 Nm2, and the inertial term is ρA≈ 3699:5
kg/m. Substituting into Eq. (6), the flexural wavelength at f = 0:3
Hz is λ≈ 816m. For the tower height around 100m, results in a unit
cell spacing a≈ 10, yielding a

λ ≈ 0:013≪ 1, confirming operation in
the subwavelength regime. Therefore, the tower-resonator config-
uration satisfies subwavelength criteria, enabling resonance-based
wave attenuation mechanisms characteristic of metamaterials.
However, since the structure contains only a few discrete resonators
and does not exhibit wide-range periodicity, we adopt the termin-
ology of local resonant metastructure rather than claiming a hom-
ogenized metamaterial in the strict sense.

Inverse design using a convolutional AE

At the industrial level, dynamic passive control, as dynamic absorb-
ers, must adopt manufacturable geometries and meet specific
design criteria. Transitioning from ideal dynamic models to phys-
ical implementations introduces challenges, particularly in ensur-
ing that the device’s parameters align with the required dynamic
properties for effective control and system reliability. While the
ideal operating frequency and dynamic response of a resonator can
be estimated using classical closed-form expressions (Eq. 3), these
simplified mass-spring models do not directly yield viable geom-
etries, as the physical design depends on material and geometry
interactions. Addressing these constraints typically requires an
iterative optimization process. The proposed DL strategy offers a
scalable alternative to traditional analytical or optimization
methods by enabling a fast, non-iterative prediction of suitable
geometries, integrating a data-driven process. This approach

addresses dynamic requirements and manufacturable designs,
facilitating the practical deployment of passive controllers.

Mechanical metamaterial design spans four hierarchical levels
as physical, local, global, and industrial, each increasing in com-
plexity and methodological demands (Jiao and Alavi, 2022). As
shown in Figure 2, the physical level focuses on intrinsic material
properties, the local level on microstructural design, and the global
level on structural-scale fabrication. The industrial level addresses
real-world deployment, requiring reliable and cost-effective solu-
tions that link micro- and macroscale performance. Here, inverse
design becomes essential for aligning structural behavior with
performance goals. This study proposes an inverse design strategy
for dynamic absorbers in industrial applications, enabling the rapid
and on-demand development of passive controllers based on the
host structure’s dynamics. The method employs a CNN-AE with
model updating to improve accuracy and ensure manufacturable
output.

The inverse model was developed as a data-driven framework to
guide practical applications, where the target control frequency is
provided as input, eliminating the need for a numerical model. The
interaction between the primary structure and the resonator is
assessed after the inverse design stage. If fine-tuning is necessary,
rapid recalculations of the resonator geometry are enabled through
an embedded sensitivity-based model. The proposed model pre-
dicts the geometric parameters of the local resonator embedded in
the turbine metastructure, having as prior information the fre-
quency spectrum of an ideal resonator. Integrating the target
spectral signature into the design workflow effectively translates
system-level dynamics into physical configurations. The model
outputs the resonator geometry while considering a predefined
mass ratio, resonator location, material, and the dynamic charac-
teristics of the host structure. In the presented application, the
cantilever resonator’s height, width, and length are the design
variables. Although limited to three parameters, the inverse design
problem remains challenging due to its coupling with the controller
mass.While topology optimization is beyond the present scope, this
approach provides a foundation for scalable, data-driven inverse
design methodologies. The interaction between the controller and
the primary system is inherently considered in the numerical model
used to evaluate the control performance, which is apart from the
DL model.

Figure 2. Four levels designing chain of metastructures associated with methods, challenges, and objectives (adapted from Jiao and Alavi, 2022]).
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Algorithm 1 and Figure 3 present the proposed inverse design
workflow, which consists of five main steps. The process begins
with input derived from the dynamic resonator’s receptance
response, enabling efficient and precise parameter prediction.
The dataset is generated from analytically computed receptance
spectra based on Eq. (5), with the resonator’s cantilever geometry
defined by randomly sampled parameters (see Section “Data
generation”). In the second step, a CNN-AE (Section “CNN-AE
model architecture”) is trained and tested to map spectral features
to geometric parameters within the 0–3 Hz frequency range, which
includes the critical resonant frequencies of the target turbine. The
trained AE encodes the spectra into a latent space and outputs a
cluster of predicted parameters. Steps 1 and 2 are run only once for
training the model.

Step 3 performs the on-demand inverse design. It receives a
given test or new spectrum input, and the CNN-AE predicts the
geometric parameters, in our case, the θ = lr ,br ,hr½ �, but not limited
to these three. Step 4 validates the prediction by comparing the
analytically computed receptance response (via Eq. 5) with the
target spectrum. If the error is within an acceptable threshold, the
prediction is accepted. Otherwise, step 5 applies a sensitivity-based
optimization method (Section “Sensitivity optimization method”)
to fine-tune the parameters until the predicted and reference
responses converge. This procedure ensures high accuracy in
designing the resonator for optimal dynamic performance.

Algorithm 1 Pseudocode for the dataset generation, training the
model, and post-processing the output.

1: Data generation: Sampling random variables as described in
Section “Data generation”

2: Receptance response dataset: Calculate u ω,θð Þ having as
input the random parameters

3: Data processing: Check for outliers
4: outliers = DetectOutliers(samples)
5: cleaned data = RemoveOutliers(samples, outliers)
6: Data setting: Splitting the dataset into Train, Validation, and

Test, and normalizing data
7: Training the CNN-autoencoder model: CNN-autoencoder-

basedmodel proposed in Section “CNN-AEmodel architecture”
8: for epoch in range(epochs):
9: for batch in GetBatches(normalized train data, batch

size):
10: θ̂ =ℬϕ u ωð Þð Þ
11: û ωð Þ=Dθðθ̂Þ
12: compute Loss[θ, θ̂, u ωð Þ, û ωð Þ], given in Eq. (9)
13: Update weights
14: Receptance generation: Generate spectrum from predicted

parameters (θ̂) using Eq. (5)
15: Input test dataset to the trained model: Predict the param-

eters of the tested samples.
16: Generate spectrum û ωð Þ from predicted parameters (θ̂)

using Eq. (5)
17: Compare desired u ωð Þ with generatedûðω, θ̂Þ
18: if u ωð Þ� û ω,θð Þ < 0:001& ωr�ωeq

r θð Þ < 0:02 Hz
19: Predicted parameters are acceptable
20: else:
21: Parameters fine-tuning by the sensitivity method

(Eq. 14)
22: Calculate the receptance response with the updated

parameters and compare spectra

Figure 3. Workflow of the proposed inverse design model.
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Data generation

The performance of theDNNmodel relies on high-quality datasets,
where poorly generated samples can lead to an unstable distribution
in the design space, negatively affecting the network’s performance
and reducing accuracy. An imbalanced sample distribution can
result in high representation in some areas while leaving others
empty, hindering the model’s ability to generalize efficiently. Thus,
the latin hypercube sampling (LHS) technique (Helton and Davis,
2003) is employed, using the pyDOE library in Python, to sample
the dataset. LHS differs from the Monte Carlo technique, which
randomly places points within the parameter space. Instead, LHS
enables a more accurate parameter space exploration by dividing
the sample space into equal fractions. This method divides the cube
into rows and columns equal to the total number of desired samples
and selects one sample for each row and column to cover the entire
range of the design space. This balanced sampling technique
improves the quality and accuracy of the model.

The dataset consists of a random realization of the receptance
response of the resonator embedded in the metastructure defined
by Eq. (5) leading to ~ur ω,~θ

� �
. The spectrum for a random assort-

ment of these geometric parameters is generated across a frequency
range of 0–3 Hz while keeping all other geometric and material
properties constant. The random geometric parameters for data
preparation are chosen based on a uniform distribution and are
listed in Table 1.

The next preprocessing step is to clean the data and identify
outliers. Many models adjust their weights using mean squared
error (MSE) as the loss function. However, this metric is highly
sensitive to outliers, which can significantly reducemodel accuracy.
Therefore, outliers must be identified and eliminated. Traditional
outlier detection techniques, such as Z-score and interquartile
range, which depend on data distribution, are inadequate because
the algorithm used to generate samples aims for a uniform distri-
bution over the design space. Instead, an isolation forest algorithm
is employed for outlier detection. Further details on its method-
ology can be found in the original article (Liu et al., 2008). Using this
method, ~2,000 outliers were identified and removed from the
database to ensure data quality for training models, resulting
in 198,000 samples for model training. These samples are then split
into a training set (80%), a validation set (10%), and a test set (10%).
They are then normalized using Min–Max Scaling to a range
between zero and unity.

AE architecture of the inverse design algorithm

The on-demand inverse design of a mechanical resonator presents
a significant challenge, due to the complex and nonlinear relation-
ships between a resonator’s geometry and its dynamic response.
The receptance spectrum is a high-dimensional data vector
that may include redundant information. To effectively perform
the on-demand inverse design, we need to extract the required

geometrical features from the high-dimensional spectrum. The
core task, therefore, becomes effective dimensionality reduction
and feature extraction. This makes AEs an appropriate tool for this
task. AEs excel at learning compressed representations of high-
dimensional data using an encoder and are a powerful tool for
feature extraction. Moreover, the decoder serves as a validator,
ensuring that the result is meaningful and accurate. The advantages
of AEs, which have been effectively demonstrated in various inverse
design studies (Harper et al., 2020; Li et al., 2020; Gao et al., 2022),
make the AE a robust and reliable choice for performing inverse
design.

The AE architecture employed in this work comprises an
encoder block, an intermediate layer, and a decoder block. The
encodermaps the input data to a lower-dimensional representation
while the decoder reconstructs the input from this compressed
representation. The latent space, connecting the encoder and
decoder, stores the essential features of the input data. In practice,
the encoder network Bð Þ first extracts the important features from
the given input layerX ∈R to an abstract space, known as the latent
space, as expressed by Mahesh et al. (2021).

H=Bϕ Xð Þ (7)

for H ∈R, ϕ being the collection of parameters of the encoder
network, and X being the input samples. Then, the decoder model
Dð Þ reverses the latent space to the reconstructed output layer X0.
The output of the decoder is formulated as

X0 =Dθ Hð Þ (8)

where θ is the collection of all parameters of the decoder model. In
this work, the AE is used to regenerate the required resonator
receptance response û ωð Þ from a desired receptance spectrum
u ωð Þ.

In this study, the encoder block receives the receptance spec-
trum from the ideal resonator as input, which is calculated to
control the resonant frequency of a desired structure. It compresses
this dynamic characteristic based on mass and stiffness parameters
in the latent space. This latent space is designed to represent the
geometrical parameters of the cantilever resonator beam, including
length, width, height, and total mass (selected mass ratio and beam
mass parameters). The intermediate layer, acting as an abstract
expression, delivers the geometrical parameters of the resonator as
output. The decoder then utilizes these geometrical properties to
reconstruct the receptance response, effectively functioning as an
evaluator. A custom loss function ensures the latent space captures
the resonator’s geometric properties. This function compares the
latent space values with the actual values for each sample, calculates
theMSE, and adds it to the reconstruction error, which is defined as
the difference between the actual signal and the reconstructed
signal obtained from the decoder as

Loss θi, θ̂i,ui, ûi
� �

=
1
n

Xn
i= 1

θi� θ̂i
		 		2þ γ � 1

n

Xn
i= 1

ui ωð Þ� ûi ωð Þj j2

(9)

where θi is the actual geometric parameters, θ̂i denotes the predicted
geometric parameters by the encoder, n is the total number of
samples, uð Þ is the targeted resonator’s receptance frequency, and
û the predicted receptance calculated with the estimated parameters.
The decoder also returns a reconstruction receptance response,
which is used only for model training and validation. Furthermore,
γ is the weighting coefficient for reconstruction loss set to 0.5 based

Table 1. Dimensions chosen for the dataset preparation for predicting
geometrical parameters of the metamaterial’s cantilever resonator

Parameters [~θ] Domain of random values [m]

~br U 0:1,0:5ð Þ
~hr U 0:005,0:02ð Þ
~lr U 0:1,1:5ð Þ
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on empirical tuning to balance the geometric parameter error and the
spectral reconstruction error.

This custom loss function updates the network hyperparameters
andweights. TheAE is inherently an unsupervisedmodel due to the
nature of the reconstruction loss, which is unsupervised. On the
other hand, the prediction of geometrical properties is supervised
because all the geometrical properties are known, and there are no
unlabeled samples in the model’s training. As a result, this modi-
fication converts the model into a supervised AE, allowing the
model to incorporate knowledge of each sample’s geometry. In this
setup, the reconstruction loss acts as a regularizer to ensure that the
predicted geometries are meaningful. Adjusting the number of
layers, neurons in each layer, and other hyperparameters using this
custom loss function helps increase accuracy while reducing com-
putational complexity.

CNN-AE model architecture
Among the various types of architecture discussed in the literature
for the model, each offers its advantages and disadvantages. FCLs
are computationally efficient. Still, they lack the ability to capture
the spatial or temporal relationships within sequential data, such as
a receptance spectrum, as they treat each data point independently
and are primarily suitable for regression problems. On the other
hand, LSTMs are designed to handle temporal dependencies. How-
ever, in this problem, the features are embedded in the spatial
patterns of the frequency rather than temporal sequences, which
makes LSTMs computationally more expensive without offering a
significant advantage. In contrast, CNNs are well-suited to cap-
turing spatial and local features in data through the use of con-
volutional filters, making them a powerful and efficient tool for
extracting the salient features from the receptance spectrum.
Therefore, integrating CNNs into the AE architecture provides
a robust and efficient model for the inverse design problem when
frequency spectral signals are involved. Figure 4 demonstrates the
representation of the inverse design architecture receiving the
dynamic information of the primary structure for the final par-
ameter estimation.

Convolutional filters are used in the encoder to extract features
from the spectrum. Each convolutional layer is followed by amax-
pooling layer to reduce the feature dimensions and increase
efficiency. Then, these extracted features are flattened and passed
to dense layers to predict the geometrical properties of the reson-
ator. Three separate feature weighting modules are introduced to
enhance the accuracy of the proposed model in predicting geo-
metrical properties that yield a spectrum similar to the desired
one. Each module consists of dense layers that output a scalar
weight representing the value of each geometry. The output of
these three modules is then concatenated in the latent space
between the encoder and the decoder. The three values inside
the latent space are then passed to the AE’s decoder block. The
decoder block’s architecture is the reverse of the encoder block,
reconstructing the spectrum with the given geometrical proper-
ties. Instead of using max pooling, upsampling layers are
employed to increase the dimension of the feature map, allowing
it to match the decoder’s output with the original spectrum. A
dropout is applied after each layer to increase the generality and
prevent overfitting.

The architecture of this model is presented in Table 2. The
CNN-AE consists of 6 1D-CNN layers with 15, 31, 63, 128,
256, and 512 filters and a kernel size of 3, followed by max-
pooling layers. Four dense layers with 1,024, 512, 256, and
128 neurons are used, and the output of the FCLs is then passed

separately to three feature weighting modules, each consisting of
64, 32, 16, and 1 neurons. Finally, these three values are again
concatenated and are the output of the encoder. As explained, the
decoder architecture mirrors the encoder architecture in reverse.
The hyperparameters chosen for the model are the rectified linear
unit activation function for all layers and the Adam optimizer
with Nesterov momentum (Nadam), which features a cyclic
learning rate that helps the model avoid getting stuck in a local
minimum. The model was trained with a batch size of 256 over
300 epochs.

The pseudocode (Table 1) illustrates the described process,
which involves generating a dataset assuming the resonator’s geo-
metric parameters as random variables and utilizing the general
CNN-AE inverse design scheme. The AE takes the receptance
response of the resonator in the frequency range of 0–3 Hz as its
input and produces the geometric features as its output. To achieve
this, a convolution-based AE has been proposed to capture the
important features of the spectrum and predict the geometrical
properties that will result in a spectrum close to the desired one. The
process was conducted on a Google Colaboratory platform, utiliz-
ing an NVIDIA Tesla T4 GPUwith 12 GB of RAM. The model was
implemented using the TensorFlow library compiled in Python.

Multi-resonator control design can be applied with the CNN
AEmodel; however, it is recommended to train the DL model on
datasets that span specific frequency bands corresponding to
the multiple modes of interest in uncoupled conditions, as per
modal analysis theory. This enables the model to capture
dynamic interactions effectively without incurring a significant
loss of accuracy. Such an approach is particularly beneficial when
deploying resonators tuned to different modal frequencies. As a
general guideline, we suggest adopting a modular, uncoupled
configuration for model training, unless the application specif-
ically benefits from resonator coupling. This strategy improves
model efficiency and ensures reliable vibration attenuation of the
targeted frequency range.

Sensitivity optimization method

The inverse design workflow proposed in this paper integrates a
CNN-AE with the sensitivity-based optimization procedure, creat-
ing a robust framework. Sensitivity-based optimization enhances
the correlation between observed data and the model predictions
(Friswell andMottershead, 1995). This correlation is assessed using
a cost function derived from the dynamic response data, which
usually represents nonlinear functions of the model parameters. As
a result, a repetitive process is employed. The success of this
optimization approach directly depends on the initial guess for
the parameter values to be estimated, as these significantly influ-
ence the convergence and associated challenges.

The CNN-AE provides the initial parameters required as input
for the sensitivity-based method. This integration ensures that the
optimization process begins with a closer approximation of the
parameters, while the sensitivity method fine-tunes these optimized
parameters. Consequently, the present approach offers an efficient
model for rapidly designing dynamic controllers on demand, cus-
tomized to the dynamic system’s requirements. The dataset of the
receptance response is obtained from the ideal desired control, which
is assembled into a matrix expressed by z = u1,u2,…,un½ �T . Penalty
function methods generally use a truncated Taylor series expansion
of the dynamic response data in terms of the unknown parameters,
often limited to the first two series terms, yielding the linear approxi-
mation as Friswell and Mottershead (1995).
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δz = Sjδθ̂, (10)

where δz = zm� zj represents the error in the output, δθ̂ = θ̂� θ̂j
signifies the perturbation in the parameters, and Sj denotes the
sensitivity matrix that includes the derivatives of the response

associated with the parameters θ̂j. Given that there are more data
points than unknown parameters, Eq. (10) results in an overde-
termined set of simultaneous equations that can be addressed
using a least squares solution. By implementing the penalty
function

Table 2. CNN-autoencoder inverse design model description. Output 1 predicts geometrical parameters, and Output 2 exhibits the receptance reconstruction

Encoder Decoder

Layer Output shape Parameters Layer Output shape Parameters

Input layer (None, 512, 1) 0 Input layer (None, 3) 0

Conv1D (None, 512, 16) 64 Dense (None, 128) 512

Dropout (None, 512, 16) 0 Dropout (None, 128) 0

MaxPooling1D (None, 256, 16) 0 Dense (None, 256) 33,024

Conv1D (None, 256, 32) 1,568 Dropout (None, 256) 0

Dropout (None, 256, 32) 0 Dense (None, 512) 131,584

MaxPooling1D (None, 128, 32) 0 Dropout (None, 512) 0

Conv1D (None, 128, 64) 6,208 Dense (None, 1024) 525,312

Dropout (None, 128, 64) 0 Dropout (None, 1024) 0

MaxPooling1D (None, 64, 64) 0 Dense (None, 4096) 4,198,400

Conv1D (None, 64, 128) 24,704 Dropout (None, 4096) 0

Dropout (None, 64, 128) 0 Reshape (None, 8, 512) 0

MaxPooling1D (None, 32, 128) 0 Conv1D (None, 8, 512) 786,944

Conv1D (None, 32, 256) 98,560 Dropout (None, 8, 512) 0

Dropout (None, 32, 256) 0 UpSampling1D (None, 16, 512) 0

MaxPooling1D (None, 16, 256) 0 Conv1D (None, 16, 256) 393,472

Conv1D (None, 16, 512) 393,728 Dropout (None, 16, 256) 0

Dropout (None, 16, 512) 0 UpSampling1D (None, 32, 256) 0

MaxPooling1D (None, 8, 512) 0 Conv1D (None, 32, 128) 98,432

Flatten (None, 4096) 0 Dropout (None, 32, 128) 0

Dense (None, 1024) 4,195,328 UpSampling1D (None, 64, 128) 0

Dropout (None, 1024) 0 Conv1D (None, 64, 64) 24,640

Dense (None, 512) 524,800 Dropout (None, 64, 64) 0

Dropout (None, 512) 0 UpSampling1D (None, 128, 64) 0

Dense (None, 256) 131,328 Conv1D (None, 128, 32) 6,176

Dropout (None, 256) 0 Dropout (None, 128, 32) 0

Dense (None, 128) 32,896 UpSampling1D (None, 256, 32) 0

Dense (3X) (None, 64) 8,256 Conv1D (None, 256, 16) 1,552

Dropout (3X) (None, 64) 0 Dropout (None, 256, 16) 0

Dense (3X) (None, 32) 2,080 UpSampling1D (None, 512, 16) 0

Dropout (3X) (None, 32) 0 Output 2 (None, 512, 1) 49

Dense (3X) (None, 16) 528

Dropout (3X) (None, 16) 0

Dense (3X) (None, 1) 17

Dropout (3X) (None, 1) 0

Multiply (3X) (None, 128) 0

Concatenate (None, 384) 0

Output 1 (None, 3) 1,155
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J δθ̂
� �

= εTε, (11)

where ε = δz�Sjδθ̂ is the error in the predicted measurements
based on the updated parameters. Substituting Eq. (11) in
Eq. (10) leads to

J δθ̂
� �

= δzTδz�2δθ̂
T
STj δzþδθ̂

T
STj Sjδθ̂: (12)

Minimizing J in relation to δθ̂ is equivalent to

∇J δθ̂
� �

= 0 = �STj δzþSTj Sjδθ̂, (13)

and solving Eq. (13) for δθ̂ results in δθ̂ = STj Sj
h i�1

STj δz, and the
updated parameter can be obtained as

θ̂jþ1 = θ̂jþ STj Sj
h i�1

STj zm� zj
� �

: (14)

The updated parameters are the output of the inverse design
process, which accurately matches the dynamic design criteria.

Numerical results

Attenuating vibrations in the low-frequency range (0–3 Hz) is chal-
lenging due to the physical limits of resonator-based metastructures
integrated into primary structures. Our work addressed this chal-
lenge and validated effective low-frequency attenuation, as detailed in
Machado et al. (2024) and Machado and Dutkiewicz (2025). The
embedded metastructure, tuned to the wind turbine’s first resonant
mode, outperforms classical tuned mass dampers. Although the
attenuation band is narrow due to modal constraints, the targeted
reduction at critical frequencies shows practical benefits. The meta-
material solutionalso reduces controller size compared to tunedmass
damper (TMD) and removes the need for precise placement, offering
greater integration flexibility. Therefore, an effective physical design
of the controllers is still an open issue. This article presents a
numerical analysis that includes a sensitivity assessment of the

controller’s parameters, an evaluation of the proposed AE inverse
networks’ efficiency, and an investigation into the efficacy of the
on-demand resonator’s design in the metamaterial turbine for
achieving the desired dynamic characteristics.

Dynamic and stochastic analysis of the resonators

The resonator’s dynamic responses in frequency, time domain, and
phase plane diagrams of the structural response are examined for the
controller, assuming an undamped resonator, as shown in Figure 5a–
d, and a resonator with additional hysteretic damping incorporated
into its stiffness, as shown in Figure 5e–g. The resonator control
system consists of a single-degree-of-freedommass-spring-damping
system. The mass is assumed to be 10% of the turbine’s mass.

The natural frequency characteristics of the dynamic vibration
resonator, as described in Eq. (3), are determined by its stiffness and
mass. Consequently, in its fundamental geometric form, the phys-
ical resonator is assumed to be a cantilever beam connected to a
lumped mass. The beam elements represent the stiffness (kr), while
the combined beam and lumped masses (lm0,bm0,hm0,m0) repre-
sent the mass. The geometric dimensions of the beam, specifically
its br , lr , and hr , are then determined by the CNN-AE inverse design
approach, which enables the determination of the resonator’s
parameters that match the desired dynamic response. Hence, the
desired resonator receptance spectra are assumed to be the CNN-
AE input data corresponding to a collection of the three geometric
parameters of the resonators.

The random values of the geometrical parameters are generated
using both LHS and Monte Carlo techniques, and their PDFs are
shown in Figure 6. As can be seen, the parameters generated with the
LHS exhibit a more uniform distribution across each parameter range
compared to the Monte Carlo technique. This uniform distribution
will inform themodelwith values fromall over the design space, rather
than redundant values, which will prevent the model from being
biased toward a specific region and promote more robust training.

DL models often provide only point predictions, lacking
information about their accuracy, sampling errors, and reliability

Figure 5. Resonator representation, receptance response, temporal, and phase diagram responses for (a–d) undamped resonator and (e–g) resonator with hysteretic damping of
0.01 of the damping factor.
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(Khosravi et al., 2011; Lu et al., 2024). These models typically learn
the mapping between inputs and target variables, producing deter-
ministic estimates of the relationship. However, when dealing with
multivalued targets or sparse data, the average outputs of the
models may not accurately represent the true target. To enhance
the reliability of DL decision-making, it is crucial to quantify the
uncertainty associated with predictions, models, and datasets. This
enables an accurate assessment and qualification of the predictions’
accuracy and risk, ultimately enhancing the overall reliability and
credibility of DLmethods. Hence, sensitivity analysis of the random
parameters and the uncertainty propagation to the resonators’
dynamic response are explored in Figures 7 and 8. The influence
of each random variable on the dynamic response is presented in
Figure 7, which shows samples of the receptance response at the top
and the ensemble mean, along with the 90% confidence interval
below. Specifically, Figure 7a illustrates the resonator’s receptance
response, where the beam’s length is the only random variable,
while the other parameters are kept deterministic. Figure 7b con-
siders the beam’s width as a random variable, Figure 7c considers
the height, and Figure 7d assumes all three variables are random.
Variability in length has the most significant impact on the shift in
resonant peaks, followed by changes in height and width. The
response amplitude is shown to be more sensitive to the length

parameter. Combining all three random variables yields a significant
frequency shift, with the amplitude decreasing at higher frequencies.

The probability density function (PDF) calculated using the
resonant frequency and corresponding amplitude values is pre-
sented in Figure 8a and b, respectively. In both cases, when con-
sidering the length as a random variable, the PDF graphs exhibit a
bimodal statistical behaviour, with the primary statistical mode
appearing as ragged histogram shapes around the frequencies of
interest. The PDF assumes an unimodal statistical shape for both
resonant frequency and amplitude values when considering the
width and height as random variables. The random length causes a
large dispersion with lower amplitude, while the random width
results in a narrow and high-density distribution. The height PDF
shows a medium amplitude spread density around the target fre-
quency. The PDFs illustrate the random contribution of each
variable to the resonator’s dynamic response, with resonant fre-
quencies predominantly influenced by length parameters. The
PDFs for resonant frequency and amplitude, considering the com-
bination of all three random variables, are displayed in Figure 8c
and d. The merged random variables yield a unimodal statistical
distribution in the resonator’s dynamic response, reflecting the
combined characteristics of the random variables, including band-
width and amplitude. In practice, these random variables are

Figure 7. Receptance response of the resonator, assuming as random variables the beam (a) length, (b) width, (c) height, and (d) the three variables.

Figure 6. Comparison of probability density functions for the geometric parameters: (a) length, (b) height, and (c) width, under LHS versus the Monte Carlo technique.
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assumed to sample the dataset used in the CNN-AE inverse design.
Understanding the influence of each parameter in the dynamic
system is crucial for accurately evaluating the results.

Inverse design of the metamaterial’s resonator

The wind turbine metastructure is designed to control its first
resonant frequency as proposed by Machado et al. (2024). The
following section addresses the inverse design of the physical
resonators of the metaturbine using the proposed framework. In
the inverse model, 10% of the dataset is allocated for testing
purposes. In practice, the CNN-AE model maps the relationship
between the resonator’s receptance response and its target param-
eters, which are the output of the encoder network in the latent
space, in such a way that the predicted geometries generate a
spectrum similar to the desired one. Notably, the identification of
attributes in inverse design is executed in a supervised way.

The interaction between the host structure and the resonator is
considered only in the numerical model used to evaluate control
performance, not during the inverse design step, which is inten-
tionally formulated as a data-driven process for practical applica-
tion. This interaction is idealized via the test step using the turbine
numerical model, which, in this study, is based on a spectral model
but is not limited to it. Since the resonator position and mass ratio

are preestablished, following themetastructure concept, the control
frequency remains constant, unlike in classical TMDdesigns, where
location tuning is essential and directly influences the system’s
dynamic characteristics. Therefore, parametric fine-tuning, if
necessary, is addressed by recalculating the resonator geometry
using sensitivity-based methods in an automatic procedure.

Within the dataset, many spectra exhibit identical shapes and
resonance frequencies, although each is generated from different
combinations of geometrical parameters. This research aims to
identify specific geometric configurations that produce a desired
spectrum, accepting any predicted values that fall within the pre-
defined domain as described in Table 1. Thus, more than a single
solution is expected for each spectrum. Four samples are randomly
selected from the test data, and the corresponding values of the
actual and predicted geometries are used in Eq. (5), which calculates
the corresponding spectrum for each case.

Table 3 presents the actual, predicted, and updated geometrical
parameters, along with their corresponding resonance frequencies
for each sample. Figure 9 illustrates the generated spectrum based
on the actual, predicted, and updated geometries, where applicable.
For the first two samples, Figure 9a and b, the difference between
the actual and predicted resonance frequencies and receptance
responses is less than the threshold (0.02 Hz). For the first sample,
the difference is 0.004 Hz, and for the second one, it is 0.011 Hz.

Table 3. Actual and predicted geometric parameters, RMS values, resonance frequencies, and errors for four randomly selected samples

Parameter

Sample 1 Sample 2

Actual Predicted Updated Actual Predicted Updated

Length [m] 0.178 0.183 – 0.986 1.222 –

Width [m] 0.484 0.266 – 0.415 0.357 –

Height [m] 0.006 0.009 – 0.019 0.016 –

RMS [dB] 109.568 109.565 – 109.551 109.552 –

Resonance frequency [Hz] 0.011 0.015 – 0.827 0.816 –

Sample 3 Sample 4

Actual Predicted Updated Actual Predicted Updated

Length [m] 0.669 0.992 1.019 0.941 0.793 0.756

Width [m] 0.282 0.303 0.278 0.453 0.304 0.263

Height [m] 0.018 0.013 0.012 0.007 0.011 0.011

RMS [dB] 109.377 109.369 109.376 109.447 109.415 109.454

Resonance frequency [Hz] 0.363 0.416 0.363 0.181 0.228 0.181

Figure 8. Probability density function calculated with the resonant frequency and respective amplitude values estimated for each sample. (a) PDF of the resonant frequency
assuming random variable length (blue), width (green), and height (red). (b) PDF of the resonant amplitude assuming random variable length (blue), width (green), and height (red).
(c) PDF of the resonant frequency and (d) PDF of the resonant amplitude, assuming the three random variables simultaneously.
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This level of accuracy meets the preestablished design criteria.
However, for the third and fourth samples (Figure 9c and d), the
difference surpasses the acceptable error threshold. For the third
sample, the difference is 0.053 Hz, and for the fourth sample, the
difference is 0.047 Hz. In these cases, the predicted parameters are
refined through the sensitivity optimization procedure. After the
optimization, the updated parameters achieve the desired reson-
ance frequency with minimal error, and the corresponding recep-
tance spectrum closely matches the target. The model’s efficiency is
evaluated based on its ability to predict parameters that yield a
spectrum with a resonance frequency near the desired value, ensur-
ing accurate and effective controller performance.

The CNN-AE consistently provides initial estimations of
dynamic characteristics that are close to the desired values. For
samples with higher prediction errors, the model fine-tunes the
parameters to satisfy the design criteria. Because the CNN-AE
generates estimates near the target geometrical parameters, the
optimization procedure is highly efficient, requiring only a few
seconds to compute the optimized parameters. Although the train-
ing of the model took ~2 h, the trained model can predict the
geometrical properties of the desired spectrum in under a second.
As a result, the inverse on-demand physical resonator design
process is remarkably fast, taking less than 2 min even when
optimization is necessary.

It is important that the model’s prediction results in a spectrum
similar to the desired one. To further evaluate the model’s predic-
tion, the resonance frequency of the actual spectrum is compared
with the predicted one for all samples in the test dataset. The
performance metrics for this comparison are an MSE (Mean
Squared Error) of 0.0021, an MAE (Mean Absolute Error) of
0.0415, and an R2 of 0.975. The model performed well across all
metrics. Low values, tending toward zero, of MSE and MAE indi-
cate small deviations between the predicted and actual resonance
frequencies. Furthermore, a value of R2 close to 1 indicates that the
model explains a significant portion of the variance in the data.
Moreover, a representation of the overall energy in a spectrum can
be calculated by the signal’s mean root square (RMS), which often
represents the overall energy level. The RMSs of the actual and
predicted spectra of each sample have also been compared for the
entire test data set, and the results for both the resonance frequency
and the RMS are depicted in Figure 10.

On-demand inverse design of the metamaterial wind turbine
Section “Inverse design of themetamaterial’s resonator” illustrates the
performance of themodel in predicting samples from the test dataset,
demonstrating that the proposed model’s versatility encompasses
the input of any spectrum within the training range and can predict
the resonator’s geometrical parameters. This section demonstrates
the effectiveness of inverse design for different wind turbine metas-
tructure local resonator simulations in an on-demand design and
simulations of an industrial application. The base turbine numerical
model relies on the monopile NREL 5 MW offshore virtual wind
turbine (Jonkman et al., 2009; Jonkman and Musial, 2010) and
numerical modeling in Machado et al. (2024). The resonators are
periodically placed along the tower of the wind turbine, as illustrated
in Figure 1. The forward design of the turbine controller assumes the
target frequency and designs the ideal dynamic resonator, consider-
ing only the mass ratio and stiffness. Therefore, in practical applica-
tion, the physical controllers assume a geometry and value that
follows their dynamic idealization. Thus, in this analysis, the inverse
design of the turbine metamaterial relies on estimating the reson-
ator’s physical geometries using the proposed model.

The first resonant frequency of thewind turbine varies between 0
and 2 Hz, so the trained model is suitable for such an analyst
without the need to retrain the model. Three different turbines,
each with its respective resonant frequencies and features, are
described in Table 4. To evaluate this approach, three different
target spectra are fed into the proposed model, with resonance
frequencies of 0.27 Hz for Case 1, 0.34 Hz for Case 2, and 0.5 Hz

Figure 9. Resonator’s receptance response of the randomly selected samples,
calculated with Eq. (5) using the estimated parameter given by the encoder. The four
samples’ parametric features are given in Table 3.

Figure 10. Comparison of (a) resonance frequency and (b) RMS values for the test
samples.

Table 4. Resonator properties before and after fine-tuning for three cases

Case Parameter Predicted Fine-tuned

Case I: Target 0.27 Hz Length (m) 0.920 0.89

Width (m) 0.299 0.268

Height (m) 0.012 0.011

Resonance frequency (Hz) 0.31 0.27

Case II: Target 0.34 Hz Length (m) 0.977 0.948

Width (m) 0.301 0.275

Height (m) 0.013 0.012

Resonance frequency (Hz) 0.39 0.34

Case III: Target 0.5 Hz Length (m) 1.085 1.077

Width (m) 0.310 0.303

Height (m) 0.014 0.014

Resonance frequency (Hz) 0.52 0.50
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for Case 3. Each case is associated with values for the predicted
and updated resonator’s length, width, height, and resonance
frequency.

Figure 11a, d, g compares the target receptance of the resonator,
calculated using the dynamic analytical expression, with the spec-
trumpredicted by the CNN-AEmodel and the updated signal using
the sensitivity optimization updating technique. The CNN-AE
model’s parameter predictions show spectra that are near the actual
ones in Cases I (a) and II (d), and match within an acceptable error
in Case III (c). In Case I, the resonance frequency of the target
spectrum is 0.27 Hz, while the model predicts 0.31 Hz. Similarly, in
Case II, the target frequency is 0.34 Hz, but the predicted frequency
was 0.39Hz.Due to these errors, parameter updates are required for
accurate design. In Case III, the target resonance frequency is
0.50 Hz, and the model predicts 0.52 Hz. The error is minimal, so
fine-tuning is optional. Overall, the initial predictions of the model
are quite accurate. Since precise frequency alignment is crucial for
effective on-demand vibration control, in cases where a significant

discrepancy exists between the desired resonance frequency and the
signal, parameter updating is employed.

The interaction between the resonators and the primary struc-
ture leads to a division in the controlled resonance mode, which
results in extra degrees of freedom near the targeted mode shape.
As a result, additional resonance frequencies appear on either side
of the system’s operating frequency, which the resonators are
designed to control. Although this passive vibration control tech-
nique has a clearly defined range of effectiveness, exceeding this
range can lead to negative effects, such as increasing the ampli-
tudes of neighboring modes. Figure 11b,e,h shows the receptance,
and Figure 11c,f,i shows the temporal responses of the uncon-
trolled turbine under unitary excitation, the controller turbine
assuming the predicted and updated parameters in the resonator
design, where the predicted and updated parameters are listed in
Table 4.

In all cases, it is a respected split of the target frequency with a
symmetric attenuation bandwidth. In Cases I and II, the resonators

Figure 11.Dynamic response of the resonator (a,d,g), uncontrolled and controlledmetamaterial wind turbine(b,e,h), and temporal responses of themetamaterial wind turbine(c,f,
i) of the cases described in Table 4. (a,b,c) illustrate Case I, (d,e,f) illustrate Case II, and (g,h,i) illustrate Case III.
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using predicted parameters induce an asymmetric frequency split,
which is optimized and corrected using updated parameters. Over-
all, the physical resonator inverse designs by the proposed model
demonstrate effective vibration mitigation performance for the
metamaterial turbine, closely following the ideal dynamic reson-
ator. In practice, the physical control is installed in the primary
structure, where some inherent variability is expected, as predicted
by the model, which can be rapidly recalculated to deliver an
accurate geometry associated with the design requirement. The
inverse design model proves to be a precise and viable alternative
for modeling and designing vibration controllers with good preci-
sion and parametric prediction guidance.

Conclusion

This study presented an innovative methodology for the inverse
design of passive vibration controllers tested to design a local
resonator of a wind turbine metastructure and evaluate its inter-
action with host structure control performance. The CNN-AE
model is guided by a physics-informed approach to improve the
on-demand inverse design processes, showing significant potential
in optimizingmetastructuremanufacture. TheCNN-AEwas devel-
oped to efficiently estimate the geometric parameters of physical
passive controllers from dynamic response data, yielding the esti-
mated geometric parameters and the receptance spectrum of the
designed resonator as its output. The proposed model demon-
strated excellent predictive accuracy, even at very low frequencies.
Furthermore, statistical evaluations of uncertainty and parameter
variability provided valuable insights into the design’s robustness
and performance under varying conditions.

In practical applications, the CNN-AE inverse design approach
enables a fast and efficient determination of resonator geometries,
specifically the local resonator of the wind turbine’s metastructure,
thereby facilitating the implementation of effective vibration con-
trol for complex systems, not limited to this system. The compari-
son of ideal versus physically designed resonators indicates that the
proposed model can achieve vibration mitigation performance
that closely matches expectations. This underscores the potential
of DL methods to enhance the design and optimization of struc-
tural components in real-world engineering applications. Future
research will explore the integration of more complex dynamical
models, a topological representation of the metastructure, and
broader datasets to refine the accuracy of CNN-AE designs. Add-
itionally, investigating the scalability of these methods for large-
scale systems and varying operational conditions will be crucial to
advancing the practical deployment of vibration control systems in
diverse engineering contexts. This study establishes a solid foun-
dation for advanced ML techniques to design and optimize vibra-
tion control systems with precision and efficiency based on their
dynamic behavior.
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