
INDUCED AND PRODUCED MODULES 

D. G. HIGMAN 

Introduction. We shall consider here two generalizations to rings of the 
concept of induced representation as it occurs in the representation theory of 
finite groups (6). 

If A is a ring, 5 a subring of A, we shall associate with each S-module M 
an induced pair (I(M), K) consisting of an A -modulo I(M) and an 5-homo-
morphism K: M —> I(M), K will be an isomorphism if and only if there exists 
an A -module having M as an S-submodule, and then I(M) can be described 
as " the most general A -module generated by ikf'; so our definition is a gen
eralization of the classical concept, consistent with that of other writers 
(7; 11; 15). 

Dually, we shall associate with M a produced pair (P(M), w) consisting 
of an ^.-module P(M) and an S-homomorphism ir:P(M) —» M, the duality 
involved being an instance of the duality formalized by MacLane (12). 

We investigate certain dual properties of the induced and produced pairs. 
If M is given as an A -module, we can consider it as an S-module and form 
(I(M),K) and (P(M),ir). Then M is (A-isomorphic with) an ^-quotient 
module of I(M) and an A -submodule of P(M). We determine when M is a 
direct summand of I(M), or dually, of P(M). 

If A is a group ring, and 5 a subring by a subgroup of finite index, I(M) and 
P(M) are isomorphic A -modules for every unitary S-module M. The general 
question of when I(M) and P(M) are isomorphic leads to the consideration of 
certain generalized " Casimir operators" and to the notion of a ring self-dual 
with respect to a subring. 

As applications of our general discussion we mention a characterization of 
separable algebras related to a result of Hochschild (9), a characterization of 
the principal indecomposable representations of a Frobenius algebra, and 
certain theorems of Eckmann (2), Gaschiitz (5) and Higman (7). 

1. INDUCED AND PRODUCED MODULES 

1. The induced pair. Let 5 be a subring of a ring A. It is our intention 
to study some relations between representation modules for S and those for 
A. Our methods will not be complicated by extending the problem according 
to the following definitions, which also will be natural for the considerations 
of Part I I : 
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INDUCED AND PRODUCED MODULES 491 

If 5 is a ring, a module M which is at the same time a left and a right 
5-module such that 

s-ut = su-t (s, t Ç S,u G M) 

is called an S-bimodule. We shall call a ring A an S-ring if it is an 5-bimodule 
subject to the additional conditions 

s-ab = sa-b, a-sb = as-b, a-bs = ab-s (a £ S; a, b £ A), 

typical examples being the case in which S is a subring of A, or A a hyper-
complex system over a commutative field S. 

An 5-bimodule M will be called a ngA/ A,S-tnodule if it is a right ^4-module 
satisfying 

s-ua = stt-a, zwa = us-a, u-as = ua-s (a Ç S, u Ç Af, a £ -4). 

Interchanging left and right we obtain the definition of left A,S-niodule. 
We shall usually abbreviate "right A ,5-module" to "-4,S-module". Also, we 
shall usually state only one of a pair of left-right dual definitions or propositions. 

The S-ring A itself can be considered in a natural way as an A ,5-module 
and as a left A ,5 module. 

If S is a subring of A, a right ^.-module M becomes an ^4,5-module if we 
let S operate trivially on the left of AT; su = 0 for all 5 Ç 5, u Ç M. 

We write ¥ ~ AiV to indicate the existence of an A,5-isomorphism of an 
A ,5-module M onto an A ,5-module N. 

We shall now consider certain ^4,5-modules determined by 5-bimodules. 
We claim that to each S-bimodule M there corresponds a pair (I(M), K), 
consisting of an ^4,5-module I{M) = IAtS(M) and an S-homomorphism 
K: M —» I (M), determined up to an A ^-isomorphism by the property: 

(I) If H is any A,S-module and 8: M —» H is an S-homomorphism then 
there exists one and only one A,S-homomorphism h: I(M) —> H such that 8 = K8, 
in other words, such that the following diagram is commutative: 

KM) 
Î \ 8 

I \ 
M >H 

8 
We shall say that the pair (I(M), K) is induced by Af, writing I(M) = IAtS(M) 
when we wish to stress the role of A and S. 

We postpone to §7 the exhibition of a pair satisfying (I). That there can 
exist essentially only one such pair is readily seen as follows : Suppose that the 
pair (H, 8) also satisfies (I). Then there exists by (I) an A,5-homomorphism 
8:1(M) —>iJ such that 8 = K8, and an A,5-homomorphism k:H-^I(M) 
such that K = 8k. Then 8k is an A ^-endomorphism of I(M) and K8K = 8k = K. 
It follows from the uniqueness requirement of (I) that 8k is the identity 
automorphism of I(M). By symmetry kl is the identity automorphism of Hy 

proving that 8 = k~l is an A ^-isomorphism of I(M) onto iJ, with 8 = K8. 
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Another characterization of the induced pair is as follows: We say that a 
pair (H, 8), consisting of an A ,S-module H and an S-homomorphism 5 : M —» H, 
is generated by M if the smallest A ,S-submodule of H containing M8 is H 
itself. If 8 is an isomorphism, we say that H is generated by M. We have 

THEOREM 1. The induced pair (I(M),K) is determined up to an A,S-iso-
morphism by the properties 

(a) (I(M), K) is generated by M. 
(b) if (H, 8) is generated by M then there exists an A,S-homomorphism 

8: I(M) —> H such that 8 = K8. 

For the proof we use 

LEMMA 1. Let (iJ, 8) be generated by M and let a be an A, S-module y e: M —* K 
an S-homomorphism. Then there exists at most one A,S-homomorphism i: H —> K 
such that e = 8ë. 

Proof. The equation e = 8i means that the restriction of ë to M8 is uniquely 
determined by e. Since i is an ^,S-homomorphism, we have for all a in A 
that 8a-1 = 8i-a = ea, which means that the restriction of i to M -8a is 
uniquely determined by e. Hence i is uniquely determined by e since H is the 
l.u.b. of its submodules M8 and M-8a with a in A. 

Proof of Theorem 1. That (/(Af), K) satisfies (b) follows at once from its 
defining property (I). 

To prove (a) we show that the g.l.b. M of the A ,5-submodules of I(M) 
which contain MK coincides with I{M). Let j be the injection of M into I(M). 
Then K = aj defines an S-homomorphism a : M —» M. Since (M, a) is generated 
by My as is clear from its construction, Lemma 1 implies that j is the only 
A,5-homomorphism of M into I{M) such that K = aj. By (I) there exists an 
A,S-homomorphism â: I(M) —•> M such that a = KÔL. Then K = aj = nâj = 
ajâj. But jâj: M —> I(M) is an A,S-homomorphism. Hence jâj = j , so that 
jâ is the identity automorphism of I(M). Similarly âj is the identity automor
phism of M, proving that â = j - 1 , and hence that M = I {M). Consequently 
(a) is satisfied by the induced pair. 

That (I(M), K) is essentially uniquely determined by (a) and (b) is readily 
verified using Lemma 1, thus completing the proof of Theorem 1. 

When K is an isomorphism, so that M can be identified with the S-submodule 
MK of I(M), we say the I(M) is induced by M. By (I) we see that this is the 
case if and only if there exists an A,S-module having M as an S-submodule. 
By Theorem 1, when K is an isomorphism we can describe I(M) as "the most 
general A,S-module generated by MJ\ and this is the only case in which there 
exists an A,S-module conforming to this description. Thus our definition of 
induced module is consistent with the classical one; for instance, if A is a ring 
with identity element e, S a subring of A containing e, and R a right ideal of S 
(turned into an S-bimodule by letting S operate trivially on the left) then 
I(R) = RA. 
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2. The duality and the produced pair. We want to subject our discussion 
to a dualization, the duality involved being an instance of the duality formal
ized by MacLane (12). 

If M and N are modules, we write 

CL:M-+N 

to mean that a is a homomorphism of M into N, and write K (a) for the kernel 
of a. If M is a submodule of N, u —> u {u £ M) defines the injection of M 
into N, while if Af is a quotient module of N, M = N/L, v —> L + v (v € N) 
defines the projection of N onto M. 

To any statement © about modules, referring to homomorphisms of one 
such into another, submodules, quotient modules, injections and projections, 
but not to elements of modules, we assign a statement @ by carrying out in © 
the interchanges indicated by the following table: 

a:M->N a: N —» M 
a an isomorphism into product a(3 a a. homomorphism onto product/3 a 
submodule quotient module 
injection projection 

Note that "S-bimodule" remains unchanged, while ''right A,S-module" is 
interchanged with "left A ^-module". 

In the terminology of MacLane (12), © is the dual of ©. We shall call the 
left-right dual ©' of @ the dual of ©. Then "right i4,S-module" and "left 
A ^-module" are self dual. 

In particular, the dual of the (right) ^4,5-module I(M) is an ^4,5-module. 
Precisely, the dual of our statement defining and asserting the existence and 
essential uniqueness of the induced pair is the following (as before, 5 is a ring, 
A an 5-ring) : 

To each 5-bimodule M there corresponds a pair (P(M), 7r), consisting of 
an A ,5-module P{M) and an S-homomorphism T: P(M) -* M, determined up 
to an A ^-isomorphism by the property (P) if H is any A ,S-module, and 8: H—> 
M is an S-homomorphism, then there exists one and only one A ,S-homomorphism 
Ô:H->P(M) such that ô = ÔTT: 

P(M) 

i * \ 
M < H 

We call (P(M), w) the pair produced by M. Its existence will be established in 
§7 by the exhibition of a pair satisfying (P). The essential uniqueness of the 
produced pair can be shown by dualizing the demonstration of the correspond
ing fact for the induced pair, i.e., by replacing each statement of that demon
stration by its dual in the sense defined above. 
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Actually, the uniqueness proof for {I{M), K) can easily be translated into a 
"categorical" one for the abelian bicategory of all modules and homomorphisms 
of modules into modules (12). Hence we can infer at once the essential 
uniqueness of (P(M), ir) from that of (Z(ikT), ic) by invoking the duality 
principle of MacLane (12, p. 806). 

Except for the existence proofs for (I(M), K) and (P(ikf), T), the same 
remark will apply to all the theorems of this Part I. These will occur in dual 
pairs ©, ©', of which we shall prove only one, say ©, phrasing the proof in 
such a way that it can easily be translated into a categorical one. Then we 
can conclude at once from MacLane's duality principle that @, and hence ©' 
is a theorem. If we do not wish to refer to the duality principle, we can obtain 
a proof of ©' by dualizing that of ©. 

Dualizing the definition of generated pair as given in §1, we say that a pair 
(H, 5), consisting of an 4,5-module H and an £-homomorphism 5:iJ—> M, 
is permeated by the 5-bimodule M of the only A ,5-quotient module of H 
containing H/K($) is H itself. The reader will readily obtain a characterization 
of the produced pair in terms of this notion by dualizing Theorem 1. 

When 7T is onto, so that M can be identified with the S-quotient module 
P(M)/K(T) of P(M), we say that P(M) is produced by Af, thus dualizing 
the notion of induced module. According to (P), -K is onto if and only if there 
exists an 4,5-module of which M is an 5-quotient module. 

3. Iteration and direct sums. When M is given as a right 5-module, it 
can be turned into an S-bimodule by letting S operate trivially on the left; 
su = 0 for all s in S, u in M. Then it is easily seen that S operates trivially 
on the left of the A ^-modules I(M) and P(M). 

Suppose that T is a subring of 5, then the 5-ring A is also a !T-ring. Let M 
be a right T-module and consider the induced pairs (IST{M), KT) and 
{IA,SUS,T(M)],KS). Then it is seen by verifying (I) that (IA,S[IS,T(M)],KTKS) 

is induced by M. We have the formula 

(3) IA,SIS,T = IA,T 

and dually 

(3 ) PA,s PS,T — PA,T> 

Similarly it is proved that if an 5-bimodule M is a direct sum M = Mi® M2 
of S-submodules, then we may choose 

(4) I(Mi 0 M2) = 7(Mi) 0 I(MS) 

(40 P(Mi ® M2) = P(Afi) 0 P(Mt). 

4. ^4,5-injective and ^4,5-projective modules. Let H be an A,5-module. 
We shall call Han A yS-protract of an A ,5-module H' if there exists commutative 
diagram 
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H' 

H >H 
i 

where a : H' —» H is an A ,5-homomorphism, e : H —» H' is an 5-homomorphism, 
and i is the identity automorphism of H. This implies that a is onto, H <^ A 

H'/K(o), e is an isomorphism, and, as an 5-bimodule, Hf = K(o) © iïe. 
We shall also refer to H as an A ,5-protract of (H'y a) or of (iiT, cr, e). 

An 4,5-module X" will be called A ^-projective if, whenever a is an .4,5-
homomorphism of K into an ^4,5-module H, and i7 is an A ,5-protract of 
(H'^o), then there exists an ,4,5-homomorphism â: K-^ Hr such that 
a = âa: 

H' 

/ 
K H 

a 
The interest of this definition for our present purposes arises from the 

following fact: 

THEOREM 2. For any S-bimodule ikf, the A.S-module I(M) is A,S-projective. 

Proof. Let H be an A,5-protract of (H', o-, e) and let a: I(M) —> H be an 
,4,5-homomorphism. Now 0 = nae: M —» i ï ' is an 5-homomorphism, hence 
by (/) there exists an A,5-homomorphism a: I(M) —* Hr such that <j> = tea. 
Then Kàa = c/xr = /caeo- = /ca. But âo*: / (M) —* H' is an 4^5-homomorphism, 
hence by the uniqueness part of (/), a — 5cr, proving that I(M) is -4,5-
projective. 

From the notion of A ,5-protract we obtain by dualization that of ,4,5-
retract ; that an A ,5-module H is an A ,5-retract of an A ,5-module H' means the 
existence of a commutative diagram 

H' 

x 
\ 

H<—-— H 
i 

where a : H —» H' is an .4,5-homomorphism, e: H' —» H is an 5-homomorphism, 
and as before, i is the identity automorphism of H. Then a is an isomorphism, 
e is onto, and, as an 5-bimodule, Hr = Ha © i£(e). We shall also refer to H 
as an ^4,5-retract of (Hf, <r)y or of (IT, c, e). 

Dually to ^4,5-projective modules we have A,S-injective modules, an .4,5-
module K being called ^4,5-injective if, whenever H is an ^4,5-retract of 
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(H', a), and a: H—> K is an ^,.S-homomorphism, there exists an ^4,5-homo-
morphism â: H' —>K such that a = era. Dual to the fact that I{M) is A,S-
projective we have 

THEOREM 2'. For any S-bimodule M, P(M) is A,S-injective. 

5. The case M an ^4,5-module. Now we consider the case in which M 
is given as an ^4,5-module to begin with. Then we can consider M as an 
S-bimodule in order to form the induced pair (I(M), K) and the produced 
pair ( P ( M ) , T T ) . 

Let i be the identity automorphism of M. By (I) there exists one and only 
one ^4,5-homomorphism /: I{M) —> M such that i = KL It follows that Kt 
must be an isomorphism and / must be onto. We have 

THEOREM 3. If M is an A,S-module, then IAtS(M) is induced by M (con
sidered as an S-bimodule), and there exists one and only one A ,S-homomorphism 
of I(M) onto M such that M is an A,S-protract of (I(M), t, K). 

Dually 

THEOREM 3' . PA,S(M) is produced by M, and there exists one and only one 
A yS-isomorphism j : M —> P(M) such that M is an A,S-retract of (P(M), j , ir). 

I{M) P(M) 
' \ j 

r \ 
\ 

M M M < M 
i i 

Thus an ^4,5-module M is always an A ,5-protract of I(M) and an A,S-
retract of P(M). When is it isomorphic with a direct summand of one of these 
^4,5-modules? We shall prove1 

THEOREM 4. For an A,S-module M, the following conditions imply each 
other: 
(a) K(t) is a direct summand of IAtS(M), so that IAtS(M) ~ AK(t) © M. 
(b) M is (A,S-isomorphic with) a direct summand of IAtS(M). 
(c) M is A jS-projective. 
(d) if M is an A fS-protract of (i7, a), then K (a) is a direct summand of H} so 

thatHc^K(a) © M. 
(e) M is A,S-isomorphic with a direct summand of every A,S-protract of M. 

Proof, (a) implies (b) at once. 
(b) implies (c) : By Theorem 2, I(M), and hence every direct sum

mand thereof, is 4,5-projective. Hence (b) implies (c). 

^ h e reader will readily see the relation of our result to results of Baer (1) and Eckmann 
and Schopf (4). 
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(c) implies (d) : Suppose M is an 4,5-retract of (H, a). Let i be the identity 
automorphism of M. Then (c) implies the existence of an A ,5-homomorphism 
ï: M —» H such that 1er = i. Hence I is an isomorphism and H = K(a) © Ml, 
proving that (c) implies (d). 

(d) implies (e) at once. 
(e) implies (a): By Theorem 3, I f is an A,5-protract of I(M). 

Hence (e) implies that M is a, direct summand of I(M), so that M is A,S-
projective by Theorem 2. By Theorem 3, M is an A ,5-protract of (I(M), t), 
hence K(t) is a direct summand of I(M) by the implication of (c) by (d) 
already proved. Thus (e) implies (a), completing the proof of Theorem 4. 

The dual of Theorem 4 is 

THEOREM 4'. For an A,S-module M the following are mutually equivalent 
conditions: 
(a7) Mj is a direct summand of PA,S(M), so that PA, s(M) ~ AP(M)/Mj ~ M. 
(b') M is {A,S-isomorphic with) a direct summand of PA>S{M). 
(c') M is A ,S-injective. 
(dr) if M is an A,S-retract of (H, a), then Ma is a direct summand of H, so that 

H ~ AH/Ma 0 M. 
(er) M is {A^-isomorphic with) a direct summand of every A,S-retract of M. 

COROLLORY. Let H be an A,S-projective {infective), indecomposable A,S-
module such that the S-submodules of H and the A,S-submodules of IAtS(H) 
(PA,S(H)) satisfy the descending chain condition. Then there exists an inde
composable S-bimodule M such that IAtS(M) is induced by M(PAtS(M) is 
produced by M) and contains a direct summand A ,S-isomorphic with H. 

Proof. As an Bimodule, H has a Remak decomposition H = M\ © . . . © 
Mk1 Mi an indecomposable S-bimodule. By (4), 1(H) ^ AI(Mi) © . . . © 
/(Ma), and this decomposition can be refined to a Remak decomposition. 
If H is ^4,5-projective, we infer from Theorem 4 that H is A ,5-isomorphic 
with a direct summand of 1(H). Hence, since H is indecomposable, it is 
A ,5-isomorphic with a direct summand of I (Mi) for some i by the Remak 
theorem. I (Mi) is induced by M since 1(H) is induced by H. Thus the corollary 
is proved with M = Mt. 

6. The Casimir operators. Now assume the existence of an i ,5-homo-
morphism 

\:PAtS(M)-*IA,s(M) 

for some fixed ^4,5-module M. Note that this assumption is self dual. 
If TV is a second A ,5-module, and a : M —» N is an 5-homomorphism, there 

exists by (/) one and only one A,5-homomorphism â: I(M) —» N such that 
a = Kâ. If j : M —>P(M) is the A,5-isomorphism of Theorem 3', then 

(5) a = j\â: M —> N is an ^,S-homomorphism. 
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X 
P(M) >(I)M 

Î • / I -\J */ I a 

M > N 
a 

Dually, if ft: N —> M is an ^4,5-homomorphism, 

(5') 0 = $\t:N-+M 

is an ^4,5-homomorphism, where (5: N -^> P(M) is the one and only ^4,5-
homomorphism such that /3 = 07r, whose existence is guaranteed by (P), 
and /: I(M) —> P(M) is the homomorphism onto of Theorem 3. 

The mappings â and 0 are generalizations of the Casimir operators which 
occur in the theory of separable algebras as will be seen in §8. If a and /3 are 
A ,5-endomorphisms of an A ,5-module M, then à and J3 are A ,5-endomorphisms 
of M. We have the following self-dual theorem : 

THEOREM 5. Let i be the identity automorphism of M. Then each of the 
conditions 

(1) There exists an S-endomorphism a of M such that à = i. 
(2) There exists an S-endomorphism ft of M such that 0 = i. 

Implies all the conditions (a) through (e) and (a') through (e') of Theorems 4, 4'. 
IfX is an isomorphism onto, the conditions (a) through (e) and (a') through (e') 

are mutually equivalent and imply (1) and (2). 

Proof. If à = j\â = i then Xâ: P(M) —» M is an 4̂ ̂ -homomorphism onto 
and P(M) = Jkfj © i£(Xâ), proving (a') of Theorem 4'. Furthermore, j \ : M —> 
/(Af) is an 4,5-isomorphism, â: I(M) —• M is an 4^-homomorphism onto, 
and I(M) = ilfjX © K(â), proving (b) of Theorem 4. The remaining condi
tions of Theorems 4 and 4' follow from those theorems. 

Next assume that X is an isomorphism onto. That the conditions (a) through 
(e;) are mutually equivalent follows at once from this assumption and Theo
rems 4, 4'. If we now assume (a') of Theorem 4', i.e., that Mj is a direct sum-
mand of P(M), then there exists an A,5-homomorphism I: P(M) —> M 
such that jl = i. Then a = K\~H is an 5-endomorphism of ikf, and ct = \~H. 
Hence à = j'Xa = jl = i, proving (1). 

The rest of Theorem 5 is dual to the part already proved. 

7. Construction of induced and produced pairs. For the construction of 
the induced and produced pairs we need the following definitions, also used 
in later sections. 

Let M be an 5-bimodule. By M (g) SA we denote the tensor product of M 
and A over S> that is, the module generated by all pairs u <8> a, with u in M, 
a in A, with the relations 
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us ® a = u ® sa (s G S) 

{u\ + u2) ® a = U\ ® a + u2 ® a, u ® (ai + a2) = u ® ax + u ® a2 

into an A ,5-module by 

s(u ® a) = su ® a, (u ® a)s — u ® as, 

{u ® a)b = u ® ab (s G S,b G A). 

By 5-Homr(^4, M) we shall denote the module of all module homomor-
phisms / : A —> M such that 

as-f = a/-5 (s G 5) 

turned into an ^4,5-module by 

a (s*f) = 5 (a/), a ( f* ) = (*a)/, 

a(/*Z>) = (»«)/ (5 G 5 ,5 G i l ) . 

For the construction of the induced pair let us assume first that A is a ring 
with identity element e, S a. subring of A containing e, and let the S-bimodule 
M be right unitary, i.e., such that ue = u for all u in M. In this case we can 
choose 

IAts(M) = M ® SA, Kiu->u®e (u G M) 

for the induced pair. For we can check that if H is any ^4,5-module and 
S : M —» H is an S-homomorphism, then 

(6) ô: u ® a —» ub-a 

determines the one and only one A ,5-homomorphism I: I(M) —» H such that 
S = KO. 

Furthermore, in this case we can choose 

PA,S(M) = 5-Hom r(^, M), w:f->ef (/ G S-Homr(,4, Af) 

as a realization of the produced pair. If 8: H —» M is an i4,.S-homomorphism, 

(60 a-hô = te-5 (A G H) 

defines the one and only A,5-homomorphism ô: H—>5-Homr(i4, M) such 
that ô = ÔK. 

In particular, if M is given as an ^4,5-module, then the A ,5-homomorphism 
onto t: I{M) —» M of Theorem 3 is given by 

(7) t:u ® a-+ua 

while the -4,5-isomorphism into j : M—>P(M) of Theorem 3' is given by 

(7') a-uj = wa. 

The general case of an 5-ring A and an S-bimodule M is easily reduced to 
the one just considered. 
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II. SELF-DUAL S-RINGS 

8. S-bilinear forms. For an S-ring A, A' = S-Homr (A, S) as defined in 
§7 is an ^4,5-module. Let </>: A —* A' be an ^,S-homomorphism, (considering 
A as an A ,5-module). Then 
(1) (a, b) = b'a<j> (a, b £ A) 

defines a mapping (a, b) of the set of pairs of elements of A into S with the 
properties 

Oi + a2, b) = (ai, 6) + (a2, 6), (a, &i + b2) = (a, &x) + (a, b2) 

(as, b) = (a, sb), s (a, b) = (sa, b), (a, b)s = (a, bs) (s £ S) 
and 
(3) (ab,c) = (a, be) (b £ A). 

Such a mapping satisfying conditions (2) is called an S-bilinear form on A. 
If in addition it satisfies (3) we call it associative. A 1.1 correspondence between 
the S-bilinear forms (a, b) on A and the A,5-homomorphisms (j>\ A —> A' is 
established by (1). 

Interchanging left and right in the definition of A', we define 
A" — 5-Hom? (A, S) as the module of all module homomorphisms / : M —• S 
such that sa-f = s-af (s G S, a £ A), turned into a left ^4,5-module by 

a(fs) = (af)s,a(s*f) = (sa)f, a(b*f) = (ba)f (s £S,a,b £ A). 

By the symmetry of the conditions (2) and (3) we have that 

(4) (a, b) = a-b^ 

defines an A,vS-homomorphism 4>': A —>A". 
Note that <j> is an isomorphism if and only if 

(5) (o>, A) = 0 implies a = 0 

while (j>r is an isomorphism if and only if 

(6) (A, a) = 0 implies a = 0. 

An 5-bilinear form satisfying (5) and (6) is called non-singular. 
We shall call an 5-bilinear form (a, b) on A invariant if the ^ ^ - h o m o 

morphisms cj>:A -^ A' and cj>': A —> A" defined by (1) and (4) respectively 
are both isomorphisms onto. 

An S-ring A will be called self-dual (with respect to S) if it admits an 
invariant S-bilinear form. Note that if A is an algebra over a field S, this 
condition implies that the dimension of A over S is finite and hence is much 
stronger than the assumption of the existence of a non-singular form. 

Let [a, b] be a second invariant S-bilinear form on A determining A,S-
isomorphisms \f/:A —* A', \pf : A —> A" according to (1) and (4). Then 

(7) [a, b] = (aa, b) = (a, b*') 

where a = ^(jr1 and v = ypf<f>'~1 are A ,S-automorphisms of A considered as 
a right and a left A ,S-module respectively. 
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9. Casimir operators. By a left S-basis of an S-ring A we shall mean a 
finite set #i, . . . , an of elements of A such that each a in A can be written 
uniquely in the form 

n 

i.e., ai, . . . , an is a finite free basis of A as a left S-module. A right basis is 
defined similarly. 

Throughout §9 we 5Âa// assume that A is a ring with identity element e, S a 
subring of A containing e. If then M is an S-bimodule such that ue = u for all 
u in M (called right unitary), we can, according to §7, take IA t s (M) = M ® SA 
and PA,s(M) = 5-Homr(i4, M). In particular, A = I(S) and A' = P(S). 

HA has both a left and a right S-basis, and if there exists an associative 
S-bilinear form (a, b) on A such that the A,S-homomorphism <j>: A —> A' 
defined by (1) is an A ,5-isomorphism onto, we see that to each left S-basis 
#i, . . . , an of A there corresponds a right S-basis ai, . . . , ân of A determined 
by 
(8) (ai} dj) = on 

where btj = 0 if i 9e j , da = e. Consequently (a, b) is invariant and A is 
self-dual with respect to S. 

Given an invariant S-bilinear form (a, b) on A, a left S-basis #i, . . . , an 

and a right S-basis ai, . . . , an satisfying (8) will be called dual. By (8) and the 
associativity of (a, 6) we have 

n n 

(9) ata = 2Z apiu (a t A,aji 6 S) implies aâ* = ^ atfi^ 

One proves easily 

LEMMA 2. If ai, . . . , an is a left S-basis, ai, . . . , ân a set of elements of A 
satisfying (9), then 

n 

(10) X : / ^ £ « * / ® G < 

defines an A ,S-homomorphism \: P (M) —> I(M) for any right unitary S-bimodule 
M. If ai, . . . , ânis a right S-basis of A, then X is an isomorphism onto, and A is 
self-dual. 

Combining this with the above remarks we obtain 

PROPOSITION 1. Let A be a ring with identity element e, S a subring of A con
taining e. If A has both a left and a right S-basis, each of the following conditions 
is necessary and sufficient for A to be self-dual: 

(a) A~AA' = S - H o m r ( ^ , S ) . 
(b) I A , s (M) ~ AP A , s {M) for every right unitary S-bimodule M. 
(c) to each left S-basis ai, . . . , an of A there corresponds a right S-basis 

ai, . . . , ânsatisfying (9). 
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Now we compute the Casimir operators of §6 which are determined by the 
mapping X defined by (10). Accordingly, we assume that A is an 5-ring having 
a left .S-basis #i, . . . , an and a set of elements ai, . . . , dn satisfying (9). Let 
M and N be right unitary ^4,5-modules, and let a : M —» N be an S-homo-
morphism, à: M —> N the corresponding A,5-homomorphism determined by 
X: P(M) -» I(M) according to (5) of Part I. 

By (5), (6'), and (7) of Part I, and (10) we have for u in M 

UOL = uj\a = ( 2 âi'UJ ® di)â — (]T) u®i ® ai)& = ^C uâiCLdi 

i.e., 
n 

(11) a = XI oiiOiai. 
i=l 

Similarly, if /3: N —> Af is an 5-homomorphism and JH: N —> M is the corres
ponding ^4jS-homomorphism given by (50 of Part I, we have 

(12) 0= Y,àiPai = P. 

These formulas (11) and (12) justify our reference to a and 0 as generalized 
Casimir operators. Let A be a separable algebra over a field 5, and let 
fli, . . . , fln be a basis of A, ai, . . . , ân a dual basis of 4 with respect to a 
discriminant matrix. If a is a linear transformation of a representation module 
for A over S, à is the Casimir operator of classical theory (8). 

By (11) and Theorem 5 we have 

THEOREM 6. Let A be a ring with identity element e,Sa subring of A containing 
e. Suppose that there exists a left S-basis ai, . . . , an of A and a set of elements 
ai, . . . , ân of A satisfying (9). Let M be a right unitary A,S-module. Then the 
condition 
(*) There exists an S-homomorphism a of M such that 

n 

22 at a af = i 

(the identity automorphism of M)is sufficient for all the conditions (a) through 
(e0 of Theorems 4, 4'. If du . . . , an is a right S-basis of A, each of these conditions 
is equivalent to (*). 

This theorem contains results of Eckmann, Gaschutz and the author (cf. §13). 

10. The case of commutative S. Throughout §10 we shall assume that S 
is a commutative ring, and that A is a s elf-dual S-ring such that sa = as for all 
a Ç A, s Ç S. In this case, considered as S-bimodules, H o m ^ ^ S ) = Homz 

(A,S). The assumption that A is self-dual with respect to S means that there 
exists an invarient 5-bilinear form (a, b) on A, determining A ^-isomorphisms 
<j> of A onto Hornr(A,S) and 4>' of A onto Horn/ (A,S). Since <j> and </>' both 
have the same range, there exists for each a in A elements a\ and a* in A such 
that a*<t> = a<t>r and a<t> = af^', i.e., such that 

(13) (a*,&) = (b, a) and (a, b) = (ft, af). 
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Since (a, b) is invariant, 

(14) cj)*:a->a* and 0f : a —» a | 

are reciprocal S-automorphisms of the 5-bimodule A. Furthermore, 

((a6)*,c) = (c,ab) = (ca,b) = (6*c, a) = (a*, &*c) = (a*6*f c). 

which implies that (a&)* = a* 5*. This proves that <£* is an automorphism 
off the S-ring A, the inverse of $* being <£f. 

Let [a, 6] be a second invariant 5-bilinear form on A, and ^ the corres
ponding A ,S-isomorphism of A onto Horn r (A ,5). The relation between 
0* and ^* is readily seen from (7). Let us consider in particular the case in 
which A has an identity element, then the A ,5-automorphisms of A considered 
as an ^4,5-module are the left multiplications by units of A. In particular 
a = yfr<trl is effected by left multiplication by a unit, say Co, of A, and hence 
by (7) 

(15) [a, b] = (c0a, b). 

Hence [a^ty*, b] = [6, a</>f] = (c0&, #0t) = (a> cob) = [co_1a, c0b] = [c0~
1ac0l6], 

so that 0t^* is the inner automorphism of -4 induced by Co. It is easy to see 
that all the inner automorphisms of A are obtained in this way from invariant 
S-bilinear forms, hence 

PROPOSITION 2. If A has an identity element, the automorphisms #* of A 
determined by invariant S-bilinear forms on A according to (13) and (14) consti
tute a full residue class modulo the inner automorphisms of A. 

COROLLARY. There exists a symmetric invariant S-bilinear form on A if and 
only if there exists an invariant S-bilinear form on A such that the correspond
ing automorphism #* is inner, and then all the automorphisms of A determined 
by invariant S-bilinear forms are inner. 

Proposition 3 and its Corollary were obtained by Nakayama for Frobenius 
algebras (14). 

Suppose that A possesses a right identity element e. Then (a, b) = (a, be) = 
(e*, ab) = (e*a, b), so that a = e*a and e* is a left identity. Hence e = e* 
is an identity element for A. 

LEMMA 2. If A possesses a one sided identity element then it possesses an 
identity element. 

Now we shall record some further criteria for the existence of an identity 
element in A, assuming the descending chain condition for left 5-ideals. 
We shall use the following notation : For a subset X of A, 

p(X) = {a e A\(X,a) = 0} 

q(X) = {a e A\(a,X) = 0} 
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Then p and q induce lattice endomorphisms of the lattice of submodules of A. 
If L is a left ideal, the associativity of (a, b) implies that p(L) is a right ideal. 
Also by (13), q(L) = p{L\) so that q(L) is also a right ideal. Hence p and q 
induce homomorphisms of the lattice of left 5-ideals into the lattice of right 
5-ideals. By symmetry, they also induce lattice homomorphisms in the opposite 
direction. 

From the definitions of p and q we have p(X) C the right annihilator 
Ir{X) of X, and q(X) C the left annihilator Ii{X). If A has an identity we 
have equality. 

PROPOSITION 3. If the left S-ideals of A satisfy the descending chain condition, 
each of the following conditions is necessary and sufficient for the existence of an 
identity element in A. N denotes the radical of the S-ring A. 

(a) Ir (L) = p (L) for every nilpotent minimal left S-ideal L, and Ir (N) — p (N). 
(b) p(L) = p(AL) for every nilpotent minimal left S-ideal L, and p(N) = 

p{AN). 
(c) L C LA for every nilpotent minimal left S-ideal L. 

Proof. Suppose that A possesses an identity element. That the condition 
(a) is satisfied has been observed already, while (b) and (c) follow at once. 

We shall complete the proof by showing that (b) implies (a), and that each 
of the conditions (a) and (c) implies the existence of a right identity; the 
existence of an identity follows from Lemma 3, since we are continuing under 
the assumptions made concerning A and 5 at the beginning of §10. 

Since we have assumed the descending chain condition for left 5-ideals, A 
is a semi-primary S-ring unless it is nilpotent. In any case there exists an 
element e = e2 in A such that 

A = eA 0 Ro = Ae 0 L0 

where R0 and L0 are respectively a left and a right 5-ideal of A contained in 
N such that eR0 = L0e = 0. If L0 9e 0, we infer from the descending chain 
condition that there exists a minimal left .S-ideal L of A such that L C L0. 
Since L is minimal, NL = 0, i.e., L C IT(N). Moreover, LA = LeA + LR0 = 
LRo C LN, so that LA = LN. 

Assuming (a) we have L C Ir(N) = p(N) = q(N*) = q(N) C Il(N). 
Hence LN = 0 which implies that LA = 0. Then A C IT(L) = p(L), hence 
L = 0. But this contradicts the assumption that L0 j* 0, proving that e is a 
right identity of A. 

Next assume (b). For any subset X we have the implications XIr(X) = 0, 
(A, XIr(X))=0, (AX, Ir(X)) = 0, Ir(X)Qp(AX). Hence if p(X) =p(AX)1 

Ir(X) = p(X). Thus (6) implies (a). 
Finally assume (c). Then we have the following implications: NL = 0, 

{NL, A) = 0, (N, LA) - 0 , L ç LA C p(N) = q(N*) = q(N) C It(N), 
LN = 0, LA = 0, L = 0. This again contradicts the assumption that L0 ^ 0, 
proving that e is a right identity, and completing the proof of the proposition. 
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I I I . APPLICATIONS 

In this last pa r t we mention some applications of the general discussion 
of t he preceding par ts , in part icular relating our results to certain known 
results. 

11. Algebras. For a first application of our general theory we consider a 
finite dimensional algebra A over a field F, assuming t h a t A has an ident i ty 
element e, so t h a t F can be identified with a subring of the center of A. 

A module M is called a unitary representation module for A if M is a (right) 
A -module such t h a t ue = u for all u in M, and has finite dimension over F. 
Then M corresponds to a representation r of A by matrices in F such t h a t 
T(e) is the ident i ty matr ix, i.e., to a unitary representation Y of A. 

We can apply the discussion of Par t s I and I I , reading "un i t a ry representa
tion module" for " ^ l ^ - m o d u l e " , and "finite vector module" for "F-b imodule" . 
No te t h a t a simplification takes place because of the fact tha t , if M is a 
subrepresentat ion module of a uni ta ry representation module H of A (in 
which case Y is called a top const i tuent of the representation A corresponding 
to H) then M is automatical ly an ^4,F-retract of H since there exists a vector 
submodule of H complementary to M. If Af is a quotient representat ion 
module of H (in which case Y is called a bo t tom const i tuent of A) then M 
is an ^4,F-protract of H. 

If a un i ta ry representation module M has dimension m over F then it 
decomposes as a vector module into a direct sum of m copies of F 

M ^.m X F. 

Hence, by §7 and formulas (4) and (4/) of Par t I we have 

(1) IAtS(M)^Am XlA,s(F)~Am X (F ® s A) ~ Am X A 

(10 PA.S(M) ^ A m X S-Homr(A,S) = mXA'. 

In (1), A is to be considered as the A -module corresponding to the first regular 
representat ion of A. In (1'), A is to be considered as the left A -module corres
ponding to the regular anti-representat ion of A, so t h a t A' = S-Homr(A,S) 
corresponds to the second regular representation of A. 

M corresponds to a uni ta ry representation Y of degree m. 
By Theorems 3, 3 ' we have 

T H E O R E M 7. A unitary representation Y of A of degree m is a bottom con
stituent of m X the first regular representation of A and a top constituent of 
m X the second regular representation of A. 

Let us call Y projective or infective according as M is ^4,F-projective or 
^4,5-injective, in the sense of 4. 

If M happens t o be indecomposable, then by the Remak theorem and (1), 
M is isomorphic with a direct summand of I(M) if and only if it is isomorphic 
with a direct summand of A. Hence by Theorem 4 we have 
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THEOREM 8. If T is an indecomposable unitary representation of A in F, 
the following conditions imply each other: 

(a) T is a principal indecomposable representation of A, i.e., Y is equivalent 
to an indecomposable component of the first regular representation of A. 

(b) T is projective. 
(c) whenever Y is a bottom constituent of a unitary representation A of A, Y 

is equivalent to a component of A. 

The dual of Theorem 8 corresponding to Theorem 4/ is obtained by inter
changing ''first" with "second" regular representation, "projective" with 
"injective", and "bottom" with " top" constituent. 

COROLLARY. A unitary representation Y is projective if and only if it is a 
direct sum of principal indecomposable representations, while Y is infective if 
and only if it is a direct sum of indecomposable components of the second regular 
representation. 

An algebra A over a field F is a self-dual F-r'mg in the sense of Part II 
if and only if its two regular representations are equivalent (Proposition 1). 
Thus the algebras with identity elements which are self-dual with respect to 
the ground field are precisely the Frobenius algebras (13). Lemma 3 and 
Proposition 3 provide necessary and sufficient conditions for an algebra A 
having its two regular representations equivalent to possess an identity 
element. 

By Theorem 6 and Theorem 8 and its dual we have 

THEOREM 9. Let A be an algebra over afield F, and assume that A possesses an 
identity element. Let Y be an indecomposable unitary representation of A in F 
of degree m. Let au . . . , anbea basis of A,and as sume that there exists a set â\,...,ân 

of elements of A satisfying (9) of Part II. Then the condition 
(**) there exists a matrix X in F of degree m such that 

TJY{ai)XY{ai) = Im 
i=i 

(where Im is the identity matrix of degree m) 
implies that Y is a component of both the first and second regular representations of 
A. 

If A is a Frobenius algebra, and a\, . . . , an and â\, . . . , ân are dual bases of 
A, then (**) characterizes the direct sums of principal indecomposable représenta-
tions of A. 

12. Separable algebras. We shall also record the following characterization 
of separable algebras. The equivalence of (b) of our theorem with separability 
was proved by Hochschild (10, Theorem 5); that condition (b) below is 
equivalent with Hochschild's condition (ii) is fairly obvious. 
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THEOREM 10. Each of the following conditions is necessary and sufficient for 
an algebra A with identity element e to be separable: 

(a) A is a Frobenius algebra, and there exists an element a in A such that 
J^diaaf = e, where #i, . . . , an and âh . . . , ân are dual bases of A. 

(b) to each basis &i, . . . , an of A there corresponds a set ai, . . . , an of elements 
of A satisfying condition (9) of Part II such that Y^a^i = #• 

Proof. As is well known, a separable algebra is Frobenius, and even symmet
ric, for it has an identity element, and its reduced trace induces an invariant 
bilinear form. Hence to prove that (a) is satisfied by separable algebras A 
we have to show the existence of an element a in A such that J2^iaai — e-
By a standard device, this question is reduced to the case where A is a direct 
sum of full matrix rings in F> 

A=T. oFna. 

Let Eaij (a = 1, . . . , k; i,j=l,...,na) be the matrix units. Then (Ea
ijy 

EPjci) = ôa^uôjjc determines an invariant F-bilinear form on A such that the 
basis of A dual to the basis consisting of the Ea

iù is defined by 
â T?a 

ij ~ & ji' 

Let T = £ £ « „ so that TE"tJ = 0 if i 9* 1, TE°tJ = Ea
tj. Then 

Z^ Ea
ijTEa

ij = 22 Eaa = I 
a, i, j i,a 

proving (a) in this case. 
Assume (a) and write at = âia. Then ai, . . . , an and ai, . . . , an satisfy 

condition (9) of Part II since this is the case for fli aB and ai, . . . , an 

according to Proposition 3. Hence (a) implies (b). 
By Theorem 6, condition (b) implies that every unitary representation 

module of A is a direct summand of every unitary representation module of 
which it is a representation submodule. Hence A is semi-simple. Since condi
tion (b) survives any extension of the ground field, this implies that A is 
separable. Thus (a) and (b) are each equivalent to separability. 

13. Groups. Let G be a group, and denote by A the ring of all linear com
binations 

çeG 

where ag is a rational integer, and almost all ag are zero. Let 5 be a subring of 
A spanned by a subgroup H of finite index. A set L of representatives of the 
cosets xH is a left 5-basis of A and the set L~l of inverses of elements of L 
is a dual right 5-basis. Therefore A is a self-dual 5-ring in the sense of Part II. 
The generalized Casimir operators have in this case the form 

xtL 
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(cf. §9), and application of Theorem 6 yields at once Theorems 1, 1' of a pre
vious note of Higman (7), which includes a theorem of Eckmann (2) and 
coincides with Gaschutz's generalization (5) of the Maschke theorem in case 
5 = 1 . 

Assume that G is finite, and let M be a representation module for G in a 
field of prime characteristic p. If the subgroup H contains a ^-Sylow subgroup 
of G, multiplication by the index G: H induces an automorphism of M, and 
taking a to be the inverse of this automorphism we have ]T}x_1ax = 1. We 
thus obtain Theorem 2 of (7). See (8) for another application. 
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