Simplicial Complexes and Open Subsets of Non-Separable LF-Spaces

Kotaro Mine and Katsuro Sakai

Abstract

Let F be a non-separable LF-space homeomorphic to the direct sum $\sum_{n \in \mathbb{N}} \ell_{2}\left(\tau_{n}\right)$, where $\aleph_{0}<\tau_{1}<\tau_{2}<\cdots$. It is proved that every open subset U of F is homeomorphic to the product $|K| \times F$ for some locally finite-dimensional simplicial complex K such that every vertex $v \in K^{(0)}$ has the star $\operatorname{St}(v, K)$ with $\operatorname{card} \operatorname{St}(v, K)^{(0)}<\tau=\sup \tau_{n}$ (and card $K^{(0)} \leq \tau$), and, conversely, if K is such a simplicial complex, then the product $|K| \times F$ can be embedded in F as an open set, where $|K|$ is the polyhedron of K with the metric topology.

1 Introduction

A locally convex topological linear space is called an LF-space if it is the strict inductive limit of Fréchet spaces ${ }^{1}$ A typical LF-space is the limit \mathbb{R}^{∞} of the Euclidean spaces $\mathbb{R} \subset \mathbb{R}^{2} \subset \mathbb{R}^{3} \subset \cdots$. Let $\ell_{2}(\tau)$ be Hilbert space with density dens $\ell_{2}(\tau)=\tau$. According to the topological classification of LF-spaces ([10, Theorem 2.14] combined with [19, Theorem 6.1]), every LF-space F is homeomorphic to (\approx) one of the spaces $\mathbb{R}^{\infty}, \ell_{2}(\tau) \times \mathbb{R}^{\infty}$ or $\sum_{n \in \mathbb{N}} \ell_{2}\left(\tau_{n}\right)$, where $\tau=\operatorname{dens} F$ and $\tau_{1}<\tau_{2}<\cdots$ with $\sup \tau_{i}=\operatorname{dens} F$.

Given a space E (called a model space), a paracompact Hausdorff space M is called an E-manifold if it is locally homeomorphic to E, that is, each point of M has an open neighborhood that is homeomorphic to an open set in E. In the theory of manifolds modeled on an LF-space, one can also consider three cases by the topological classification of LF-spaces.

First of all, the theory of \mathbb{R}^{∞}-manifolds has been well developed. The classification, the open embedding, and the triangulation theorems were established in [4] (cf. [3]), that is, two \mathbb{R}^{∞}-manifolds are homeomorphic if they have the same homotopy type; every connected \mathbb{R}^{∞}-manifold can be embedded into \mathbb{R}^{∞} as an open set, and every \mathbb{R}^{∞}-manifold is homeomorphic to $|K| \times \mathbb{R}^{\infty}$ for some locally finite simplicial complex K. These results were derived from the stability theorem asserting that $M \times \mathbb{R}^{\infty} \approx M$ for every \mathbb{R}^{∞}-manifold M. Later, a topological characterization of \mathbb{R}^{∞}-manifolds was given in [17], where easy proofs of the above results were also given.

Concerning the second case, it was proved in [11] that every open subset of $\ell_{2}(\tau) \times \mathbb{R}^{\infty}$ is homeomorphic to the product of an $\ell_{2}(\tau)$-manifold and \mathbb{R}^{∞}. As a

[^0]consequence, we obtained the stability, classification, and triangulation theorems for open subsets of $\ell_{2}(\tau) \times \mathbb{R}^{\infty}$, where the triangulation theorem asserts that every open subset of $\ell_{2}(\tau) \times \mathbb{R}^{\infty}$ is homeomorphic to the product $|K| \times \ell_{2}(\tau) \times \mathbb{R}^{\infty}$ for some locally finite-dimensional simplicial complex $\sqrt{2} K$, where $|K|$ is the polyhedron of K with the metric topology. Thus, if the open embedding theorem were established for $\ell_{2}(\tau) \times \mathbb{R}^{\infty}$-manifold, then the classification and triangulation theorems would be obtained for $\ell_{2}(\tau) \times \mathbb{R}^{\infty}$-manifolds. But, this is still open.

In this paper, we show that the stability and triangulation theorems are valid for open subsets of LF-spaces of the third type $\sum_{n \in \mathbb{N}} \ell_{2}\left(\tau_{n}\right)$, where $\aleph_{0}<\tau_{1}<\tau_{2}<\cdots$. In the following, polyhedra are endowed with the metric topology instead of the Whitehead (weak) topology. The set of vertices of a simplicial complex K is denoted by $K^{(0)}$. For a simplex $\sigma \in K$, let $\sigma^{(0)}$ be the set of vertices of σ. The $\operatorname{star} \operatorname{St}(v, K)$ at a vertex $v \in K^{(0)}$ in K is the subcomplex consisting of all faces of simplexes $\sigma \in K$ with $v \in \sigma^{(0)}$. Our first main result is the following trianglation theorem for open subsets of LF-spaces.

Theorem 1.1 Every open subset U of $\sum_{n \in \mathbb{N}} \ell_{2}\left(\tau_{n}\right)$ is homeomorphic to the product $|K| \times \sum_{n \in \mathbb{N}} \ell_{2}\left(\tau_{n}\right)$ for some locally finite-dimensional simplicial complex K such that each vertex $v \in K^{(0)}$ has the star $\operatorname{St}(v, K)$ with $\operatorname{card} \operatorname{St}(v, K)^{(0)}<\sup _{n \in \mathbb{N}} \tau_{n}$.

Observe that $\sum_{n \in \mathbb{N}} \ell_{2}\left(\tau_{n}\right) \times \sum_{n \in \mathbb{N}} \ell_{2}\left(\tau_{n}\right) \approx \sum_{n \in \mathbb{N}} \ell_{2}\left(\tau_{n}\right)$. This is trivial, since $\sum_{n \in \mathbb{N}} \ell_{2}\left(\tau_{n}\right)$ is regarded as the small box product $\boxtimes_{n \in \mathbb{N}} \ell_{2}\left(\tau_{n}\right)$ (see $\S 1$). As a corollary of Theorem 1.1 we have the following stability theorem.

Corollary 1.2 (Stability) Every open subset U of $\sum_{n \in \mathbb{N}} \ell_{2}\left(\tau_{n}\right)$ is homeomorphic to $U \times \sum_{n \in \mathbb{N}} \ell_{2}\left(\tau_{n}\right)$.

We can also prove the following converse of Theorem 1.1
Theorem 1.3 For a locally finite-dimensional simplicial complex K, if card $K^{(0)} \leq$ $\tau=\sup _{n \in \mathbb{N}} \tau_{n}$ and card $\operatorname{St}(v, K)^{(0)}<\tau$ for each vertex $v \in K^{(0)}$, then the product $|K| \times \sum_{n \in \mathbb{N}} \ell_{2}\left(\tau_{n}\right)$ can be embedded in $\sum_{n \in \mathbb{N}} \ell_{2}\left(\tau_{n}\right)$ as an open set.

Remark 1.4 The condition $\operatorname{card} \operatorname{St}(v, K)^{(0)}<\sup _{n \in \mathbb{N}} \tau_{n}$ is equivalent to the condition that $\operatorname{card} \operatorname{St}(v, K)^{(0)} \leq \tau_{n}$ for some $n \in \mathbb{N}$. Replacing the first condition with the latter, Theorems 1.1 and 1.3 are also valid in the case $\tau_{1} \leq \tau_{2} \leq \ldots$ (the same proof is available). When $\tau_{n}=\tau$ for sufficiently large $n \in \mathbb{N}$, we have $\sum_{n \in \mathbb{N}} \ell_{2}\left(\tau_{n}\right) \approx \ell_{2}(\tau) \times \mathbb{R}^{\infty}$, which is the case of the previous paper [11]. In this case, Theorem 1.1 is none other than [11, Corollary 3]. But this induces the Main Theorem of [11]. Indeed, $|K| \times \ell_{2}(\tau) \times \mathbb{R}^{\infty} \approx\left(|K| \times \ell_{2}(\tau)\right) \times \ell_{2}(\tau) \times \mathbb{R}^{\infty}$. Since $|K|$ is a completely metrizable ANR ${ }^{3}$ it follows from Toruńczyk's ANR Factor Theorem [18] (see Section 1) that $|K| \times \ell_{2}(\tau)$ is an $\ell_{2}(\tau)$-manifold. On the other hand, Theorem 1.3 in this case is trivial. Indeed, by Toruńczyk's ANR Factor Theorem, $|K| \times \ell_{2}(\tau)$ is an $\ell_{2}(\tau)$-manifold with density τ, which can be embedded into $\ell_{2}(\tau)$

[^1]as an open set by Henderson's Open Embedding Theorem [5]. Thus, $|K| \times \ell_{2}(\tau) \times \mathbb{R}^{\infty}$ can be embedded into $\ell_{2}(\tau) \times \mathbb{R}^{\infty}$ as an open set.

A subcomplex L of a simplicial complex K is said to be full in K if every simplex $\sigma \in K$ with $\sigma^{(0)} \subset L^{(0)}$ belongs to L. For such a pair $L \subset K$, let $N(L, K)=$ $\bigcup_{v \in L^{(0)}}|\operatorname{St}(v, \operatorname{Sd} K)|$, where $\mathrm{Sd} K$ is the barycentric subdivision of K. To prove Theorem[1.3, we need the following theorem, which is well known for locally finite simplicial complexes or the Whitehead topology but we are treating non-locally finite simplicial complexes endowed with the metric topology.

Theorem 1.5 Let L be a full subcomplex of a locally finite-dimensional simplicial complex K. Then, the topological boundary $\operatorname{bd}_{|K|} N(L, K)$ of $N(L, K)$ in $|K|$ is bicollared in $|K|$.

Here, it is said that a subset $A \subset X$ is bicollared in X if there exists an open embedding $k: A \times(-1,1) \rightarrow X$ such that $k(x, 0)=x$ for every $x \in A$.

The Whitehead topology is preserved by subdivisions of K, but the metric topology is not. To prove Theorem 1.5, we have to use simplicial subdivisions preserving the metric topology. The barycentric subdivision is a typical one. In [7], D. W. Henderson called such a subdivision a proper subdivision and gave its characterization (see Theorem 5.2). Since it is not easy to check the condition even for derived subdivisions, we show the following characterization.

Theorem 1.6 For a locally finite-dimensional simplicial complex K, a derived subdivision K^{\prime} of K is proper if and only if $K^{\prime(0)}$ is discrete in $|K| .4$

2 Preliminaries

Let $\left(X_{i}\right)_{i \in \mathbb{N}}$ be a sequence of topological spaces. The box product $\square_{i \in \mathbb{N}} X_{i}$ is the product $\prod_{i \in \mathbb{N}} X_{i}$ with the box topology, whose basis consists of sets $\prod_{i \in \mathbb{N}} U_{i}$, where each U_{i} is open in X_{i}. Given maps $f_{i}: X_{i} \rightarrow Y_{i}, i \in \mathbb{N}$, the box product $\square_{i \in \mathbb{N}} f_{i}: \square_{i \in \mathbb{N}} X_{i} \rightarrow$ $\square_{i \in \mathbb{N}} Y_{i}$ is defined by $\left(\square_{n \in \mathbb{N}} f_{i}\right)(x)=\left(f_{i}\left(x_{i}\right)\right)_{i \in \mathbb{N}}$ for each $x=\left(x_{i}\right)_{i \in \mathbb{N}}$. Then, $\square_{i \in \mathbb{N}} f_{i}$ is obviously continuous. In case every X_{i} is a pointed space with $*_{i} \in X_{i}$ the base point, the following subspace of $\square_{i \in \mathbb{N}} X_{i}$ is called the small box product:

$$
\square_{i \in \mathbb{N}} X_{i}=\left\{\left(x_{i}\right)_{i \in \mathbb{N}} \in \square_{i \in \mathbb{N}} X_{i} \mid x_{i}=*_{i} \text { except for finitely many } i \in \mathbb{N}\right\}
$$

When each $f_{i}: X_{i} \rightarrow Y_{i}$ is a pointed map (i.e., $f_{i}\left(*_{i}\right)=*_{i}$), we can define the map $\square_{i \in \mathbb{N}} f_{i}: \square_{i \in \mathbb{N}} X_{i} \rightarrow \square_{i \in \mathbb{N}} Y_{i}$ as the restriction of $\square_{i \in \mathbb{N}} f_{i}$. For each $n \in \mathbb{N}$, we identify $\prod_{i=1}^{n} X_{i}$ with $\prod_{i=1}^{n} X_{i}=\prod_{i=1}^{n} X_{i} \times\left\{*_{n+1}\right\} \subset \prod_{i=1}^{n+1} X_{i}$. Then,

$$
\cdot_{i \in \mathbb{N}} X_{i}=\bigcup_{n \in \mathbb{N}} \prod_{i=1}^{n} X_{i}
$$

In case every X_{i} is the same space $X, \square_{i \in \mathbb{N}} X_{i}$ and $\square_{i \in \mathbb{N}} X_{i}$ are denoted by $\square^{\mathbb{N}} X$ and $\square^{N} X$, respectively.

[^2]We always regard a topological linear space as a pointed space with 0 the base point. In case every X_{i} is a Fréchet space, the weak box product $\square_{i \in \mathbb{N}} X_{i}$ is the strict inductive limit of the tower $X_{1} \subset X_{1} \times X_{2} \subset X_{1} \times X_{2} \times X_{3} \subset \cdots$, which is denoted by $\sum_{i \in \mathbb{N}} X_{i}$ in [10] (it is no other than the direct sum $\sum_{i \in \mathbb{N}} X_{i}$ in [21, §13-2] or the locally convex direct sum $\bigoplus_{i \in \mathbb{N}} X_{i}$ in [13, Example 5.10.6]).

One should take caution that the inductive limit in the category of topological linear spaces is different from the one in the category of topological spaces. In this paper, the latter is called the direct limit. The direct limit of a tower $X_{1} \subset X_{2} \subset \cdots$ is denoted by $\lim _{n}$.

For the reader's convenience, we shall list the fundamental results on $\ell_{2}(\tau)$-manifolds that will be used in our proof. In the proof of Theorem 1.1, we adopt the same strategy as the previous paper [11], but we now need Toruńczyk's ANR Factor Theorem [18].

Theorem 2.1 (ANR Factor) For every completely metrizable ANR X with dens X $\leq \tau$, the product $X \times \ell_{2}(\tau)$ is an $\ell_{2}(\tau)$-manifold. In case X is an $A R, X \times \ell_{2}(\tau) \approx \ell_{2}(\tau)$.

For a locally finite-dimensional simplicial complex K with card $K^{(0)} \leq \tau,|K| \times$ $\ell_{2}(\tau)$ is an $\ell_{2}(\tau)$-manifold, where $|K|$ is the polyhedron with the metric topology. Indeed, $|K|$ is a completely metrizable ANR and card $K^{(0)} \leq \tau$ implies dens $|K| \leq \tau$.

A closed set A in X is called a Z-set (or a strong Z-set) if there are maps $f: X \rightarrow$ $X \backslash A$ (or $A \cap \mathrm{cl} f(X)=\varnothing$) arbitrarily close to id. It is said that a subset $A \subset X$ is collared in X if there is an open embedding $k: A \times[0,1) \rightarrow X$ such that $k(x, 0)=x$ for every $x \in A$. The following is well known (see the statement after [14, Corollary 4.4]).

Theorem 2.2 (Collaring) If a Z-set in an $\ell_{2}(\tau)$-manifold M is also an $\ell_{2}(\tau)$-manifold then it is collared in M.

Combining [20, Theorem B1] with the ANR Factor Theorem, we have the following.

Theorem 2.3 (Enlargement) Let X be a completely metrizable ANR and A a strong Z-set in X. If $X \backslash A$ is an $\ell_{2}(\tau)$-manifold, then X is also an $\ell_{2}(\tau)$-manifold.

We call an embedding $f: X \rightarrow Y$ a Z-embedding if $f(X)$ is a Z-set in Y. The following Z-Set Unknotting Theorem was established in [1].

Theorem 2.4 (Z-set Unknotting) Let A be a Z-set in an $\ell_{2}(\tau)$-manifold M. If a Z embedding $h: A \rightarrow M$ is homotopic to (\simeq) id, then h extends to a homeomorphism $\tilde{h}: M \rightarrow M$ that is isotopic to id.

We also use the following version.
Corollary 2.5 Let A be a Z-set in an $\ell_{2}(\tau)$-manifold M and $f: M \rightarrow N$ a homeomorphism from M onto another $\ell_{2}(\tau)$-manifold N. If a Z-embedding $g: A \rightarrow N$ is homotopic to the restriction $f \mid A$, then g extends to a homeomorphism $\tilde{g}: M \rightarrow M$ that is isotopic to f.

The following is proved in [8] (cf. [6]).

Theorem 2.6 (Classification) Let M and N be $\ell_{2}(\tau)$-manifolds. Every homotopy equivalence $f: M \rightarrow N$ is homotopic to a homeomorphism.

The following result is due to the second author [15] (cf. [16]).
Theorem 2.7 Let M be an $\ell_{2}(\tau)$-manifold with dens $M=\tau$ and N a Z-set in M that is an $\ell_{2}(\tau)$-manifold and contains a strong deformation retract of M. Then, there is a closed embedding $h: M \rightarrow \ell_{2}(\tau)$ such that $h(N)=\operatorname{bd} h(M)$ is bicollared in $\ell_{2}(\tau)$.

3 The First Step in the Proof of Theorem 1.1

In this section, we translate the argument in the previous paper [11] by replacing the intervals $[0,1)$ (resp. $[0,1])$ by the unit open (resp. closed) ball $\mathbb{B}_{i}\left(\right.$ resp. $\left.\overline{\mathbb{B}}_{i}\right)$ of $\ell_{2}\left(\tau_{i}\right)$. For the sake of readers' convenience and completeness, we repeat the arguments. We also improve the notation.

In Theorem 1.1, $\sum_{i \in \mathbb{N}} \ell_{2}\left(\tau_{i}\right)=\square_{i \in \mathbb{N}} \ell_{2}\left(\tau_{i}\right)$ can be replaced with $\square_{i \in \mathbb{N}} \mathbb{B}_{i}$ because $\ell_{2}\left(\tau_{i}\right) \approx \mathbb{B}_{i}$. For each $s>0$, let

$$
s \mathbb{B}_{i}=\left\{x \in \ell_{2}\left(\tau_{i}\right) \mid\|x\|<s\right\} \text { and } s \overline{\mathbb{B}}_{i}=\left\{x \in \ell_{2}\left(\tau_{i}\right) \mid\|x\| \leq s\right\}
$$

For a subset $N \subset \prod_{i=1}^{n} \mathbb{B}_{i}$ and a map $\alpha: N \rightarrow(0,1)$, we define

$$
N(\alpha)=\left\{(x, y) \in N \times \mathbb{B}_{n+1} \mid\|y\|<\alpha(x)\right\} \subset \prod_{i=1}^{n+1} \mathbb{B}_{i}
$$

Let U be an open set in $\boxtimes_{i \in \mathbb{N}} \mathrm{BB}_{i}$. For each $n \in \mathbb{N}$, let $U_{n}=U \cap \prod_{i=1}^{n} \mathrm{BB}_{i}$. Then, U_{n} is an $\ell_{2}\left(\tau_{n}\right)$-manifold and U_{n} is closed in U_{n+1}. For a sequence $\alpha=\left(\alpha_{k}\right)_{k \in \mathbb{N}}$ of maps $\alpha_{k}: U_{k} \rightarrow(0,1)$ satisfying the condition $U_{k}\left(\alpha_{k}\right) \subset U_{k+1}$, we can inductively define

$$
U_{n}\left(\alpha_{n}, \ldots, \alpha_{k}\right)=U_{n}\left(\alpha_{n}, \ldots, \alpha_{k-1}\right)\left(\alpha_{k}\right) \subset U_{k}\left(\alpha_{k}\right) \subset U_{k+1} \text { for each } k>n
$$

Then, $U_{n}\left(\alpha_{n}\right) \subset U_{n}\left(\alpha_{n}, \alpha_{n+1}\right) \subset U_{n}\left(\alpha_{n}, \alpha_{n+1}, \alpha_{n+2}\right) \subset \cdots$. Let

$$
U_{n}^{\alpha}=\bigcup_{k \geqslant n} U_{n}\left(\alpha_{n}, \ldots, \alpha_{k}\right) \subset U
$$

Thus, we have a tower $U_{1}^{\alpha} \subset U_{2}^{\alpha} \subset U_{3}^{\alpha} \subset \cdots$ with $U=\bigcup_{n \in \mathbb{N}} U_{n}^{\alpha}$. If each U_{n}^{α} is open in U, then U is the direct limit of this tower, that is, $U=\underline{\longrightarrow} U_{n}^{\alpha}$.

Lemma 3.1 There exists a sequence $\alpha=\left(\alpha_{k}\right)_{k \in \mathbb{N}}$ of maps $\alpha_{k}: U_{k} \rightarrow(0,1)$ such that $U_{k}\left(\alpha_{k}\right) \subset U_{k+1}$ for every $k \in \mathbb{N}$ and each U_{n}^{α} is open in U, hence $U=\underline{\lim } U_{n}^{\alpha}$. Moreover, each $x \in U_{k}$ has a neighborhood V in U_{k} with $a_{i}>0, i>k$ such that $\inf _{y \in V} \alpha_{k}(y)>0$ and

$$
\inf \left\{\alpha_{n}(y) \mid y \in V \times \prod_{i=k+1}^{n} a_{i} \overline{\mathbb{B}}_{i}\right\}>0 \text { for every } n>k
$$

Proof For each $k \in \mathbb{N}$, let $\mathcal{V}_{k}=\left\{V_{\lambda} \mid \lambda \in \Lambda_{k}\right\}$ be a locally finite open cover of U_{k} with $a_{\lambda, i} \in(0,1], i>k$, such that $\mathrm{cl} V_{\lambda} \times \square_{i>k} a_{\lambda, i} \overline{\mathbb{B}}_{i} \subset U$ for each $k \in \mathbb{N}$ and $\lambda \in \Lambda_{k}$, where $\Lambda_{k} \cap \Lambda_{k^{\prime}}=\varnothing$ if $k \neq k^{\prime}$. Suppose that $\mathcal{W}_{k}=\left\{W_{\lambda} \mid \lambda \in \Lambda_{k}\right\}$ is an open cover of U_{k} that is a shrinking of \mathcal{V}_{k}, that is, $\mathrm{cl} W_{\lambda} \subset V_{\lambda}$ for each $\lambda \in \Lambda_{k}$. We define $\beta_{k}: U_{k} \rightarrow \mathbf{I}$ as follows:

$$
\beta_{k}(x)=\max \left\{\frac{a_{\lambda, k+1}}{2} \left\lvert\, x \in \operatorname{cl} W_{\lambda} \times \prod_{i=j+1}^{k} \frac{a_{\lambda, i}}{2} \overline{\mathbb{B}}_{i}\right., \lambda \in \Lambda_{j}, j \leq k\right\}
$$

where $\mathrm{cl} W_{\lambda} \times \prod_{i=j+1}^{k} \frac{a_{\lambda, i}}{2} \overline{\mathrm{~B}}_{i}=\operatorname{cl} W_{\lambda}$ if $j=k$. Observe

$$
\left\{(x, t) \in U_{k} \times \mathbf{I} \mid t \leq \beta_{k}(x)\right\}=\bigcup_{j \leq k} \bigcup_{\lambda \in \Lambda_{j}} \operatorname{cl} W_{\lambda} \times \prod_{i=j+1}^{k} \frac{a_{\lambda, i}}{2} \overline{\mathbb{B}}_{i} \times\left[0, \frac{a_{\lambda, k+1}}{2}\right]
$$

which is closed in $U_{k} \times \mathbf{I}$. This means that β_{k} is upper semi-continuous. Moreover, we can define a lower semi-continuous function $\gamma_{k}: U_{k} \rightarrow \mathbf{I}$ as follows:

$$
\gamma_{k}(x)=\max \left\{a_{\lambda, k+1} \mid x \in V_{\lambda} \times \prod_{i=j+1}^{k} a_{\lambda, i} \mathbb{B}_{i}, \lambda \in \Lambda_{j}, j \leq k\right\}
$$

Since $\beta_{k}<\gamma_{k}$, there exists a continious map $\alpha_{k}: U_{k} \rightarrow(0,1)$ such that $\beta_{k}<\alpha_{k}<\gamma_{k}$. Then, $U_{k}\left(\alpha_{k}\right) \subset U_{k+1}$ for every $k \in \mathbb{N}$.

From the definition, it follows that
which implies $\inf _{y \in W_{\lambda}} \alpha_{k}(y) \geqslant a_{\lambda, k+1} / 2>0$ and

$$
\inf \left\{\alpha_{n}(y) \mid y \in W_{\lambda} \times \prod_{i=k+1}^{n} a_{\lambda, i} \overline{\mathbb{B}}_{i}\right\} \geqslant \frac{a_{\lambda, n+1}}{2}>0 \text { for every } n>k
$$

To show that each U_{n}^{α} is open in U, let $x \in U_{n}^{\alpha}$. Choose $k \geqslant n$ so that $x \in$ $U_{n}\left(\alpha_{n}, \ldots, \alpha_{k}\right) \subset U_{k+1}$. Since $U_{k+1}=\bigcup_{\lambda \in \Lambda_{k+1}} W_{\lambda}$, it follows that $x \in W_{\lambda}$ for some $\lambda \in \Lambda_{k+1}$. Let $G=W_{\lambda} \cap U_{n}\left(\alpha_{n}, \ldots, \alpha_{k}\right)$. Then, $G \times \square_{i>k+1} \frac{a_{\lambda, i}}{2} \mathbb{B}_{i}$ is a neighborhood of x in $\unlhd_{i \in \mathbb{N}} B_{i}$. By induction on $m>k$, we shall show that

$$
G \times \prod_{i=k+2}^{m+1} \frac{a_{\lambda, i} \overline{\mathbb{B}}_{i} \subset U_{n}\left(\alpha_{n}, \ldots, \alpha_{m}\right)}{2}
$$

Take an arbitrary point $y=\left(w, z_{k+2}, \ldots, z_{m+1}\right)$ from the left side in the above. By the inductive assumption, we have

$$
y^{\prime}=\left(w, z_{k+2}, \ldots, z_{m}\right) \in G \times \prod_{i=k+2}^{m} \frac{a_{\lambda, i}}{2} \overline{\mathbb{B}}_{i} \subset U_{n}\left(\alpha_{n}, \ldots, \alpha_{m-1}\right)
$$

Since $\left\|z_{m+1}\right\|<a_{\lambda, m+1} / 2<\alpha_{m}\left(y^{\prime}\right)$, we have

$$
y \in U_{n}\left(\alpha_{n}, \ldots, \alpha_{m-1}\right)\left(\alpha_{m}\right)=U_{n}\left(\alpha_{n}, \ldots, \alpha_{m}\right)
$$

Thus, it follows that

$$
G \times \bigoplus_{i>k+1} \frac{a_{\lambda, i}}{2} \overline{\mathbb{B}}_{i}=\bigcup_{m>k}\left(G \times \prod_{i=k+2}^{m+1} \frac{a_{\lambda, i}}{2} \overline{\mathbb{B}}_{i}\right) \subset \bigcup_{m>k} U_{n}\left(\alpha_{n}, \ldots, \alpha_{m}\right)=U_{n}^{\alpha}
$$

Therefore, U_{n}^{α} is open in U.
Now, we shall construct a sequence $\Psi=\left(\psi_{i}\right)_{i \in \mathbb{N}}$ of open embeddings $\psi_{i}: U_{i} \times$ $\mathbb{B}_{i+1} \rightarrow U_{i+1}$ so that $\psi_{i}(x, 0)=(x, 0)$ for every $x \in U_{i}$ and U is homeomorphic to the direct limit U_{Ψ} of the following open tower:

$$
U_{1} \times \unrhd_{i>1} \mathrm{~B}_{i} \underset{\psi_{1} \times i \mathrm{~d}}{\subset} U_{2} \times \unrhd_{i>2} \mathrm{~B}_{i} \underset{\psi_{2} \times \mathrm{id}}{\subset} \cdots
$$

where $U_{n} \times \square_{i>n} \mathrm{BB}_{i}$ is regarded as an open set in $U_{n+1} \times \square_{i>n+1} \mathrm{~B} \mathrm{~B}_{i}$ by the embedding

$$
\psi_{n} \times \mathrm{id}: U_{n} \times \square_{i>n} \mathbb{B B}_{i}=U_{n} \times \mathbb{B}_{n+1} \times \square_{i>n+1} \mathbb{B}_{i} \rightarrow U_{n+1} \times \square_{i>n+1} 1 \mathbb{B B}_{i}
$$

Lemma 3.2 There exists a sequence $\Psi=\left(\psi_{n}\right)_{n \in \mathbb{N}}$ of open embeddings $\psi_{n}: U_{n} \times$ $\mathbb{B}_{n+1} \rightarrow U_{n+1}$ such that $U_{\Psi} \approx U, \psi_{n}(x, 0)=(x, 0)$ for every $x \in U_{n}$ and $\psi_{n} \mid U_{n} \times$ $s \overline{\mathrm{~B}}_{n+1}: U_{n} \times s \overline{\mathrm{~B}}_{n+1} \rightarrow U_{n+1}$ is a closed embedding for each $s \in(0,1)$.

Proof Let $\alpha=\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ be a sequence of maps $\alpha_{n}: U_{n} \rightarrow(0,1)$ obtained in Lemma 3.1 Then, U_{n}^{α} is open in U and $U=\underset{\longrightarrow}{\lim U_{n}^{\alpha}}$. The desired open embeddings $\psi_{n}: U_{n} \times$ $\mathbb{B}_{n+1} \rightarrow U_{n+1}, n \in \mathbb{N}$, are defined by $\overrightarrow{\psi_{n}}(x, y)=\left(x, \alpha_{n}(x) y\right)$. It is sufficient to show that $U_{\Psi} \approx U$ because the other conditions are easily observed.

For every $k \in \mathbb{N}$, we inductively define $\delta_{n, k}: U_{n} \times \prod_{i=n+1}^{n+k} \mathbb{B}_{i} \rightarrow \mathbb{B}_{n+k}$ as follows:

$$
\begin{aligned}
& \delta_{n, k}\left(x, y_{n+1}, \ldots, y_{n+k}\right)= \\
& \alpha_{n+k-1}\left(x, \delta_{n, 1}\left(x, y_{n+1}\right), \ldots, \delta_{n, k-1}\left(x, y_{n+1}, \ldots, y_{n+k-1}\right)\right) y_{n+k}
\end{aligned}
$$

where $\delta_{n, 1}(x, y)=\alpha_{n}(x) y$. Then, by induction, we have the following equation:

$$
\begin{equation*}
\delta_{n, k}\left(x, \frac{z_{n+1}}{\alpha_{n}(x)}, \ldots, \frac{z_{n+k}}{\alpha_{n+k-1}\left(x, z_{n+1}, \ldots, z_{n+k-1}\right)}\right)=z_{n+k} \tag{3.1}
\end{equation*}
$$

Define $h_{n}: U_{n} \times \square_{i>n} \mathbb{B B}_{i} \rightarrow U_{n}^{\alpha}$ and $g_{n}: U_{n}^{\alpha} \rightarrow U_{n} \times \square_{i>n} \mathbb{B}_{i}$ as follows:

$$
\begin{gathered}
h_{n}\left(x, y_{n+1}, y_{n+2}, \ldots\right)=\left(x, \delta_{n, 1}\left(x, y_{n+1}\right), \delta_{n, 2}\left(x, y_{n+1}, y_{n+2}\right), \ldots\right) \text { and } \\
g_{n}\left(x, z_{n+1}, z_{n+2}, \ldots\right)=\left(x, \frac{z_{n+1}}{\alpha_{n}(x)}, \frac{z_{n+2}}{\alpha_{n+1}\left(x, z_{n+1}\right)}, \frac{z_{n+3}}{\alpha_{n+2}\left(x, z_{n+1}, z_{n+2}\right)}, \ldots\right)
\end{gathered}
$$

As is easily observed, $g_{n} \circ h_{n}=\mathrm{id}$. By (3.1), $h_{n} \circ g_{n}=\operatorname{id}_{U_{n}^{\alpha}}$. Hence, g_{n} is a bijection with $h_{n}=g_{n}^{-1}$. Moreover, the following diagram commutes:

Indeed, let $\left(x, z_{n+1}, z_{n+2}, \ldots\right) \in U_{n}^{\alpha}$. Then, $\left(\left(x, z_{n+1}\right), z_{n+2}, \ldots\right) \in U_{n+1}^{\alpha}$ and

$$
\begin{aligned}
\left(\psi_{n} \times \mathrm{id}\right) \circ g_{n}\left(x, z_{n+1}, z_{n+2}, \ldots\right) & =\left(\psi_{n} \times \mathrm{id}\right)\left(x, \frac{z_{n+1}}{\alpha_{n}(x)}, \frac{z_{n+2}}{\alpha_{n+1}\left(x, z_{n+1}\right)}, \ldots\right) \\
& =\left(\psi_{n}\left(x, \frac{z_{n+1}}{\alpha_{n}(x)}\right), \frac{\varphi_{n+2}}{\alpha_{n+1}\left(x, z_{n+1}\right)}, \ldots\right) \\
& =\left(\left(x, z_{n+1}\right), \frac{z_{n+2}}{\alpha_{n+1}\left(x, z_{n+1}\right)}, \ldots\right) \\
& =g_{n+1}\left(\left(x, z_{n+1}\right), z_{n+2}, \ldots\right)
\end{aligned}
$$

It remains to show that each h_{n} and g_{n} are continuous, which means that g_{n} is a homeomorphism. Thus, we would have

$$
U=\underset{\longrightarrow}{\lim } U_{n}^{\alpha} \approx \underset{\longrightarrow}{\lim }\left(U_{n} \times \square_{i>n} \mathrm{~B}_{i}\right)=U_{\Psi}
$$

To see the continuity of h_{n} at $x \in U_{n} \times \square_{i>n} \mathbb{B}_{i}$, let V be a neighborhood of $h_{n}(x)$ in U_{n}^{α}. Then, x is contained in some $U_{n} \times \prod_{i=n+1}^{n+k} \mathbb{B}_{i}$, which implies that $h_{n}(x) \in$ $U_{n}\left(\alpha_{n}, \ldots, \alpha_{n+k-1}\right)$. We can find a neighborhood V^{\prime} in $h_{n}(x)$ in $U_{n} \times \prod_{i=n+1}^{n+k} \mathrm{~B}_{i}$ and $0<\varepsilon_{i}<1, i \geqslant n+k+1$, such that $h_{n}(x) \in V^{\prime} \times \square_{i>n+k} \varepsilon_{i} \mathbb{B}_{i} \subset V$. Since $\delta_{n, 1}, \ldots$, $\delta_{n, k}$ are continuous, it follows that $h_{n} \mid U_{n} \times \prod_{i=n+1}^{n+k} \mathbb{B}_{i}$ is continuous, hence x has a neighborhood W in $U_{n} \times \prod_{i=n+1}^{n+k} \mathbb{B}_{i}$ such that $h_{n}(W) \subset V^{\prime}$. Then, $W \times \square_{i>n+k} \varepsilon_{i} \mathbb{B}_{i}$ is a neighborhood of x in $U_{n} \times \square_{i>n} \mathbb{B}_{i}$ and

$$
h_{n}\left(W \times \square_{i>n+k} \varepsilon_{i} \mathrm{BB}_{i}\right) \subset V^{\prime} \times \square_{i>n+k} \varepsilon_{i} \mathrm{BB}_{i} \subset V,
$$

which implies that h_{n} is continuous at x.
To see the continuity of g_{n} at $x \in U_{n}^{\alpha}$, let V be a neighborhood of $g_{n}(x)$ in $U_{n} \times \square_{i>n} \mathbb{B}_{i}$. Then, $g_{n}(x)$ is contained in some $U_{n} \times \prod_{i=n+1}^{n+k} \mathbb{B}_{i}$. Put $m=n+k$ and choose an open set W in U_{m} and $\varepsilon_{i}>0, i \geqslant m+1$, so that $g_{n}(x) \in W \times \square_{i>m} \varepsilon_{i} \mathbb{B B}_{i} \subset$ V. Since $\alpha_{n}, \ldots, \alpha_{m-1}$ are continuous, it follows that $g_{n} \mid U_{n}\left(\alpha_{n}, \ldots, \alpha_{m-1}\right)$ is continuous, hence we have a neighborhood W^{\prime} of x in $U_{n}\left(\alpha_{n}, \ldots, \alpha_{m-1}\right) \subset U_{m}$ such that $g_{n}\left(W^{\prime} \times\{(0,0, \ldots)\}\right) \subset W \times\{(0,0, \ldots)\}$. By virtue of Lemma3.1, it can be assumed that $\inf _{y \in W^{\prime}} \alpha_{m}(y)>0$ and

$$
\inf \left\{\alpha_{m+l}(y) \mid y \in W^{\prime} \times \prod_{i=m+1}^{m+l} \varepsilon_{i} \mathbb{B}_{i}\right\}>0 \text { for every } l \in \mathbb{N} .
$$

We can find $0<\delta_{m+l} \leq \varepsilon_{m+l}, l \in \mathbb{N}$, such that

$$
\begin{aligned}
& y \in W^{\prime},\left\|z_{m+1}\right\|<\delta_{m+1} \Rightarrow \frac{\left\|z_{m+1}\right\|}{\alpha_{m}(y)}<\varepsilon_{m+1} \quad \text { and } \\
&\left(y, z_{m+1}, \ldots, z_{m+l}\right) \in W^{\prime} \times \prod_{i=m+1}^{m+l} \varepsilon_{i} \mid \mathrm{B}_{i},\left\|z_{m+l+1}\right\|<\delta_{m+l+1} \\
& \Rightarrow \frac{\left\|z_{m+l+1}\right\|}{\alpha_{m+l}\left(y, z_{n+k+1}, \ldots, z_{m+l}\right)}<\varepsilon_{m+l+1}
\end{aligned}
$$

Then, we have $g_{n}\left(W^{\prime} \times \square_{i>m} \delta_{i} \mathbb{B}_{i}\right) \subset W \times \square_{i>m} \varepsilon_{i} \mid \mathbb{B}_{i} \subset V$, which implies that g_{n} is continuous at x.

4 The Second Step in the Proof of Theorem 1.1

To construct the simplical complex K in Theorem 1.1, for each $n \in \mathbb{N}$, let K_{n} be a locally finite-dimensional simplicial complex of the homotopy type of U_{n} and $\xi_{n}: U_{n} \rightarrow\left|K_{n}\right|$ a homotopy equivalence with a homotopy inverse $\eta_{n}:\left|K_{n}\right| \rightarrow U_{n}$. Moreover, take a subdivision $K_{n}^{\prime} \triangleleft K_{n}$ and a simplicial approximation $\varphi_{n}: K_{n}^{\prime} \rightarrow$ K_{n+1} of $\xi_{n+1} i_{n} \eta_{n}:\left|K_{n}\right| \rightarrow\left|K_{n+1}\right|$, where $i_{n}: U_{n}=U_{n} \times\{0\} \subset U_{n+1}$ is the inclusion.

The simplex with vertices v_{1}, \ldots, v_{n} is denoted by $\left\langle v_{1}, \ldots, v_{n}\right\rangle$, where we allow the case v_{1}, \ldots, v_{n} are not pairwise distinct. We give orders on $K_{n}^{(0)}$ and $K_{n}^{\prime(0)}$ such that the set $\sigma^{(0)}$ of vertices of each simplex σ is totally ordered. The simplicial mapping cylinder $Z\left(\varphi_{n}\right)$ of $\varphi_{n}: K_{n}^{\prime} \rightarrow K_{n+1}$ can be defined as follows:

$$
\begin{aligned}
& Z\left(\varphi_{n}\right)=K_{n+1} \cup\left\{\left\langle\varphi_{n}\left(v_{1}\right), \ldots, \varphi_{n}\left(v_{i}\right), v_{j}, \ldots, v_{k}\right\rangle \mid v_{1}, \ldots, v_{k} \in K_{n}^{\prime},\right. \\
& \left.v_{1}<\cdots<v_{k}, 1 \leq i \leq j \leq k\right\} .
\end{aligned}
$$

Then, K_{n}^{\prime} and K_{n+1} are subcomplexes of $Z\left(\varphi_{n}\right)$ and $Z\left(\varphi_{n}\right)^{(0)}=K_{n}^{\prime(0)} \cup K_{n+1}^{(0)}$. We also define the triangulation $I\left(K_{n}, K_{n}^{\prime}\right)$ of the product $\left|K_{n}\right| \times[2 n-1,2 n]$ as follows:

$$
\left.\begin{array}{l}
I\left(K_{n}, K_{n}^{\prime}\right)=\left(K_{n} \times\{2 n-1\}\right) \cup\left(K_{n}^{\prime} \times\{2 n\}\right) \\
\cup\left\{\left\{\left\langle\sigma^{(0)} \times\{2 n-1\} \cup\left\{v_{m}, \cdots, v_{n}\right\} \times\{2 n\}\right\rangle \mid \sigma \in K_{n}^{\prime}\right.\right. \\
\end{array} \quad\left\langle v_{1}, \cdots, v_{n}\right\rangle \in K_{n}, v_{1}<\cdots<v_{n}, \sigma \subset\left\langle v_{1}, \cdots, v_{m}\right\rangle\right\} .
$$

Identifying K_{n}^{\prime} and K_{n+1} in $Z\left(\varphi_{n}\right)$ with $K_{n}^{\prime} \times\{2 n\} \subset I\left(K_{n}, K_{n}^{\prime}\right)$ and $K_{n+1} \times\{2 n+1\} \subset$ $I\left(K_{n+1}, K_{n+1}^{\prime}\right)$ respectively, we can obtain the simplicial complex

$$
K=\bigcup_{n \in \mathbb{N}}\left(I\left(K_{n}, K_{n}^{\prime}\right) \cup Z\left(\varphi_{n}\right)\right)
$$

Take an increasing sequence $0<c_{1}<c_{2}<\cdots$ with $\sup _{n \in \mathbb{N}} c_{n}=1$ (e.g., $c_{n}=$
$n /(n+1), n \in \mathbb{N})$. For each $n \in \mathbb{N}$, let

$$
\begin{aligned}
N_{n} & =\left(\left|K_{n}\right| \times\left[2 n-1,2 n-\frac{1}{2}\right)\right) \cup \bigcup_{i=1}^{n-1}\left(\left|I\left(K_{i}, K_{i}^{\prime}\right)\right| \cup\left|Z\left(\varphi_{i}\right)\right|\right), \\
\bar{N}_{n} & =\left(\left|K_{n}\right| \times\left[2 n-1,2 n-\frac{1}{2}\right]\right) \cup \bigcup_{i=1}^{n-1}\left(\left|I\left(K_{i}, K_{i}^{\prime}\right)\right| \cup\left|Z\left(\varphi_{i}\right)\right|\right), \\
M_{n} & =N_{n} \times \prod_{i=1}^{n+1} c_{n} \mid \mathbb{B}_{i}, \bar{M}_{n}=\bar{N}_{n} \times \prod_{i=1}^{n+1} c_{n} \overline{\mathrm{~B}}_{i} \text { and } \\
\partial M_{n} & =\bar{M}_{n} \backslash M_{n}=\left(\theta_{n}\left(\left|K_{n}\right|\right) \times \prod_{i=1}^{n+1} c_{n} \overline{\mathbb{B}}_{i}\right) \cup\left(\bar{N}_{n} \times D_{n+1}\right),
\end{aligned}
$$

where $\theta_{n}:\left|K_{n}\right| \rightarrow\left|K_{n}\right| \times\left\{2 n-\frac{1}{2}\right\} \subset \bar{N}_{n} \backslash N_{n} \subset \bar{N}_{n}$ is the natural injection and

$$
D_{n+1}=\prod_{i=1}^{n+1} c_{n} \overline{\mathrm{~B}}_{i} \backslash \prod_{i=1}^{n+1} c_{n} \mathrm{~B}_{i}=c_{n}\left(\prod_{i=1}^{n+1} \overline{\mathrm{~B}_{i}} \backslash \prod_{i=1}^{n+1} \mathbb{B}_{i}\right) .
$$

It should be remarked that

$$
\begin{equation*}
\theta_{n+1} \varphi_{n} \simeq \theta_{n} \text { in } \bar{N}_{n+1} \backslash N_{n} \text { for each } n \in \mathbb{N} \tag{4.1}
\end{equation*}
$$

Lemma 4.1 Every D_{n+1} is homeomorphic to $\ell_{2}\left(\tau_{n+1}\right)$.
Proof By induction, we shall show that

$$
D_{n+1}^{\prime}=c_{n}^{-1} D_{n+1}=\prod_{i=1}^{n+1} \overline{\mathbb{B}}_{i} \backslash \prod_{i=1}^{n+1} \mathbb{B}_{i} \approx \ell_{2}\left(\tau_{n+1}\right)
$$

so we will have $D_{n+1} \approx \ell_{2}\left(\tau_{n+1}\right)$. The unit sphere $\mathbb{S}_{n+1}=\overline{\mathbb{B}}_{n+1} \backslash \mathbb{B}_{n+1}$ and the unit closed ball $\overline{\mathbb{B}}_{n+1}$ of $\ell_{2}\left(\tau_{n+1}\right)$ is homeomorphic to $\ell_{2}\left(\tau_{n+1}\right)$. Then, $D_{1}^{\prime}=\mathbb{S}_{1} \approx \ell_{2}\left(\tau_{1}\right)$. Assume that $D_{n}^{\prime} \approx \ell_{2}\left(\tau_{n}\right)$. Observe

$$
\begin{aligned}
& D_{n+1}^{\prime}=\left(D_{n}^{\prime} \times \overline{\mathbb{B}}_{n+1}\right) \cup\left(\overline{\mathbb{B}}_{1} \times \cdots \times \overline{\mathbb{B}}_{n} \times \mathbb{S}_{n+1}\right) \quad \text { and } \\
& \left(D_{n}^{\prime} \times \overline{\mathrm{B}}_{n+1}\right) \cap\left(\overline{\mathrm{B}}_{1} \times \cdots \times \overline{\mathbb{B}}_{n} \times \mathbb{S}_{n+1}\right)=D_{n}^{\prime} \times \mathbb{S}_{n+1}
\end{aligned}
$$

By the ANR Factor Theorem, we have

$$
D_{n}^{\prime} \times \overline{\mathbb{B}}_{n+1} \approx \overline{\mathbb{B}}_{1} \times \cdots \times \overline{\mathbb{B}}_{n} \times \mathbb{S}_{n+1} \approx D_{n}^{\prime} \times \mathbb{S}_{n+1} \approx \ell_{2}\left(\tau_{n+1}\right)
$$

As is easily observed, $D_{n}^{\prime} \times \mathbb{S}_{n+1}$ is a Z-set in both $D_{n}^{\prime} \times \overline{\mathbb{B}}_{n+1}$ and $\overline{\mathbb{B}}_{1} \times \cdots \times \overline{\mathbb{B}}_{n} \times \mathbb{S}_{n+1}$. Since $\ell_{2}\left(\tau_{n+1}\right) \times(-1,1) \approx \ell_{2}\left(\tau_{n+1}\right) \times[0,1) \approx \ell_{2}\left(\tau_{n+1}\right)$, it is easy to obtain $D_{n+1}^{\prime} \approx$ $\ell_{2}\left(\tau_{n+1}\right)$ by the Z-set Unknotting Theorem.

Lemma 4.2 Each M_{n}, \bar{M}_{n}, and ∂M_{n} is an $\ell_{2}\left(\tau_{n+1}\right)$-manifold, and ∂M_{n} is a Z-set in \bar{M}_{n}.

Proof Since $\overline{\mathbb{B}}_{n+1} \approx D_{n+1} \approx \ell_{2}\left(\tau_{n+1}\right)$, the following are $\ell_{2}\left(\tau_{n+1}\right)$-manifolds by the ANR Factor Theorem:

$$
\begin{gathered}
M_{n}, \bar{M}_{n}, \theta_{n}\left(\left|K_{n}\right|\right) \times \prod_{i=1}^{n+1} c_{n} \overline{\mathbb{B}}_{i}, \bar{N}_{n} \times D_{n+1} \text { and } \\
\left(\theta_{n}\left(\left|K_{n}\right|\right) \times \prod_{i=1}^{n+1} c_{n} \overline{\mathbb{B}}_{i}\right) \cap\left(\bar{N}_{n} \times D_{n+1}\right)=\theta_{n}\left(\left|K_{n}\right|\right) \times D_{n+1} .
\end{gathered}
$$

The last one in the above is a Z-set in the both $\theta_{n}\left(\left|K_{n}\right|\right) \times \prod_{i=1}^{n+1} c_{n} \overline{\bar{B}} i i$ and $\bar{N}_{n} \times D_{n+1}$, so it is collared in them by the Collaring Theorem. Then, ∂M_{n} is an $\ell_{2}\left(\tau_{n+1}\right)$-manifold because

$$
\partial M_{n}=\left(\theta_{n}\left(\left|K_{n}\right|\right) \times \prod_{i=1}^{n+1} c_{n} \overline{\mathbb{B}}_{i}\right) \cup\left(\bar{N}_{n} \times D_{n+1}\right)
$$

Observe that $\theta_{n}\left(\left|K_{n}\right|\right) \times \prod_{i=1}^{n+1} c_{n} \overline{\mathrm{~B}}_{i}$ and $\bar{N}_{n} \times D_{n+1}$ are Z-sets in $\bar{M}_{n}=\bar{N}_{n} \times \prod_{i=1}^{n+1} c_{n} \overline{\mathrm{~B}}_{i}$. Thus, ∂M_{n} is a Z-set in \bar{M}_{n}.

We also consider the following sets:

$$
\begin{aligned}
\bar{\partial} M_{n} & =\left(\partial M_{n} \times c_{n} \overline{\mathbb{B}}_{n+2}\right) \cup\left(\bar{M}_{n} \times c_{n} \mathbb{S}_{n+2}\right) \\
& =\left(\theta_{n}\left(\left|K_{n}\right|\right) \times \prod_{i=1}^{n+2} c_{n} \overline{\mathrm{~B}}_{i}\right) \cup\left(\bar{N}_{n} \times\left(\prod_{i=1}^{n+2} c_{n} \overline{\mathrm{~B}}_{i} \backslash \prod_{i=1}^{n+2} c_{n} \mathrm{BB}_{i}\right)\right) \\
L_{n+1} & =\bar{M}_{n+1} \backslash\left(M_{n} \times c_{n} \mathbb{B} B_{n+2}\right) \\
& =\left(\left(\bar{N}_{n+1} \backslash N_{n}\right) \times \prod_{i=1}^{n+2} c_{n+1} \overline{\mathrm{~B}}_{i}\right) \cup\left(\bar{N}_{n+1} \times\left(\prod_{i=1}^{n+2} c_{n+1} \overline{\mathrm{~B}}_{i} \backslash \prod_{i=1}^{n+2} c_{n} \mathbb{B} B_{i}\right)\right) .
\end{aligned}
$$

Then, we can write $\bar{M}_{n+1}=\left(\bar{M}_{n} \times c_{n} \overline{\mathrm{~B}}_{n+2}\right) \cup L_{n+1}$ and $\bar{\partial} M_{n}=\left(\bar{M}_{n} \times c_{n} \overline{\mathrm{~B}}_{n+2}\right) \cap L_{n+1}$, where $\bar{\partial} M_{n}$ is the topological boundary of both L_{n+1} and $M_{n} \times c_{n} \mathbb{B}_{n+2}$ in \bar{M}_{n+1}.

Lemma 4.3 Each $\bar{\partial} M_{n}$ and L_{n+1} is an $\ell_{2}\left(\tau_{n+2}\right)$-manifold, and $\bar{\partial} M_{n}$ is a Z-set in L_{n+1}.
Proof The following two sets are bicollared in \bar{M}_{n+1} :

$$
\theta_{n}\left(\left|K_{n}\right|\right) \times \prod_{i=1}^{n+2} c_{n+1} \overline{\mathrm{~B}}_{i} \text { and } \bar{N}_{n+1} \times\left(\prod_{i=1}^{n+2} c_{n} \overline{\mathrm{~B}}_{i} \backslash \prod_{i=1}^{n+2} c_{n} \mathrm{~B}_{i}\right)
$$

Then, it is easy to construct a homeomorphism $f: \bar{M}_{n+1} \rightarrow \bar{M}_{n+1}$ arbitrarily close to id such that

$$
\begin{gathered}
\left(\bar{N}_{n} \times \prod_{i=1}^{n+2} c_{n+1} \overline{\mathrm{~B}}_{i}\right) \cap \mathrm{cl} f\left(\left(\bar{N}_{n+1} \backslash \bar{N}_{n}\right) \times \prod_{i=1}^{n+2} c_{n+1} \overline{\mathrm{~B}}_{i}\right)=\varnothing \text { and } \\
\left(\bar{N}_{n+1} \times \prod_{i=1}^{n+2} c_{n} \overline{\mathrm{~B}}_{i}\right) \cap \mathrm{cl} f\left(\bar{N}_{n+1} \times\left(\prod_{i=1}^{n+2} c_{n+1} \overline{\mathrm{~B}}_{i} \backslash \prod_{i=1}^{n+2} c_{n} \mathrm{BB}_{i}\right)\right)=\varnothing
\end{gathered}
$$

which implies $\left(M_{n} \times c_{n} \overline{\mathrm{~B}}_{n+2}\right) \cap \mathrm{cl}_{\bar{M}_{n+1}} f\left(L_{n+1}\right)=\varnothing$. Since $\bar{\partial} M_{n} \subset M_{n} \times c_{n} \overline{\mathrm{~B}}_{n+2}$, we have a map $f \mid L_{n+1}: L_{n+1} \rightarrow L_{n+1}$ arbitrarily close to id such that $\bar{\partial} M_{n} \cap \operatorname{cl} f\left(L_{n+1}\right)=\varnothing$. Hence, $\bar{\partial} M_{n}$ is a strong Z-set in L_{n+1}. Observe that $L_{n+1} \backslash \bar{\partial} M_{n}=\bar{M}_{n+1} \backslash\left(\bar{M}_{n} \times c_{n} \overline{\mathrm{~B}}_{n+2}\right)$. Since \bar{M}_{n+1} is an $\ell_{2}\left(\tau_{n+2}\right)$-manifold by Lemma 4.2, it follows from the Enlargement Theorem that L_{n+1} is an $\ell_{2}\left(\tau_{n+2}\right)$-manifold.

By the ANR Factor Theorem, $\partial M_{n} \times c_{n} \overline{\mathrm{~B}}_{n+2}$ and $\bar{M}_{n} \times c_{n} \mathbb{S}_{n+2}$ are $\ell_{2}\left(\tau_{n+2}\right)$-manifolds because $\overline{\mathbb{B}}_{n+2} \approx \mathbb{S}_{n+2} \approx \ell_{2}\left(\tau_{n+2}\right)$. Observe that

$$
\left(\partial M_{n} \times c_{n} \overline{\mathbb{B}}_{n+2}\right) \cap\left(\bar{M}_{n} \times c_{n} \mathbb{S}_{n+2}\right)=\partial M_{n} \times c_{n} \mathbb{S}_{n+2}
$$

which is also an $\ell_{2}\left(\tau_{n+2}\right)$-manifold by the ANR Factor Theorem. Since $\partial M_{n} \times c_{n} \mathbb{S}_{n+2}$ is a Z-set in both $\partial M_{n} \times c_{n} \overline{\mathbb{B}}_{n+2}$ and $\bar{M}_{n} \times c_{n} \mathbb{S}_{n+2}$, it is collared in them. Then it follows that $\bar{\partial} M_{n}$ is an $\ell_{2}\left(\tau_{n+2}\right)$-manifold.

For each $n \in \mathbb{N}$, let $j_{n}: \bar{N}_{n} \rightarrow \bar{N}_{n} \times\left\{v_{n+1}\right\} \subset \bar{M}_{n}$ be the natural injection, where

$$
v_{n+1}=\left(c_{n} e_{1}, \ldots, c_{n} e_{n+1}\right) \in D_{n+1}=\prod_{i=1}^{n+1} c_{n} \overline{\mathbb{B}}_{i} \backslash \prod_{i=1}^{n+1} c_{n} \mathbb{B}_{i}
$$

and each $e_{i} \in \mathbb{S}_{i}$ is a fixed point. It should be remarked that

$$
j_{n} \theta_{n}\left(\left|K_{n}\right|\right)=\theta_{n}\left(\left|K_{n}\right|\right) \times\left\{v_{n+1}\right\}=\left|K_{n}\right| \times\left\{2 n-\frac{1}{2}\right\} \times\left\{v_{n+1}\right\} \subset \partial M_{n}
$$

Since $j_{n+1}\left(\bar{N}_{n+1} \backslash N_{n}\right) \subset L_{n+1}$, the following follows from (4.1):

$$
\begin{equation*}
j_{n+1} \theta_{n+1} \varphi_{n} \simeq j_{n+1} \theta_{n} \text { in } L_{n+1} \text { for every } n \in \mathbb{N} \tag{4.2}
\end{equation*}
$$

Lemma 4.4 For each $n \in \mathbb{N}$, there exists a retraction $r_{n}: \bar{M}_{n} \rightarrow j_{n} \theta_{n}\left(\left|K_{n}\right|\right)$ such that

$$
r_{n} \simeq \text { id rel. } j_{n} \theta_{n}\left(\left|K_{n}\right|\right) \text { in } \bar{M}_{n} \text { and } r_{n} \mid \partial M_{n} \simeq \text { id rel. } j_{n} \theta_{n}\left(\left|K_{n}\right|\right) \text { in } \partial M_{n},
$$

where the latter homotopy is obtained as the restriction of the former, hence

$$
\left(r_{n} \times \mathrm{id}\right) \mid \bar{\partial} M_{n} \simeq \text { id rel. } j_{n} \theta_{n}\left(\left|K_{n}\right|\right) \times c_{n} \overline{\mathrm{~B}}_{n+2} \text { in } \bar{\partial} M_{n}
$$

Moreover, r_{n+1} satisfies that $r_{n+1} \mid L_{n+1} \simeq$ id rel. $j_{n+1} \theta_{n+1}\left(\left|K_{n+1}\right|\right)$ in L_{n+1}, which is obtained by restricting $r_{n+1} \simeq$ id rel. $j_{n+1} \theta_{n+1}\left(\left|K_{n+1}\right|\right)$ in \bar{M}_{n+1}.

Proof Observe that $\theta_{n}\left(\left|K_{n}\right|\right)=\left|K_{n}\right| \times\left\{2 n-\frac{1}{2}\right\}$ is a strong deformation retract of \bar{N}_{n}, D_{n+1} is a strong deformation retract of $\prod_{i=1}^{n+1} c_{n} \overline{\mathrm{~B}}_{i}$, and $\left\{v_{n+1}\right\}$ is a strong deformation retract of D_{n+1}. It is easy to construct a deformation $h: \bar{M}_{n} \times \mathbf{I} \rightarrow \bar{M}_{n}$ such that $h\left(\partial M_{n} \times \mathbf{I}\right) \subset \partial M_{n}, h_{1}: \bar{M}_{n} \rightarrow j_{n} \theta_{n}\left(\left|K_{n}\right|\right)$ is a retraction and $h_{t} \mid j_{n} \theta_{n}\left(\left|K_{n}\right|\right)=$ id for every $t \in \mathbf{I}$. Then, $r_{n}=h_{1}$ is the desired retraction.

In case $n>1, \theta_{n}\left(\left|K_{n}\right|\right)$ is a strong deformation retract of $\bar{N}_{n} \backslash N_{n-1}$ and $\bar{N}_{n} \backslash$ N_{n-1} is a strong deformation retract of \bar{N}_{n}. Then, we can construct h so as to satisfy $h\left(L_{n} \times \mathbf{I}\right) \subset L_{n}$.

By Lemma 3.2, we have a sequence $\Psi=\left(\psi_{i}\right)_{i \in \mathbb{N}}$ of open embeddings $\psi_{i}: U_{i} \times$ $\mathbb{B}_{i+1} \rightarrow U_{i+1}$ such that U is homeomorphic to the direct limit U_{Ψ} of the open tower

$$
U_{1} \times \square_{i>1} \mathbb{B B}_{i} \underset{\psi_{1} \times \mathrm{id}}{\subset} U_{2} \times \square_{i>2} 1 \mathrm{~B}_{i} \underset{\psi_{2} \times \mathrm{id}}{\subset} \cdots
$$

Theorem 1.1 is reduced to the following.
Lemma $4.5|K| \times \square_{i \in \mathbb{N}} \mathbb{B}_{i} \approx U_{\Psi}$.
Proof Here, we regard U_{Ψ} as the direct limit of the open tower

$$
U_{1} \times \square_{i>1} c_{1} \mathbb{B B}_{i} \underset{\psi_{1} \times \mathrm{id}}{\subset} U_{2} \times \square_{i>2} c_{2} \mathrm{BB}_{i} \underset{\psi_{2} \times \mathrm{id}}{\subset} \cdots
$$

For each $n \in \mathbb{N}$, let

$$
M_{n}^{\infty}=N_{n} \times \square_{i \in \mathbb{N}} c_{n} \mathbb{B}_{i}=M_{n} \times \square_{i>n+1} c_{n} \mathbb{B}_{i}
$$

Then, $M_{1}^{\infty} \subset M_{2}^{\infty} \subset \cdots$ are open in $|K| \times \square_{i \in \mathbb{N}} \mathbb{B B}_{i}$ and $\bigcup_{n \in \mathbb{N}} M_{n}^{\infty}=|K| \times \square_{i \in \mathbb{N}} \mathrm{BB}_{i}$. To show that $|K| \times \bowtie_{i \in \mathbb{N}} \mathbb{B B}_{i} \approx U_{\Psi}$, we may construct homeomorphisms $h_{n}: M_{n}^{\infty} \rightarrow$ $U_{n} \times \square_{i>n} c_{n} \mathrm{~B}_{i}, n \in \mathbb{N}$, so that the following diagram commutes:

Note that $M_{n} \times c_{n} \mathbb{B B}_{n+2} \subset M_{n+1}$. If we could construct homeomorphisms $f_{n}: M_{n} \rightarrow$ $U_{n} \times c_{n} \mathbb{B} \beta_{n+1}, n \in \mathbb{N}$, so that the following commutes:

then the desired homeomorphism h_{n} could be defined as follows:

$$
h_{n}=f_{n} \times \mathrm{id}: M_{n}^{\infty}=M_{n} \times \square_{i>n+1} c_{n} \mathbb{B B}_{i} \rightarrow U_{n} \times \square_{i>n} c_{n} \mathrm{~B}_{i}
$$

By Lemma 4.4 we have a retraction $r_{n}: \bar{M}_{n} \rightarrow j_{n} \theta_{n}\left(\left|K_{n}\right|\right)$ such that $r_{n} \simeq$ id rel. $j_{n} \theta_{n}\left(\left|K_{n}\right|\right)$ in \bar{M}_{n} and $r_{n} \mid \partial M_{n} \simeq$ id rel. $j_{n} \theta_{n}\left(\left|K_{n}\right|\right)$ in ∂M_{n}, hence both r_{n} and $r_{n} \mid \partial M_{n}: \partial M_{n} \rightarrow j_{n} \theta_{n}\left(\left|K_{n}\right|\right)$ are homotopy equivalences. Let

$$
i_{n}^{*}: U_{n} \rightarrow U_{n} \times\left\{c_{n} e_{n+1}\right\} \subset U_{n} \times c_{n} \mathbb{S}_{n+1} \subset U_{n} \times c_{n} \overline{\mathbb{B}}_{n+1}
$$

be the natural injection. Recall $\eta_{n}:\left|K_{n}\right| \rightarrow U_{n}$ is a homotopy equivalence. Then, the $\operatorname{map} q_{n}=i_{n}^{*} \eta_{n}\left(j_{n} \theta_{n}\right)^{-1} r_{n}: \bar{M}_{n} \rightarrow U_{n} \times c_{n} \overline{\mathrm{~B}}_{n+1}$ is a homotopy equivalence. Moreover,
$\psi_{n} i_{n}^{*} \simeq i_{n}$ in U_{n+1}, where $i_{n}: U_{n}=U_{n} \times\{0\} \subset U_{n+1}$ is the inclusion. Since \mathbb{S}_{n+1} is an AR, the restriction $q_{n} \mid \partial M_{n}: \partial M_{n} \rightarrow U_{n} \times c_{n} \mathbb{S}_{n+1}$ is also a homotopy equivalence.

We shall construct homeomorphisms $\bar{f}_{n}: \bar{M}_{n} \rightarrow U_{n} \times c_{n} \overline{\mathbb{B}}_{n+1}, n \in \mathbb{N}$, so that $\bar{f}_{n} \simeq q_{n}, \bar{f}_{n}\left(\partial M_{n}\right)=U_{n} \times c_{n} \mathbb{S}_{n+1}$ (i.e., $\left.\bar{f}_{n}\left(M_{n}\right)=U_{n} \times c_{n} \mathbb{B}_{n+1}\right)$ and the following diagram commutes:

$$
\begin{array}{ccc}
\bar{M}_{n} \times c_{n} \overline{\mathbb{B}}_{n+2} & \subset & \bar{M}_{n+1} \\
\bar{f}_{n} \times \text { id } \\
\downarrow & & \downarrow \bar{f}_{n+1} \\
U_{n} \times c_{n} \overline{\mathrm{~B}}_{n+1} \times c_{n} \overline{\mathrm{~B}}_{n+2} \xrightarrow[\psi_{n} \times \mathrm{id}]{ } U_{n+1} \times c_{n+1} \overline{\mathrm{~B}}_{n+2}
\end{array}
$$

Then, $f_{n}=\bar{f}_{n} \mid M_{n}, n \in \mathbb{N}$, are the desired homeomorphisms.
First, by the Classification Theorem, we have two homeomorphisms

$$
f: \bar{M}_{1} \rightarrow U_{1} \times \overline{\mathbb{B}}_{2} \quad \text { and } \quad f^{\prime}: \partial M_{1} \rightarrow U_{1} \times \mathbb{S}_{2}
$$

such that $f \simeq q_{1}$ and $f^{\prime} \simeq q_{1} \mid \partial M_{1}$. Since $f^{\prime} \simeq f \mid \partial M_{1}$ in $U_{1} \times \overline{\mathbb{B}}_{2}$, we can apply the Z-set Unknotting Theorem to extend f^{\prime} to a homeomorphism $\bar{f}_{1}: \bar{M}_{1} \rightarrow U_{1} \times \overline{\mathrm{B}}_{2}$ that is isotopic to f, hence $\bar{f}_{1} \simeq q_{1}$.

Now, assume that \bar{f}_{n} has been obtained. Let

$$
\begin{aligned}
F_{n} & =\left(\psi_{n} \bar{f}_{n} \times \mathrm{id}\right)\left(\bar{\partial} M_{n}\right) \\
& =\left(\psi_{n} \bar{f}_{n}\left(\partial M_{n}\right) \times c_{n} \overline{\mathbb{B}}_{n+2}\right) \cup\left(\psi_{n} \bar{f}_{n}\left(\bar{M}_{n}\right) \times c_{n} \mathbb{S}_{n+2}\right) \\
& =\left(\psi_{n}\left(U_{n} \times c_{n} \mathbb{S}_{n+1}\right) \times c_{n} \overline{\mathbb{B}}_{n+2}\right) \cup\left(\psi_{n}\left(U_{n} \times c_{n} \overline{\mathbb{B}}_{n+1}\right) \times c_{n} \mathbb{S}_{n+2}\right) \text { and } \\
W_{n+1} & =\left(U_{n+1} \times c_{n+1} \overline{\mathbb{B}}_{n+2}\right) \backslash\left(\psi_{n} \bar{f}_{n} \times \mathrm{id}\right)\left(M_{n} \times c_{n} \mathbb{B}_{n+2}\right) \\
& =\left(U_{n+1} \times c_{n+1} \overline{\mathbb{B}}_{n+2}\right) \backslash\left(\psi_{n}\left(U_{n} \times c_{n} \mathbb{B}_{n+1}\right) \times c_{n} \mathbb{B} B_{n+2}\right) .
\end{aligned}
$$

Then, we have

$$
\begin{gathered}
U_{n+1} \times c_{n+1} \overline{\mathrm{~B}}_{n+2}=\left(\psi_{n} \bar{f}_{n} \times \mathrm{id}\right)\left(\bar{M}_{n} \times c_{n} \overline{\mathrm{~B}}_{n+2}\right) \cup W_{n+1}, \\
F_{n}=\left(\psi_{n} \bar{f}_{n} \times \mathrm{id}\right)\left(\bar{M}_{n} \times c_{n} \overline{\mathrm{~B}}_{n+2}\right) \cap W_{n+1}
\end{gathered}
$$

and the homeomorphism

$$
g=\left(\psi_{n} \times \mathrm{id}\right)\left(\bar{f}_{n} \times \mathrm{id}\right)\left|\bar{\partial} M_{n}=\left(\psi_{n} \bar{f}_{n} \times \mathrm{id}\right)\right| \bar{\partial} M_{n}: \bar{\partial} M_{n} \rightarrow F_{n}
$$

Hence, F_{n} is an $\ell_{2}\left(\tau_{n+2}\right)$-manifold. Similarly to Lemma4.3, it can be shown that W_{n+1} is also an $\ell_{2}\left(\tau_{n+2}\right)$-manifold and F_{n} is a Z-set in W_{n+1}. Recall

$$
\bar{\partial} M_{n}=\left(\partial M_{n} \times c_{n} \overline{\mathbb{B}}_{n+2}\right) \cup\left(\bar{M}_{n} \times c_{n} \mathbb{S}_{n+2}\right) \subset \bar{M}_{n} \times c_{n} \overline{\mathbb{B}}_{n+2} \subset \bar{M}_{n+1}
$$

Note that $c_{n} \mathbb{S}_{n+2}$ is a strong deformation retract of $c_{n} \overline{\mathbb{B}}_{n+2}$ and $\left\{c_{n} e_{n+2}\right\}$ is a strong deformation retract of $c_{n} \mathbb{S}_{n+2}$. Let $c: c_{n+1} \mathbb{B}_{n+2} \rightarrow\left\{c_{n} e_{n+2}\right\}$ be the constant map. Since $\bar{f}_{n} \simeq q_{n}$, it follows that
$g \simeq\left(\psi_{n} \bar{f}_{n} \times c\right)\left|\bar{\partial} M_{n} \simeq\left(\psi_{n} q_{n} \times c\right)\right| \bar{\partial} M_{n}=\left(\psi_{n} i_{n}^{*} \times c\right)\left(\eta_{n}\left(j_{n} \theta_{n}\right)^{-1} r_{n} \times \mathrm{id}\right) \mid \bar{\partial} M_{n}$ in F_{n}.

In addition to the natural injection $i_{n+1}^{*}: U_{n+1} \rightarrow U_{n+1} \times\left\{c_{n+1} e_{n+2}\right\} \subset W_{n+1}$, consider the natural injection $i_{n+1}^{\prime}: U_{n+1} \rightarrow U_{n+1} \times\left\{c_{n} e_{n+2}\right\} \subset W_{n+1}$. Then we have

$$
\psi_{n} i_{n}^{*} \times c \simeq i_{n} \times c=i_{n+1}^{\prime} i_{n} \operatorname{pr}_{U_{n}} \simeq i_{n+1}^{*} i_{n} \operatorname{pr}_{U_{n}} \text { in } W_{n+1}
$$

Since $\eta_{n+1} \xi_{n+1} \simeq \operatorname{id}_{U_{n+1}}$ and φ_{n} is a simplicial approximation of $\xi_{n+1} i_{n} \eta_{n}$, it follows that

$$
\begin{aligned}
g & \simeq i_{n+1}^{*} i_{n} \operatorname{pr}_{U_{n}}\left(\eta_{n} \theta_{n}^{-1} j_{n}^{-1} r_{n} \times \mathrm{id}\right) \mid \bar{\partial} M_{n} \\
& \simeq i_{n+1}^{*} \eta_{n+1} \xi_{n+1} i_{n} \eta_{n} \theta_{n}^{-1} j_{n}^{-1} r_{n} \operatorname{pr}_{\bar{M}_{n}} \mid \bar{\partial} M_{n} \\
& \simeq i_{n+1}^{*} \eta_{n+1} \varphi_{n} \theta_{n}^{-1} j_{n}^{-1} r_{n} \operatorname{pr}_{\bar{M}_{n}} \mid \bar{\partial} M_{n} \quad \text { in } W_{n+1}
\end{aligned}
$$

Note that $r_{n+1} \mid L_{n+1}: L_{n+1} \rightarrow j_{n+1} \theta_{n+1}\left(\left|K_{n+1}\right|\right)$ is a retraction. By 4.2), we have

$$
\begin{aligned}
\varphi_{n} \theta_{n}^{-1} j_{n}^{-1} & =\theta_{n+1}^{-1} j_{n+1}^{-1} r_{n+1} j_{n+1} \theta_{n+1} \varphi_{n} \theta_{n}^{-1} j_{n}^{-1} \\
& \simeq \theta_{n+1}^{-1} j_{n+1}^{-1} r_{n+1} j_{n+1} \theta_{n} \theta_{n}^{-1} j_{n}^{-1}=\left(j_{n+1} \theta_{n+1}\right)^{-1} r_{n+1} j_{n+1} j_{n}^{-1} \text { in }\left|K_{n+1}\right|
\end{aligned}
$$

Then it follows that

$$
\begin{aligned}
g & \simeq i_{n+1}^{*} \eta_{n+1}\left(j_{n+1} \theta_{n+1}\right)^{-1} r_{n+1} j_{n+1} j_{n}^{-1} r_{n} \operatorname{pr}_{\bar{M}_{n}} \mid \bar{\partial} M_{n} \\
& =i_{n+1}^{*} \eta_{n+1}\left(j_{n+1} \theta_{n+1}\right)^{-1} r_{n+1} j_{n+1} \operatorname{pr}_{\bar{N}_{n}}\left(r_{n} \times \mathrm{id}\right) \mid \bar{\partial} M_{n} \text { in } W_{n+1}
\end{aligned}
$$

Since $\bar{M}_{n} \times c_{n} \mathbb{S}_{n+2}$ is a strong deformation retract of $\bar{\partial} M_{n}$ and

$$
j_{n+1} \operatorname{pr}_{\bar{N}_{n}} \mid \bar{M}_{n} \times c_{n} \mathbb{S}_{n+2} \simeq \mathrm{id} \text { in } \bar{M}_{n} \times c_{n} \mathbb{S}_{n+2}
$$

we have $j_{n+1} \operatorname{pr}_{\bar{N}_{n}} \mid \bar{\partial} M_{n} \simeq$ id in $\bar{\partial} M_{n}$. On the other hand, due to Lemma 4.4, $\left(r_{n} \times\right.$ id) $\mid \bar{\partial} M_{n} \simeq$ id in $\bar{\partial} M_{n}$. Thus, we have

$$
g \simeq i_{n+1}^{*} \eta_{n+1}\left(j_{n+1} \theta_{n+1}\right)^{-1} r_{n+1}\left|\bar{\partial} M_{n}=q_{n+1}\right| \bar{\partial} M_{n} \text { in } W_{n+1} .
$$

Recall that $q_{n+1} \mid \partial M_{n+1}: \partial M_{n+1} \rightarrow U_{n+1} \times c_{n+1} \mathbb{S}_{n+2}$ is a homotopy equivalence. By the Classification Theorem, we have a homeomorphism $g^{\prime}: \partial M_{n+1} \rightarrow U_{n+1} \times$ $c_{n+1} \mathbb{S}_{n+2}$ such that $g^{\prime} \simeq q_{n+1} \mid \partial M_{n+1}$. On the other hand, due to Lemma 4.4,

$$
r_{n+1} \mid L_{n+1} \simeq \text { id rel. } j_{n+1} \theta_{n+1}\left(\left|K_{n+1}\right|\right) \text { in } L_{n+1}
$$

hence $r_{n+1} \mid L_{n+1}: L_{n+1} \rightarrow j_{n+1} \theta_{n+1}\left(\left|K_{n+1}\right|\right)$ is a homotopy equivalence. Then it follows that $q_{n+1} \mid L_{n+1}: L_{n+1} \rightarrow W_{n+1}$ is also a homotopy equivalence. By the Classification Theorem, we have a homeomorphism $g^{\prime \prime}: L_{n+1} \rightarrow W_{n+1}$ such that $g^{\prime \prime} \simeq q_{n+1} \mid L_{n+1}$. Note that $\bar{\partial} M_{n}$ and ∂M_{n+1} are disjoint Z-sets in the $\ell_{2}\left(\tau_{n+2}\right)$-manifold L_{n+1}, and F_{n} and $U_{n+1} \times c_{n+1} \mathbb{S}_{n+2}$ are disjoint Z-sets in the $\ell_{2}\left(\tau_{n+2}\right)$-manifold W_{n+1}. Since $g \simeq$ $q_{n+1}\left|\bar{\partial} M_{n} \simeq g^{\prime \prime}\right| \bar{\partial} M_{n}$ and $g^{\prime} \simeq q_{n+1}\left|\partial M_{n+1} \simeq g^{\prime \prime}\right| \partial M_{n+1}$, we can apply the Z-set Unknotting Theorem to obtain a homeomorphism $f: L_{n+1} \rightarrow W_{n+1}$ such that f
is isotopic to $g^{\prime \prime}, f \mid \bar{\partial} M_{n}=g$ and $f \mid \partial M_{n+1}=g^{\prime}$. Then f can be extended to a homeomophism

$$
\bar{f}_{n+1}: \bar{M}_{n+1} \rightarrow U_{n+1} \times c_{n+1} \mathbb{B}_{n+2} \text { by } \bar{f}_{n+1} \mid \bar{M}_{n}=\left(\psi_{n} \times \mathrm{id}\right)\left(\bar{f}_{n} \times \mathrm{id}\right)
$$

Recall that $r_{n+1} \simeq \operatorname{id}$ in \bar{M}_{n+1} and

$$
r_{n+1}\left(\bar{M}_{n+1}\right)=j_{n+1} \theta_{n+1}\left(\left|K_{n+1}\right|\right) \subset \partial M_{n+1}
$$

It follows that $\bar{f}_{n+1} \simeq \bar{f}_{n+1} r_{n+1}=g^{\prime} r_{n+1} \simeq q_{n+1} r_{n+1} \simeq q_{n+1}$. This completes the proof.

5 Proofs of Theorems 1.5 and 1.6

In this section, we shall prove Theorems 1.5 and 1.6 For each point $x \in|K|$, let $\left(\beta_{v}^{K}(x)\right)_{v \in K^{(0)}} \in \mathbf{I}^{K^{(0)}}$ be the barycentric coordinate, that is, $\sum_{v \in K^{(0)}} \beta_{v}^{K}(x)=1$ and $\left\{v \in K^{(0)} \mid \beta_{v}^{K}(x)>0\right\}$ is the set of vertices of the carrier of x, which is the simplex of K containing x as an interior point. Then we can write $x=\sum_{v \in K^{(0)}} \beta_{v}^{K}(x) v$. The open star at $v \in K^{(0)}$ is defined by

$$
O(v, K)=\left\{x \in|K| \mid \beta_{v}^{K}(x)>0\right\} .
$$

The metric ρ_{K} for the polyhedron $|K|$ is defined as follows:

$$
\rho_{K}(x, y)=\sum_{v \in K^{(0)}}\left|\beta_{v}^{K}(x)-\beta_{v}^{K}(y)\right|
$$

A simplicial subdivision K^{\prime} of K is proper ${ }^{5}$ if and only if the metric $\rho_{K^{\prime}}$ is admissible for $|K|$.

Remark 5.1 Identifying x with $\left(\beta_{v}^{K}(x)\right)_{v \in K^{(0)}} \in \ell_{1}\left(K^{(0)}\right)$, we can regard $|K|$ as a subspace of the Banach space $\ell_{1}\left(K^{(0)}\right)$. Then, the metric ρ_{K} is induced by the norm of $\ell_{1}\left(K^{(0)}\right)$.

The following characterization was established by D. W. Henderson.
Theorem 5.2 ([7, Lemma V.5]) A simplicial subdivision K^{\prime} of K is proper if and only if the open star $O\left(v, K^{\prime}\right)$ at each vertex $v \in K^{\prime(0)}$ is open in $|K|$.

For each $x \in|K|$, let $\sigma_{x} \in K$ be the carrier of x and define $O(x, K)=$ $\bigcap_{v \in \sigma_{x}^{(0)}} O(v, K)$. Then, $O(x, K)$ is open in $|K|$ with $\mathrm{cl}_{|K|} O(x, K)=\left|\operatorname{St}\left(\sigma_{x}, K\right)\right|$, where $\operatorname{St}(\sigma, K)$ is the star at $\sigma \in K$, which is the subcomplex of K defined as follows:

$$
\operatorname{St}(\sigma, K)=\left\{\sigma^{\prime} \in K \mid \exists \sigma^{\prime \prime} \in K \text { such that } \sigma, \sigma^{\prime} \leq \sigma^{\prime \prime}\right\}
$$

For $0<t<1$, we can define $\varphi_{t}^{x}:\left|\operatorname{St}\left(\sigma_{x}, K\right)\right| \rightarrow\left|\operatorname{St}\left(\sigma_{x}, K\right)\right|$ by

$$
\varphi_{t}^{x}(y)=(1-t) x+t y \text { for } y \in\left|\operatorname{St}\left(\sigma_{x}, K\right)\right|
$$

[^3]Lemma 5.3 For each $x \in|K|$ and $0<t \leq 1$, the image $\varphi_{t}^{x}\left(\left|\operatorname{St}\left(\sigma_{x}, K\right)\right|\right)$ is closed in $|K|$, and $\varphi_{t}^{x}(O(x, K))$ is open in $|K|$.

Proof Regarding $|K| \subset \ell_{1}\left(K^{(0)}\right)$ as in Remark 5.1 above, φ_{t}^{x} extends to the homeomorphism $\tilde{\varphi}_{t}^{x}: \ell_{1}\left(K^{(0)}\right) \rightarrow \ell_{1}\left(K^{(0)}\right)$. Hence, φ_{t}^{x} is a closed embedding, and the restriction $\varphi_{t}^{x} \mid O(x, K): O(x, K) \rightarrow O(x, K)$ is an open embedding.

For $A \subset|K|$, let $C(A, K)=\{\sigma \in K \mid \sigma \cap A=\varnothing\}$. Then $C(A, K)$ is a subcomplex of K. In case $A=\{x\}$, we write $C(\{x\}, K)=C(x, K)$. Then, $O(x, K)=|K| \backslash$ $|C(x, K)|$. Observe that $K=\operatorname{St}(\sigma, K) \cup C\left(\sigma^{\circ}, K\right)$ for each simplex $\sigma \in K$, where σ° is the interior of σ. In particular, $K=\operatorname{St}(v, K) \cup C(v, K)$ for each vertex $v \in K^{(0)}$. Note that $K \neq \operatorname{St}(\sigma, K) \cup C(\sigma, K)$ in general.

Let $V \subset|K|$ such that $O(v, K) \cap O\left(v^{\prime}, K\right)=\varnothing$ if $v \neq v^{\prime} \in V$. For each $v \in V$ and $\sigma \in \operatorname{St}\left(\sigma_{v}, K\right) \cap C(v, K)$, let $v \sigma$ be the simplex spanned by $\{v\} \cup \sigma^{(0)}$, that is, $(v \sigma)^{(0)}=\{v\} \cup \sigma^{(0)}$. Then, we can define the simplicial subdivision K_{V} of K as follows:

$$
K_{V}=C(V, K) \cup\left\{v \sigma \mid v \in V, \sigma \in \operatorname{St}\left(\sigma_{v}, K\right) \cap C(v, K)\right\}
$$

Observe that $K_{V}^{(0)}=V \cup K^{(0)}, C\left(V, K_{V}\right)=C(V, K)$, and $O\left(v, K_{V}\right)=O(v, K)$ for each $v \in V$. When $V=\{w\}$, we write $K_{\{w\}}=K_{w}$. The operation $K \rightarrow K_{w}$ is a starring K at w. A subdivision obtained by finite starrings is known as a stellar subdivision (cf. [2]).
Lemma 5.4 For each $w \in|K| \backslash K^{(0)}, K_{w}$ is a proper subdivision of K.
Proof Let $\sigma_{w} \in K$ be the carrier of w. Observe that $O\left(v, K_{w}\right)=O(v, K), v \in$ $K^{(0)} \backslash \sigma_{w}^{(0)}$, and $O\left(w, K_{w}\right)=O(w, K)=\bigcap_{v \in \sigma_{w}^{(0)}} O(v, K)$ are open in $|K|$. To apply Theorem5.2] it remains to show that $O\left(v, K_{V}\right)$ is open in $|K|$ for each $v \in \sigma_{w}^{(0)}$. Since $O\left(v, K_{w}\right)=\left(\beta_{v}^{K_{w}}\right)^{-1}((0,1])$, it suffices to prove the continuity of $\beta_{v}^{K_{w}}:|K| \rightarrow \mathbf{I}$ for each $v \in \sigma_{w}^{(0)}$.

By using the barycentric coordinate with respect to K_{w}, each point $x \in|K|$ can be written

$$
x=\beta_{w}^{K_{w}}(x) w+\sum_{u \in K^{(0)}} \beta_{u}^{K_{w}}(x) u
$$

Since $\beta_{v}^{K}(v)=1$ and $\beta_{v}^{K}(u)=0$ for each $u \in K^{(0)} \backslash\{v\}$, it follows that

$$
\beta_{v}^{K}(x)=\beta_{w}^{K_{w}}(x) \beta_{v}^{K}(w)+\beta_{v}^{K_{w}}(x)
$$

hence $\beta_{v}^{K_{w}}(x)=\beta_{v}^{K}(x)-\beta_{w}^{K_{w}}(x) \beta_{v}^{K}(w)$. Since $\beta_{v}^{K}:|K| \rightarrow \mathbf{I}$ is continuous, it is enough to show that $\beta_{w}^{K_{w}}:|K| \rightarrow \mathbf{I}$ is continuous.

We shall show that $\beta_{w}^{K_{w}}:|K| \rightarrow \mathbf{I}$ is lower semi-continuous. For each $t \in[0,1)$,

$$
\left(\beta_{w}^{K_{w}}\right)^{-1}((t, 1])=\varphi_{1-t}^{w}(O(w, K))=\{t w+(1-t) z \mid z \in O(w, K)\}
$$

which is open in $|K|$ by Lemma 5.3 Indeed, let $y \in\left(\beta_{w}^{K_{w}}\right)^{-1}((t, 1])$. If $\beta_{w}^{K_{w}}(y)=1$, then $y=w \in \varphi_{1-t}^{w}(O(w, K))$. When $\beta_{w}^{K_{w}}(y)<1$, we have

$$
\begin{equation*}
y^{*}=\sum_{v \in K^{(0)}} \frac{\beta_{v}^{K_{w}}(y)}{1-\beta_{w}^{K_{w}}(y)} v \in \sigma_{y} \subset\left|\operatorname{St}\left(\sigma_{w}, K\right)\right| . \tag{5.1}
\end{equation*}
$$

Observe that $\beta_{w}^{K_{w}}\left(y^{*}\right)=0$ and $y=\beta_{w}^{K_{w}}(y) w+\left(1-\beta_{w}^{K_{w}}(y)\right) y^{*}$. Since $\beta_{w}^{K_{w}}(y)>t$, we have

$$
z=\frac{\beta_{w}^{K_{w}}(y)-t}{1-t} w+\frac{1-\beta_{w}^{K_{w}}(y)}{1-t} y^{*} \in\left(\beta_{w}^{K_{w}}\right)^{-1}((0,1])=O(w, K)
$$

Then it follows that

$$
\begin{aligned}
t w+(1-t) z & =t w+\left(\beta_{w}^{K_{w}}(y)-t\right) w+\left(1-\beta_{w}^{K_{w}}(y)\right) y^{*} \\
& =\beta_{w}^{K_{w}}(y) w+\left(1-\beta_{w}^{K_{w}}(y)\right) y^{*}=y
\end{aligned}
$$

hence $y=\varphi_{1-t}^{w}(z) \in \varphi_{1-t}^{w}(O(w, K))$. Conversely,

$$
\begin{aligned}
& z \in O(w, K)=\left(\beta_{w}^{K_{w}}\right)^{-1}((0,1]) \Longrightarrow \\
& \quad \beta_{w}^{K_{w}}\left(\varphi_{1-t}^{w}(z)\right)=\beta_{w}^{K_{w}}(t w+(1-t) z)=t+(1-t) \beta_{w}^{K_{w}}(z)>t
\end{aligned}
$$

which means $\varphi_{1-t}^{w}(O(w, K)) \subset\left(\beta_{w}^{K_{w}}\right)^{-1}((t, 1])$.
Next, we shall show that $\beta_{w}^{K_{w}}:|K| \rightarrow \mathbf{I}$ is upper semi-continuous. Note that $\left(\beta_{w}^{K_{w}}\right)^{-1}(1)=\{w\}$ is closed in $|K|$. For each $t \in(0,1)$,

$$
\left(\beta_{w}^{K_{w}}\right)^{-1}([t, 1])=\varphi_{1-t}^{w}\left(\left|\operatorname{St}\left(\sigma_{w}, K\right)\right|\right)=\left\{t w+(1-t) z|z \in| \operatorname{St}\left(\sigma_{w}, K\right) \mid\right\}
$$

which is closed in $|K|$ by Lemma 5.3. Indeed, let $y \in\left(\beta_{w}^{K_{w}}\right)^{-1}([t, 1])$. If $\beta_{w}^{K_{w}}(y)=1$, then $y=w \in \varphi_{1-t}^{w}\left(\left|\operatorname{St}\left(\sigma_{w}, K_{w}\right)\right|\right)$. When $\beta_{w}^{K_{w}}(y)<1$, take the same y^{*} as (5.1) in the above. Then, since $\beta_{w}^{K_{w}}(y) \geqslant t$, we have

$$
z=\frac{\beta_{w}^{K_{w}}(y)-t}{1-t} w+\frac{1-\beta_{w}^{K_{w}}(y)}{1-t} y^{*} \in\left|\operatorname{St}\left(\sigma_{w}, K\right)\right|
$$

Similarly to the above, it follows that

$$
y=t w+(1-t) z=\varphi_{1-t}^{w}(z) \in \varphi_{1-t}^{w}\left(\left|\operatorname{St}\left(\sigma_{w}, K_{w}\right)\right|\right)
$$

The inclusion $\varphi_{1-t}^{w}\left(\left|\operatorname{St}\left(\sigma_{w}, K\right)\right|\right) \subset\left(\beta_{w}^{K_{w}}\right)^{-1}([t, 1])$ follows from the following implication:

$$
z \in|\operatorname{St}(w, K)| \Rightarrow \beta_{w}^{K_{w}}\left(\varphi_{1-t}^{w}(z)\right)=\beta_{w}^{K_{w}}(t w+(1-t) z)=t+(1-t) \beta_{w}^{K_{w}}(z) \geqslant t
$$

This completes the proof.
Lemma 5.5 Let V be a discrete set in $|K|$ such that $O(v, K) \cap O\left(v^{\prime}, K\right)=\varnothing$ if $v \neq$ $v^{\prime} \in V$. If $\operatorname{dim} K=n<\infty$, then K_{V} is a proper subdivision of K.

Proof Due to Theorem5.2, the proof is reduced to show that $O\left(v, K_{V}\right)$ is open in $|K|$ for every $v \in K_{V}^{(0)}=V \cup K^{(0)}$. If $v \in V$, then $O\left(v, K_{V}\right)=O(v, K)$ is open in $|K|$. When $v \in K^{(0)}$, since $O\left(v, K_{V}\right)=\left(\beta_{v}^{K_{V}}\right)^{-1}((0,1])$, it suffices to show the continuity of $\beta_{v}^{K_{V}}:|K| \rightarrow \mathbf{I}$.

Note that each $x \in|K|$ can be written as follows:

$$
x=\sum_{w \in V} \beta_{w}^{K_{V}}(x) w+\sum_{u \in K^{(0)}} \beta_{u}^{K_{V}}(x) u
$$

where $\beta_{w_{x}}^{K_{V}}(x)>0$ at most one $w_{x} \in V$. Then we have

$$
\beta_{v}^{K}(x)=\beta_{w_{x}}^{K_{V}}(x) \beta_{v}^{K}\left(w_{x}\right)+\beta_{v}^{K_{V}}(x)
$$

Thus, the following holds:

$$
\begin{equation*}
\forall v \in K^{(0)}, \beta_{v}^{K_{V}}(x)=\beta_{v}^{K}(x)-\beta_{w_{x}}^{K_{v}}(x) \beta_{v}^{K}\left(w_{x}\right) \tag{5.2}
\end{equation*}
$$

Now let $v \in K^{(0)}$ be fixed. To see the continuity of $\beta_{v}^{K_{V}}$ at $x \in|C(V, K)|$, for any $\varepsilon>0$, let

$$
0<\delta=\frac{\varepsilon \operatorname{dist}\left(\sigma_{x}, V\right)}{4 n}<\frac{\varepsilon}{2}
$$

Then we shall show the following:

$$
y \in O(x, K), \rho_{K}(x, y)<\delta \Rightarrow\left|\beta_{v}^{K_{V}}(y)-\beta_{v}^{K_{V}}(x)\right|<\varepsilon
$$

Let $\sigma_{x}, \sigma_{y} \in K$ be the carriers of x and y respectively. Since $x \in|C(V, K)|$, we have $\sigma_{x} \cap V=\varnothing$, which implies $\beta_{v}^{K_{V}}(x)=\beta_{v}^{K}(x)$. If $\sigma_{y} \cap V=\varnothing$, then $\beta_{v}^{K_{V}}(y)=\beta_{v}^{K}(y)$ and hence

$$
\left|\beta_{v}^{K_{v}}(y)-\beta_{v}^{K_{v}}(x)\right|=\left|\beta_{v}^{K}(y)-\beta_{v}^{K}(x)\right| \leq \rho_{K}(x, y)<\delta<\varepsilon
$$

In case $\sigma_{y} \cap V \neq \varnothing$, we have $w_{y} \in V$ such that $\beta_{w_{y}}^{K_{V}}(y)>0$, which implies that the carrier $\sigma_{w_{y}} \in K$ of w_{y} is a face of σ_{y}. Then it follows from (5.2) that

$$
\begin{aligned}
\left|\beta_{v}^{K_{V}}(y)-\beta_{v}^{K_{V}}(x)\right| & =\left|\beta_{v}^{K}(y)-\beta_{w_{y}}^{K_{V}}(y) \beta_{v}^{K}\left(w_{y}\right)-\beta_{v}^{K}(x)\right| \\
& \leq\left|\beta_{v}^{K}(y)-\beta_{v}^{K}(x)\right|+\beta_{w_{y}}^{K_{V}}(y) \beta_{v}^{K}\left(w_{y}\right) \leq \rho_{K}(x, y)+\beta_{w_{y}}^{K_{V}}(y)
\end{aligned}
$$

Since $\rho_{K}(x, y)<\varepsilon / 2$, it remains to show that $\beta_{w_{y}}^{K_{V}}(y)<\varepsilon / 2$. We can take $z \in \sigma_{x}$ such that $\beta_{u}^{K}(z) \geqslant \beta_{u}^{K}\left(w_{y}\right)$ for each $u \in \sigma_{x}^{(0)}$. Observe that

$$
\begin{aligned}
\rho_{K}\left(z, w_{y}\right) & =\sum_{u \in \sigma_{x}^{(0)}}\left(\beta_{u}^{K}(z)-\beta_{u}^{K}\left(w_{y}\right)\right)+\sum_{u \in \sigma_{w_{y}}^{(0)} \backslash \sigma_{x}^{(0)}} \beta_{u}^{K}\left(w_{y}\right) \\
& =1-\sum_{u \in \sigma_{x}^{(0)}} \beta_{u}^{K}\left(w_{y}\right)+\sum_{u \in \sigma_{w_{y}}^{(0)} \backslash \sigma_{x}^{(0)}} \beta_{u}^{K}\left(w_{y}\right)=2 \sum_{u \in \sigma_{w_{y}}^{(0)} \backslash \sigma_{x}^{(0)}} \beta_{u}^{K}\left(w_{y}\right) .
\end{aligned}
$$

Since $\operatorname{dist}\left(\sigma_{x}, V\right) \leq \rho_{K}\left(z, w_{y}\right)$, we have

$$
\sum_{u \in \sigma_{w_{y}}^{(0)} \backslash \sigma_{x}^{(0)}} \beta_{u}^{K}\left(w_{y}\right) \geqslant \frac{\operatorname{dist}\left(\sigma_{x}, V\right)}{2}
$$

Hence, $\beta_{u}^{K}\left(w_{y}\right)>\operatorname{dist}\left(\sigma_{x}, V\right) / 2 n$ for some $u \in \sigma_{w_{y}}^{(0)} \backslash \sigma_{x}^{(0)}$ because $\operatorname{dim} \sigma_{w_{y}} \leq n$. By virtue of (5.2), we have

$$
\beta_{w_{y}}^{K_{V}}(y)=\frac{\beta_{u}^{K}(y)-\beta_{u}^{K_{V}}(y)}{\beta_{u}^{K}\left(w_{y}\right)} \leq \frac{\beta_{u}^{K}(y)}{\beta_{u}^{K}\left(w_{y}\right)} \leq \frac{\rho_{K}(x, y)}{\beta_{u}^{K}\left(w_{y}\right)}<\frac{2 n \delta}{\operatorname{dist}\left(\sigma_{x}, V\right)}<\frac{\varepsilon}{2}
$$

Finally, it remains to show the continuity of $\beta_{v}^{K_{V}}$ at $x \in|K| \backslash|C(V, K)|$. Note that $\sigma_{x} \cap V \neq \varnothing$, which is the singleton $\left\{w_{x}\right\}$. For every $y \in O(x, K), \sigma_{x}$ is a face of σ_{y}, hence $\sigma_{y} \cap V=\left\{w_{x}\right\}$. Then it follows from (5.2) that

$$
\beta_{v}^{K_{V}}(y)=\beta_{v}^{K}(y)-\beta_{w_{x}}^{K_{V}}(y) \beta_{v}^{K}\left(w_{x}\right) \text { for every } y \in O(x, K)
$$

Observe that $\beta_{w_{x}}^{K_{V}}\left|O(x, K)=\beta_{w_{x}}^{K_{w_{x}}}\right| O(x, K)$, which is continuous as saw in the proof of Lemma 5.4. Since β_{v}^{K} is continuous, $\beta_{v}^{K_{V}} \mid O(x, K)$ is also continuous.

Lemma 5.6 Let K be a finite-dimensional simplicial complex. Then, a derived subdivision K^{\prime} of K is proper if $K^{\prime(0)}$ is discrete in $|K|$.

Proof Let $\operatorname{dim} K=n$ and $K^{\prime(0)}=K^{(0)} \cup\left\{v_{\sigma} \mid \sigma \in K \backslash K^{(0)}\right\}$, where each v_{σ} is an interior point of σ. For each $i=1, \ldots, n$, let $V_{i}=\left\{v_{\sigma} \mid \sigma \in K^{(i)} \backslash K^{(i-1)}\right\}$. By downward induction, we define subdivisions K_{i} of K as follows: $K_{i}=\left(K_{i+1}\right)_{V_{i}}$, where $K_{n+1}=K$. Note that V_{i} is discrete in $|K|$ by the assumption and $O\left(v, K_{i+1}\right) \cap$ $O\left(v^{\prime}, K_{i+1}\right)$ if $v \neq v^{\prime} \in V_{i}$. By using Lemma 5.5 inductively, we can see that each K_{i} is a proper subdivision. Observe that $K^{\prime}=K_{1}$. Thus, we have the result.

Now, Theorem 1.6 easily follows from Lemma 5.6
Proof of Theorem 1.6 Since $K^{\prime(0)}$ is discrete in $\left|K^{\prime}\right|$, it suffices to show the "if" part. For each vertex $v \in K^{\prime(0)}$, let $\sigma_{v} \in K$ be the carrier of v and $u \in \sigma_{v}^{(0)}$. Then, $O\left(v, K^{\prime}\right) \subset O(v, K) \subset|\operatorname{St}(u, K)|$. Let L^{\prime} be the subdivision of $L=\operatorname{St}(u, K)$ induced from K^{\prime}. Since $\operatorname{dim} L<\infty$ and $L^{\prime(0)}$ is discrete in $|L|$, it follows from Lemma5.6 that L^{\prime} is a proper subdivision of L. Thus, $O\left(v, K^{\prime}\right)=O\left(v, L^{\prime}\right)$ is open in $|L|=|\operatorname{St}(u, K)|$, and therefore in $O(u, K)$. Since $O(u, K)$ is open in $|K|$, it follows that $O\left(v, K^{\prime}\right)$ is open in $|K|$. Then, K^{\prime} is a proper subdivision of K by Theorem 5.2

By using Theorem 1.6 , Theorem 1.5 can be proved in the standard way.
Proof of Theorem 1.5 Let $f:|K| \rightarrow \mathbf{I}$ be the simplicial map defined by $f\left(L^{(0)}\right)=0$ and $f\left(K^{(0)} \backslash L^{(0)}\right)=1$. Then, $f^{-1}(0)=|L|$ and $N(L, K) \subset f^{-1}([0,1))$. Moreover, $f^{-1}\left(\frac{1}{2}\right)$ is bicollared in $|K|$. In fact, for each $0<t<t^{\prime}<1$, there is a homeomorphism $h: f^{-1}(t) \times \mathbf{I} \rightarrow f^{-1}\left(\left[t, t^{\prime}\right]\right)$ such that $h\left(f^{-1}(t) \times\{0\}\right)=f^{-1}(t)$ and $h\left(f^{-1}(t) \times\{1\}\right)=f^{-1}\left(t^{\prime}\right)$. This can be shown as follows: let $\left(\beta_{v}(x)\right)_{v \in K^{(0)}}$ be the barycentric coordinate for $x \in|K|$, that is, $x=\sum_{v \in K^{(0)}} \beta_{v}(x) v$. Note that $x \in f^{-1}(t)$ if and only if $\sum_{v \in L^{(0)}} \beta_{v}(x)=1-t$ and $\sum_{v \in K^{(0)} \backslash L^{(0)}} \beta_{v}(x)=t$. Then, h can be defined as follows:

$$
h(x, s)=\sum_{v \in L^{(0)}} \frac{1-\left((1-s) t+s t^{\prime}\right)}{1-t} \beta_{v}(x) v+\sum_{v \in K^{(0)} \backslash L^{(0)}} \frac{(1-s) t+s t^{\prime}}{t} \beta_{v}(x) v .
$$

Thus, to see that bd $N(L, K)$ is bicollared in $|K|$, it is sufficient to construct a homeomorphism $\varphi:|K| \rightarrow|K|$ such that $\varphi\left(\operatorname{bd}_{|K|} N(L, K)\right)=f^{-1}\left(\frac{1}{2}\right)$.

Now, let

$$
S=\left\{\sigma \in K \mid \sigma^{(0)} \cap L^{(0)} \neq \varnothing, \sigma^{(0)} \backslash L^{(0)} \neq \varnothing\right\}
$$

For each $\sigma \in S$, let σ_{0} and σ_{1} be the faces of σ spanned by $\sigma^{(0)} \cap L^{(0)}$ and $\sigma^{(0)} \backslash L^{(0)}$ respectively, and define $v_{\sigma}=\frac{1}{2} \hat{\sigma}_{0}+\frac{1}{2} \hat{\sigma}_{1} \in f^{-1}\left(\frac{1}{2}\right) \cap \sigma^{\circ}$. By using the barycenters $\hat{\sigma}$ of $\sigma \in K \backslash S$ and the points v_{σ} for $\sigma \in S$, we define the derived subdivision K^{\prime}. Then, $K^{\prime(0)}$ is discrete in $|K|$. Indeed, $\operatorname{Sd} K^{(0)} \backslash\{\hat{\sigma} \mid \sigma \in S\}$ is discrete in $|K|$. Note that $f^{-1}\left(\frac{1}{2}\right)$ is closed in $|K|$. Then, it suffices to see that $\left\{v_{\sigma} \mid \sigma \in S\right\}$ is discrete in $f^{-1}\left(\frac{1}{2}\right)$. For each $x \in f^{-1}\left(\frac{1}{2}\right)$, let $\sigma_{x} \in K$ be the carrier of x. Then $O\left(\hat{\sigma}_{x}, \operatorname{Sd} K\right)$ is a neighborhood of x in $|K|$. If $v_{\sigma} \in O\left(\hat{\sigma}_{x}, \operatorname{Sd} K\right)$, then σ_{x} is a proper face of σ. Since $\beta_{v}^{K}(x)=0$ and $\beta_{v}^{K}\left(v_{\sigma}\right) \geqslant 1 / 2(\operatorname{dim} \sigma+1)$ for every $v \in \sigma^{(0)} \backslash \sigma_{x}^{(0)}$, it follows that

$$
\begin{aligned}
\rho_{K}\left(x, v_{\sigma}\right) & \geqslant \frac{\operatorname{dim} \sigma-\operatorname{dim} \sigma_{x}}{2(\operatorname{dim} \sigma+1)}=\frac{1}{2}-\frac{\operatorname{dim} \sigma_{x}+1}{2(\operatorname{dim} \sigma+1)} \\
& \geqslant \frac{1}{2}-\frac{\operatorname{dim} \sigma_{x}+1}{2\left(\operatorname{dim} \sigma_{x}+2\right)}=\frac{1}{2\left(\operatorname{dim} \sigma_{x}+2\right)}
\end{aligned}
$$

Thus, x has a neighborhood in $|K|$ that meets $\left\{v_{\sigma} \mid \sigma \in S\right\}$ at most one point.
By Theorem 1.6, the metric topology for $\left|K^{\prime}\right|$ coincides with the one for $|K|$, that is, $\left|K^{\prime}\right|=|K|$ as topological spaces. Recall that $|\mathrm{Sd} K|=|K|$ as topological spaces. Then the desired homeomorphism is obtained as the simplicial isomorphism $\varphi:|\operatorname{Sd} K| \rightarrow\left|K^{\prime}\right|$ defined by $\varphi(\hat{\sigma})=\hat{\sigma}$ for $\sigma \in K \backslash S$ and $\varphi(\hat{\sigma})=v_{\sigma}$ for $\sigma \in S$.

6 Proof of Theorem 1.3

In this section, we shall prove Theorem 1.3 Replacing each $\ell_{2}\left(\tau_{i}\right)$ with the unit open ball $\mathbb{B} B_{i}$, we construct an open embedding of $|K| \times \square_{i \in \mathbb{N}} B_{i}$ into $\boxtimes_{i \in \mathbb{N}} \mathbb{B}_{i}$.

Lemma 6.1 There exists a tower $P_{1} \subset P_{2} \subset \cdots$ of polyhedra in $|K|$ such that $\bigcup_{n \in \mathbb{N}} P_{n}=|K|$, each P_{n} is triangulated by a subcomplex of the n-th barycentric subdivision $\mathrm{Sd}^{n} K$, dens $P_{n} \leq \tau_{n}, P_{n} \subset \operatorname{int}_{|K|} P_{n+1}$, and $\mathrm{bd}_{|K|} P_{n}$ is a bicollared in $|K|$, hence it is a Z-set in both P_{n} and $|K| \backslash \operatorname{int}_{|K|} P_{n}$.

Proof Since card $K^{(0)} \leq \tau=\sup _{n \in \mathbb{N}} \tau_{n}$, we can write $K^{(0)}=\bigcup_{n \in \mathbb{N}} V_{n}$, where $V_{1} \subset$ $V_{2} \subset \cdots$ and card $V_{n} \leq \tau_{n}$ for each $n \in \mathbb{N}$. For each $n \in \mathbb{N}$, let $V_{n}^{\prime}=\left\{v \in V_{n} \mid\right.$ card $\left.\operatorname{St}(v, K) \leq \tau_{n}\right\}$. Since card $\operatorname{St}(v, K)<\tau$ for each $v \in K^{(0)}$, we have $K^{(0)}=$ $\bigcup_{n \in \mathbb{N}} V_{n}^{\prime}$. Moreover, let $V_{n}^{*}=\left(\mathrm{Sd}^{n-1} K\right)^{(0)} \cap \bigcup_{v \in V_{n}^{\prime}} O(v, K)$. Then $\operatorname{St}\left(v, \mathrm{Sd}^{n} K\right)^{(0)} \subset$ V_{n+1}^{*} for each $v \in V_{n}^{*}$. Indeed, $v \in O\left(v^{\prime}, K\right)$ for some $v^{\prime} \in V_{n}^{\prime}$. Since $v \in\left(\mathrm{Sd}^{n-1} K\right)^{(0)}$, it follows that $\left|\operatorname{St}\left(v, \mathrm{Sd}^{n} K\right)\right| \subset O\left(v^{\prime}, K\right)$, hence we have $\operatorname{St}\left(v, \mathrm{Sd}^{n} K\right)^{(0)} \subset\left(\operatorname{Sd}^{n} K\right)^{(0)} \cap$ $O\left(v^{\prime}, K\right) \subset V_{n+1}^{*}$.

For each $n \in \mathbb{N}$, we define a polyhedron

$$
P_{n}=\bigcup_{v \in V_{n}^{*}}\left|\operatorname{St}\left(v, \mathrm{Sd}^{n} K\right)\right| \subset \bigcup_{v \in V_{n}}|\operatorname{St}(v, K)|
$$

that is, $P_{n}=\left|N\left(L_{n}, \mathrm{Sd}^{n-1} K\right)\right|$, where L_{n} is the full subcomplex of $\mathrm{Sd}^{n-1} K$ with $L_{n}^{(0)}=V_{n}^{*}\left(\subset\left(\mathrm{Sd}^{n-1} K\right)^{(0)}\right)$. It follows from Theorem 1.5 that $\operatorname{bd} P_{n}$ is bicollared in $|K|$. Observe that dens $P_{n} \leq \tau_{n}$ and $P_{n} \subset \bigcup_{v \in V_{n+1}^{*}} O\left(v, \mathrm{Sd}^{n+1} K\right) \subset \operatorname{int}_{|K|} P_{n+1}$. Moreover, $|K|=\bigcup_{n \in \mathbb{N}} P_{n}$. Indeed, each $x \in|K|$ is contained in $O(v, K)$ for some $v \in K^{(0)}$. Choose $n \in \mathbb{N}$ so that $v \in V_{n}^{\prime}$ and $x \in\left|\operatorname{St}\left(v^{\prime}, \mathrm{Sd}^{n} K\right)\right| \subset O(v, K)$ for some $v^{\prime} \in\left(\mathrm{Sd}^{n-1} K\right)^{(0)}$. Then $v^{\prime} \in V_{n}^{*}$, which implies $x \in P_{n}$.

It should be remarked that the local finite-dimensionality of K implies the complete metrizability of $|K|$ and the barycentric subdivision is a proper subdivision, that is, it does not change the topology on $|K|$. Thus, in Lemma 6.1 above, each P_{n} is a completely metrizable ANR.

Similarly to the second step of the proof of Theorem 1.1, take an increasing sequence $0<c_{1}<c_{2}<\cdots$ with $\sup _{n \in \mathbb{N}} c_{n}=1$. Now, for each $n \in \mathbb{N}$, we define

$$
\begin{gathered}
M_{n}=\operatorname{int}_{|K|} P_{n} \times \prod_{i=1}^{n} c_{n} \mathbb{B B}_{i}, \bar{M}_{n}=P_{n} \times \prod_{i=1}^{n} c_{n} \overline{\mathrm{~B}}_{i} \text { and } \\
\partial M_{n}=\bar{M}_{n} \backslash M_{n}=\left(\operatorname{bd}_{|K|} P_{n} \times \prod_{i=1}^{n} c_{n} \overline{\mathrm{~B}}_{i}\right) \cup\left(P_{n} \times D_{n}\right),
\end{gathered}
$$

where D_{n} is the same as in Section 3, that is, $D_{n}=\prod_{i=1}^{n} c_{n} \overline{\mathrm{~B}}_{i} \backslash \prod_{i=1}^{n} c_{n} \mathrm{~B} \mathrm{~B}_{i}$. Moreover, let

$$
L_{n+1}=M_{n+1} \backslash\left(M_{n} \times c_{n} \mathbb{B}_{n+1}\right) \text { and } \bar{\partial} M_{n}=\left(\partial M_{n} \times c_{n} \overline{\mathbb{B}}_{n+1}\right) \cup\left(\bar{M}_{n} \times c_{n} \mathbb{S}_{n+1}\right)
$$

Then it should be noted that

$$
\bar{M}_{n+1}=L_{n+1} \cup\left(\bar{M}_{n} \times c_{n} \mathbb{B}_{n+1}\right) \text { and } \bar{\partial} M_{n}=L_{n+1} \cap\left(\bar{M}_{n} \times c_{n} \overline{\mathbb{B}}_{n+1}\right)
$$

Lemma 6.2 Each M_{n}, \bar{M}_{n}, and ∂M_{n} is an $\ell_{2}\left(\tau_{n}\right)$-manifold with density τ_{n}, and ∂M_{n} is a Z-set in \bar{M}_{n} that contains a strong deformation retract of \bar{M}_{n}.

Proof Except for the last statement, the proof is the same as Lemma 4.2 Since D_{n} and $\prod_{i=1}^{n} c_{n} \overline{\mathrm{~B}}_{i}$ are AR's (cf. Lemma 4.1), D_{n} is a strong deformation retract of $\prod_{i=1}^{n} c_{n} \overline{\mathrm{~B}}_{i}$, hence $P_{n} \times D_{n}$ is a strong deformation retract of $\bar{M}_{n}=P_{n} \times \prod_{i=1}^{n} c_{n} \overline{\mathrm{~B}}_{i}$.

Lemma 6.3 Each $\bar{\partial} M_{n}$ and L_{n+1} is an $\ell_{2}\left(\tau_{n+1}\right)$-manifold with density τ_{n+1}, both ∂M_{n+1} and $\bar{\partial} M_{n}$ are Z-sets in L_{n+1} and ∂M_{n+1} contains a strong deformation retract of L_{n+1}.

Proof Because of the similarlity with Lemma 4.3, we shall show that ∂M_{n+1} is a Z set in L_{n+1} and it contains a strong deformation retract of L_{n+1}. Since ∂M_{n+1} is a Z-set in \bar{M}_{n+1} with $\partial M_{n+1} \subset \bar{M}_{n+1} \backslash \bar{M}_{n}$ and $\bar{M}_{n+1} \backslash \bar{M}_{n}$ is open in both \bar{M}_{n+1} and L_{n+1}, it follows that ∂M_{n+1} is a Z-set in L_{n+1}. As we saw in the proof of Lemma $6.2, D_{n}=\prod_{i=1}^{n} c_{n} \overline{\mathrm{~B}}_{i} \backslash \prod_{i=1}^{n} c_{n} \mathrm{~B}_{i}$ is a strong deformation retract of $\prod_{i=1}^{n} c_{n} \overline{\mathrm{~B}}_{i}$, hence $\prod_{i=1}^{n} c_{n+1} \overline{\mathrm{~B}}_{i} \backslash \prod_{i=1}^{n} c_{n} \mathrm{~B}_{i}$ is a strong deformation retract of $\prod_{i=1}^{n} c_{n+1} \overline{\overline{\mathrm{~B}}}{ }_{i}$. Moreover, $D_{n+1}=\prod_{i=1}^{n} c_{n+1} 1 \overline{\bar{B}_{i}} \backslash \prod_{i=1}^{n} c_{n+1} 1 \mathrm{~B}_{i}$ is also a strong deformation retract of $\prod_{i=1}^{n} c_{n+1} \overline{\mathrm{~B}_{i}} \backslash$ $\prod_{i=1}^{n} c_{n} \mathrm{~B}_{i}$. Then it easily follows that $P_{n+1} \times D_{n+1}$ is a strong deformation retract of L_{n+1} 。

Now, we can complete the proof of Theorem 1.3

Proof of Theorem 1.3 Observe that $M_{1} \times \square_{i>1} c_{n} \mathbb{B} B_{i} \subset M_{2} \times \square_{i>2} c_{n+1} \mathbb{B} B_{i} \subset \cdots$ are open in $|K| \times \square_{i \in \mathbb{N}} \mathbb{B}_{i}$ and

$$
|K| \times \square_{i \in \mathbb{N}} \mid B_{i}=\bigcup_{n \in \mathbb{N}}\left(M_{n} \times \boxtimes_{i>n} c_{n} \mid B_{i}\right)
$$

We shall inductively define closed embeddings $g_{n}: \bar{M}_{n} \rightarrow \prod_{i=1}^{n} \mathbb{B} i, n \in \mathbb{N}$, such that

$$
g_{n}\left(\partial M_{n}\right)=\operatorname{bd} g_{n}\left(\bar{M}_{n}\right) \text { and } g_{n+1} \mid \bar{M}_{n} \times c_{n} \overline{\mathrm{~B}}_{n+1}=g_{n} \times \mathrm{id}
$$

Now we have the following commutative diagram of open embeddings

This induces the open embedding $g:|K| \times \square_{i \in \mathbb{N}} \mathbb{B}_{i} \rightarrow \square_{i \in \mathbb{N}} \mathbb{B}_{i}$.
By Lemma6.2, we can apply Theorem 2.7t to obtain an embedding $g_{1}: \bar{M}_{1} \rightarrow \mathbb{B}_{1}$ such that $g_{1}\left(\partial M_{1}\right)=\operatorname{bd} g_{1}\left(\bar{M}_{1}\right)$ is bicollared in \mathbb{B}_{1}. Now, assuming that g_{1}, \ldots, g_{n} have been obtained, we shall construct g_{n}. Let $E=\prod_{i=1}^{n+1} \mathbb{B} B_{i} \backslash\left(g_{n}\left(M_{n}\right) \times c_{n} \mathbb{B}_{n+1}\right)$. Observe that $g_{n}\left(\partial M_{n}\right) \times \mathbb{B}_{n+1}$ and $\prod_{i=1}^{n}, \mathbb{B}_{i} \times c_{n} \mathbb{S}_{n+1}$ are bicollared in $\prod_{i=1}^{n+1} \mathrm{~B}_{i}$. Then, similarly to the proof of Lemma 4.3, we can see that $\left(g_{n} \times \mathrm{id}\right)\left(\bar{\partial} M_{n}\right)$ is a strong Z-set in E and hence E is an $\ell_{2}\left(\tau_{n+1}\right)$-manifold. Since $c_{n} S_{n+1}$ is a strong deformation retract of both $c_{n} \overline{\mathbb{B}}_{n+1}$ and $\overline{\mathbb{B}}_{n+1} \backslash c_{n} \mathbb{B}_{n+1}$, it is easy to see that $\prod_{i=1}^{n} \mathbb{B}_{i} \times c_{n} \mathbb{S}_{n+1}$ is a strong deformation retract of E. Since \mathbb{S}_{n+1} is contractible, so is E, hence $E \approx \ell_{2}\left(\tau_{n+1}\right)$ by the Classification Theorem.

By Theorem 2.7 and Lemma 6.3, we have an embedding $g^{\prime}: L_{n+1} \rightarrow E$ such that $g^{\prime}\left(\partial M_{n+1}\right)=\operatorname{bd}_{E} g^{\prime}\left(L_{n+1}\right)$ is bicollared in E. Note that $g^{\prime}\left(\bar{\partial} M_{n}\right)$ is a Z-set in E because it is closed in E and a Z-set in the open set $g^{\prime}\left(L_{n+1} \backslash \partial M_{n+1}\right) \subset E$. By using the Z set Unknotting Theorem, we have a homeomorphism $g^{\prime \prime}: E \rightarrow E$ such that ($g_{n} \times$ id) $\left|\bar{\partial} M_{n}=g^{\prime \prime} g^{\prime}\right| \bar{\partial} M_{n}$. Then, we can define an embedding

$$
g_{n+1}: \bar{M}_{n+1} \rightarrow \prod_{i=1}^{n+1} \mathbb{B}_{i} \text { by } g_{n+1} \mid \bar{M}_{n} \times c_{n} \overline{\mathrm{~B}}_{i} \text { and } g_{n+1}\left|E=g^{\prime \prime} g^{\prime}\right| E
$$

Since $g_{n+1}\left(L_{n+1} \backslash \partial M_{n+1}\right)=g^{\prime \prime} g^{\prime}\left(L_{n+1} \backslash \partial M_{n+1}\right)$ is open in E, we have an open set W in $\prod_{i=1}^{n+1} \mathbb{B} B_{i}$ such that $g_{n+1}\left(L_{n+1} \backslash \partial M_{n+1}\right)=W \cap E$. Since $g_{n+1}\left(M_{n} \times c_{n} \mathbb{B}_{n}\right)=$ $g_{n}\left(M_{n}\right) \times c_{n} \mathbb{B}_{n}$ is open in $\prod_{i=1}^{n+1} \mathbb{B} i$, it follows that $g_{n+1}\left(M_{n+1}\right)=g_{n+1}\left(M_{n} \times c_{n} \mathbb{B}_{n}\right) \cup W$ is open in $\prod_{i=1}^{n+1} 1 \mathbb{B}_{i}$. Hence, we have $g_{n+1}\left(\partial M_{n+1}\right)=\operatorname{bd}_{E} g_{n+1}\left(M_{n+1}\right)$. This completes the induction. Then we have the result.

References

[1] R. D. Anderson and J. D. McCharen, On extending homeomorphisms to Fréchet manifolds. Proc. Amer. Math. Soc. 25(1970), 283-289.
[2] L. C. Glaser, Geometrical combinatorial topology. I. Van Nostrand Reinhold Mathematical Studies, 27, Van Nostrand Reinhold Co., London, 1970.
[3] R.E. Heisey, Stability, classification, open embeddings, and triangulation of \mathbb{R}^{∞}-manifolds. In: Proceeding of the International Conference on Geometric Topology, Polish Scientific Publishers, Warsaw, 1980, pp. 193-196.
[4] , Manifolds modelled on the direct limit of lines. Pacific J. Math. 102(1982), no. 1, 47-54.
[5] D. W. Henderson, Infinite-dimensional manifolds are open subsets of Hilbert space. Topology 9(1970), 25-33. doi:10.1016/0040-9383(70)90046-7
[6] Corrections and extensions of two papers about infinite-dimensional manifolds. General Topology and Appl. 1(1971), 321-327. doi:10.1016/0016-660X(71)90004-3
[7] \longrightarrow - ${ }^{-s e t s}$ in ANR's. Trans. Amer. Math. Soc. 213(1975), 205-216.
[8] D. W. Henderson and R. M. Schori, Topological classification of infinite dimensional manifolds by homotopy type. Bull. Amer. Math. Soc. 76(1970), 121-124. doi:10.1090/S0002-9904-1970-12392-8
[9] S.-T. Hu, Theory of retracts. Wayne State University Press, Detroit, MI, 1965.
[10] P. Mankiewicz, On topological, Lipschitz, and uniform classification of LF-spaces. Studia Math. 52(1974), 109-142.
[11] K. Mine and K. Sakai, Open subsets of LF-spaces. Bull. Pol. Acad. Sci. Math. 56(2008), no. 1, 25-37.
[12] \longrightarrow, Subdivision of simplicial complexes preserving the metric topology. Canad. Math. Bull., to appear.
[13] L. Narici and E. Beckenstein, Topological vector spaces. Monographs and Textbooks in Pure and Applied Mathematics, 95, Marcel Dekker, Inc., New York, 1985. doi:10.4064/ba56-1-4
[14] K. Sakai, Embeddings of infinite-dimensional pairs and remarks on stability and deficiency. J. Math. Soc. 29(1977), no. 2, 261-280. doi:10.2969/jmsj/02920261
[15] An embedding theorem of infinite-dimensional manifold pairs in the model space. Fund. Math. 100(1978), 83-87.
[16] $\xrightarrow[\text { Appl. } 15]{ }$ Boundaries and complements of infinite-dimensional manifolds in the model space. Topology Appl. 15(1983), no. 1, 79-91. doi:10.1016/0166-8641(83)90050-0
[17] doi:10.1016/0166-8641(84)90032-4
[18] H. Toruńczyk, Absolute retracts as factors of normed linear spaces. Fund. Math. 86(1974), 53-67.
[19] Characterizing Hilbert space topology. Fund. Math. 111(1981), no. 3, 247-262.
[20] \longrightarrow A correction of two papers concerning Hilbert manifolds: "Concerning locally homotopy negligible sets and characterization of l_{2}-manifolds" [Fund. Math. 101(1978), no. 2, 93-110] and "Characterizing Hilbert space topology" [ibid. 111(1981), no. 3, 247-262]. Fund. Math. 125(1985), no. 1, 89-93.
[21] A. Wilansky, Modern methods in topological vector spaces. McGraw-Hill, New York, 1978.

Institute of Mathematics, University of Tsukuba, Tsukuba, 305-8571, Japan
e-mail: (Mine) pen@math.tsukuba.ac.jp
(Sakai) sakaiktr@sakura.cc.tsukuba.ac.jp

[^0]: Received by the editors July 2, 2008.
 Published electronically December 29, 2010.
 AMS subject classification: 57N20, 46A13, 46T05, 57N17, 57Q05, 57Q40.
 Keywords: LF-space, open set, simplicial complex, metric topology, locally finite-dimensional, star, small box product, ANR, $\ell_{2}(\tau), \ell_{2}(\tau)$-manifold, open embedding, $\sum_{i \in \mathbb{N}} \ell_{2}\left(\tau_{i}\right)$.
 ${ }^{1}$ A Fréchet space is a locally convex completely metrizable topological linear space.

[^1]: ${ }^{2}$ A simplicial complex K is locally finite-dimensional if each vartex v of K has the finite-dimensional star, that is, $\sup \{\operatorname{dim} \sigma \mid v \in \sigma \in K\}<\infty$.
 ${ }^{3}$ ANR $=$ absolute neighborhood retract (for metrizable spaces); the local finite-dimensionality of K implies the complete metrizability of $|K|$ (cf. [9, Lemma 11.5]).

[^2]: ${ }^{4}$ Recently, Theorem 1.6 was proved in [12] for any subvidision of an arbitrary simplicial complex. In [12], a proper subdivision is renamed an admissible subdivision.

[^3]: ${ }^{5}$ Or admissible (cf. Footnote 4).
 ${ }^{6}$ The notation $\sigma \leq \sigma^{\prime}$ means that σ is a face of σ^{\prime}.

