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Abstract

Extension theorems are proved for smooth functions on a coherent real analytic space for
which local defining functions exist which are finitely determined in the sense of J. Mather, (1968),
and for smooth functions invariant under the action of a compact lie group G, thus providing the
main step in the proof that smooth infinitesimal stability implies smooth stability in the
appropriate categories. In addition the remaining step for the category of C G-manifolds of
finite orbit type is filled in.

Subject Classification (Amer. Math. Soc. 1970): 58C25.

1. Introduction

Propositions 1 and 2 of Mather (1969), the essential parts of J. Mather's
proof that C" infinitesimal stability implies C stability for a C"° proper map
f:N—>P where N and P are manifolds, will go through for a C* proper map
between other "C*-objects" N and P which are "embedded" in R" and Rp if
there are continuous mappings (extensions) from the spaces CX(N) and CX(P)
of C functions on N and P to CX(R") and CX(RP) which are right inverses
for the restriction maps C'(R")^C'(N) and C~(R")^> C'(P) (see Mather
(1969) page 283). For coherent real analytic spaces, for which everywhere
locally a suitable set of defining functions can be found which have a contact
finitely determined germ in the sense of Mather (see condition F below), such
extensions are found (Section 5); similarly for C" G manifolds of finite orbit
type and their rings of G invariant C~ functions where G is a compact lie
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[2] Extension theorems for smooth functions 441

group (Section 6) — the "embedding" here is a G invariant map into a
Euclidean space with trivial G action. The remaining condition needed to
complete the proof that C infinitesimal stability implies C* stability for a
proper G invariant C"° map between C G manifolds of finite orbit type,
namely that the spaces of C~ G invariant vector fields on the manifolds and
"along / " be finitely generated over the appropriate rings of G invariant
smooth functions, follows easily from Hilbert's invariant theory and Schwarz
(1975) (Section 7).

Proofs in Sections 4 and 5 depend heavily on results from Malgrange's
book, Ideals of Differentiable Functions, and the approach in Section 6 follows
Schwarz. In Section 2 results needed on the local structure of real analytic sets
are quoted, in Section 3 the "finitely determined" condition F for a real
analytic set X is introduced and a proof given that a certain semi-analytic
local stratification of X is "homogeneous" and in Section 4 an extension
theorem is proved for the C* Taylor fields on a real analytic set to be used in
Section 5.

NOTATION. E(A) = space of Taylor fields on ACR". I(B,A) =
subspace of E(A) consisting of those fields which vanish to infinite order on
BCA. C(A) = space of smooth ( = C") functions on A. All are given the
Whitney C°° topology based on compact supports.

If G is a group acting on (A, B) then a G-suffix will denote the subspace
consisiting of G invariant elements, for example £G(A) = space of G
invariant Taylor fields on A CR" when the group G acts on R" and
G(A) = A. I((t>,A) = E(A); C(R") = E(Rn)^>E(A), the restriction is
onto; C(A)= C(R")/(S(A)), where S(A) is the ideal in C(R") of functions
vanishing on A.

2. Local analytic sets

Let X be an analytic subset of R", that is, X is closed and at each point x
of X there is a neighbourhood U and an analytic function / : U—> Rp such
that X D U =/~'(0). Then by the local parametrization theorem (see Mal-
grange (1966) in particular pages 51-53 and 57-59) for analytic sets for a
suitable neighbourhood V of JC = 0 in X, X D V = U*., Xt where the X, are
closed subsets and X\ = X, - D,, where D, = Uy<i(X, H X,), is open in X, and
a non-singular locally closed analytic submanifold of V such that
(1) X'i = {x = (x', <f>i(x'));x'E. Ui} for a suitable product neighbourhood

of 0 of the form V\ x V" where V\ and V", are neighbourhoods of 0 in
k(i) and l(i) dimensional euclidean spaces respectively and a func-
tion &: Ui—* V", where Ui is an open set in V\ whose boundary is
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contained in 5, = A~'(0) for a suitable analytic A,: V',-+R. 0 E $
and Dt C Si x V". The coordinate functions of <j>, are quasi-holderian
and together with all their derivatives are multipliers for
I(V',- £/,, Vj).

(2) For a positive integer m if

Qi={{xl,x'l);x'&Ul,\\x"-4>,(x')\\<d{x',8,r}

then Qt and Q, intersect for / > / only if D, fl XJ / <j>. X\ is contained
in an analytic subset of X of dimension k(i) which intersects Q, in XI
and in which it is a "sheet".

(3) There are C >0 and a>0 such that |A,(JC')| g; Ctf(x', 5,)" for
JC 'EV! . Multiplication by A, gives a homeomorphism of

(4) There are B > 0 , /3>0 such that d(x', S,)§ Bd(x,D,f for JC =
(JC', JC") G X n V. It can also be assumed that each U, is connected.

Let X be now a (closed) semianalytic subset of R", that is, X is closed
and at each point of R" there is a neighbourhood U such that X D £/ is the
union of finitely many sets each of which is given by finitely many analytic
equations and inequalities. From Mather (1973), for example, (where a finer
Whitney stratification is obtained) the above parametrisation result also holds
in the semianalytic case. In what follows we are concerned only with the germ
of X at JC so that V will be variable.

3. Condition F

Following Mather, LN(n) denotes the group under composition of
N-jetsat 0 of diffeomorphisms of (R",0) and the contact group K"(n, p)is the
group under composition of N-jets at 0 of diffeomorphisms H of (R" x R", 0)
of the form H(x, y) = (h(x), h't(y)) with h'x(0) = 0 and /i(0) = 0. Suppose
that at the point x E. X, where X is an analytic subset of R", the function / can
be chosen such that
(a) / is analytically contact finitely determined (see Mather (1968)), that

is, there is N, > 0 such that each local analytic vector field along / at x
vanishing to order N, at JC is of the form tf(a) + f*(m)B where a is a
local analytic vector field vanishing at JC in R", tf is given by right
composition with the derivative of /, m is a local analytic function in
R p vanishing at the origin and 0 is a local analytic vector field along /,

(b) if f{N): V^JN{n,p) is the JV-jet of / then for V sufficiently small
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/<N)(V) is contained in a neighbourhood of /<N>(x) which meets only
finitely many orbits of the contact group KN(n,p), for an N g N , .

(a) and (b) together make up the condition F on X at x. We can also
assume that at points of V the germs of / are ( S N,) contact finitely
determined as this condition is an open one. In the "nice" range of
dimensions (Mather (1970)), which includes p < 7, n i? p + 3, almost all maps
/ satisfy condition F but in general the orbit structure of JN(n,p) is infinite
over a subset of codimension < n (Mather (1973)). The orbits are non-closed
semi-algebraic and their closures semi-algebraic so that the inverse images of
the orbits under /<N) give a semi-analytic stratification of V, that is, V =
Ul=i Vf with the V, having properties like the X{ in Section 2 and each V't
mapping to a single orbit in JN(n,p). By intersecting this stratification with
that for X we may suppose that each X\ (in the notation of 2) maps to a single
orbit (and / is ( S N,) determined at all points of X n V).

Let W = X\, 0 = 0,, t = x', k = k(i) and take z £ W with coordinates
translated to make 2 = 0 . Let Bk be a disk in U = U, and let i:Bk -» W,
where i(t) = (x',4>(x)) m previous notation, i(0) = 0. As /<N) maps W to a
single KN(n,p) orbit, by choosing an analytic section of the map from
KN(n,p) to the orbit (and taking Bk sufficiently small), there is an analytic
Bk~^KN(n,p), t-+k, = {h,,h',,,), where ft,£L"(n), h',,xE. LN(p), t £ Bk

and x is near 0 in R", such that

(A) r\i(t)) = fc,(fN>(0))[ = h',,2(/
(N)(0)(z)) at x, where z = h;'(x)].

Let C denote the set of analytic local maps from R" to R" sending 0 to 0
and let g, G C be given by g, = k,(J), where we identify elements of LN in
terms of the chosen coordinates with polynomial mappings of degree N. Let
Bk xI->C, (/, «)->/,,„ be given by

A,, (x) = ( l - n ) / ( x +

g,(x) and f(x + i(t)) have the same N-jets (and N § Ni) so that the vector
field g,(x)-/(x + i(t)) along /,,„ for varying (t,u)E Bk x I (obtained by
differentiating /,,„ with respect to u) is in the image of (*/,,„, TJ/,,U) where 17/
denotes the map M x 0 —> 0, where M is the ideal of local analytic Rp

functions vanishing at 0 and 6 denotes the set of local analytic vector fields
along /, given by (m, </>)-* f*(m)<f) for m £ M, 0 £ 6. Integrating the chosen
vector fields, which can be supposed to depend analytically on (t,u) (see
Mather (1968)) gives, for Bk sufficiently small, analytic local diffeomorphisms
H,,x of R" at 0 and G, of R" at 0 depending analytically on t £ Bk, x £ R"
near 0 such that
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//,,„(/,„(*)) = /,,,(*), where w = G;\x).

From (A) it follows that if /< 0 denotes the germ of / near i(t) then

fo>(x) = J,K(J(O>(w)), where w = K;'(x),

for K, and J,.x locally defined analytic diffeomorphisms of R" and Rp

respectively, depending analytically on t and x, where K, maps 0 to i(t) and
/,,» fixes 0. In particular K, maps f~'(0) into itself.

Let Q' be a tubular neighbourhood of W|i(B?) , where Bk CBk is a
smaller ball, with transverse cells in the V" direction. By choosing the
transverse cells Q', suitably and sufficiently small it can be supposed that the
map L,: Q!,—> Q', sending x" to the point where U,ftT,(jc") intersects Q', is an
analytic diffeomorphism and so

PROPOSITION 1. L:BkxQ'0-*Q', where L{t,x") = L,(x"), is an analytic
diffeomorphism with L(Bk x (Qi n X)) = Q' n X.
(That is the transverse germ of X along W = X\ is locally trivial or, in other
words, the stratification is homogeneous.) Using the product structure
functions in Q'o vanishing in Q'o D X may be extended to functions vanishing
on X in some neighbourhood (this is used in Section 5).

4. Extension for E(X)

In this section X denotes a closed semi-analytic set; the notation of
Section 2 is used except that suffixes are dropped so that V = V'h etcetera.
For a sufficiently large even integer N and small enough VC{x';d(x',8)<
1} we have 0^ A(x')N = d(x',8)m, for x ' e V where m is as in Section 2(2),
and by (3) of Section 2 there is p>0 such that d(x', 8)" S A(x')N If
g(x') = A(xT then

d(x',8)p ^g(x')^d(x',8)m for JC'GV.

Multiplication by any power of g gives homeomorphisms of J ( V - U, V),
1(8, Z), where Z = U U 8, and of /(D, Y), where Y= WUD (see Mal-
grange (1966), chapter 4).

In terms of the coordinates (x1,x") elements of I(D, Y) are the form
F = {/A; A e N" = Nk x AT'} (where JV is the natural numbers) and each f'(x)
tends to 0 as x in Y tends to D faster than any positive power of d(x,D).
Malgrange (1966, page 64) defines a continuous (and obviously injective) map
IT:I(D, Y)^>I,(8, Z), where 1,(8, Z) denotes the N'-fold cartesian power of
1{8,Z), by { f ; A 6 N " } ^ { l i ' ( i ' ) = f ' ( x ' ^ ( i ' ) ) ; / i G A f ' } . [Notice that
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0 x IJL, G 0 x N' C N" x N' = N"; (1) and (4) of Section 2 are used in showing
that 7T is well defined and continuous].

Let

7T': 7(5x0; V'x 0)->J,(S, Z),

where V x 0 C V x R', is defined similarly to 77 and is obviously continuous.
Since the components of <f> and their derivatives are multipliers for 1(8, Z) the
map / (V'x R' - M, Vx R')-> I(V- Q, V) induced by (x' ,x")-*(x',x"-
<j>(x')) is continuous and so in order to construct a continuous "extension"
E: I(D, Y)—> I(V — Q, V) such that E composed with the restriction
I(V — Q, V)—* I(D, Y) is the identity it is sufficient to construct a continuous
£ : 1,(8, Z)-* I(V x R' - M, V x R') which when composed with the restric-
tion to 1(8 xO, Z xO) followed by TT' gives the identity.

PROPOSITION 2. TT: I(D, Y)—* h(8, Z) is a homeomorphism and there is a
continuous E: I(D,Y)—> I(V - Q, V) such that the restriction map
E(V)—> I(D, Y) is a left inverse for jE, where j is the inclusion I(V - Q,V)C
E(V).

PROOF. Malgrange (1966, page 65) shows that TT is onto: the method is
easily refined to give a continuous inverse. Put x = x', y = x" for convenience.
Let B(r) be a smooth non-negative function R -» R identically one in a
neighbourhood of 0 and identically zero for r g l and let S(r) be a smooth
monotone function defined on the nonnegative real line into R such that
S(r)S min(l/r, 1) for all r, =1 for r g 1/2 and = Mr for r g 2. If A =
{a^(x); /JL G N ' ) £ 1,(8, Z) the function E(A) will be constructed of the form

say, for suitable smooth am(x), 0 < a m ( x ) § l , chosen to depend on
{al±(x):\lj.\ = m}.

We can suppose that V is compact in order to avoid taking k -norms with
respect to varying compact sets. Evaluating a derivative of Gm of order n
gives an expression which is a linear combination with integer coefficients of
products of derivatives of orders S n of the aM (with \/i\ = m), gam and B
with yA and negative powers of gam (the highest negative power being — 2n),
and if n § m - 1 then

\Gm\l.y),nSCL(am)H(a»)\\y\\"-", for ||y ||< g(x)am(x)

and =0 for ||y ||g g(x)am(x)
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where C is a constant independent of n and A, H(all)= 2()1|=m||aM ||,,m, and
L(aB) = Sr_o1||a»||:. H a;(x)=S(m2mCH(aJ) then

CH(aIL)\\y\\m-'< — for ||y || < g(x)a'J,x), and 0 otherwise.

If a . , (x)=a:(x)/L(o:) then am(x)< a'm{x) and L(am)<m (as \\am\\m =i 1)
so that

| |G,.| |m-,<2-" for ||y||<g(x)am(x)

= 0 otherwise.

Hence E(A) converges to a smooth function on V'x R'. E(A) depends
continuously on A G E(Z)N'. Since each alx(x) E. 1,(8, Z) and g~' is a
multiplier for I,(8,Z), any derivative of each partial sum SmSMGm tends to
zero faster than any power of d(x, 8) as x approaches S.Note that the method,
when A is in E(Z)N' and not necessarily in 1,(8, Z) (for example A a constant
function), will give E(A) not necessarily smooth along 8 but at least a
multiplier for 1,(8, Z).

An extension E:E(VC\X)-*E(V) which is a right inverse for the
restriction can be constructed inductively over Yk = UjSkX, fc = 1, • • •, s (in
the notation of §2) in the obvious way: if Ek-{ is an extension for £(yk_,), E is
the extension constructed above for I(Yk-t,Yk) and g E E(Yk) then put
Ek(g)= E(g-r"Ek-,r'(g)) + Ek-1(r'(g)) where r' is the restriction
E(Yk)^E(Yk-l) and r" is the restriction E(V)-> E(Yk).

PROPOSITION 3. There is a continuous E: E(V D X)—*E(V) such that
r°E = 1 w îere /• is the restriction E(V)—> E(V D X).

COROLLARY. // X is a semi-analytic subset of the set X, x E X
V is a suitably chosen neighbourhood of x then there is an extension
E:i(vnx, vnx)-*i(vnx,v).

PROOF. A local decomposition as in Section 2 can be made with
Xi = X D V and then the above method gives the result.

Now by choosing a locally finite partition of unity on X with supports in
sets of the form V (1 X as above and "piecing together" in the usual way
gives, since the topology is based on compact supports:

THEOREM 1. If X D X are closed semi-analytic subsets of R" then there is
a continuous E: I(X, X)—* I(X, R") which is a right inverse for the restriction
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5. Extension for C(X); X coherent of type F

Suppose now that X satisfies condition F on V and is also coherent on V.
(Coherence means that there are analytic functions on V vanishing on X
whose germs at each point of XD V generate the ideal of local analytic
functions vanishing on X.) Let W be as in Section 3 and n: E(W)^>E(U)N'
as in Section 4. If G in E(W) has x"-component G" then TT(G) = T*(G")
where T(x',x") = (x',x"+ <£(x')) for (x',x")G U x V". G" can be regarded
as a collection of elements of Rx, the power series ring in x" — </>(x'), for
x'G U: under 7"* it is possible to identify Rx, with the power series ring in x".
Rx=TlZ-oRm,X' where Rmx is the homogeneous part of degree m of Rx.

We let Sx CRX denote the formal local ideal of power series vanishing on
X n (x' x V") at (x',(j>(x')): Sx, is the completion of the local ideal of smooth
functions vanishing on X n ( x ' x V") at (x', </>(x')) with respect to the local
ring at (x',</>(*')) of smooth functions on x 'x V". We let S Cf = Ii(8,Z) be
the subspace of smooth functions vanishing on X and Im ={{g'(x ')}el;
g" = 0 unless |/u, | = m}, so that I = Um=0Im- By Malgrange (1966, Chapter 6)
and Proposition 1,

S={{g"(x')}Gl;g*(x')GS,.foralIx'Gt/}.

Further denote by Sm,x the image of S*. D IlpSm Rpx in Km,x under the quotient
map

1 1 **p,x' i X 1 P<x' I I \ 1 1 P>*' / m-x ' '

p^m \pim / / \pgm+l /

and let

Sm = {{g " (x')} G Im ; g * (x') G Sm,»- for | /A | = m and x' G I/}.
The usual Euclidean product on R' induces an inner product on the
symmetric powers of R', and hence on Rmx- which is naturally isomorphic to
the m-th symmetric power and we let

Tm = {{g * (x')} £ Im ; g * (x') belongs to the orthogonal
complement in Rm,,' of Sm,X' for x' G U}.

The dimension of Sm,x- is independent of x'G U by Proposition 1.

PROPOSITION 4. Jm —»Sm x Tm, giuen by orthogonal projection, is a
homeomorphism.

PROOF. For a function a on V we denote by a(m)(x) the m - x"-jet of a
at x G V. We may assume that U is connected since for a suitable choice of V
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it has only finitely many components (Malgrange (1966)) and we need to show
that orthogonal projection into Sm is continuous.

By coherence, given x'GU there are nm = 2pSmdimSp,x analytic func-
tions defined on V and vanishing on X such that their m — x"-jets at
(x', <f>(x')) together span npam SP,X' and by suitably choosing a collection A of
nm monomials of degrees less than or equal to m in the x" it can be supposed
that their A -components are independent at (x', <f> (x')). The set of points in V
where their A -components are dependent is of course an analytic subset of V
and the intersection of this set with W is of dimension < k. Hence, by the
descending chain condition for analytic germs, there are sets of analytic
functions on V {fa, i//ik; j = 1, • • •, nm-i, k = 1, • • •, nm — nm_i} for i in a finite
indexing set K, and collections A, and Bt, i E K, of nm (respectively
nm - nm -i) monomials in the x" of degrees S m - 1 (respectively m) such that
r\iEK(W n Y) = <f>, where Y, = Yu U Yi>2 and

Yj,i = {x G V; the A*-components of the <j)\™Xx),
j = 1, • • •, nm_i, are dependent}

Yu = {x £ V; the (A; UBi)-components of the <j>^\x) and MkXx),
j = 1, • • •, nm-i, k = 1, • • •, nm - nm-i, are dependent}.

If the determinants of the matrices composed of the A, (respectively A, U Bf)
components of the (f>\r\x) (respectively ^'f'OO a n d tfcXx)) are yt(x)
(respectively v,(x)) for x £ V then Yu = yr'(O) and Yi>2 = î r'(O).

Let Y = n , Y , D ' = 8 x V" and let w: V'x V"-> V denote the projec-
tion . If H, J C V and p is a positive integer let S (H, J, p) = {x £ V; d (x, H) <
d(x,J)p}. By the separation property of the Y U D ' relative to their
intersection Y U D' and similarly for Y U D' and W U D' there are p ' and p
such that

f| S(Yi UD', YUD',p')=4>

(5.1)
= S ( Y U D ' , D ' , p ) n S ( W U D ' , D ' , p ) .

On ~ Y, given h(x)GE(V) there are unique hL(x) such that h<m)(x)-
Sh;,(x)^>!,m)(x), where h<m)(x) denotes the m-x"-jet of h(x) at x, has
A; -component zero and each yth [, has an everywhere analytic extension to V.
In particular for h = i^ denote the corresponding h'u by fiiit. The /Xij,(x) are
multipliers for / (D\ V) outside S(Y UD' ,D' ,p) and S(Y, UD', YUD'.p ' )
(see Malgrange (1966) page 59). Let

p , , ( x ) = * f ) ( x ) - 2 Mx')«Km>(*), where A,,,(x') = ^,,(x', <t>(x')).
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Ai,-, is a multiplier for 1(8, Z) by (5.1) on ~ [/, where Ui =
ir(S(Y, UD', Y UD' ,p )n W). If ^ ( i ^ f t f x 1 , ^ ! 1 ) ) then {a«(x');j =
1, • ••} spans Sm,» at each point x'€E ~ Uh The «!,(*') are also multipliers on
~ Ui for 1(8, Z). When the standard monomial generators of degree m (that
is fields {g"} such that g*(x') = 0 except for one A of degree m and
gA(x') = 1) are projected orthogonally onto Sm and the answer expressed in
terms of the atj the coefficients are multipliers for 1(8, Z) on U - Ui. As
U* (U — l/j) = U orthogonal projection of Im to Sm is continuous.

COROLLARY 1. I is homeomorphic to S © T where T = n^,0 Tm.

PROOF. S is a closed subspace of / (by Malgrange's result) and obviously
T is also. arm:I—>Tm is defined inductively such that Tm(x) =
[((T0, • • -,am)(x)-x] is in S modulo np>m7p. If z = (rm(x)-y) belongs to
n p > ^I p for some y in S then crm+i(x) is the projection of z modulo np > m +, lp

into Tm+i. cr = (a0,<J\, • • •): I—* T is continuous and (cr(x) — x) belongs to S
by Malgrange's result.

COROLLARY 2. There is a continuous map E':S -* I(V - Q,V)(~)J which
is a right inverse for the restriction, where J denotes the ideal of C functions
vanishing on X.

PROOF. By the note to Proposition 2 there are functions ^ | o n V with
values between 0 and 1 satisfying (in the notation of Proposition 4)

*!(*)= 1 on S(Yi U D ' . Y U D ' . q )

= 0 outside S(Yt UD', Y UD',p')

for some q>p' and which are multipliers for I(YL)D',V). Outside
S(Y UD',D',p) and so on S(W UD',D',p) they are multipliers for
I(D', V). Let {xi} be the partition of unity on V - ( Y U D ' ) corresponding to
the set {1-x !}•

From the proof of Proposition 4 the derivatives of j3i((x) of order
n = 0,1, • • •, m — 1, are bounded by an expression of the form

||x"-<Hx')||m"d(x,D')~N(m)on V"x(U-Vi), where

(5.2) V, =7r (S(Y i UD' ,YUD' ,q)n \V) ,
and if n ^ m by d(x,D')'N(n) for suitable integers N(n).

Let / be in S n IIpBm/m (that is an x "-Taylor field on W vanishing to order
m - 1, formally vanishing on the germ of X along W and flat along D') and
with support in ~ Vk. Then there are unique ft(x') €E 1(8, Z) vanishing outside
Vj such that / — £,««/, vanishes to order m. In the notation of the proof of
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Proposition 2 (x = x', y = x" etcetera) by (5.2), since on Z, d(x', 8) ' is
maximized by some power of g"1 which is a multiplier for 1(8, Z), am(x) can
again be chosen to depend continuously on the /, such that

Gm(x,y)=2B

satisfies ||Gm ||m-i < l/2m |K|. Generally, when / has unrestricted support,
/(*') can be expressed as a sum Sf ̂ , (JC ', cj> (x '))f(x'), and then Gm can be
found for the i-th function in the sum and summing gives Gm for / satisfying
\\Gm\\m-i<\l2m. Gm(x',x"-<f>(x')) is in J. Finally if h is in S then E'(h) =
SM=OGM where the GM are defined inductively such that the Taylor field
along U x 0 of h - £M<m GM is in UMBm IM. Gm is then constructed as above
with f=h~ 2M<m GM along U x 0.

PROPOSITION 5. 77iere is a continuous E: C(X f l V ) ^ C(V) whic/i is a
right inverse for the restriction.

PROOF. AS in Proposition 3, E is constructed inductively over Yk =
Ui.kXi. Suppose that Et-,:E(Y*_,)-»E(V) is such that (a): (r'r"Ek-,(g)-g)
belongs to S(Yk^) for all g in E(Yk-,), where r": E ( V ) ^ E ( Y t ) and
r': E(Yk)—*E(Yk_i) are the restrictions and S(Yk_,) denotes the set of
restrictions to Yk_! of the set / of functions vanishing on X, and (b): Ek-,(g)
depends only on g modulo S(Yk_i). We will now find a similar Ek.

The last corollary gives (as in the proof of Proposition 3) E': S(Yk ,)—»./,
a right inverse for the restriction. Let IT: I(Yk-,, Yk)—» T be the projection
given by the first corollary (where T is a complement for S(Yk) D /(Yk_i, Yk))
and let E: /(Yk_,, Yk)—>E(V) be the original extension. If g is a Taylor field
on Yk let Ek(g)=Ek-l(r'(g)) + E(ir(h-r"EY(h))), where h =
g — r"Ek-ir'(g). [Compare with Proposition 3: the "correcting" term
r"E'r\h) is needed since Ek_! only extends r'(g) modulo 5(Yk_,).]

THEOREM 2. / / X is a coherent analytic subset of R" satisfying F
everywhere there exists a continuousE: C(X)—> C(R") which is a right inverse
for the restriction.

(There is also a relative version to Theorem 2.) [Added in revision: the
assumption of coherence in Theorem 2 is not needed. The assumption of
condition F can also be removed (see G. Wells (1977)), so that infinitesimal
stability implies stability in general for proper smooth maps of closed real
semianalytic subsets of Rm into a manifold.] Mather's proof (1969) that
infinitesimal stability implies stability now goes over immediately using
Theorem 2 to proper smooth mappings of X into a manifold (for further
details see Wells (preprint)).
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6. G invariant smooth functions

The general reference to the next few paragraphs is Schwarz (1975). Let
G be a compact lie group acting orthogonally on R" and let 4>: R" -» RN be
a polynomial map, with homogeneous polynomial coordinate functions, into a
trivial G-space R N such that 4>*P(RN) = PG(R"), where P(R N) is the ring of
polynomials on R N and Po (R") is the ring of G invariant polynomials on R ".
The existence of 4> is given by Hilbert's invariant theory — see Dieudonne
(1970). <j)(R") is a semialgebraic set which it will turn out has a stratification
with homogeneous strata. Let H be the stabilizer at x E R" with orbit
V = Gx and let W be the set of points in orbits containing points with
stabilizer H; W is a locally closed submanifold of R". Let E be the subspace
of the tangent space at x of R" perpendicular to V. H maps V into itself
fixing x and so maps E to itself. We will identify tangent spaces at points in
Euclidean space with affine subspaces in the usual way. If E = £ i ® £ 2

(orthogonal decomposition), where E2 is a linear subspace of E fixed by H,
then by taking sufficiently small (closed) balls B{ CE( at the origins, i = 1,2,
we can suppose that B2 is a subset of W C\ B, where B = B, x B2, and G(B) is
a tubular neighbourhood over G(B2) with transverse cells of the form
g(B,Xx) for g E G, x G B2. If E2 is chosen as large as possible and B
sufficiently small then B2 = W D B.

As is well known G invariant functions on G (B) can be identified with H
invariant functions on B. By choosing B sufficiently small the restrictions <f>[
to B CE of the functions ^ generate the H invariant analytic functions of E
restricted to B (Schwarz). Let (x,, • • -.x,), respectively (y,, • • •, ym), be linear
coordinates ori E,, respectively E2, let i//i(x), • • •, i//p(x) be a minimal generat-
ing set consisting of homogeneous polynomials for PH(Ei), and let Pf,
i = 1,2, • • • be monomials in the i/», which are homogeneous in the x such that
the Pi(t/»,(x)) of degree k, k = 0,1,2, • • • form a linear basis for the space of H
invariant polynomials of degree k on E\. {yi, • • •, ym, t^i, • • •, ipp} is a minimal
generating set for PH(E) and {y"P,(î ,-); degree (Pi(i//,(x)))+|a | = k} is a
linear basis for the homogeneous polynomials in PH(E) of degree k. The <$>[
can be expressed uniquely in terms of the y°Pi(i//) and hence in the form
<f>[(x, y) = Fi(y, ijj(x)) where the Fi(y,z), y £ R " , z ERP, are polynomials
and F is an embedding on B'= B2x B,CRm x R" into RN if B2 is
sufficiently small and for a choice of ball B3 at 0 in Rp (Schwarz). Then also

where <\>" is given by (x, y) —»(y, tp(x)). By choosing sufficiently small balls
(and by the existence of tubular neighbourhoods) there is an embedding
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F ' : B 2 x B 3 x B 4 - » R N , where B4 is a ball at 0 in RN~m'p, extending F =
F ' | B 2 x B 3 x O and such that F'(B2x B 3 x B4)n<j>(R") = F(B2x B3). By
changing coordinates on Rp if necessary we can suppose that f ( i ) = I i ! .
Let «fc have degree kt and let a: Rp

+(z)^>R"(z') be given by zj = zjz^~'\
where R + (z) = {z = (zi, • • -,zP)G R p ; z i >0}. ai|/ maps lines through the
origin in R" to lines through the origin in Rp. If B" C R " is the unit ball at the
origin then there are constants Af > 0 i = l , - - - ,p such that |t|/i(x)|<
A ^ ^ x ) for x £ B " - { 0 } so that iMB")C Y = {z ;z , g 0,|zf | =S A^*"'}.
Clearly a ( Y ) = {z'\ z I > 0 , | z ; | g A^[); we denote a ( Y ) by Y'.

a induces a homeomorphism a*: I(RP - Y',RP)-+I(RP - Y,RP) be-
cause (a"1)* is obviously continuous and so too is a* since if / G
I(R P - Y',R") each 3 J/dz'^z') tends to 0 faster than any power of z\ so that
d"f/dzp(a(z)) tends t o O a s z i = (z!)2 tends to 0 faster than any power of zx

and hence by the formula for d" /dz P ( /°a) the result follows. The following
diagram of G invariant maps commutes.

R" -^ Rp A Rp

"• T

where S q l and Sp ' are the unit spheres in Rq and Rp respectivley, G acts
trivially on Rp and [0, °°), h2 is the mapping given by "polar coordinates" on
Rp and hi is chosen such that A is a product map and level preserving with
respect to projections onto [0, °°). h2 and h, (using a similar argument to that
above for a ) induce homeomorphisms

hT:I H (0 ,R q )^ / H (S < ' - 1 x0 ,S < ' - 1 x[0 ,oo)) and

h f: 1(0, R p ) ^ f (Sp ' x 0, S" ' x [0, *>)).

The restrictions I(RP - Y , R p ) ^ I ( 0 , i/»(B")) and I ( R p - Y ' , R p ) ^
1(0, ai|/(B")) are both onto (Malgrange).

LEMMA 1. Let r,s,t,u,v G R + with u < s < f < v. If there is a continuous
K': M S " " 1 x {s, t}, S""1 x [s, t ] ) ^ E ( S p - ' x [u, u]), a right inverse for A *, fhen
there exists a continuous

K: IHIS"-1 x {0, r},S"' x [0, r])^I(S"-1 x {0, r},Spl x [0, r])

which is a right inverse for A * and such that if the image of K' is contained in
I(h;\Rp - Y'),SP~] x [0,3o)) then so too is the image of K.

PROOF. It is sufficient to show that K' can be modified to map into
/ (S"- 1 x {s, t}, S"-' x [s, t]) which is isomorphic to /(S""1 x {0, r}, S" ' x [0, r])
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under a linear homeomorphism of [s, t] with [0, r]. In Section 4 a continuous
extension A:E(SP~1 x s)^>E(Sp~1 x I,) was described (where J, is a small
interval containing s) which has the property that if B €E E(SP"' x s) arises
from a function which is zero on the product of a set X CSP ' with one of the
closed subintervals of U into which s divides h then A(j3) is zero o n X x I , .
X = A(S'- 'xs) here. If K'(y), yeIH(S ' - 'x{s , (} ,S '" 'x[s , ( ] ) , restricts to
|3 £ E(S"~' x s) then subtracting A (j3) from F(7) (and similarly for f) gives F
of the required form. As h ?(Y' - {0}) = [0, °°) x (h j ' ( Y') D (S""1 x 1)) the rest
of the lemma follows automatically.

If U C R" is a submanifold with boundary (and possibly corners) of
dimenison n then it is well known (see Mather (1969)) that the restriction
E(R")—>E(U) splits continuously on the right (for convenience we say that
E(U) embeds in E(R")). If U is G invariant then using the averaging process
for functions on R" [E(R")^> EG(R"), f(x)^> fGf(g(x))dg, where dg de-
notes the normalized Haar measure on G] it follows that EG(U) embeds in
EG(R") also.

COROLLARY. If there is a continuous right inverse for \p*,

K": IH(d(B" - B?),(B* - B?))

where Bq is a ball at 0 and Bq, is a sufficiently small ball at 0 in Rq, then the
conclusion of Lemma 1 holds.

PROOF. KB? is sufficiently small (Bq - Bq)- dB" contains a set of the
form / i . fS ' - 'x^ ; ] ) . Since / H ( / J , (S" ' ' X {S, t}), h^S"'1 x [s, t])) embeds in
IH(d(B" -Bq),(Bq -B1)) and since by multiplying by a smooth bump
function which is zero in a suitable neighbourhood of 0 in R" and outside Y it
can be assumed that K" maps into I(RP - Y,RP) the corollary follows
immediately (taking account of the remarks preceding the lemma). Note that
Lemma 1 and its corollary have a parametrized form, where all spaces are
multiplied by a fixed smooth manifold M. \}>:Rq^>Rp is replaced
by (ip x id): Rq x M^> R" x M etcetera and the deduction is
K: IH(S"-' x {0, /•} x M, S"-' x [0, r] x M ) ^ etcetera. The proof is the same.

LEMMA 2. There exists a continuous J: EH(0 x M)—> E(RP x M), where
0 is tfie zero 0/ R' , which is a right inverse for (i/f x id)*.

PROOF. Any /3G£H(0xM) is of the form {/,(y)Pi(«A/(x))} where the
/,(y) are in C°°(M) and are uniquely determined. Let J'(B) be the element
{fi(y)Pi(Zj)} of £(0' x M) where 0' is the zero of R". J is the composition of / '
with the extension £ ( 0 ' x M ) ^ £ ( R ' x M) of §4.
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COROLLARY. Under the hypothesis of the corollary to Lemma 1
there is a continuous map from fH(/ i ,(Sr lxr) , / i l (SHx[O,r])) to
I(a~1h2(S

p'1 x r),a~1h2(S
p-x x [0, r])) which is a right inverse for .//*.

PROOF. The corollary to Lemma 1 gives a right inverse for

ilt*: I ( a l h 2 ( S p l x {0 , r } ) , a - ' h 2 ( S p ' x [ 0 , ; • ] ) - >

and piecing together with J gives the result.
Note that this corollary again holds in parametrized form.

LEMMA 3. Let W be a G invariant submanifold with boundary of R" of
dimension n and suppose that there is a continuous E': EG(W')^>E(R")
which is a right inverse for (j> * and that W contains all points of B except those
in a sufficiently small neighbourhood of Ox B2- Then there exists a continuous
right inverse for (f>*: E(RN)-^> Ea(W) where W is a G-invariant submanifold
with boundary of dimension contained in the interior of G(B)U W which can
be chosen so that G(B) U W— W is as small as required.

PROOF. By the last corollary and note (with M = B2) for W sufficiently
large there are subbundles T and T of the ball bundles B, x B2 and B2 x B3

over B2 with fibres balls of the same dimension such that g(T)L) W =
G(B) U W, G(dT - (B, x dB2)) C int W, <f>'(dT) C F(dT') and there is a right
inverse for 4>*: I(F(dT'),F(T'))^> IG(G(dT),G(T)) [recall formula (6.11)].
Since I(dT, T ) embeds in I(d(T'x B4), T'x B4) there is a right inverse E"
for </>*: I(R" - F'(T' x B4), R

N)^ IG(G(dT), G(T)).
Let V be a G-invariant submanifold with boundary of W of dimension n

contained in int W with W — V as small as required and dW intersecting
G{dT) transversally within G(intB,x dB2). Ia(dV D V- T, V- T) embeds
in IG(dV, V) which embeds in EG(W) so that E' gives a right inverse for
4>*:E(RN)^>Ia(dVn V- T, V- T) and piecing together with E" gives a
right inverse for <(>*: E(RN)^>IG(d(V U G(T)), VUG(T)). If W is a man-
ifold with boundary of dimension n contained in int(V U G(T)) then EG(W)
embeds in IG(d(V U G(T)), V U G(T)) and the result follows.

PROPOSITION 6. There exists a G invariant neighbourhood V of 0 in R"
and a continuous E: EG{V)-* C(RN), a right inverse for <fi*.

PROOF. We can build V from pieces G(B) starting with points of
minimal stabilizers and apply Lemma 3 at each step: there are of course only
finitely many orbit types and the quotient by G of the set of points of a given
orbit type with stabilizer of type H can be triangulated sufficiently finely over
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any compact set (using, say, a linear triangulation of the open subset of (R")H

of points with stabilizer H) in order to use maps such as F on neighbourhoods
of the pieces.

THEOREM 3. There exists a continuous E: CG(R")—> C(RN) such that
4>*E = 1.

PROOF. In earlier notation (with G = H, <f> = ip, p = N, q = n, etc.) let Mr

be a manifold with boundary of dimension p obtained, say, by thickening
h2(S"'x[0,r])r\Y' along its corners, containing a^aipiR") H
h2(S"'x[0,r])) with dM, intersecting this last set in a\a^{Rq)f\
h2(S

p'1 x /•)). E given by the proposition gives (as in Lemma 1)

E-.Icih^S"-' x r^h^S"'1 x [0, /•]))-> I(9Mr, Mr) and

E:Io(h,(S"-1 x {s, t},ht(S
K-' x [s, f])))^/(3M, U dM,, M, - M5)

for some r > 0 and 0 < s < t, where we have taken M, containing Ms in its

interior (as we can obviously suppose). Splitting [0,00) into [0, r] U [s,, t,] U

[5;, f2] U • • • where 0 < s, < r < s2 < f, < s, < t2- • • and using a partition of

unity gives the result.

COROLLARY. There is a continuous C(4>(Rn))—> C(RN), a right inverse
for the restriction.

PROOF. Follows from the theorem and the identification C(<£(R")) =
CG(R") (Schwarz).

Added in revision: Theorem 3 has also been proved by Mather (unpub-
lished). The proof given here follows the lines laid down by Schwarz more
closely.

7. G- stability

Suppose that G, a compact lie group, acts linearly on R" and Rp and let
/: R" -» Rp be a proper G invariant smooth map. P6a(R") and P6G(J), the
spaces of polynomial G invariant vector fields on R" and along / respec-
tively, are finitely generated over PG(R"), and P0G(Rp) is finitely generated
over PG(RP) (the proof given in Dieudonne (1970) that PO(R") is finitely
generated over PG(R") goes through for the module case, and the generators
are again homogeneous). Let {vi} be a finite generating set for P6G(R") over
PG (R"). Then 2, C(R" )v, is closed in C(R"), by a result of Malgrange (1966)
generalized by Tougeron (1972), and so S,CG(R")u = (2iC(R")u,) n
dG(R") is closed in 6G(Rn) and, since elements of 9G(R") can be approxi-
mated arbitrarily closely over compact sets by polynomial vector fields,
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1.iCG(R")vi is also dense in dG(R") and equality follows. Similarly 6G(R")
and 6G(f) are also finitely generated over CG(RP) and CG(R") respectively.

These remarks, together with Theorem 3, allow Mather's proof that
infinitesimal C stability implies C" stability for a proper map in the G trivial
case to go through in the G category for the map /. The converse result
follows immediately from the same methods used for the G trivial case (by
considering jet spaces — see Mather (1970)).

THEOREM 4. Let f': R" —> Rp be a proper G invariant map between linear
G spaces, where G is a compact lie group. Then f is C°° G-infinitesimally stable
(that is wf(dG(Rp))+ tf(6G(R")) = 0G(f), in Mather's notation, where wf and
tfare induced by composition with f and the derivative off) if and only iffis C°°
G-stable (that is if g is a sufficiently close G invariant map to f there exist
invariant smooth diffeomorphisms h: R" —> R" and h': R" —> R" such that

g = h'fh'y

COROLLARY. The theorem holds if R" and Rp are replaced by C* G
manifolds of finite orbit type — (see Schwarz: such a manifold has a G
invariant embedding in some R" and then the usual method (Mather (1968) for
reducing questions about the manifold to those about R" holds).

[Added in revision: this corollary (at least when the source manifold is
compact) has been announced by V. Poenaru (1975).]

8. Conclusion

Transversality theorems (and the use of jet spaces) used to give the result
that stability implies infinitesimal stability can also be proved when the target
is a manifold and the source a set of the type of Section 5 (the author will
consider this question elsewhere). It is a simple exercise to show that <£(R"),
where <p is a Hilbert map, is coherent (clearly it has everywhere irreducible
germs and by an argument of Malgrange, given in the preprint cited in the
references, the result follows).
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