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A Reduction of the Batyrev-Manin
Conjecture for Kummer Surfaces

David McKinnon

Abstract. Let V be a K3 surface defined over a number field k. The Batyrev-Manin conjecture for V

states that for every nonempty open subset U of V , there exists a finite set ZU of accumulating rational

curves such that the density of rational points on U − ZU is strictly less than the density of rational

points on ZU . Thus, the set of rational points of V conjecturally admits a stratification corresponding

to the sets ZU for successively smaller sets U .

In this paper, in the case that V is a Kummer surface, we prove that the Batyrev-Manin conjecture

for V can be reduced to the Batyrev-Manin conjecture for V modulo the endomorphisms of V induced

by multiplication by m on the associated abelian surface A. As an application, we use this to show

that given some restrictions on A, the set of rational points of V which lie on rational curves whose

preimages have geometric genus 2 admits a stratification of Batyrev-Manin type.

1 Introduction

Let V be an algebraic variety defined over a number field k, and let D be an ample
divisor on V . Choose a (multiplicative) height function HD on V corresponding to
D, and let S be any subset of V . We define the counting function for S by:

NS,D(B) = #{P ∈ S(k) | HD(P) < B}.

Batyrev and Manin [2] have made a series of conjectures about the behaviour of NS,D.
In the case that V is a K3 surface, their conjecture can be stated as follows:

Conjecture 1.1 Let ǫ > 0 be any real number. Then there is a non-empty Zariski

open subset U (ǫ) ⊂ V such that

NU (ǫ),D(B) = O(Bǫ).

The complement Z(ǫ) of U (ǫ) can clearly be taken to be a finite union of rational
curves, since it is well known that if C is a curve of genus at least 1 defined over a

number field k, then its counting function grows at most like a power of the loga-
rithm:

NC,D(B) = O((log B)ℓ),
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where ℓ is some fixed positive integer, and D is any ample divisor on C . Conversely,
any rational curve C which is split over k (meaning that C is defined over k and has

at least one k-rational closed point) satisfies:

NC,D(B) ≫≪ B2/d,

where d is the D-degree of C . (In fact, the constants involved in the preceding expres-
sion can sometimes be calculated quite precisely – see for example [11].) In partic-
ular, this means that every k-split rational curve on V must be contained in Z(ǫ) for
some ǫ > 0.

Thus, as ǫ→ 0, we conjecturally obtain a stratification of “most” of the k-rational
points of V via the rational curves of minimal degree on which they lie. In fact,
there is a conjecture of Bogomolov (see the remarks after Theorem 3.5 of [2]) which
states that every algebraic point on a K3 surface lies on a rational curve defined over k.

Thus, disregarding the issue of the field of definition of a rational curve, Bogomolov’s
conjecture suggests that in one’s analysis of the set of rational points of a K3 surface
V , one may confine one’s attention to the set of rational points which lie on rational
curves. Even without appealing to Bogomolov’s conjecture, Conjecture 1.1 already

implies that the set S of k-rational points of V which do not lie on any rational curve
is sparse in the sense that for any ǫ > 0, we have:

NS,D(B) = O(Bǫ).

To my knowledge, this conjecture has not been verified for any K3 surface V .
However, some progress has been made. For instance, King and Todorov [6] con-
struct the first set in the stratification for a certain class of Kummer surfaces, and

McKinnon [7] constructs the first few layers of the stratification for a wider class of
K3 surfaces, both using geometric techniques.

Billard [1] computes the counting function for certain other K3 surfaces, but the
more significant contribution of his paper is in the other direction. Namely, the

preceding results consider the set of all rational points, and construct part of their
stratification, while Billard considers a certain subset of rational points, and shows
that it admits a stratification of the form predicted by Conjecture 1.1. In the parlance
of §2, we say that Billard’s subset is a stratified set.

More precisely, Billard starts with a single rational curve, and uses a carefully cho-
sen infinite group of automorphisms to move it around the K3 surface. Using the
canonical height introduced by Silverman in [12], Billard controls the heights on the
images of the original curve in terms of the height on the original curve.

This technique is similar to that employed by Sato [10] for Kummer surfaces
whose associated abelian surface A is isogenous to a product E × E of an elliptic
curve with itself. Sato proves that the set of rational points lying in the image of some
proper abelian subvariety of A is a stratified set. (In fact, Sato proves slightly more

than this, but his other results follow easily from this one.)
As far as the author is aware, the most general result in this direction was obtained

by Call [3], though he did not advertise it as such. Call proves that on a family of
abelian varieties, the set of geometric points (that is, points lying on sections) is a
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stratified set, in the sense of §2, provided that the base of the family is a rational curve.
(In his paper, Call purports only to compute the counting function for geometric

points, but a careful examination of his proof shows that he in fact constructs the
entire stratification, and reports only on the top layer.)

The purpose of this paper is to try to bridge the “top-down” and “bottom-up” ap-
proaches of the preceding papers, by treating the stratified set as the basic operand.

We will confine our attention to the case of a Kummer surface, and to the rational
endomorphisms [̃m] induced by multiplication by m ∈ Z on the associated abelian
surface. We prove (Theorem 3.3) that if you start with a stratified set S, then the

union of the sets [̃m](S) is also a stratified set, and similarly for sparse sets. This
effectively reduces Conjecture 1.1 on such Kummer surfaces to the equivalent con-
jecture for the smaller set of points which are “indivisible”.

In particular, we prove some elementary results on stratified sets in §2, and in §3
prove an analogue of Sato’s results for points in the image of a curve of genus 2 on
the abelian surface (Corollary 3.4). The main theorems are proven in §4.

2 Stratified Sets

Let k be a number field. Let X/k be an algebraic surface. We recall the definition of a

big divisor.

Definition 2.1 A divisor D on a smooth projective variety V is called big if and only if

for some positive integer n, nD is linearly equivalent to A + E for some ample divisor A

and some effective divisor E.

Let HD be a height function on X with respect to some big divisor D. For any
subset S ⊂ X, we define the counting function NS,D(B) of S with respect to D by

NS,D(B) = #{P ∈ S(k) | HD(P) < B}.

If the big divisor D has been fixed, we will drop D from the notation.

Let S ⊂ X be a union of rational curves defined and split over k. We say that S

is a stratified set (over k), if for every ǫ > 0, there is a finite union C(ǫ) ⊂ S and a
positive real constant c such that for all real numbers B,

#{P ∈ (S −C(ǫ))(k) | HD(P) < B} ≤ cBǫ.

Note that if D is not ample, then every C(ǫ) must contain all the curves C of S satis-
fying C.D ≤ 0.

We now prove some elementary results about stratified sets. These results are well
known, but are included here for clarity of presentation.

Theorem 2.2 Let S be a stratified set with respect to a big divisor D, and let d be a

positive integer. Then there are only finitely many rational curves C ⊂ S of D-degree d.

Moreover, the set C(ǫ) may be taken to be the set of rational curves in S of D-degree at

most 2/ǫ.
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Proof By Schanuel’s Theorem [11], a split rational curve of degree d contains cB2/d +
O(B2/d−ǫ) rational points of height at most B, where c is a constant which Schanuel

calculates explicitly. Thus, for ǫ < 2/d, the set C(ǫ) must contain all the rational
curves in S of degree d. Since C(ǫ) is a finite union of curves, the finiteness result
follows.

For the other claim, note that one may always enlarge C(ǫ), so it suffices to show
that one need not include any curve of degree larger than 2/ǫ in C(ǫ). If C is a rational
curve of degree larger than 2/ǫ, then Schanuel’s Theorem says that it contains at

most O(Bǫ) rational points. Thus, by deleting it from C(ǫ), one does not increase the
asymptotic number of rational points in (S −C(ǫ))(k), which is already O(Bǫ).

Thus, a stratified set is a union of rational curves such that the set of curves of
bounded degree has a higher density of rational points than all the other curves put
together.

Theorem 2.3 The finite union of stratified sets is a stratified set.

Proof This is clear.

Theorem 2.4 The definition of a stratified set is independent of the choice of big divi-

sor D.

Proof Assume S is a stratified set with respect to a big divisor D on X, and let D ′ be

any other big divisor. Then we can find positive real constants c1 and c2 such that
c1D − D ′ and c2D ′ − D are big. By the height machine [13], this means that we can
find a dense open subset U ⊂ X such that for all points P ∈ U (k), we have:

HD(P) ≤ Hc2

D ′(P) and HD ′(P) ≤ Hc1

D
(P.)

Fix a positive real number ǫ. Then there is a finite union C of rational curves and a
positive constant c such that for all real numbers B,

#{P ∈ (S −C)(k) | HD(P) < B} ≤ cBǫ/c2 .

Now fix a real number B, and let P ∈ (S −C)(k) be any point such that HD ′(P) ≤ B.
Then HD(P) ≤ Bc2 , so by the previous inequality there are at most c(Bc2 )ǫ/c2 = cBǫ

choices for P. Thus,

#{P ∈ (S −C)(k) | HD ′(P) < B} ≤ cBǫ,

as desired.

It is not clear to the author if the definition of a stratified set is independent of
the field k. However, this dependence is not relevant to the paper, and so we will
generally not note the dependence on k.
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3 Kummer Surfaces

Let A be an abelian surface, and let i : A → A be multiplication by −1. Then the
quotient by i is a singular K3 surface S, with sixteen singular points corresponding
to the sixteen 2-torsion points of A, which are the fixed points of the involution i.

Blowing up these sixteen points, we obtain a nonsingular K3 surface X, called the
Kummer surface associated to A.

Let D be a big divisor on X, and let HD be the associated (multiplicative) height
function. We say that a set S of k-rational points on X is sparse if and only if we have:

NS(B) = #{P ∈ S|HD(P) ≤ B} = O(Bǫ)

for every ǫ. That is, S is sparse if and only if its counting function grows more slowly
than the counting function of every (split) rational curve. As for stratified sets, the
notion of sparsity is independent of the choice of big divisor D.

The Batyrev-Manin conjecture [2] for X can be stated in the following form:

Conjecture 3.1 (Batyrev-Manin) The set X(k) of rational points on X is the union of

a stratified set and a sparse set.

Batyrev and Manin conjectured this to hold for an arbitrary K3 surface. The pur-

pose of this paper is to show that Conjecture 3.1 is true for X(k) if and only if it is
true for X(k) modulo the endomorphisms of the abelian surface A.

More precisely, let φ : A → A be any endomorphism. Then φ induces a rational
map φ̃ : X → X, since φ respects the inversion operation on A. For any subsets S ⊂ X

and R ⊂ Endk(A), define the set

ER(S) =

⋃

φ∈R

φ̃(S).

We prove the following two theorems:

Theorem 3.2 Let R = Z. Let S be a sparse set on X. Then the set

ER(S) =

⋃

m∈Z

[̃m](S)

is a sparse set on X.

Theorem 3.3 Let R = Z. Let S be a stratified set on X. Then the set

ER(S) =

⋃

m∈Z

[̃m](S)

is a stratified set on X.

Note that these theorems have consequences beyond a reduction of the Batyrev-
Manin Conjecture. For instance, we have the following result:
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Corollary 3.4 Assume A is principally polarised and has End(A) ∼= Z. Let V be the

set of all curves on A which are:

1. defined over k;

2. of geometric genus two (that is, their normalisation has genus 2);

3. such that the inversion map i on A induces the hyperelliptic involution on V .

(These are precisely the genus two curves whose images in X are rational curves.) Then

the image on X of the union of the curves in V is a stratified set.

Proof By Theorem 3.3, it suffices to show that there are only a finite number of such
genus two curves on A, modulo the action of the endomorphism ring of A. Thus,
assume that C is a smooth curve of genus two equipped with a non-constant map

φ : C → A, birational onto its image, such that φ(C) is in V . Let π : C → J(C) be the
embedding of C in its Jacobian J(C). Then we have a canonical map

ψ : J(C) → A

which commutes with φ – that is, φ = ψ ◦ π.

If C ′ is the translate of φ(C) by a point P ∈ A(k), then C ′ 6∈ V unless P is a 2-
torsion point. Thus, we may reduce the problem by translations as well, and assume

that the map ψ is a homomorphism of abelian groups. This immediately implies that
ψ is an isogeny.

Let φ ′ : C → A be any other birational map, with associated isogeny ψ ′. Identify
both J(C) and A with their duals, and let ψ̂ and ψ̂ ′ be the dual maps. Then we have:

ψ̂ψ = α

for someα ∈ End( J(C)). Since J(C) is isogenous to A, we know that End( J(C)) = Z,

so we get

ψ̂ψ = [m],

where [m] denotes multiplication by the nonzero integer m. Thus, we find that

[m]ψ ′(C) = (ψ ′ψ̂)(ψ(C)) = [n]ψ(C),

for some nonzero integer n. Thus, we find that Hom( J(C),A) is a torsion-free, rank 1
module over Z. Since it is finitely generated, it must be a free module of rank 1, so let

Ψ : J(C) → A be a generator. Then for every rational map φ : C → A induced by a
homomorphism from J(C) to A, there exists an integer n such that

φ(C) = [n]Ψ(π(C)).

Thus, modulo the endomorphisms of A, there are only finitely many curves on A

which are birational to C and lie in V .

It remains only to show that there are only finitely many curves C whose Jaco-
bians J(C) are isogenous to A. By Theorem 18.1 of [8], a given abelian variety admits
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only a finite number of isomorphism classes of principal polarisations, and by Corol-
lary 12.2 of [9], a curve of genus two (or greater) is determined up to isomorphism

by its Jacobian and principal polarisation. By a theorem of Faltings [5], we know
that there are only finitely many isomorphism classes of abelian varieties which are
k-isogenous to A. The result follows.

Note that the same trick will not work for the curves of genus four or higher, since
by Proposition (8) of [4], there are infinitely many hyperelliptic curves on A which
are not related by translation or endomorphisms of A. It is not clear to the author

whether the proof of Corollary 3.4 can be modified for the set of curves of genus
three on A.

4 Theorems 3.2 and 3.3

In this section, we prove Theorems 3.2 and 3.3. Since the definitions of a sparse and
stratified set do not depend on the choice of big height on X, we will take H to be the

height on X induced by the Néron-Tate canonical height on A relative to some fixed
even line bundle. Note that H(P) ≥ 1 for all P ∈ U (k), where U ⊂ X is the image of
the complement of the set of 2-torsion points of A.

Lemma 4.1 Let S be any subset of U (k), with counting function bounded by a constant

multiple of a power of B:

NS(B) = #{P ∈ S | H(P) ≤ B} ≤ cBδ,

with δ > 0. Then for any positive integer m, the image [̃m]S of S under the rational

endomorphism [̃m] of U induced by multiplication-by-m satisfies

NE(S)−T(B) = #{P ∈ [̃m]S | H(P) ≤ B} ≤ c1/m
2

Bδ/m
2

,

where T is the set of k-rational points of height 1 on X.

Proof Assume that H([̃m]P) ≤ B. Then we get

H(P) ≤ B1/m
2

by the elementary properties of the multiplicative canonical height. By hypothesis,

there are only c1/m
2

Bδ/m
2

points which satisfy this hypothesis, as desired.

Note that the set T is finite, since there are only finitely many points of U (k) with
bounded canonical height. We now prove the main technical theorem of the section,
from which Theorems 3.2 and 3.3 will follow.
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Theorem 4.2 Let S be a subset of X(k), and let δ > 0 be a positive real number.

Assume that NS(B) = O(Bδ). Then NE(S)(B) = O(Bδ). Furthermore, for any ǫ > 0,

there exists an integer n ∈ Z such that

NE(S)−Sn
= O(Bǫ),

where

Sn =

n⋃

m=1

[̃m]S.

Proof By hypothesis, there is a positive constant c such that for all B ≥ 1

NS(B) ≤ cBδ.

We wish to show that NE(S) = O(Bδ). By definition of X, we have [̃m] = [̃−m]. We

therefore have the following relation on counting functions:

NE(S)(B) ≤

∞∑

m=1

N
[̃m]S

(B).

Of all the points of S whose height is greater than one, there must exist a point Q of
minimal height — denote the height of Q by ℓ. Then for all m > (log B/ log ℓ)1/2,

the only points of [̃m]S of height less than B are points of height 1 — that is to say,
points of the finite set T. Thus, we can replace the above infinite sum with a finite
one:

NE(S)(B) ≤

α∑

m=1

N
[̃m]S

(B, )

where α = ⌊(log B/ log ℓ)1/2⌋. We can now calculate as follows:

NE(S)(B) ≤

α∑

m=1

N
[̃m]S

(B)

≤ #T +

α∑

m=1

(cBδ)1/m
2

≤ #T + cBδ + (log B/ log ℓ)1/2(cBδ)1/4

= O(Bδ),

as desired.

Furthermore, if ǫ > 0, then for n >
√
δ/ǫ, we get

NE(S)−Sn
≤

α∑

m=n

N
[̃m]S

(B) = O(Bǫ),
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which is precisely the second assertion in the theorem.

Theorem 4.2 immediately implies Theorem 3.2. We proceed to deduce Theo-
rem 3.3:

Proof of Theorem 3.3 Say S is a stratified set, and let ǫ > 0 be any real number. Then

we can find a finite union C(ǫ) of rational curves such that NS−C(ǫ)(B) = O(Bǫ). By
Theorem 4.2, it follows that NE(S−C(ǫ))(B) = O(Bǫ) as well. Thus, it suffices to show
that E(C(ǫ)) is a stratified set. This follows immediately from the second assertion of
Theorem 4.2.
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