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Abstract

A hyperfinite von Neumann algebra satisfies the condition that every o.d. homomorphism is a
normal operator if and only if it is a factor of type In •

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 46 A 40.

Let M be a von Neumann algebra on a Hilbert space H and we assume that there
is a cyclic and separating vector £o £ H for M. We denote by J the conjugation
operator associated with (M, H, £0), and the natural cone H+ is denned by

H+ = {xj(x)t;0:x€M},

where j(x) = JxJ.
A continuous linear operator <j> on H is called an o.d. (orthogonal decom-

position) homomorphism if the following condition is satisfied: if £ = £+ — £~,
where £+ 6 H+, £~ £ i / + and (£+, £~) = 0, is the orthogonal decomposition of
£ 6 HJ, where HJ = {£eH: J$ = £}, then (££ 6 HJ and ̂  = <A£+ - 0£~ is
also the orthogonal decomposition of </>£. It has been proved in [5] that a continu-
ous linear operator <f> on H is an o.d. homomorphism if and only if <p(H+) C H+

and (j>*<f>€MnM'.

The aim of this note is to consider the following property:
(*) all o.d. homomorphisms are normal operators.

We shall prove that (*) implies that M is a finite algebra, and, when H is
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separable and M is hyperfinite, (M, H, £o) satisfies (*) if and only if M is a factor
of type / „ . However, the complete characterization of algebras with property (*)
will remain as an open problem.

1.

Let <j> be a continuous linear operator on H. <j> is normal if 0*0 = (j><p*. It is
quasinormal if <p and <j>*(j) commute, and it is paranormal if 0*202—2A</>*</>+-̂ 2 > 0
for all positive number A [1]. Each of the three normalities implies the one that
follows.

When M is a factor, an o.d. homomorphism <j> satisfies <f>*<f> = Al for some
number A. Therefore, the following statement is obvious.

(1.1) When M is a factor, all o.d. homomorphisms are quasinormal.
When M is not a factor, there are o.d. homomorphisms which are not para-

normal. In fact, we have the following.

(1.2) / / all o.d. homomorphisms are paranormal, all o.d. isomorphisms are
normal.

PROOF. A bijective o.d. homomorphism is an o.d. isomorphism, that is, the
inverse operator, then, is also an o.d. homomorphism (see [5]). It has been proved
in [5] that all o.d. isomorphisms are normal if and only if all unitary operators
u such that u(H+) = H+ belong to the algebra R(M, M') generated by M and
M'. Now, suppose that u is a unitary operator such that u(H+) = H+. Let
p be a central projection. Then, up is an o.d. homomorphisms. Hence, by the
assumption, up is paranormal, that is,

(up)*(up)*upup - 2\{up)*up + A2 > 0

for all positive number A, or,

pu*pup - 2Ap + A2 > 0 for all A > 0.

Since u*pu is a central projection (see [9], Theorem 2), q — u*pup is also a
central projection and q < p. Hence, the above inequality with A = 1 implies
q — 2p + 1 > 0 and, therefore, q > p. Thus, q = p and this implies up = pup.
The same argument applied to u*, instead of u, supplies u*p = pu*p. Thus, we
arrive at up = pu. This proves u e (M n M')' — R(M, M').

Concerning the conclusion of (1.2), we have the following characterizations.

(1.3) The following conditions are equivalent.
(1) All o.d. isomorphisms are normal.
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(2) All unital Jordan isomorphisms are identical on the center.
(3) For any central projections p and q, if u*pu = q for some unitary operator

u such that u(H+) = H+, then p = q.
(4) For any mutually orthogonal central nonzero projections p and q, there is

no Jordan isomorphism j3 of Mp onto Mq such that f3(p) = q.

PROOF. The equivalence of (1) and (2) has been proved in [5]. (2) => (3).
Suppose that u*pu = q for some unitary operator u such that u(H+) = H+ and
let a be the unital Jordan isomorphism determined by u. Then, by [2], Theorem
3.2.15, there is a central projection e such that uxu* — a(x)e + Ja(x)*J(l — e)
for all x € M. For x = q, we have p = a{q)e + Ja(q)*J(l — e) — q, because
a{q) = q by (2).

(3) => (4). Suppose that there is a Jordan isomorphism /? of Mp onto Mq
such that /?(p) = q. Then, set a(x) = (1 - (p + q))x + a{px) + 0~1(qx) for all
x e M. a is a unital Jordan isomorphism on M and a(q) = p. Thus, u*pu = q
for the unitary operator u determined by a which satisfies u(H+) = H+.

(4) => (2). Suppose that there is a unital Jordan isomorphism a of M and
a central projection e such that a(e) ^ e. Then, / = a(e) is also a central
projection. When fe ^ e, set p — e — ef and q = / — fa(f), and, when fe — e,
set p — f — e and q = a(f) — f. Then, p and q are mutually orthogonal central
projections such that a(p) = q. Then, the restriction /3 of a on Mp is the Jordan
isomorphism onto Mq and /3(p) = q.

2.

In this section, we consider o.d. homomorphisms of the form aj(a) for a € M.
We note that aj(a) is an o.d. homomorphism if and only if a*a G M D M' ([8],
(3.4)).

(2.1) v4// o.rf. isomorphisms of the form aj(a), a G M, are normal.

PROOF. If aj(a) is an o.d. isomorphism, a"1 exists in M. Since a*a € MnM',
a*a and a - 1 commute. Hence, a*a = aa* and aj(a) is normal.

The corresponding statement for o.d. homomorphisms is as follows.

(2.2) All o.d. homomorphisms of the form aj(a), a E M, are quasinormal.

PROOF. When <j> = aj(a) is an o.d. homomorphism, we have a*a € M D M'
and cj>*(j> = a*aj{a*a). Hence, </> and (j>*<f> commute .

The following statement shows that the quasinormality in (2.2) can not be
replaced by normality. For the sake of convenience, we shall call two projections
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p and q on H (j)-equivalent if there exists a partial isometry v in M such that
p = v*vj(v*v) and q = vv*j(vv*).

(2.3) The following conditions are equivalent.
(1) If projections p and q on H are {j)-equivalent andp € MnM', then p = q.
(2) M is finite.
(3) All o.d. homomorphisms of the form vj(v), for partial isometries v in M,

are normal.
(4) All o.d. homomorphisms of the form aj(a), a € M, are normal.
(5) // v is a partial isometry in M and v*v €E M D M', then v is normal.
(6) x*x = 1 and x € M imply xx* = 1.

PROOF. The equivalence of (2) and (6) is well known ([6]).
(1) =• (2). We prove that 1 is a finite projection. Suppose that there is a

projection e such that e is equivalent to 1. Then, there is a partial isometry
v € M such that v*v = 1 and vv* = e. Then, ej(e) is (j)-equivalent to 1.
Hence, by (1), we have ej[e) = 1 and e = 1.

(2) =t> (3). Let v € M be a partial isometry and <j> = vj{v) be an o.d.
homomorphism. Set p — v*v and q = vv*. Then, <j>*<f> G Mfl M' implies
pj(p) SMf l M' and, hence, p € M D M'. Then, for the canonical central trace
t|, p = p* = (v*v)* = (t/i/*)" = g11. Hence, (p - pg)1 = p* - (pg)1* = p - pg" = 0.
Since, p > pq, this implies p = pq. Therefore, p < q. Then, (g — p)^ = 0 implies
q = p. Therefore, f is normal and, hence, 4> is normal.

(3) => (4). Let 0 = aj(a), a € M, be an o.d. homomorphism and a = v\a\ be
the polar decomposition. Then, (j) = vj(v)\a\j(\a\) is the polar decomposition of
4>. Therefore, vj(v) is an o.d. homomorphism (see the remark below) and by
(3) it is normal. Since |a|j'(|a|) e M f l M', <j> itself is normal.

(4) => (5). Let v be a partial isometry such that v*v € M C\ M', and set
p = v*v and q = vv*. Then, since v*j(v*)vj{v) = pj(p) = p € MnM', vj(v) is
an o.d. homomorphism. Hence, it is normal. Then, p = i/j(i/)^*i(t/*) = QJ{q)-
Then, p = pj(q) = qj(p) and (p — q)j(p — q) = 0. This implies p — q.

(5) =>• (6). If x*x = 1 and x e M, x is a partial isometry in M and x*x €
MnM'.

(6) =>• (1). Suppose that p = v*vj(y*v) e M n M ' and q = vv*j{vv*). Then,
p = u*w. Since e = 1 - p is a central projection, (v + e)*(v + e) — 1. Hence, by
(6), we have (v + e)*(v + e) — (v + e)(v + e)*, which implies v*v = vv*. Hence,
p = q.

REMARK. When </> is an o.d. homomorphism and <j> = v\<j>\ is the polar
decomposition, v is also an o.d. homomorphism. This follows from v = s —
limn_»oo 4>{n~l\ + l^l)"1) because ( n - 1 l + liAl)"1 belongs to the positive part of
M n M ' and, hence, is an o.d. homomorphism.
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3 .

When (M,H,£0) has the property (*), (2.3) implies that M is finite. Our
conjecture is that (M, H, £0) satisfies (*) if and only if M is a factor of type / „ ,
but this has to remain as an open problem. In this section, we shall give some
general consequences of (*) and give an affirmative answer to this conjecture
when H is separable and M is hyperfinite.

(3.1) If (M,H,£o) satisfies (*), then every o.d. homomorphism belongs to
R(M,M').

PROOF. Let <j> be an o.d. homomorphism and p be a central projection. Then,
pcj> is also an o.d. homomorphism. Hence, <j> and p<j> are normal. This implies
<j>*p<f> = pcjxj)* = pcj>*(j>p = (j>*p<f>P- T h e r e f o r e , (p<j> — 4>p)*(p<j> — 4>p) = 0 a n d , h e n c e ,

For the sake of convenience, we shall call two projections p and q on H (o)-
equivalent if there exists a partial isometry v on H such that u(H+) C H+,
v*v — p and vv* = q. Note that, in this definition, p, q and v are not necessarily
in M.

(3.2) The following conditions are equivalent.
(1) If p and q are (o)-equivalent and p € M n M', then p — q.
(2) All partial isometric o.d. homomorphisms are normal.
(3) (M,H,£0) satisfies {*).

PROOF. (1) => (2) and (3) => (1) are immediate.
(2) =>• (3). Let <f) be an o.d. homomorphism and <j> = i/|<̂ >| be the polar

decomposition. Then, v is a partial isometric o.d. homomorphism and, hence,
normal by (2). Furthermore, since \<\>\ € MnM', v and \<$>\ commute by (3.1).
Therefore, <j> is normal.

When p is a central projection, Mp is a von Neumann algebra on pH, and
pfo is a cyclic and separating vector for Mp. The natural cone associated with
(Mp,pH,p£o) is equal to p{H+).

(3.3) Suppose that (M, H, £0) satisfies (*) and p is a central projection. Then,
(Mp,pH,p£o) satisfies (*).

PROOF. If <j> is an o.d. homomorphism on pH, xj) = tjyp is an o.d. homomor-
phism on H. Hence, ifi is normal by the assumption, and tp commute wi th p by
(3.1). Hence, </> is also normal.

The next lemma will be used in (3.5). M " ( C ) denotes the algebra of all n x n
matrices, the unit of which is denoted by l n .
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(3.4) Let n < m and M = Afn(C) © Mm(C). Then, there is an element a
of M n + m (C) such that a* a = l n © 0, aa* < 0 © l m , and the map v: M -> M
defined by i/(x) = axa* satisfies v(M+) C M + .

PROOF. M consists of the matrices of the following form:

'A 0 \

B)

for all A e Mn(C) and B € Mm(C). Since n = m, we shall write this matrix in
the following form

( A 0 0

0 Bi B2
U i>3 i>4

where Bi is an n x n matrix. Then, the matrix
/ 0 0 (T

a = l n 0 0

satisfies the required properties.
Let M be a finite-dimensional von Neumann algebra and M — Mpi © Mp2 ©

• • -®Mpn be the direct sum decomposition of M into factors where Pi (1 < i < n)
are mutually orthogonal central projections. Each Mpi is the algebra of m x n*
matrices. Let 1* be the unit matrix in Mpi and set Co = l i © I2 © • • • © In-
Let H be the Hilbert space consisting of elements of M with the inner product
defined by the trace. Then, Co is a cyclic and separating vector for M.

(3.5) Let M be a finite-dimensional von Neumann algebra on a Hilbert space
H and Co be the cyclic and separating vector defined above. Then, (M, H, Co)
has the property (*) if and only if M is a factor.

PROOF. Suppose that M is a factor and <f> is an o.d. homomorphism. Since
4>*<j) = a l for some number a and H is finite-dimensional, we have <f>*<j> — (jxf)*'•
Conversely, suppose that (M, H, £0) satisfies (*). If M is not a factor, then, by
(3.3), we can assume that M = Mp\ © Mp2, where Mpi are the algebras of
rii * ni matrices such that p\ = l n i © 0 and P2 — 0 © ln 2. Assume that n\ < ri2
and take the operator u defined in (3.4). Since v*u — pi, the central projection
Pi is (o)-equivalent to vv*. Hence, by (3.2) and (3.4), we have pi = vv* < pi-
Therefore, pi = 0, a contradiction. Hence, M is a factor.

Later, we shall give a negative example, which shows that the hyperfinite IIi-
factor does not have the property (*). In this example, f0 is a trace vector and
the o.d. homomorphism constructed there is Co-preserving, that is, <ACo = Co- A
linear operator a on M will be said to be r-bounded if it is bounded with respect
to the norm x -* T(X*X)1^2, where r(x) —
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(3.6) Let M be a finite factor and £0 be a trace vector. Then, the following
conditions are equivalent.

(1) Every ^-preserving o.d. homomorphism is normal.
(2) Every ^-preserving o.d. homomorphism is an o.d. isomorphism.
(3) Every r-bounded unital Jordan homomorphism of M is a Jordan isomor-

phism.

PROOF. (1) o (2). This equivalence follows from the following fact: when
M is a factor and (j> •£ 0 is an o.d. homomorphism, <j> is normal if and only if <j>
is an o.d. isomorphism. To prove this statement, let M be a factor and <j> be an
o.d. homomorphism. Then, since <j>*(f> € M D M' and <j> is normal, (j> = Xu for a
positive number A and a unitary operator u such that u(H+) = H+. Hence, 4>
is an o.d. isomorphism. The converse follows immediately from (1.3).

(2) *» (3). Since A^o = 1, the map x —> z£o is an order isomorphism from
M+ onto the set {£ € H+: f < Afo for some A > 0}, which is dense in H+.
Hence, the equation

0(z£o) = a(x)£o for all x € M

establishes a one-to-one correspondence between £0-Preservmg o.d. homomor-
phism <j> on H and r-bounded unital Jordan homomorphism a on M, because
a unital linear operator a: M —* M is a Jordan homomorphism if and only if
\a(x)\ = a(\x\) for all sefladjoint elements x of M ([7], Theorem 6) and also,
since A^o = 1, we have |z£o| = M£o for all selfadjoint elements x of M.

Let Ro be the tensor product of (Mn, 6n), n = 1,2,. . . , where Mn = M2(C)
and

i/2 0 \

for all n. This is a Ili-factor. A von Neumann algebra M is said to be strongly
stable if M is isomorphic to M®RQ.

(3.7) If M is strongly stable factor of type Hi, (M,H,£o) does not have the
property (*).

PROOF. We first show that RQ does not have the property (*). Let K — Kn

be the Hilbert space Mn with the inner product defined by the trace; 9n €
Kn is a cyclic and separating vector for Mn. Let H be the tensor product of
{Kn, 0n: n = 1,2,... } and set f0 = 0 <8) 0 <g> • • •. Then, f0 £ H is a cyclic and
separating vector for RQ. We prove that (RQ,H, £O) does not have the property
(*). We denote the correspondence
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by cj>. It is extended to an isometric linear operator on the set of all finite
linear combinations of the elements of the above form, and H is the closure
of this set. Hence, <p can be regarded as an isometric linear operator on H.
It satisfies <f>*<f> = 1 and 4>4>* ^ 1. Therefore, if <f>{H+) c H+, <j> is an o.d.
homomorphism which is not normal. To prove <t>(H+) C H+, we note that
H+ — {A£0'- A € RQ}- NOW, suppose that A €. R£. Then, A is the limit of a
strongly convergent net of the elements of RQ which are in the form

u=l

where xn<v E Mn for all n. Therefore, the net

< J 2 ( x i t l / & ® • • • ® x k , J ) ® 0 ® 6 - - \ ,

which is contained in H+, converges to A£Q. However,

4>

Since 0 is an isometry, we have <^>(i/+) C i / + . Thus, Jio does not have the
property (*). In the case of M®RQ, we define (f> by

where // is an element of the Hilbert space on which M is defined. Then, exactly
the same argument as above is applicable.

As a consequence, we have an affirmative answer to our conjecture when H
is separable and M is hyperfinite (equivalently, injective).

(3.8) Suppose that H is separable and M is hyperfinite. Then, (M, H, £0)
satisfies (•) if and only if M is a factor of type In.

PROOF. Suppose that H is separable. We first show that, if M =
where A/j(/ C) is abelian, then M does not have (*). Note, in this case, that
M\ has a direct summand C <8> C when it is purely atomic, and that Mi has a
direct summand isomorphic to L°°([0,1]) when it has a nonatomic part. Hence,
there is an automorphism oti of Mi with ai ^ i d ^ . Then, the automorphism
ai <S> idjvf2 of M is not identical on the center, so that, by (1.3), M does not
have the property (*). Now, suppose that M is hyperfinite and satisfies (*).
Then, by (2.3), M is finite. Through the central decomposition of M and by
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the uniqueness of injective I l i-factor on a separable Hilbert space (see [4]), M

becomes a direct sum of von Neumann algebras of the form M\®M2, where M\

is abelian and M2 is a factor of type I n or M2 — RQ- Thus , the desired conclusion

follows immediately from (3.3), (3.5) and (3.6).

We thank Mr. T. B. Dang and Professor D. W. Robinson for helpful conver-

sations.
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