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ABSTRACT

Based on a representation of the aggregate claims random variable as linear
combination of counting random variables, a linear multivariate Bayesian
model of risk theory is defined. In case of the classical risk theoretical
assumptions, that is conditional Poisson likelihood counting variates and
Gamma structural density, the model is shown to identify with a Bayesian
version of the collective model of risk theory. An interesting multivariate
credibility formula for the predictive mean is derived. A new type of recursive
algorithm, called three-stage nested recursive scheme, allows to evaluate the
predictive density and associated predictive stop-loss premiums in an effective
way.
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1. INTRODUCTION

It is well-known that the fluctuation of basic probabilities in a portfolio of risks
plays an important role. Early work has been done by AMMETER (1948/1949)
and the subject is emphasized in BEARD et al. (1984). The actuarial literature
devoted to stochastic variation of mortality and other types of mortality
variation is relatively scarce. A review of known studies is given by WOLTHUIS
and VAN HOEK (1986), Section 7. More recent work includes NORBERG (1987)
and KLUGMAN (1989). Random variation in uncertain payments taking into
account other sources of variation is discussed in DE JONG (1983).

In life insurance the observed mortality experience of a group contract may
deviate considerably from the expected mortality given by a life table. This
means that the expected value of aggregate claims may also deviate consider-
ably from the value obtained from a life table. Since priorities of stop-loss
contracts are usually expressed as percentages of the mean aggregate claims
and stop-loss premiums are very sensitive with respect to this quantity, it
follows that the impact of the variation in basic probabilities on the aggregate

1 This work was originally presented at the meeting on Risk Theory in Oberwolfach, September
16-22, 1990.
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claims distribution and derived quantities such as mean, standard deviation
and stop-loss premiums may be important. When tariffing stop-loss contracts
and in order to avoid mismatches in priorities, the estimation of the mean
aggregate claims needs special attention. In this paper an attempt is made to
take into account claims experience when evaluating aggregate claims distribu-
tions and related stop-loss premiums. The considered Bayesian (analytical)
model is derived from the well-known standard tools of Decision Theory. The
mathematical steps involved in the construction of a feasible computational
algorithm are however rather formidable and are based on previous results of
the author. Analogous results for alternate Bayesian models chosen from
among other natural conjugate families may be possible but are not considered
in this paper. It is also most desirable to develop distribution-free formulas
following eventually new paradigms as suggested by JEWELL (1990). In the
following let us give a more detailed outline of the paper with its main
results.

In Section 2 the random variable of aggregate claims associated to a
portfolio of risks is viewed as a linear combination of counting random
variables for which there exist computational algorithms to evaluate the
corresponding distribution function (see HURLIMANN (1990a)). It is assumed
that risk units produce claims of known amount and that the probability of
occurrence of a given claim is an unknown following some structural density.
Based on these assumptions a linear multivariate Bayesian model of risk theory
is defined. If one adds further the natural model assumptions used in life and
general insurance, one obtains what we call linear multivariate Poisson Gamma
Bayesian model of risk theory. In the present work only this special model is
studied. To illustrate the results of the paper a simple life insurance example is
presented and used throughout.

In Section 3 a link to classical collective risk theory is given. It is shown that
the linear multivariate Poisson Gamma Bayesian model coincides with a
well-defined Bayesian version of the collective model of risk theory.

The needed Bayesian formulas to perform later on effective stop-loss
premium calculations are dereived in Section 4. As main results we obtain an
appealing multivariate credibility formula for the predictive mean of aggregate
claims and an analytical representation of the predictive density defined earlier
by JEWELL (1974).

Using two recursive algorithms to evaluate the probability distribution
function of a linear combination of independent random variables first derived
in HURLIMANN (1990a) and reviewed in the Appendix, we derive in Section 5 a
three-stage nested recursive scheme to evaluate the predictive density of our
Bayesian model. Previous numerical algorithms for aggregate claims probabil-
ity models involved so far only one and two-stage nested recursive calculations
as can be seen from the last advances in the insurance field by PANJER (1981),
DE PRIL (1986/1989) and HURLIMANN (1990a/b).

Finally in Section 6 a numerical example illustrates the important impact
claims experience may have on mean, cumulative probability and stop-loss
premiums evaluated in a Bayesian framework.

https://doi.org/10.2143/AST.23.1.2005101 Published online by Cambridge University Press

https://doi.org/10.2143/AST.23.1.2005101


PREDICTIVE STOP-LOSS PREMIUMS 57

2. A LINEAR MULTIVARIATE BAYESIAN MODEL OF RISK THEORY

For the purpose of rating stop-loss and other non-proportional reinsurance
contracts, we consider the random variable of aggregate claims which is
associated to a given portfolio of risks. Assume that the risks in question are
subject to the following risk classification system:

— each risk unit (= individual policy exposed to risk) can produce a claim of
a known amount mk, k = 1,. . . , r, where r is the number of possible
amounts

— a claim is characterised by an unknown probability of occurrence 9t,
i = 1, ..., s, where s is the number of different probabilities of occurrence

Example 2.1

Consider a life insurance portfolio subject to the risk of death and/or disability.
Each life consists of at most three insurable risk units, two for death and one
for disability, producing claims whose amounts at risk can be evaluated using
computer programs. In pension insurance they are routinely calculated using
well-known formulas (e.g. BERTRAM and FEILMEIER (1987), Section 3.2.1,
pp. 61-64). Given a life aged x, a claim for the risk of death may occur with the
unknown probability q" if the insured dies as active member, or it may occur
with the unknown probability q'x if the insured dies as disabled member, both
with different amounts at risk. A claim for the risk of disability may occur with
the unknown probability ix. It is straightforward to obtain the above risk
classification system by renaming the variables appropriately.

Given the above risk classification system, let us consider the following
mathematical model of aggregate claims. Let Xki be the random variable
counting the number of claims of amount at risk mk with probability of
occurrence #,. Then the random variable representing the aggregate claims is
given by

(2.1) X = £ mk £ Xki.
k=l i = l

The uncertainty about 0, is modelled by a prior or structural density denoted
Uj(Gj), i= 1, ...,s. We assume independence between the #,'s. Therefore the
structural density of the parameter vector 0 = {6\, ..., 6S) is given by

(2.2) u(6)= [ ] t/,(0,).
/=i

Specifying different assumptions on the conditional probabilities
Pr (Xkj = j\9j) that 7 claims of amount mk (given 6,) occur, and on the structural
densities «,(#,), it is possible to obtain different Bayesian models to describe
and analyze the aggregate claims random variable X. The following natural
model assumptions are widely used in life as well as in general insurance:

https://doi.org/10.2143/AST.23.1.2005101 Published online by Cambridge University Press

https://doi.org/10.2143/AST.23.1.2005101


58 WERNER HURLIMANN

(I) Conditionally on 6 the random variables Xki are independent and depend
upon 6j through the Poisson likelihood

(2.3) Pr (Xki = # , ) = Po (;; 0,«fa) = j = 0, 1, 2 , . . . ,

where nki is the number of risk units with amount at risk mk and
probability of occurrence #,.

(II) The structural densities w,(#,) are Gamma densities given by

Bf'0frle~p'6'
(2.4) M,-(0;) = Gamma (0,-; a,, ft) = ^— , / = 1, 2,.. . , s, a,, ft > 0.

At this stage it is possible to get formulas for the moments of X. The
expected value, which will be needed later on, is calculated as follows:

(2.5) E[X] =
r s

= Z m<< Z £fl,
(=1/ c = l 1 = 1

1=1 ft *=1

The results of the present paper will be illustrated numerically at the
following simple life insurance portfolio.

Example 2.2

Given is a portfolio of 1500 active persons insured against the risk of death. It
is divided into s = 3 age classes corresponding to the approximate ages
x = 30,40, 50 with probabilities of death q30 = 0.00051, qm = 0.00114,
g50 = 0.00344 borrowed from the EVK80 table, which is the life table of the
" Eidgenossiche Versicherungskasse" used in Swiss pension insurance for
rating risk of death and disability. Each age class is subdivided into r = 5 risk
sums subclasses with lump sums 500'000, l'000'000, l'500'000, 2'000'000 and
2'500'000. Choosing a risk unit of A = 500'000, this means that mk = k,
k= 1, 2, ..., 5. The number nki of persons in each of the 15 subclasses is as
follows:

i= 1
i = 2
« = 3

yfc= 1

200
100
50

A: = 2

150
100
50

«*••

A: = 3

50
100
200

yfc = 4

50
100
100

/ t = 5

50
100
100
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The structural parameters a,-, /?, defining the structural density in (2.4) are to
be estimated. Usually this step depends heavily on the application as well on
the knowledge of the situation. Let us illustrate a simple estimation procedure
that applies to the typical case of the mortality risk in life insurance. One can
set 9j = qx for a certain age x, which is interpreted as un unknown conditional
probability of death, given alive at age x. As a possible method to estimate
a,, pt, we propose to use the estimate q* of qx given by the life table as well as
an estimate of the uncertainty in the estimation of qx. In other words estimate
a,, /?, by solving the moment equations

(2.6) E[qx] =
Pi

Var [qx] = a,-

and using estimators of the mean and variance of qx. One can take q* s E[qx]
and a good approximation of the variance of qx is given by

(2.7) Var [qx] s

where Ex is the exposure, that is the number of risk years under observation for
the estimation of qx in a life table (e.g. LONDON (1988), chap. 6.2, p. 115). It
follows that

(2.8) Pi = «* = fitqi

For the EVK80 table it is known that the total exposure Z Ex for the active
ages between 20 and 65 is 470'937. A rough approximation is thus Ex m lO'OOO.
In our example one has

(2.9)
10000

= 10005.103, = 5.103,
1 — <?30

10000
p2 = = 10011.413,

1 - 0 4 0

10000
03 = = 10034.519,

1 - 0 5 0

<X2 =

= 03050 = 34.519,

According to (2.5) the expected value of the aggregate claims is equal to
E[X] = 3'973'500. Since a,//?, = qx this is equal to the expected value of
aggregate claims evaluated using the life table in the traditional way.

Remarks

(i) In Section 5 we will assume that the amounts at risk mk are non-negative
integers. This is an assumption made in most papers of present-day
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applied risk theory. However in pension insurance negative amounts at
risk often occur. In this case special mathematical treatment is needed (see
e.g. HURLIMANN (1991) and the relevant references mentioned there).

(ii) Since J*r(Xki=j\0,) and «,(#,) are Poisson, resp. Gamma distributed, it
follows that the unconditional probability Pr (Xki = j) belongs to the
negative binomial distribution.

3. LINK TO THE COLLECTIVE MODEL OF RISK THEORY

Before undertaking the Bayesian analysis of the linear multivariate Poisson
Gamma Bayesian model, we show that it actually identifies with a Bayesian
version of the classical collective model of risk theory.

First of all we derive a simple formula for the likelihood f(x\ff) of an
aggregate claims observable

(3-1) X = Yj
k=\ i=\

in the Bayesian set-up of Section 2. Consider the matrix x = (xki)
T =

(xl, ..., jcs)
r of dimension sxr, where x; = (xu, ..., xn), i = I, ..., s, are row

vectors of dimension r, and the scalar

(3.2) x,= ( i» l r ) i =

where o denotes matrix multiplication and lr = (1, ..., l ) r is a unit vector of
dimension r.

Let m = (mi, ..., mr)
T be the vector of possible claim amounts. The scalar

product of vectors is denoted by the bracket <•,•). Then the aggregate claims
observable x may be indifferently identified as scalar product, sum of scalar
products, and sum of scalars:

s s r

(3.3) x= (x°m,ls) = Y (xiT,™)= Y Z xkimk,
i=l i=l k=\

where 1, = (1, ..., l ) r is a unit vector of dimension s. The above notations are
also defined for the random variable X instead of x and are used throughout.
By assumption one has

(3.4)
Y Vr(Xki = xki,k=\,...,r,i=\,...,s\d)

(xom, ls) = x

z n n
(xom,l,) = x (=1 k=\
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where the sum goes over all non-negative integer solutions xki, k= 1, . . . , r,
i=l,...,s, to the linear inhomogeneous Diophantine equation
(JC o m, 1,) = x, and p(xki\8i) = T>i(Xkj = xki\8,). For later use we set for
short

(3.5) p{x\B)= [ ] f ] p{xu\0d.
1=1 k=l

Therefore the likelihood density is given by

(3.6) f(x\0)= X p{x\O).
(x o m, 1,) = x

To obtain the desired link with classical collective risk theory, let us show the
following mathematical result.

Proposition 3.1

Assume that the stochastic system of aggregate claims (X, 0) satisfies the model
assumptions (I) and (II) of Section 2. Then the likelihood density of aggregate
claims is conditional compound Poisson of the form

(3.7) f(x\9) = £ q{n\6)h*n{x\8), with

n\

where n, = J ] nk; is the number of risk units producing claims with proba-

bility 8t,

h(x\6) = i-^-, if x = mk,k=\,...,r,1 m
0, else,

Proof:

(GERBER (1979), pp. 13-14). Since Xki given 8j is Poisson distributed with
parameter djnki, the conditional moment generating function of the random
variable mkXki is equal to

(3.8) Mki(t, 6»,) = E[emA-\e^ = ee'n-'(e""^l).
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With the conditional independence assumption of (I) one obtains

(3.9) Mx(U9) = E[e'x\d]=Y\ f ] Mki(t,6,)
i=\ k=\

k=\

But this is the conditional moment generating function of a conditional
compound Poisson distribution with likelihood (3.7). The result is shown.

The above proof actually identifies the linear multivariate Poisson Gamma
Bayesian model with the following compound Poisson Gamma Bayesian collec-
tive model of risk theory. One has

(3.10) X = 2 , Y,,

and the following model assumptions are fulfilled:

(I') Conditionally on 0 the random variables Yu ..., YN, N are independent
and the Yk's are identically distributed, that is Yk = Y for all k. The
random variable N depends upon 0 through the likelihood density q{n\0)
and Y depends upon 0 through h(x\0) both defined in (3.7).

(II') The structural densities w,(#,) are Gamma densities given by (2.4).

Research problem

It has been shown that the Bayesian model (I), (II) identifies with the Bayesian
model (F), (II'). In general, that is when p(xki\0j) and q{n\0) are not
conditionally Poisson distributed, the models (I), (II) and (I'), (II') will not
coincide. It seems true that they will coincide only in the Poisson case.

4. BAYESIAN ANALYSIS OF THE LINEAR MULTIVARIATE
POISSON GAMMA MODEL

Given statistically independent observations of the claims for the different
amounts at risk, Bayesian analysis allows to up-date the aggregate claims
model. Taking into account available past information, it is thus possible to
make predictions about the "true" aggregate claims model associated to a
portfolio of risks.

In the first subsection we derive the ubiquitous parameter posterior density
f(0\D) given a data set D. It allows to calculate the posterior-to-data expected
value E[g(0)\D] for any function g(0) of the parameter vector 0. In particular
one obtains E[0\D].

In the second subsection we are interested in predictions about the random
variable Y of future aggregate claims in the Bayesian model (I), (II). Given a
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data set D, the predictive mean £ [710] is directly obtained from the formula
for E[0\D], while for the calculation of the predictive density f(y\D), defined
by JEWELL (1974), one needs the formula for f(8\D) obtained in the first
subsection.

4.1 Posterior-to-data parameter estimation

The observation likelihood density of the Bayesian model (I), (II) has been
derived in Section 3, formula (3.5). Let us write

(4.1) p(x\6)= -°>"-e?-e?-C(xd, with

<>=n »*7
k=\ Xki\

Consider now the data likelihood density f{D\0) for an observation data
matrix D = {xm, ..., x(n)) of dimension sx(n-r) containing n statistically
indepedent observation matrices x(-') = {xk

(p)T of dimension sxr, which repre-
sent the claims (same notation as in Section 2 with the additional superscript
(j) numbering the observation).

Related quantities of interest are the row vectors jc/y) = (x[p, ..., x// ') of
dimension r and the scalars

(4.3) x\» =
k=\

Consider the vector D,- = (x\X), ..., jr/B)) of dimension n• r such that
D = (Dl,...,Ds)

T. The scalar

(4.4)
7 = 1

represents the total number of claims with unknown probability of occurrence
61, and turns out to be a sufficient statistic for the considered model. One
obtains

U)\6) =(4.5) f(D\6) = [ ] p{xU)\6) =

To simplify set

n

n0""eJ> f ]
J=i

nn
/ = i . / = i
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Then one has
s

(4.7) f{D\B) = C(D) '

From this representation one gets the data probability density by evaluation
of a multiple integral, which separates as follows:

(4.8) /(/>) = | \f(D\0)u(0)d0=C(D)' ' ' ?l'e'' ' ~r= [ [f(D\0)u(0)d0=C(D)f\ f
J J M J

M
It follows that the parameter posterior density is given by

(4.9) f(6\D) = ̂ ( Z ) ) " ( 6 > ) = FT Gamma (0,; at, b}, with
f(D) M

(4.10) a, = a , + 7;, bt = pt + mt, i=l,...,s.

One sees that it is of the same form as the structural density with up-dated
hyperparameters.

At this stage the posterior-to-data expected value E[g{0)\D] of any function
g (0) is obtained by evaluation of the multiple integral

(4.11) E[g(0)\D]= j" j" g(0)f(0\D)d0.

In particular one gets

(4.12) • - J J ej{0\D)dd,...

4.2 Posterior-to-data predictions

Future observations of the aggregate claims and related quantities are written
with the letter y instead of x. Our object of study is now the random
variable

r s

(4-13) 7=<Fom, l s >= X m*X Yki
k=l i = l

representing future aggregate claims in the Bayesian model (I), (II). Immediate

https://doi.org/10.2143/AST.23.1.2005101 Published online by Cambridge University Press

https://doi.org/10.2143/AST.23.1.2005101


PREDICTIVE STOP-LOSS PREMIUMS 65

and of primary importance is the predictive mean of the aggregate claims. Using
(4.12) it is obtained as follows:

(4.14) E[Y\D] = Ee[E[Y\0, D]] = Ee 6, X mknu\D
i=\

Z kki Z — Z mknki-
i = l k=\ i = l ft; / t= l

If Z) is the empty set, corresponding to the situation in which no observation
is available about the portfolio of risk, one has

s r

(4.15) E[Y] = E0[E[Y\d]] = £ — £ mknu,
1=1 Pi *=i

clearly the same expression as given in (2.5). In the case of life insurance this
means that the expected value of aggregate claims is evaluated according to the
life table when no data experience is available.

If D is a non empty set, one has n > 1, and using (4.10) the formula (4.14)
may be rearranged to yield the following multivariate credibility formula:

(4.16) E[Y\D]= Z ((1-Z,)-£[0,.H,.] + Z , - ] J 1 £ «*«„), where
i = i [ n ) \nt t=i J

Z, = '— is a credibility factor,
fit + m,

,«,] = «,—- is the expected number of claims with unknown probability

^' of occurrence #,,

T
— is the observed mean number of claims with unknown

probability of occurrence 0,

mknki is t n e mean amount at risk for risk units subject to claims
W/ k=i with probability 0l.

To evaluate predictive or exact Bayesian stop-loss premiums, one needs besides
the predictive mean also the predictive density f(y\D) of the future aggregate
claims. Due to the simple structure of our model, it is not difficult to obtain an
explicit analytical formula for the predictive density. With the future observa-
tion of aggregate claims y = (y ° m, ls> one has from (3.6) and (4.1)

s

(4.17) f(y\6)= Z P(y\V= Z II C(yde-"""61>.
(yom, l,)=.v (yom, \^)=y i= 1
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The predictive density, which by the way is known to be the unbiased
least-squares estimate off(y\0T) for the true value 0T of 0 (e.g. JEWELL (1974)),
is obtained by evaluating the multiple integral

(4.18) f(y\D) = f f f(y\0)f{O\D) dO.

Using (4.9) and (4.17) the multiple integral separates as follows:

(4.19) f(y\D) =
<yom,l,) = y ,= 1

= z n
i—i 1

(yom,ls) = y ,=

Using (4.2) and rearranging one obtains the analytical representation

n

5. A RECURSIVE ALGORITHM FOR PREDICTIVE STOP-LOSS PREMIUMS

In this section we assume for simplicity that mk = k, k = 1, ..., r, that is
m = (1, ..., r). Other notations remain the same.

Consider the new random variables

Y' = 2 J kYki, with realizations

y' =

The set of all non-negative integer solutions to the Diophantine equation

(5.1) 0>om,l s >= £ X kyki = y
1=1 /t=i

is in one-to-one correspondence with the set of all non-negative integer
solutions to the simultaneous Diophantine equations

s r

(5.2) X yi = y> <yiT>m>= X
*:=!
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Moreover each Diophantine equation

(y*, ni) = y\ i=l,...,s,

is in one-to-one correspondence with the infinite number of simultaneous
Diophantine equations

(5.3) (yi
T,m)=yi, yu = kt, kt = 0, 1,2, ...

Using these correspondences the expression (4.20) for the predictive density
can be rearranged as follows

(5.4) f(y\D) = n b,
•Ski,...,K{y\...,ys),

Sku....k.{y\...,/)= nn
y , y y

>,- = * , •

Using Poisson likelihoods this last expression can be written as

(5-5) fl P o

>=y 1=1 *= 1

"fa

n
1=1

n
yi

T,m}=y> k=\

Let us show how an expression in curly brackets can be evaluated. Each of
these sums defines a function of the form

r

(5.6) gk(y) - Z I ! ¥O(XJ;AJ), lj > 0 the Poisson parameter,
xeSrk j=\

= \xeSy:

Sy = { x = (x,, ... ,xr): 2_,
{ 7 = 1
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Applying algorithm 2 in the Appendix, one finds that gk(y) can be
computed recursively using the formulas

r k

(5.7) go(y) = e-l-d(y), X = £ k}, kgk{y) = £ *(c/*ff*-<) 00,
7 = 1 1=1

where the functions c({z) are defined by

(5.8) c,.(z)
0, else,

with c{i,j) determined by the recursive relation

(5.9) ic(i,j) Po (0; Xj) = / Po (i; A,) -
* = i

One checks immediately that

(Xj, i=\, y = 1, ... r
c(iy) =

0, else.

Hence one has ct{z) = 0, / > 1, and

0, else.

Therefore one obtains the following recursive formula

(5.10) 9o(y) = e'xS(y), gk(0) = 0,
min (r, y)

Apply this result to the recursive evaluation of the sum in (5.5) above. Define
functions g\(y), i = 1, . . . , s, recursively as follows:

(5.11)

min (r, y)

kg'k(y) = X! — — 9 ' k - i ( y - j ) , k=\,2,...

7=1 bi + rit

For use in numerical evaluation note that
(5.12) g ' k ( y ) ~ ^, i f y = 0 , \, . . . , k — l o r y > k - r ,

With (5.11) one obtains the following formula
s n,

(5.13) Sk k(y\ . . . ,^0 = F[ eb^giiy).
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Since g'k(y) = 0 for kt > y', it follows that

69

Remark

In the special case s = r = 1, one recovers the well-known negative binomial
density

f(ylD) -
fe+n

= 0,1,2, . . .

Using algorithm 1 in the Appendix, it is possible now t6 evaluate
formula (5.14) in a recursive manner as follows. Define

ai ni

t+n, g\(x).

Then one has from (5.14)

(5.16) f(y\D)= X

Using algorithm 1 one obtains the following recursive algorithm for the
exact evaluation of the predictive density:

(5.17)
1=1

)" '

yf(y\D)= J j - l X c(j,k))-f(y-j\D), y= 1,2, . . . ,
7=1 ( fc=l J

(5.18) jc(j,k)fk(O)=jfk(j)-

the/t(y)'s being themselves recursively computed using formulas (5.11) and
(5.15). Note that according to (5.12) only summands for which g'k(y) 4 0 are
calculated in (5.15). It is important to remark that the numerical process to
evaluate f(y\D) involves a three-stage nested recursive scheme. Indeed the
functions g'k(y), c(j,k) and f(y\D) are successively recursively computed.
However the computation process needs only finitely many operations. The
numerical illustration of the next section is based on a concrete computer
implementation of the present algorithm.

https://doi.org/10.2143/AST.23.1.2005101 Published online by Cambridge University Press

https://doi.org/10.2143/AST.23.1.2005101


70 WERNER HURLIMANN

Formulas for the recursive evaluation of predictive stop-loss premiums are
now easily obtained. For each non-negative integer T let

(5.19) SL(T\D) = E[(Y-T) + \D]

be the predictive stop-loss premium to the priority T. Then one has the
recursive relations

(5.20) SL(0\D) = E[Y\D],

SL(T+1\D) = SL(T\D)-l+F(T\D), T=0 , 1,2,...,

F(0|D)=/(0|D),

F(T\D) = F(T-l\D)+f(T\D), T= 1,2,...

Note that the predictive mean .E^FIZ)] is computed according to the
credibility formula (4.16).

6. A NUMERICAL EXAMPLE

The following tables are based on the simple example 2.2. They illustrate
several extreme situations of interest.

The needed structural parameters a,, /?,-, i= 1, 2, 3, have been estimated in
Section 2. Given an n-year observation period, the up-dated hyperparameters
are

where 7]- is the number of observed deaths in age class ;' over n years.
If in the linear multivariate model of Section 2 the 0,-'s are assumed to be

known with certainty (e.g. the traditional qx of the life table) and the Xki are
independent and Poisson (#,) distributed, one gets the traditional collective
model of risk theory, that is the usual compound Poisson approximation of the
exact individual model of aggregate claims. In Table 1 we compare this
classical model with the no data predictive density obtained by setting n = 0,
T,\ = 0, i — 1, 2, 3. Table 2 shows the dependency of the predictive distribution
and stop-loss premiums upon claims experience. The time of observation is
fixed to n = 5 years and 7] varies. In Table 3 the dependency upon time is
illustrated assuming an extreme no claims experience over several periods of
observation.

Concerning the displayed figures, note that sometimes, due to rounding
effects, the cumulative probability may be one, while the corresponding
stop-loss premium may not be zero.

TABLE 1

COMPOUND POISSON (CPM) VS. NO DATA PREDICTIVE MODEL (DPM)

CPM DPM

Expected value 3'973'5OO 3'973'500
Standard deviation 2'697'638 2'755'165
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Aggregate claims
Cumulative probability

CPM DPM

Stop-loss premiums

CPM DPM

20 A
30 A
40 A

0.7131
0.9769
0.9993
1.0000

0.7120
0.9743
0.9990
1.0000

680'833
41'324

l'12O
16

703'125
48'057

1'618
32

TABLE 2

DEPENDENCY ON EXPERIENCE BY FIXED TIME O F OBSERVATION (n = 5)

T\
T2

T,

Aggregate
claims

0
0
0

3'180'542

2'454'680

0
1
3

3'437'942

2'553'414

Claims experience

1 1
2 3
5 8

Predictive mean

3'673'506 3'930'906

Standard deviation

2'637'293 2'729'429

Predictive cumulative probability

2
4

10

4'166'469

2'808'054

2
4

14

4'429'742

2'897'092

0
10^
20 A
30 A
40 A

0.13568
0.81224
0.98971
0.99976
1.00000

0.11602
0.78071
0.98582
0.99961
0.99999

0.09920
0.75113
0.98155
0.99941
0.99999

0.08483
0.71777
0.97584
0.99911
0.99998

0.07253
0.68700
0.96979
0.99875
0.99997

0.06202
0.65213
0.96179
0.99819
0.99995

Aggregate
claims Predictive stop-loss premiums

0
KM
20 A
30^
40,4

3'180'512
394778

17'059
352

4

3'437'942
483'804

24'405
590

8

3'673'506
572'673
32'805

904
14

3'930'906
680'274
44'538

l'4O9
26

4'166'469
785'832

57'477
2'041

42

4'429'742
914'391

75'378
3'037

71

n

DEPENDENCY

1

0.04760
0.04757
0.04746

TABLE 3

ON TIME OF OBSERVATION FOR NO CLAIMS EXPERIENCE

2

0.09087
0.09081
0.09062

Observation

3

Credibility

0.13038
0.13031
0.13004

period

4

factors

0.16660
0.16651
0.16619

5

0.19992
0.19982
0.19945

10

0.33322
0.33308
0.33257
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Predictive mean

Aggregate
claims

0
10A
20 A
30 A
40 A

Aggregate
claims

0
lOzf
20 A
30^
40 A

3'784'779

2'686'154

0.09364
0.73655
0.97885
0.99926
0.99999

3'784'779
621'345

38'469
1-164

21

3'613'172

2'622'212

3'456'452

Standard

2'562'622

3'312'762

deviation

2'506'912

Predictive cumulative probability

0.10401
0.75856
0.98249
0.99945
0.99999

0.11451
0.77836
0.98541
0.99959
0.99999

0.12507
0.79618
0.98778
0.99969
1.00000

Predictive stop-loss premiums

3'613'172
551'480

31'048
849

14

3'456'452
491-478

25'251
626

9

3'312'762
439'688

20'685
467

6

3'180'542

2'454'680

0.13568
0.81224
0.98971
0.99976
1.00000

3'180'542
394'778

17'059
352

4

2'651'420

2'235'012

0.18815
0.87230
0.99532
0.99993
1.00000

2'651'420
241'494

7'106
98

1

APPENDIX

In order to be self-contained, as well as for the convenience of the reader, the
main results of HURLIMANN (1990a) are reproduced without proof.

Let Xj,j: ~ 1, 2, ..., be mutually independent random variables taking values
in the non-negative integers. Let/(2) = Pr {Xj = i) and assume that/}(0) > 0.
Consider a linear combination of random variables

(A.I) 7 = akXk akeN0
k=\

Assume that a{ > a2 > .•. > ak > 0, k= 1,2, .... Given the ak's and the
fj(i)'s, the following two-stage nested recursive algorithm for the exact
computation of f(y) = Pr (Y = y) is available (Theorem 1 in HURLIMANN
(1990a)).

Algorithm 1

Under the above conditions one has

(A.2) = n f
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If y > 0 then one has
\ylak]

(A.3) yf{y)= £ «t £ «:(*, *)/( ?-*!*)

(A.4) = Z * Z a*c(j,fc)/(y-Mjt).
*=1 fce/w,]

In these formulas

(A.5) Iy = {k:0<ak<y},

(A.6) /oo = {k:a f c >0},

(A.7) [j>] is the greatest integer contained in y,

and c (s, k) is determined by the recursive relation
s-l

(A.8) sc(s, k)fk(0) = sfk(s)- X 7CU *)/*(*-i)•
7=1

The apparent complexity of Algorithm 1 is reduced by abstraction as
follows. For each s = 1, 2, . . . , define

fcCs, fc), if 2 = 5 ^ for some A:,
(A.9) c,(z) = {

( 0, otherwise.

Note the index notation error in HURLIMANN (1990a), where the indices s, k
must be exchanged in order to yield correct practical results. With the change
of variable z = sak the relation (A.4) can be rewritten as

y oo

(A.10) yf{y)= £ *Z cs(z)f(y-z).

Then set A = — In {/(0)} and define the function

1
(A.11) h{z) = -

A.

Then Algorithm 1 is equivalent to the simple Panjer-like recursion

The second important computational result contained in HORLIMANN

(1990a), theorem 2, concerns an alternative recursive procedure to evaluate
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f(y). For this one considers for each y e No the Diophantine set

{= {x = (0,...,0,xk+l,xk+2,---,xkf),xkl)+l,...):xkeN0,
{

consisting of all non-negative integer solutions of the linear equation

k=\

In this definition

f max {k : ak > x}, if x < a{,
k-x = {

{ 0, if x>ax.

and it follows that

From the independence of the X/s, one deduces that
k.

xeSy jely 7=1

Consider the following subsets of Sy:

(A.15) Sy,k = l x e S y :

and define functions

(A.16) dk()>)= Cy YJ 0 •//(*/)> keN0,

with the convention that gk(y) = 0 whenever the sum is empty. From (A.14)
one sees that

(A.17) f(y)= X 0*00-
k = 0

Algorithm 2 shows how to compute f(y) by the successive recursive
evaluation of gk(y) using the ck(y)'s defined in (A.9).

Algorithm 2
One has the following recursive formula

7=1
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It is important to observe that Algorithm 2 is a Panjer-like recursion in the
space of discrete distributions with addition and convolution as operations. It
is worthwile to mention that Algorithm 2 generalizes the results obtained
through the shovelboard approach of VAN KLINKEN (1960) recently revisited
by ALTING VON GEUSAU (1990).
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