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THE ALGEBRA OF STABLE OPERATIONS FOR p-LOCAL 
COMPLEX ^-THEORY 

BY 

KEITH JOHNSON 

ABSTRACT. The multiplicative structure of the algebra of stable oper­
ations for /7-local complex /f-theory is studied, and the units and zero 
divisors are identified. 

This paper is devoted to studying the structure of the algebra of stable degree 0 
operations of complex AT-theory localized at a prime p. This algebra is large, in fact 
uncountable, as was shown in [2], and its additive structure is that of the dual of a free 
Zip) module. We will be concerned with its multiplicative structure. 

Our results are: 

THEOREM 1. 

(i) The stable degree 0 operation a is a unit iff the homomorphism 

is an isomorphism. 
(ii) The only zero divisors in the algebra of stable operations of degree 0 are those 

arising from the Adams splitting of K if p is odd or from the relation 

(^i + ^-i)(^> _ ^ - i ) = 0ifp = 2. 

Here V denotes the i-th Adams operation. It follows from the second part of this 
theorem that in the corresponding algebra for unlocalized A'-theory the only zero 
divisors are those described above for the case p = 2, a result due to Geoff Mess [5]. 

COROLLARY 2. For p an odd prime the algebra of stable operations of degree 0 of 
one of the Adams summands of K is an integral domain and a local ring with residue 
field Z/pZ. 

The proof of this theorem is contained in section 2. Section 1 is devoted to recalling 
some known results about complex AT-theory which are required in the proof. 

§1. Let us denote by K the spectrum representing complex AT-theory localized at a 
prime p. The main result in [2] was established by showing that K°K is the Hopf algebra 
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dual to K0K (i.e. Hom(K0K,Z{p))). This later Hopf algebra had been investigated 
previously in [1]. There, the unlocalized analog of K0K was described as the Hopf 
algebra of Laurent polynomials in one variable over Q satisfying a certain integrality 
condition. Since that description is the starting point for our results we begin by 
recalling its /?-local version and fixing some notation. 

THEOREM 3. The natural map 

K0K-+ K0K®Q = Q[w,w~l] 

is injective, and its image consists of the set of Laurent polynomials f{w) satisfying the 
condition that for any integer k prime to p, f(k) E Zip) 

NOTATION 4. Let us denote by C this Hopf algebra of Laurent polynomials and by 
B the intersection ofC with Q[w] (the coproduct for these Hopf algebras is determined 
by the formula i|>(w) = w 0 w). Also, let us denote by A the Hopf algebra consisting 
of those polynomials f(w) E Q[w] with the property that f(k) E Z(p)for all k E Z. 

We may, therefore, represent a stable degree 0 cohomology operation by a homo-
morphism a E Hom(C,Z(p)) = C*. In [4], theorem 1, it was shown that for such an 
a the numbers a(w"), n E Z, (which correspond to the action of a on Tr2n(K)) satisfy 
certain congruences. Furthermore a set of congruences was constructed which is com­
plete in the sense that a squence {\„\n E Z} satisfying these congruences equals 
{a(w")|A2 E Z} for a unique operation a. This allows us to construct stable operations 
by specifying the numbers \ „ . We will exploit this to identify the units in K°K. 

To investigate the zero divisors in K°K we will also need to know how the Adams 
splitting of K is reflected in the algebraic description of K0K above. 

NOTATION 5. Let us denote C H Q[wp~\w~{p~l)] by C0 and B H Q[wp~l] by BQ. 

PROPOSITION 6. ([3], Lemma 1.1). 

§2. The first part of the theorem 1 will follow from: 

THEOREM 7. a E C* is a unit ijfa(wn) E Zfp)for all n. 

PROOF. We first note that the product in C* is given by (a]'a2)(w
n) = 

a](w
n)-a2(w

n). Thus we will be done if we can show that the numbers 

{\/a(w")\n = . . . , - 2 , - 1 , 0 , 1 , 2 , . . . } 

satisfy the appropriate congruences of theorem 1 of [4]. 
Since a(l) E Zfp) we may assume, by dividing if necessary, that a(l) = 1. Also, by 

replacing a by ap~] if necessary, we may assume that a(w") = 1 (mod/?) for all n. 
Thus we may write a = 1 + â with a(wn) = 0(mod/?). 

Let us define p„ = S"=0 ( - l ) ' â ' . Then (3„a = 1 ± a"+1 and so we have: 

$„a(w") = 1 (modpn + ]) 
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Since p„ is a well defined element of C* the numbers \m = P„(wm) satisfy the 
congruences of theorem 1 of [4], and also \m = \/a(wm) (modpm+]). Choosing n > 
yp(k\) we see that the numbers l/a(wm) satisfy the first k of these congruences. Since 
we are free to choose n arbitrarily large, the result follows. 

Based on this theorem we see that C*is a local ring. Indeed, writing x = wp~ ', the 
set of non-units consists of those a for which a(jcm) is /^-divisible in Zip) for some m, 
and so for all m since (x — \)/p E C0. This clearly forms an ideal. 

To describe the zero divisors among the stable operations it suffices, by proposition 
6, to describe those in B* and C*. This is accomplished by: 

THEOREM 8. If a, (3 E B*or C* are such that a • P = 0 then: 
(i) if p is odd, then either a = 0 or (3 = 0 or both. 

(ii) if p — 2 then either a — 0 or (3 = 0 or 

2a = âOP1 ± W]) 

and2p = p ( ^ ! ± ^F1) 

The proof of this theorem will occupy the remainder of the paper and rests on the 
following proposition concerning the possibilities for the kernel of elements of C*and 
Bo*: 

PROPOSITION 9. If a E B%or C*is such that a(x') = 0 if n\i then 
(i) if p is odd or p — 2 and n is odd, then a = 0. 

(ii) if p, n are both even, then a(x2') = 0 for all i. 

PROOF. We will establish the result for a E B*first, and deduce the general result 
from this. Let n — pab, (b,p) = 1. Since (xpm — \)/pm+x E B for any m, we have, 
for all /: 

a(jt') = a(xi+pm)(modpm+l) 

Thus, given / such that pa\i we may find k, I such that kn — lpm = i, k,l > 0 and 
so have: 

a( i ' ) = a(xi + lpm) 

= a(xkn) 

= 0(modpm+l) 

Since this is true for any m, we see that a(x') = 0 if pa\i and so we may assume with 
out loss of generality that b — 1. In particular, if n is relatively prime to p we are 
finished. 

REMARK 10. The preceding argument would be sufficient to prove the analogous 
theorem concerning unlocalized AT-theory. We would simply choose p so that 
pip — 1) is relatively prime to n. 

NOTATION 11. Let Ba = B0 H Q[xpa] and Ca = C0 H Q[xC]. 
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It will be sufficient for us to show that for all a 

Hom(B0/Ba,Z{p)) = 0 

if p is odd and 

Hom{BjBa,Z{p)) = 0 

if p = 2, and the corresponding result for C. 
First, let us suppose that p is odd. Since any polynomial in B0 can be expressed in 

the form g((x — \)/p) with g E A, the polynomial (x — \)/p plays a distinguished role 
in our proof. We will begin by showing that it can be approximated modulo pm in 
each Ba. 

LEMMA 12. For any positive integer m there exists fm{x) E Ba such that for any 
integer k, 

fm{\ + kp) = k(modpm) 

PROOF. We construct the polynomials fm inductively. To begin, let /I(JC) = 
(xp'n — l)/pm+]. We then have, for any integer k: 

/,(1 + kp) = k + p-gl(k) 

where g, E Zip)[x], and so g,(fc + Ip) = #,(/;)(mod/?). 
Suppose now that we have constructed fm(x) in such a way that for any integer k: 

fm(\ + kp) = k + pm-gm(k) 

with gm(x) E Z{p)[x]. Let us define: 

//n+iW =fm(x) - pm'gm(f\(x)) 

Certainly fm +, E Ba and g„(/i(l + A:/?)) = gn(k)(modp) so we have: 

/ w + 1 ( l + kp) = (k + pmgm(k)) - pmgm(Ml + kp)) 

= k(modpm+l) 

If we let gm+i(x) = (gm(x) - gm(x + pg\(x)))/p then 

/ m + I ( l + ^ ) - / : + /? '"+ ,-^+ 1( / :) 

and it is easily checked, using the binomial theorem, that gm+i E Z(P)[JC]. 

Using this lemma, we will now show that BjBa is p-divisible. This will imply that 
the first Horn group mentioned above is zero. Suppose tha t /E B0, that g E A is such 
that/(;c) = g(x — \/p) and that m is an integer large enough that if k = k! (mod/?™) 
then g(k) = g(k') (mod/?). Consider 

fix) - g(fn(x)) = g(x - \/p) - g(fm(x)) 

From the way we chose m, it follows that for any integer k, / ( l + kp) = g(fm{\ + 
kp))(modp) and so that/(x) - g(fn(x)) is divisible by p in B0. It is also clear that 
g(fm(x)) E Ba, since fm(x) is. Thus B0/Ba is /^-divisible. 
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For the case/? = 2 the polynomial (x - \)/p must be replaced by (x2 - l)/23. This 
is because: 

LEMMA 13. Iff(x) E Bx then f can be expressed in the form f(x) = g((x2 — l)/23) 
with g(x) E A. 

PROOF. Since / is even, we can certainly express it in the form above for some 
polynomial g(x). The question is whether g(x) E A. If x = 1 + 2k, then (x2 - l)/23 

= k(k + l)/2 and so g(k(k 4- l)/2) E Z(2) for any integer k. To see that this implies 
thatg(jt) EA, chooser large enough that 2ng (JC) £Z ( 2 )[ i ] . lfk = kf (mod 2") and g(k) 
E Z{2) then g(k') E Z(2) and so it will suffice to show that the congruence 

x(x + 1) = 2^(mod2") 

is solvable for any k. Using the quadratic formula we see that this is equivalent to 
showing that 1 + 8k is a quadratic residue mod2'!. This is well known. 

LEMMA 14. For any integer m there exists a polynomial fm{x) E Ba such that for any 
integer k, 

fn{\ + 2k) = k(k + l)/2 (mod2m) 

PROOF. AS in the case of /? odd, we construct the polynomials fm(x) inductively, 
starting with: 

Mx) = (x2a- \)/2a+2 

which we check has the property that 

/,(1 + 2k) = k(k + l)/2 + 2gl(k(k + l)/2) 

with g\(x) E Z(2)[x]. We then suppose that we have constructed fm(x) such that 

fa(l + 2t) = *(* + l)/2 + 2mgm(k(k + l)/2) 

with gm(x) E Zi2)[x] and define 

Certainly/m+ , (JC) E 5a , and we can check that/m+ ,(1 + 2k) has the required form 
in the same way as for odd p. 

We may now show that B\/Ba is infinitely 2-divisible. If f(x) E B\ with/(x) = 
g((x2 - l)/23) as in lemma 13, then/(jc) - g(fm(x)) is 2-divisible, if we choose 
m large enough, and g(fm(x)) E Ba. 

We have now established proposition 9 for a E B*. Suppose next that a E C*is such 
that a(jc') = 0 if /i|/ and that g(x) E C0 (E C, if p = 2) is such that a(g) ± 0. If we 
define cT(/) = a(x~p'"nf) with m chosen large enough that xp"lng(x) E B0, then a~ E 

(x') = 0 if n\i and a (g) =/= 0, a contradiction. 
Finally, we return to the proof of theorem 8. First suppose that p is odd, and that 

ap = 0. Fix a positive integer m, and suppose that there exists an integer k with 
1 < k < pm - 1 and $(xk+Jpm) ± 0 for all j . We claim that this implies that a = 0. 
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To see this note that we have a(xk+Jpm) = 0 for all j . If we define a E BQ or C0 by 
af(xr) = a(xr + k) then a' satisfies the hypothesis of proposition 9(i) with n = pm and 
so a' = 0. In the case a E C0 this shows that a(xr) = 0 for all integers r, and so that 
a = 0. In the case a E B 0 w e have a(xr) = 0 if r > k. Since {xpS - \)/ps+{ E £0 for 
any 5, we have a(l) = 0 (mod/rv + !) for any s, and so a(l) = 0. An application of 
proposition 9(i) with n = 2k now shows that a = 0 in this case also. 
We may, therefore, assume that, given k as above, there exists k' such that 

k = k' (mod/7'") and P(x*') - 0. Since (xpm - \)/pm + l Gfi 0 , P(JC*) = $(xk) (modpm + ') 
and so fi(xk) = 0(modpm+l). Since this is true for all m, P - 0. 

Next suppose that/? = 2, that a(3 = 0, and that a ^ 0. As before choose a positive 
integer m, and let fc = 0, 1,2,. . . , 2m — 1. Using proposition 9 we can show that we 
can find j such that $(xk + 2mj) = 0 

Case 1. for all n, fc. 
Case 2. for all ft, for all even k. 
Case 3. for all n, for all odd k. 
In case 1 we can show as for p odd that (3 = 0. In case 2 we can show that 

3(x2/) = 0 and a(x2l + l) — 0 for all /. Case 3 is the reverse of case 2. 
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