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ALGEBRAS OF ACYCLIC CLUSTER TYPE: TREE
TYPE AND TYPE Ã

CLAIRE AMIOT and STEFFEN OPPERMANN

Abstract. In this paper, we study algebras of global dimension at most 2 whose

generalized cluster category is equivalent to the cluster category of an acyclic

quiver which is either a tree or of type Ã. We are particularly interested in their

derived equivalence classification. We prove that each algebra which is cluster

equivalent to a tree quiver is derived equivalent to the path algebra of this tree.

Then we describe explicitly the algebras of cluster type Ãn for each possible

orientation of Ãn. We give an explicit way to read off the derived equivalence

class in which such an algebra lies, and we describe the Auslander–Reiten

quiver of its derived category. Together, these results in particular provide a

complete classification of algebras which are cluster equivalent to tame acyclic

quivers.

§1. Introduction

The classification of finite-dimensional algebras over an algebraically

closed field k up to derived equivalence is a crucial problem in representa-

tion theory. It has a complete answer for algebras of global dimension 1 (see

[H, Corollary 4.8]): two finite-dimensional k-algebras Λ = kQ and Λ′ = kQ′

are derived equivalent if and only if one can pass from the quiver Q to the

quiver Q′ by a sequence of reflections (as introduced in [BGP]). Therefore,

it is possible to decide when two hereditary algebras are derived equivalent

by simple combinatorial means. The aim of this paper is to apply results of

[AO1] in order to generalize this result to certain algebras of global dimen-

sion 2.
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2 C. AMIOT AND S. OPPERMANN

The notion of reflection of an acyclic quiver has been generalized by Fomin

and Zelevinsky [FZ] to the notion of mutation in their definition of cluster

algebras. Since then, categorical interpretations of the mutation have been

discovered via 2-Calabi–Yau triangulated categories. These created a link

between cluster algebras and representation theory. First, in [BMRRT, Sec-

tion 1], cluster categories CQ associated to acyclic quivers Q were defined as

the orbit categories Db(kQ)/S2, where S2 = S[−2] is the second desuspen-

sion of the Serre functor S of the bounded derived category Db(kQ). This

notion has been generalized in [A] to algebras of global dimension 2. In this

case, the generalized cluster category is defined to be the triangulated hull

in the sense of [K2] of the orbit category DbΛ/S2.

In this article, we study more explicitly the derived equivalence classes

of algebras of global dimension 2 which are of acyclic cluster type, that

is, algebras whose generalized cluster category is equivalent to some cluster

category CQ, where Q is an acyclic quiver. We use extensively the results and

the techniques of [AO1]. In particular, we use the notion of graded mutation

of a graded quiver with potential (graded QP), which is a refinement of

the notion of mutation of a quiver with potential introduced in [DWZ]:

associated to an algebra Λ, there is a graded Jacobian algebra Λ (see [K3,

Section 6.11]) whose degree 0 subalgebra is Λ. Graded mutation explains

how to mutate such graded Jacobian algebras. Then, from [AO1] we deduce

an analogue of the result for algebras of global dimension 1.

Theorem 1.1 (see Theorem 3.15). Let Λ1 and Λ2 be two finite-dimen-

sional algebras of global dimension 2. Assume that Λ1 is of acyclic cluster

type. Then the algebras Λ1 and Λ2 are derived equivalent if and only if one

can pass from Λ1 to Λ2 using a sequence of graded mutations.

The setup is especially nice when the algebras are of tree-cluster type.

Theorem 1.2 (see Corollary 3.16). Let Q be an acyclic quiver whose

underlying graph is a tree. If Λ is an algebra of global dimension 2 of cluster

type Q, then it is derived equivalent to kQ.

To get a complete understanding of algebras of tame acyclic cluster type,

in the rest of this paper we focus on the algebras of cluster type Ãp,q. To

such an algebra, using graded mutation, we associate an integer that we call

weight, which is zero when Λ is hereditary. We prove that two algebras of

cluster type Ãp,q are derived equivalent if and only if they have the same

weight (Theorem 4.5). Then a result of [AO1, Theorem 5.6], which shows
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ALGEBRAS OF ACYCLIC CLUSTER TYPE 3

that two cluster equivalent algebras are graded derived equivalent, permits

us to compute explicitly the shape of the Auslander–Reiten quiver of the

derived category.

Theorem 1.3 (see Corollary 5.5). Let Λ be an algebra of cluster type

Ãp,q and of weight w �= 0. Then the algebra Λ is representation-finite and

not piecewise hereditary. The Auslander–Reiten quiver of Db(Λ) has exactly

3|w| connected components:

• |w| components of type ZA∞
∞,

• 2|w| components of type ZA∞.

Finally, we use the explicit description of the cluster-tilted algebras of

type Ãp,q of [Ba] to deduce a description of all algebras of cluster type Ãp,q

in terms of quivers with relations.

This article is organized as follows. Section 2 is devoted to recalling results

on generalized cluster categories, on Jacobian algebras, and on 2-Calabi–Yau

categories. In Section 3, we apply the results of [AO1] to algebras of acyclic

cluster type. The special case of algebras of cluster type Ãp,q is treated in

Sections 4–6. We introduce the notion of weight and prove that it is an

invariant of the derived equivalence class of the algebra in Section 4. We

compute the shape of the Auslander–Reiten quiver of the derived category

in Section 5, and we describe these algebras explicitly in Section 6. We end

the paper by giving as an example the complete classification for Ã2,2.

§2. Background

Throughout this paper, k denotes an algebraically closed field. All cate-

gories appearing are k-categories, and all functors are k-linear. By an algebra

we mean an associative unitary basic k-algebra. For an algebra Λ, we denote

by modΛ the category of finitely generated right modules over Λ. We denote

by D the standard duality Homk(−, k) : (modk)op →modk.

2.1. Cluster-tilting objects and mutation in 2-Calabi–Yau cat-

egories

Definition 2.1. Let T be a Krull–Schmidt triangulated category, with

finite-dimensional Hom-spaces (Hom-finite for short) and 2-Calabi–Yau; that

is, there is a functorial isomorphism HomT (X,Y [2])∼=DHomT (Y,X) for all

objects X and Y in T . An object T is called cluster tilting if

add(T ) =
{
X ∈ T

∣∣HomT
(
X,T [1]

)
= 0

}
,

where add(T )⊂ T is the additive closure of T .
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4 C. AMIOT AND S. OPPERMANN

The endomorphism algebra of a cluster-tilting object T ∈ T is called a

2-Calabi–Yau-tilted algebra.

Theorem 2.2 ([IY, Theorem 5.3]). Let T be a basic cluster-tilting object

in a 2-Calabi–Yau triangulated category T . Let Ti be an indecomposable

summand of T ∼= Ti ⊕ T ′. Then there exists a unique (up to isomorphism)

object T ∗
i not isomorphic to Ti, such that μTi(T ) := T ′⊕T ∗

i is a basic cluster-

tilting object in T . Moreover, T ∗
i is indecomposable, and there exist triangles

in T
Ti

u
U T ∗

i Ti[1]

and

T ∗
i U ′ u′

Ti T ∗
i [1],

where u (resp., u′) is a minimal left (resp., right) add(T ′)-approximation.

2.2. Generalized cluster categories

Let Λ be a finite-dimensional k-algebra of global dimension at most 2.

We denote by Db(Λ) the bounded derived category of finitely generated Λ-

modules. It has a Serre functor that we denote by S. We denote by S2 the

composition S[−2].

The generalized cluster category CΛ of Λ has been defined in [A, Section 4]

as the triangulated hull of the orbit category Db(Λ)/S2 (see [K2] or [AO1,

Section 7] for more details on triangulated hulls). We will denote by πΛ the

triangle functor

πΛ : Db(Λ) Db(Λ)/S2 CΛ.

We set Λ := EndC(πΛ) =
⊕

p∈ZHomD(Λ,S
−p
2 Λ). By definition, this alge-

bra is naturally endowed with a Z-grading.

If Λ = kQ is the path algebra of an acyclic quiver, then the cluster cat-

egory CΛ = CQ has been introduced in [BMRRT, Section 1]; in this article

we call it the acyclic cluster category.

Definition 2.3. A finite-dimensional k-algebra Λ of global dimension at

most 2 is said to be τ2-finite if the algebra EndC(πΛ) =
⊕

p∈ZHomD(Λ,S
−p
2 Λ)

is finite-dimensional.

Theorem 2.4 ([A, Theorem 4.10]). Let Λ be a finite-dimensional algebra

of global dimension at most 2 which is τ2-finite. Then CΛ is a Hom-finite,

2-Calabi–Yau category, and the object π(Λ) ∈ CΛ is a cluster-tilting object.
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2.3. Jacobian algebras and 2-Calabi–Yau-tilted algebras

Quivers with potentials and the associated Jacobian algebras have been

studied in [DWZ]. Let Q be a finite quiver. For each arrow a in Q, the cyclic

derivative ∂a with respect to a is the unique linear map

∂a : kQ→ kQ

which sends a path p to the sum
∑

p=uav vu taken over all decompositions

of the path p (where u and v are possibly idempotent elements ei associated

to a vertex i). A potential on Q is any (possibly infinite) linear combination

W of cycles in Q. The associated Jacobian algebra is

Jac(Q,W ) := kQ̂/〈∂aW | a ∈Q1〉,

where kQ̂ is the completed path algebra (i.e., the completion of the path

algebra kQ at the ideal generated by the arrows of Q), and 〈∂aW | a ∈Q1〉
is the closure of the ideal generated by ∂aW for a ∈Q1.

A cluster category C(Q,W ) associated with any quiver with potential

(Q,W ) is constructed in [A, Section 3]. This construction uses the notion of

Ginzburg dg algebras. We refer the reader to [A] for explicit details. When

the associated Jacobian algebra is finite-dimensional, the category C(Q,W )

is 2-Calabi–Yau and endowed with a canonical cluster-tilting object T(Q,W )

whose endomorphism algebra is isomorphic to Jac(Q,W ). The next result

gives a link between cluster categories associated with algebra of global

dimension at most 2 and cluster categories associated with quiver with

potential.

Theorem 2.5 ([K3, Theorem 6.12a]). Let Λ= kQ/I be a τ2-finite algebra

of global dimension at most 2 such that I is generated by a finite minimal

set of relations {ri}. (By this we mean that the set {ri} is the disjoint union

of sets representing a basis of the Ext2Λ-space between any two simple Λ-

modules.) The relation ri starts at the vertex s(ri) and ends at the vertex

t(ri). Then there is a triangle equivalence

CΛ ∼= C(Q,W ),

where the quiver Q is the quiver Q with additional arrows ai : t(ri)→ s(ri),

and the potential W is
∑

i airi. This equivalence sends the cluster-tilting

object π(Λ) on the cluster-tilting object T(Q,W ).

As a consequence, we have an isomorphism of algebras:

EndC(πΛ)∼= Jac(Q,W ).
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6 C. AMIOT AND S. OPPERMANN

Definition 2.6. A potential W on a quiver Q is said to be rigid if any

cycle p of Q is cyclically equivalent to an element in the Jacobian ideal

〈∂aW | a ∈Q1〉.
By [DWZ, Corollary 6.11], rigidity is stable under mutation, and it implies

that the Gabriel quiver of the Jacobian algebra has no loops or 2-cycles.

We end this section with two results linking the mutation of quivers with

potential and mutation of cluster-tilting objects in cluster categories.

The first result links the mutation of cluster-tilting objects in the acyclic

cluster category and the mutation of rigid quivers with potential defined

in [DWZ, Section 5]. Acyclic cluster categories are equivalent to stable

categories of some Frobenius categories associated to a certain reduced

expression in the corresponding Coxeter group [BIRS1, Theorem II.3.4].

By [BIRS2, Corollary 6.7], these categories are all liftable (see [BIRS2, Sec-

tion 5] for definition). Therefore, we get the following.

Theorem 2.7 ([BIRS2, Corollary 5.4(b)]). Let Δ be an acyclic quiver,

and let T be a basic cluster-tilting object in the cluster category CΔ. Assume

that there exists a quiver with rigid potential (Q,W ) with an isomorphism

EndCΔ(T )
∼= Jac(Q,W ).

Let i be a vertex of Q, and denote by Ti the indecomposable summand of

T ∼= Ti ⊕ T ′ corresponding to i. Then there is an isomorphism

EndCΔ
(
μTi(T )

)∼= Jac
(
μi(Q,W )

)
,

where μTi(T ) is defined in Theorem 2.2 and where μi(Q,W ) is the mutation

at i of (Q,W ) as defined in [DWZ, Section 5] (see also Section 3.2 for

definition).

The second result gives, for two quivers with potential linked by a muta-

tion, an equivalence between the associated cluster categories.

Theorem 2.8 ([KY, Theorem 3.2]). Let (Q,W ) be a quiver with rigid

potential whose Jacobian algebra is finite-dimensional, and let i ∈Q0 be a

vertex. Then there exists a triangle equivalence

C
(
μi(Q,W )

)∼= C(Q,W )

sending the cluster-tilting object Tμi(Q,W ) ∈ C(μi(Q,W )) onto the cluster-

tilting object μTi(T(Q,W )) ∈ C(Q,W ), where Ti is the indecomposable sum-

mand of T(Q,W ) associated with the vertex i of Q.
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As a consequence, we get an isomorphism of algebras

EndC(Q,W )(μTi(T(Q,W )))∼= Jac
(
μi(Q,W )

)
.

For a sequence s = (i1, . . . , ir) of vertices of Q, we denote by μs the

composition μir ◦ μir−1 ◦ · · · ◦ μi1 , and we denote by μs− the composition

μi1 ◦ μi2 ◦ · · · ◦ μir .

For a bijection between {1, . . . , n} and the indecomposable summands

of a basic cluster-tilting object T , we obtain a natural bijection between

{1, . . . , n} and the indecomposable summands of μi(T ). Therefore, once such

a bijection is fixed, we will also use the notations μs and μs− for mutating

cluster-tilting objects.

2.4. Classical results on acyclic cluster categories

In this article, we are interested in algebras of global dimension at most

2 whose generalized cluster category is equivalent to the cluster category

associated to an acyclic quiver. Since we will make extensive use of them,

we now recall some results for acyclic cluster categories.

The following theorem follows from a result by Happel and Unger [HU].

Theorem 2.9 ([BMRRT, Proposition 3.5]; see also [Hub]). Let Q be an

acyclic quiver, and let T be a cluster-tilting object of CQ. Then there exists

a sequence of mutations linking the cluster-tilting object T to the canonical

cluster-tilting object πQ(kQ). In other words, the cluster-tilting graph of the

acyclic cluster category is connected.

A consequence of this theorem together with Theorem 2.7 is that the

endomorphism algebra of a cluster-tilting object in an acyclic cluster cate-

gory is always a Jacobian algebra of a rigid quiver with potential.

Another special feature of acyclic cluster categories is that they can be

recognized by the quivers of their cluster-tilting objects.

Theorem 2.10 ([KR, Section 2.1]). Let C be an algebraic triangulated

category, which is Hom-finite and 2-Calabi–Yau. If there exists a cluster-

tilting object T ∈ C such that EndC(T )∼= kQ, where Q is an acyclic quiver,

then there exists a triangle equivalence C ∼= CQ sending T onto πQ(kQ).

As a consequence, there is a triangle equivalence C(Q,0) → CQ sending

T(Q,0) onto πQ(kQ).

Note that an analogue of these results is not known for generalized cluster

categories.
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8 C. AMIOT AND S. OPPERMANN

An algebra of the form EndCQ(T
′), where T ′ is a cluster-tilting object in

CQ, is called a cluster-tilted algebra of type Q.

§3. Derived equivalent algebras of tree cluster type

In this section, we investigate algebras of global dimension at most 2

whose generalized cluster category is a cluster category associated to a tree.

We make extensive use of results from [AO1].

We start with a definition.

Definition 3.1 ([AO1, Definition 5.1]). Two algebras Λ1 and Λ2 of global

dimension at most 2 which are τ2-finite are said to be cluster equivalent

if there exists a triangle equivalence CΛ1 → CΛ2 between their generalized

cluster categories.

If Λ is cluster equivalent to kQ, where Q is an acyclic quiver, we will say

that Λ is of cluster type Q.

Two derived equivalent algebras of global dimension at most 2 are cluster

equivalent ([AO1, Corollary 7.16]). Hence, if the underlying graph of Q is

a tree, then the class of algebras of cluster type Q does not depend on the

orientation of Q.

From the results of Section 2, we deduce the following characterization

of algebras of acyclic cluster type.

Corollary 3.2. Let Λ= kQ/I be a τ2-finite algebra of global dimension

at most 2. Let (Q,W ) be the associated quiver with potential defined in

Theorem 2.5. Then Λ is of acyclic cluster type Δ if and only if there exists

a sequence of mutation s= i1, . . . , il such that (Δ,0) = μs(Q,W ).

In this case, (Q,W ) is a rigid quiver with potential, and there exists a

triangle equivalence f : CΛ →CΔ sending πΛ(Λ) to μs−(πΔ(kΔ)).

Proof. By Theorems 2.5, 2.8, and 2.10, if (Δ,0) = μs(Q,W ), then we have

equivalences

CΛ ∼= C(Q,W )∼= C(Δ,0)∼= CΔ,

sending πΛ(Λ) to μs−(πΔ(kΔ)).

Conversely, assume that there exists an equivalence f : CΛ ∼= CΔ. Then by

Theorem 2.9 there exists a sequence of mutations s such that πΔ(kΔ) ∼=
μsf(πΛ(Λ)). So by Theorem 2.7, we have Jac(μs(Q,W ))∼= Jac(Δ,0) = kΔ.

Since the quiver with potential μs(Q,W ) is reduced, we necessarily have

μs(Q,W ) = (Δ,0).
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3.1. Graded equivalence and derived equivalence

Cluster equivalence is strongly related to graded equivalence. In this sec-

tion, we will recall some results shown in [AO1].

Let A =
⊕

p∈ZA
p be a finite-dimensional Z-graded algebra. We denote

by d the degree map sending any homogeneous element of A to its degree,

and we denote by grA the category of finitely generated graded modules

over A. For a graded module M =
⊕

p∈ZM
p, we denote by M〈q〉 the graded

module
⊕

p∈ZM
p+q. (That is, the degree p part of M〈q〉 is Mp+q.) The

locally bounded subcategory

Cov(A,d) := add
{
A〈p〉

∣∣ p ∈ Z
}
⊆ grA

is called the Z-covering of A.

Definition 3.3. Let A1 and A2 be two finite-dimensional Z-graded alge-

bras. Assume that A1 and A2 are isomorphic as algebras. We will say that

A1 and A2 are graded equivalent (and write A1 ∼
gr
A2) if there exist ri ∈ Z

and an isomorphism of Z-graded algebras

A2
∼
Z

⊕
p∈Z

HomCov(A1,Z)

( n⊕
i=1

Pi〈ri〉,
n⊕

i=1

Pi〈ri + p〉
)
,

where A1 =
⊕n

i=1Pi is a decomposition of A1 into indecomposable graded

projective modules. This is equivalent to the fact that the coverings Cov(A1,

d1) and Cov(A2, d2) are equivalent as categories with Z-action.

The link between cluster equivalent algebras and graded equivalent alge-

bras is given by the following result.

Theorem 3.4 ([AO1, Theorem 5.8]). Let Λ1 and Λ2 be two τ2-finite

algebras of global dimension at most 2. For i= 1,2, denote by Di the bounded

derived category of Λi, denote by Ci its cluster category, and denote by πi
the natural functor Di → Ci. Assume that there is T ∈ D1 such that π1(T )

is basic cluster tilting in C1, and assume that

(1) there is an isomorphism EndC1(π1T )
∼

EndC2(π2Λ2);

(2) this isomorphism can be chosen in such a way that the two Z-gradings

defined on Λ2, given respectively by⊕
q∈Z

HomD2(Λ2,S
−q
2 Λ2) and

⊕
p∈Z

HomD1(T,S
−p
2 T ),
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10 C. AMIOT AND S. OPPERMANN

are equivalent. Then the algebras Λ1 and Λ2 are derived equivalent, and

hence cluster equivalent.

Note that the functor S−1
2 acts on the subcategory π−1

1 π1(T ) = add{S−q
2 T,

q ∈ Z} ⊂ Db(Λ1). As a category with Z-action, it is equivalent to the Z-

covering of the graded algebra EndC1(π1T ). Therefore, by the above remark,

the graded algebras EndC1(π1T ) and EndC2(π2Λ2) are graded equivalent if

and only if there is an equivalence between the additive categories π−1
1 π1(T )

and π−1
2 π2(Λ2) as categories with S2-action.

3.2. Mutation of a graded quiver with potential

In order to apply Theorem 3.4, we make use of a tool: the left (or right)

mutation of a graded quiver with potential which extends the Derksen–

Weyman–Zelevinsky mutation of a quiver with potential (see [DWZ]). All

definitions and results described in this section are proved in [AO1, Sec-

tion 6].

Definition 3.5 ([AO1, Definition 6.4]). Let (Q,W,d) be a Z-graded

quiver with potential homogeneous of degree 1. Let i ∈Q0 be a vertex, such

that there are neither loops nor 2-cycles incident to i. We define μL
i (Q,W,d),

the left graded mutation of (Q,W,d) at vertex i, as the reduction of the

graded QP (Q′,W ′, d′). The quiver Q′ is defined as in [DWZ, Section 5] as

follows.

• For any subquiver u
a

i
b

v , with i, u, and v pairwise distinct

vertices, we add an arrow [ba] : u→ v.

• We replace all arrows a incident with i by an arrow a∗ in the opposite

direction.

The potential W ′ is also defined as in [DWZ, Section 5] by the sum [W ]+

W ∗, where [W ] is formed from the potential W replacing all compositions

ba through the vertex i by [ba], where W ∗ is the sum
∑

a∗b∗[ba].
The new degree d′ is defined as

• d′(a) = d(a) if a is an arrow of Q and Q′;
• d′([ba]) = d(b) + d(a) if ba is a composition passing through i;

• d′(a∗) =−d(a) + 1 if the target of a is i;

• d′(b∗) =−d(b) if the source of b is i.

One can check that this operation is compatible with the reduction of

a QP (see [AO1, Theorem 6.6]). It is possible to define the right graded

mutation μR
i by interchanging target and source in the last two items in the

definition. We have the following.
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Lemma 3.6 ([AO1, Lemma 6.9]). Let (Q,W,d) be a graded quiver with

potential. Then we have an isomorphism of Z-graded algebras

Jac(Q,W,d)∼=
Z
Jac

(
μR
i μ

L
i (Q,W,d)

)
.

Moreover, this mutation preserves graded equivalence. More precisely, we

deduce immediately the following from the definition of graded quiver with

potential.

Proposition 3.7. Let (Q,W,d1) and (Q,W,d2) be two Z-graded QPs

such that the graded Jacobian algebras Jac(Q,W,d1) and Jac(Q,W,d2) are

graded equivalent. Then the graded Jacobian algebras Jac(μL
i (Q,W,d1)) and

Jac(μL
i (Q,W,d2)) are graded equivalent.

Definition 3.8 ([AO1, Theorem 2.6]). Let Λ be a τ2-finite algebra of

global dimension at most 2. Let T = T1 ⊕ · · · ⊕ Tn be an object in Db(Λ)

such that π(T ) is a (basic) cluster-tilting object in CΛ. Let Ti be an inde-

composable summand of T ∼= T ′⊕Ti. Define TL
i as the cone in Db(Λ) of the

minimal left add{Sp2T ′, p ∈ Z}-approximation u : Ti → B of Ti. We denote

by μL
i (T ) the object TL

i ⊕ T ′ and call it the left mutation of T at Ti.

It is immediate to check that we have π(μL
i (T )) = μi(π(T )); thus,

π(μL
i (T )) is a cluster-tilting object in CΛ.

This (left) mutation in the derived category is reflected by the graded

(left) mutation of graded QP in the following sense.

Theorem 3.9. Let Λ be an algebra of acyclic cluster type, and let T ∈
Db(Λ) be as described above. Assume that there exists a Z-graded QP (Q,

W,d) with rigid potential homogeneous of degree 1 such that we have an

isomorphism of graded algebras

⊕
p∈Z

HomD(T,S
−p
2 T )

∼
Z

Jac(Q,W,d).

Let i ∈ Q0, and let Ti be the associated indecomposable summand of T ∼=
Ti ⊕ T ′. Then there is an isomorphism of Z-graded algebras

⊕
p∈Z

HomD
(
T ′ ⊕ TL

i ,S
−p
2 (T ′ ⊕ TL

i )
) ∼

Z
Jac

(
μL
i (Q,W,d)

)
.
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12 C. AMIOT AND S. OPPERMANN

Proof. By Theorem 2.7, we already have an isomorphism between the

algebras ⊕
p∈Z

HomD
(
T ′ ⊕ TL

i ,S
−p
2 (T ′ ⊕ TL

i )
)∼= EndCΛ

(
μπ(Ti)(πT )

)
and Jac(μL

i (Q,W )) forgetting the grading. The only thing to check is that

it is compatible with the grading. The proof of this fact is the same as the

one of [AO1, Theorem 6.12].

Definition 3.10. Let (Q,W ) be a reduced quiver with potential. A grad-

ing d on Q will be said to be a W -grading if

• for all arrows a in Q1, d(a) ∈ {0,1};
• the potential W is homogeneous of degree 1;

• the set of relations {∂aW | d(a) = 1} is linearly independent (in particular,

for all a ∈Q1 such that d(a) = 1, we have ∂aW �= 0).

Theorem 3.9 is particularly useful with the following result.

Proposition 3.11 ([AO1, Proposition 6.3]). Let Λ= kQΛ/I be an alge-

bra of global dimension at most 2 which is τ2-finite and of acyclic cluster

type. Then there exists a rigid quiver with potential (Q,W ) and a W -grading

d such that we have an isomorphism of graded algebras

Λ∼=
Z
Jac(Q,W,d).

The quiver with potential is given by Theorem 2.5; the arrows of QΛ have

degree 0, and the arrows ai corresponding to the relations have degree 1.

The rigidity comes from Corollary 3.2.

3.3. Application to acyclic cluster type

Let Λ be an algebra of cluster type Q, where Q is an acyclic quiver. By

Corollary 3.2, there exists a sequence of mutations s such that μs(QΛ,W ) =

(Q,0), where (QΛ,W ) is the quiver with potential associated with Λ in

Theorem 2.5.

Definition 3.12. The map ds : Q→ Z is called a grading induced by Λ

if it satisfies

μL
s (QΛ,W,d) = (Q,0, ds),

where s is a sequence of mutations as in Corollary 3.2.
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Proposition 3.13. Let ds and dt be two gradings induced by Λ on Q. If

μs(πΛ(Λ))∼= μt(πΛ(Λ)), then ds and dt are equivalent up to automorphism

of Q.

Proof. Let μL
sΛ

∼= T1 ⊕ · · · ⊕Tn be a decomposition of μL
sΛ into indecom-

posable summands. Then we have

μL
t Λ

∼= Sr12 T1 ⊕ · · · ⊕ Srn2 Tn

for certain ri ∈ Z, since πΛμ
L
sΛ= μsπΛΛ∼= μtπΛΛ= πΛμ

L
t Λ. It follows that

the algebras⊕
p∈Z

HomDb(Λ)(μ
L
sΛ,S

−p
2 μL

sΛ) and
⊕
p∈Z

HomDb(Λ)(μ
L
t Λ,S

−p
2 μL

t Λ)

are graded equivalent. Since, by Theorem 3.9, these graded algebras are

isomorphic to Jac(Q,0, ds) and Jac(Q,0, dt), respectively, it follows that the

gradings ds and dt are equivalent up to automorphisms of Q.

Remark 3.14. The induced grading depends in general on the choice of

a cluster-tilting object in CΛ with hereditary endomorphism ring, as shown

in the following example. Let Λ be the algebra presented by the quiver

Q=

1

2

3

4

5

α β with relation βα= 0.

Adding an arrow of degree 1 for the relation, one obtains a graded quiver

with potential (Q,W,d). Then it is easy to check that μL
2 (Q,W,d) is given

by the graded quiver

1

2

3

4

5

1 0

0

0

0

0

On the other hand, μL
2μ

L
1μ

L
4μ

L
5μ

L
2 (Q,W,d) is given by the graded quiver

4

5

3

1

2

0 0

0

1

1

1

These gradings are not equivalent.
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14 C. AMIOT AND S. OPPERMANN

Using the previous results, we can prove the following.

Theorem 3.15. Let Λ1 and Λ2 be two algebras of cluster type Q, where

Q is an acyclic quiver. Then the following are equivalent.

(1) There exist equivalent gradings dsi induced by Λi on Q for i ∈ {1,2}.
(2) There exists a derived equivalence Db(Λ1)→Db(Λ2).

Proof. For i= 1,2, denote by (Qi,Wi, ∂i) the graded QP associated to Λi.

(1)⇒ (2) By assumption, we have a graded equivalence

Jac
(
μL
s1(Q1,W1, ∂1)

)
∼
gr
Jac

(
μL
s2(Q2,W2, ∂2)

)
.

Then by Proposition 3.7 and Lemma 3.6, we immediately get that

Jac
(
μR
s−2
μL
s1(Q1,W1, ∂1)

)
∼
gr
Jac(Q2,W2, ∂2).

Now denote by T ∈Db(Λ1) the object μ
R
s−2
μL
s1(Λ1). By Theorem 3.9 we have

an isomorphism of Z-graded algebras⊕
p∈Z

HomDb(Λ1)(T,S
−p
2 T )∼=

Z
Jac

(
μR
s−2
μL
s1(Q1,W1, ∂1)

)
.

Therefore, we get the result by Theorem 3.4.

(2) ⇒ (1) Assume that Λ1 and Λ2 are derived equivalent. Then there

exists a tilting complex T in Db(Λ2) with EndDb(Λ2)(T )
∼= Λ1. The derived

equivalence induced by T gives rise to a commutative diagram

Db(Λ1)

π1

−
L
⊗Λ1

T

∼ Db(Λ2)

π2

CΛ1 f

∼ CΛ2

Since the cluster category CΛ2 is acyclic, there exists a sequence of mutations

s such that μs(π2Λ2) = π2(T ) = f(π1Λ1). Denote by T ′ ∈Db(Λ2) the object

T ′ := μL
s (Λ2). Then we have π2(T ) = π2(T

′); thus, we have an equivalence

of categories commuting with S2

add{Sp2T | p ∈ Z} ∼= add{Sp2T ′ | p ∈ Z}.
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This exactly means that there is a graded equivalence⊕
p∈Z

HomDb(Λ2)(T,S
−p
2 T )∼

gr

⊕
p∈Z

HomDb(Λ2)(T
′,S−p

2 T ′).

Since −
L
⊗Λ1 T is an equivalence, the left term is isomorphic as Z-graded

algebra to Jac(Q1,W1, ∂1), and by Theorem 3.9 the right term is isomorphic

to the Z-graded algebra Jac(μL
s (Q2,W2, ∂2)). Therefore, we have

(3.3.1) Jac
(
μL
s (Q2,W2, ∂2)

)
∼
gr
Jac(Q1,W1, ∂1).

Now let s′ be a sequence such that the cluster-tilting object T ′′ := μs′(fπ1Λ1)

has endomorphism algebra isomorphic to kQ. Then we have

μs′(Q1,W1) = (Q,0) and μs′μs(Q2,W2) = (Q,0).

Now let d1 and d2 be the gradings on Q such that we have

μL
s′(Q1,W1, ∂1) = (Q,0, d1) and μL

s′μ
L
s (Q2,W2, ∂2) = (Q,0, d2).

By (3.3.1) and Proposition 3.7, we get

Jac(Q,0, d1)∼
gr
Jac(Q,0, d2);

that is, the gradings d1 and d2 are equivalent.

Corollary 3.16. If Q is a tree, and if Λ is of cluster type Q, then Λ is

derived equivalent to kQ.

Proof. By Theorem 3.15, it is enough to observe that all gradings on kQ

are equivalent. We consider the map

ZQ0 → ZQ1

(ri)i∈Q0 �→ (rt(a) − rs(a))a∈Q1 .

Then the grading on Q which is equivalent to the trivial grading is the image

of this map. Moreover, using the fact that Q is a tree, one easily sees that

the map is surjective.
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16 C. AMIOT AND S. OPPERMANN

§4. Derived equivalence classes of algebras of cluster type Ãp,q

In this section we study the algebras of cluster type Ãp,q, that is, all

algebras which are cluster equivalent to the path algebra H of the acyclic

quiver QH :

1

2 3 p

p+ 1

p+ 2p+ q

a1

a2 a3 ap−1

ap

b1

b2bq−1

bq

Since QH is not a tree, these algebras need not be derived equivalent.

In this section, we introduce an invariant of an algebra of cluster type QH

which determines its class of derived equivalence.

4.1. The weight of an algebra of cluster type Ãp,q

Definition 4.1. Let d be a Z-grading on QH . We define the weight of

the grading d by

w(H,d) :=

p∑
i=1

d(ai)−
q∑

i=1

d(bi).

Lemma 4.2. Let d1 and d2 be two Z-gradings on H. Then the following

are equivalent:

(1) (H,d1) and (H,d2) are graded equivalent,

(2) w(H,d1) =w(H,d2).

Proof. We consider the map

φ : Z(QH)0 → Z(QH)1

(ri)i∈(QH)0 �→ (rt(a) − rs(a))a∈(QH)1 .

The gradings d1 and d2 are equivalent if and only if d1 − d2 is in the image

of φ.

It is straightforward to check that the sequence of Z-modules

Z(QH)0 φ→ Z(QH)1 w→ Z→ 0

is exact (using the fact that Q is of type Ã). Now the claim of the lemma

follows.
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This result allows us to define the following.

Definition 4.3. Let Λ be an algebra of global dimension at most 2 and of

cluster type Ãp,q. Let s be a sequence of mutations such that the endomor-

phism ring of μs(πΛ(Λ)) is kQH (such a sequence exists by Corollary 3.2),

and let ds be the corresponding grading on QH induced by Λ. Then define

the weight of Λ by

w(Λ, s) :=w(ds) =

p∑
i=1

ds(ai)−
q∑

i=1

ds(bi).

If p > q, the weight w(Λ, s) is well defined since there is no automorphism

of QH .

4.2. The case p > q

Before proving the main theorem, we prove the following technical result.

Lemma 4.4. The weight w(Λ, s) does not depend on the choice of the

sequence of mutations s.

Proof. Let s and t be two sequences of mutations such that the endomor-

phism rings of μs(πΛ(Λ)) and of μt(πΛ(Λ)) are both isomorphic to kQH .

Then there is an automorphism of the translation quiver ZQH , which forms

a component of the Auslander–Reiten quiver of the common cluster cat-

egory, mapping μs(πΛ(Λ)) to μt(πΛ(Λ)). Since p �= q, one can check that

the automorphism group of the translation quiver ZQH is generated by two

elements given by the slices

T1 = τ−1(e1H ⊕ · · · ⊕ epH)⊕ ep+qH ⊕ · · · ⊕ ep+1H, and

T2 = e2H ⊕ · · · ⊕ ep+1H

⊕ τ−1(e1H ⊕ ep+qH ⊕ ep+q−1H ⊕ · · · ⊕ ep+2H), respectively,

where ei is the primitive idempotent of H = kQ associated to the vertex i

for any i= 1, . . . , p+ q. Then we have

T1 = μL
pμ

L
p−1 · · ·μL

1 (H) and T2 = μL
p+2μ

L
p+3 · · ·μL

p+qμ
L
1 (H).

It is enough to check that if d is a grading on QH , then the weights of

the graded quivers μL
pμ

L
p−1 · · ·μL

1 (QH , d) and μL
p+2μ

L
p+3 · · ·μL

p+qμ
L
1 (QH , d) are

equal to w(d). We do this for μL
pμ

L
p−1 · · ·μL

1 (QH , d); the other one is similar.
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18 C. AMIOT AND S. OPPERMANN

First note that in the sequence of mutations μL
pμ

L
p−1 · · ·μL

1 , we mutate at a

source at each step. Therefore, the left graded mutation consists in reversing

the arrows and assigning the opposite of the degree. After the sequence of

mutations, arrows a1, . . . , ap−1 have been reversed twice, arrows ap and bq
have been reversed once, and b1, . . . , bq have not been reversed. Hence, the

graded quiver μL
pμ

L
p−1 · · ·μL

1 (QH , d) is the following:

1

2 3 p

p+ 1

p+ 2p+ q

d(a1)

d(a2) d(a3) d(ap−1)

−d(ap)

d(b1)

d(b2)d(bq−1)

−d(bq)

Hence, the weight of this grading is (−d(bq) +
∑p−1

i=1 d(ai))− (
∑q−1

j=1 d(bj)−
d(ap)) =w(d).

This lemma together with Lemma 4.2 shows that the situation in

Remark 3.14 does not occur for a quiver of type Ãp,q. Hence, we may, in the

sequel, refer to the weight w(Λ) without specifying a sequence of mutations.

Theorem 4.5. Let Λ1 and Λ2 be two algebras of cluster type Ãp,q with

p > q. Then there is a derived equivalence between Λ1 and Λ2 if and only if

w(Λ1) =w(Λ2).

Proof. Let δ1 (resp., δ2) be a grading on QH induced by Λ1 (resp., Λ2).

By Lemma 4.2, δ1 and δ2 are equivalent if and only if the corresponding

weights w(Λ1) and w(Λ2) coincide. Since, by Lemma 4.4, the weights are

independent of the choice of a sequence of mutation, it follows that also the

gradings δ1 and δ2 are independent of this choice up to graded equivalence.

Now the claim follows from Theorem 3.15.

Corollary 4.6. Let Λ be an algebra of cluster type Ãp,q. Then Λ is

piecewise hereditary if and only if w(Λ) = 0.

Proof. Let us treat the case where p > q. The “if” part of the assertion

is a direct consequence of Theorem 4.5 applied for Λ1 =Λ and Λ2 =H .

The algebra Λ is piecewise hereditary if and only if the derived category

Db(Λ) is equivalent to Db(H) for some hereditary category H. Therefore, it

implies that the generalized cluster category CΛ is equivalent to the cluster
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category CH. Since Λ is of cluster type Ãp,q, we have CH ∼= C
Ãp,q

. Hence, we

get Db(H)∼=Db(Ãp,q). Therefore, by Theorem 4.5, we have w(Λ) = 0.

The case p= q is a direct consequence of the result below.

4.3. The case p= q

In the case p= q, there is a unique nontrivial automorphism of QH fixing

the vertices 1 and p+1 and interchanging the vertices i and 2p+2− i for i=

2, . . . , p. This automorphism induces a derived equivalence between algebras

Λ1 and Λ2 of cluster type Ãp,p such that w(Λ1) = −w(Λ2). Therefore, we

obtain the following result, whose proof is the same as that of Theorem 4.5.

Theorem 4.7. Let Λ1 and Λ2 be two algebras of cluster type Ãp,p. Then

there is a derived equivalence between Λ1 and Λ2 if and only if |w(Λ1)| =
|w(Λ2)|.

§5. The Auslander–Reiten quiver of the derived category of an

algebra of cluster type Ãp,q

Let Λ be an algebra of cluster type Ãp,q and of weight w �= 0. In this

section, we compute the Auslander–Reiten quiver of the derived category

Db(Λ). In order to do that, we use some results of [AO1, Section 8].

5.1. Graded derived equivalence

Let Λ be an algebra of cluster type Ãp,q. Then, by Proposition 3.11, there

exists a graded quiver with reduced potential (Q,W,d) such that we have

an isomorphism of Z-graded algebras Λ∼=
Z
Jac(Q,W,d). Let ∂ be a grading

induced by Λ on H where QH is the following quiver:

1

2 3 p

p+ 1

p+ 2p+ q
.

That is, there exists a sequence of mutations such that μs(Q,W,d) = (QH ,

0, ∂). Now define the Z2-graded quiver with reduced potential (Q′,W ′,
(d′, δ)) by the following:(

Q′,W ′, (d′, δ)
)
:= μR

s−
(
QH ,0, (∂,0)

)
.
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By Lemma 3.6, we have an isomorphism of Z-graded algebras Jac(Q′,W ′,
d′)∼=

Z
Jac(Q,W,d). Since the potentialsW andW ′ are reduced, the quiversQ

and Q′ are isomorphic. By definition of Q and d, the quiver QΛ of the algebra

Λ is the subquiver of Q satisfying (QΛ)0 =Q0 and (QΛ)1 = {a ∈Q1 | d(a) =
0}. Moreover, we have an isomorphism Λ ∼= kQΛ/〈∂aW,a ∈ Q1, d(a) = 1〉.
Since we have an isomorphism of Z-graded algebras Jac(Q′,W ′, d′)∼=

Z
Jac(Q,

W,d), we get an isomorphism Λ∼= kQΛ/〈∂aW ′, a ∈Q′
1, d

′(a) = 1〉. The grad-
ing δ, which is a grading on Q′ ∼=Q, restricts on a grading on QΛ. The grad-

ing δ makes W ′ homogeneous of degree 1. Hence, the relations ∂aW
′, a ∈Q′

1

with d′(a) = 1 are homogeneous with respect to the degree δ. Consequently,

δ yields a grading on the algebra Λ that we still denote by δ.

Then we have the following direct consequence.

Theorem 5.1 ([AO1, Theorem 8.7]). In the preceding setup, there exists

a triangle equivalence

Db
(
Cov(Λ, δ)

) F
∼ Db

(
Cov(H,∂)

)
.

Moreover, we have an isomorphism of triangle functors F ◦ 〈1〉δ ∼= S−1
2 ◦

〈−1〉∂ ◦ F .

Remark 5.2. Note that in this situation, the compatibility condition

defined in [AO1, Definition 8.5] is automatically satisfied since Q is mutation

acyclic and since W is rigid. Indeed, two Z-gradings on a quiver induce a

Z2-grading on it. But in general, two Z-gradings on an algebra do not give

rise to a Z2-grading on it.

Theorem 5.1 implies the following result, which will be very useful for

computing explicitly the Auslander–Reiten quiver of Db(Λ).

Corollary 5.3. There exists a k-linear equivalence

Db(Λ)∼=Db
(
Cov(H,∂)

)
/S2〈1〉∂ .

Proof. By Theorem 5.1, we deduce that there is a k-linear equivalence

between the orbit categories

Db
(
Cov(Λ, δ)

)
/〈1〉δ ∼=Db

(
Cov(H,∂)

)
/S2〈1〉∂ .

Now we can use the following result due to Keller.
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Theorem 5.4 ([K2, Theorem 1]). Let QH be an acyclic quiver, and let

∂ be a Z-grading on QH . Let F :=−
L
⊗Cov(H,∂) X be an autoequivalence of

Db(Cov(H,∂)) for some object X ∈D(Cov(H,∂)). Assume that

(1) for each indecomposable U ∈ modCov(H,∂), the set {i ∈ Z | F iU ∈
modCov(H,∂)} is finite;

(2) there existsN ≥ 0 such that for each indecomposableX ∈ Db(Cov(H,∂)),

there exists 0≤ n≤N and i ∈ Z with F iX[−n] ∈modCov(H,∂).

Then the orbit category Db(Cov(H,∂))/F admits a natural triangulated

structure such that the projection functorDb(Cov(H,∂))→Db(Cov(H,∂))/F

is triangulated.

It is already shown in [BMRRT, Section 1] that the functor S2 satis-

fies conditions (1) and (2). Since the functor 〈1〉∂ is an autoequivalence of

modCov(H,∂), then again the functor S2〈1〉∂ clearly satisfies conditions (1)

and (2). Thus, the orbit category (Db(Cov(Λ, δ))/〈1〉δ)∼=Db(Cov(H,∂))/S2〈1〉∂
is triangulated, and the natural functor

Db
(
Cov(Λ, δ)

)
Db

(
Cov(Λ, δ)

)
/〈1〉δ

is a triangle functor.

By [AO1, Corollary 7.14], the derived category Db(Λ) is equivalent to

the triangulated hull (Db(Cov(Λ, δ))/〈1〉δ)Δ. Hence, we have the following

commutative diagram:

Db
(
Cov(Λ, δ)

) A

C

Db
(
Cov(Λ, δ)

)
/〈1〉 B Db(Λ),

where A and C are triangle functors. Therefore, B commutes with the shift

and sends triangles to triangles. Hence, the fully faithful functor B is a

k-equivalence

Db
(
Cov(Λ, δ)/〈1〉δ

)∼=Db
(
Cov(H,∂)

)
/S2〈1〉∂ .

5.2. The shape of the Auslander–Reiten quiver of Db(Λ)

In this section, we use Corollary 5.3 to compute explicitly the shape of

the Auslander–Reiten quiver of the derived category of an algebra of cluster

type Ãp,q.
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Throughout this section, Λ is an algebra of cluster type Ãp,q and of weight

w �= 0. Let ∂ be a grading induced by Λ on QH . By Lemma 4.2, we can

assume that ∂ is the following grading:

1

2 3 p

p+ 1

p+ 2p+ q

0

0 0 0

w

0

00

0

By Corollary 5.3, we have a k-linear equivalence

Db(Λ)∼=Db
(
Cov(H,∂)

)
/S2〈1〉∂ .

The quiver of the subcategory Cov(H,∂) = add{H〈p〉∂ , p ∈ Z} ⊂ grH con-

sists of |w| connected components of type A∞
∞ with the following orientation:

1

2

3

p

p+ 1

p+ q

p+ 1

1

2

3

p

Then it is not hard to compute the Auslander–Reiten quiver of the module

category modCov(H,∂). It has 4|w| connected components: Pi, Rp
i , R

q
i ,

and Ii, with i ∈ Z/wZ satisfying Pi = P0〈i〉, Rp
i =Rp

0〈i〉, R
q
i =Rq

0〈i〉, and
Ii = I0〈i〉 for any i ∈ Z/wZ.

The component P0 is of type NA∞
∞ and contains the indecomposable pro-

jective modules Pj〈0〉 for j = 1, . . . , p+q. Its shape is described in Figure 5.1.
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P1〈0〉

P2〈0〉

P3〈0〉

Pp〈0〉

Pp+1〈w〉

Pp+q〈0〉

Pp+1〈0〉

Pp〈−w〉

Figure 5.1: Shape of the component P0 of the Auslander–Reiten

quiver of mod(Cov(H,∂)).

The component I0 is of type (−N)A∞
∞ and contains the indecomposable

injective modules Ij〈0〉 for j = 1, . . . , p + q. Its shape is described in Fig-

ure 5.2.

The components Rp
0 and Rq

0 are of type ZA∞ and contain the regular

modules. The shape of the connected components Rp
0 and Rq

0 is described

in Figures 5.3 and 5.4. In these figures, Si〈m〉 is the m-degree shift of the

simple module associated with the vertex i, the object M〈0〉 is defined by

the exact sequence
Pp〈−w〉 ap

Pp+1〈0〉 M〈0〉 0,

and the object N〈0〉 is defined by the exact sequence

Pp+2〈0〉
bq

Pp+1〈0〉 N〈0〉 0.

Under the forgetful functor modCov(H,∂)→modH , the components Pi

are sent to P the preprojective component of modH , the components Ii
are sent to the preinjective component I, the components Rp

j are sent to

the exceptional tube of rank p, and the components Rq
j are sent to the

exceptional tube of rank q. The indecomposable H-modules lying in the
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I1〈0〉

I2〈0〉

I3〈0〉

Ip〈0〉

Ip+1〈w〉

Ip+q〈0〉

Ip+1〈0〉

Ip〈−w〉

Figure 5.2: Shape of the component I0 of the Auslander–Reiten

quiver of mod(Cov(H,∂)).

S2〈0〉 S3〈0〉 Sp〈0〉 M〈w〉 S2〈w〉

Figure 5.3: Shape of the connected component Rp
0.

homogeneous tubes are not gradable if w �= 0; therefore, the description

above is complete.

Since modCov(H,∂) is a hereditary category, one can easily deduce the

shape of the Auslander–Reiten quiver of Db(Cov(H,∂)). It has three kinds of

components, P(i,n), Rp
(i,n), and Rq

(i,n), with i ∈ Z/wZ and n ∈ Z. The compo-

nent P(0,0) contains P0 and I0[−1] and is described in Figure 5.5. The com-

ponent Rp
(0,0) (resp., Rq

(0,0)) is Rp
0 (resp., Rq

0). Moreover, we have P(i,n) =

P(0,0)〈i〉[n], Rp
(i,n) =Rp

(0,0)〈i〉[n], and Rq
(i,n) =Rq

(0,0)〈i〉[n] for i ∈ Z/wZ and

n ∈ Z.
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Sp+q〈0〉 Sp+q−1〈0〉 Sp+2〈0〉 N〈0〉 Sp+q〈−w〉

Figure 5.4: Shape of the connected component Rq
0.

I1〈0〉[−1]

I2〈0〉[−1]

Ip+q〈0〉[−1]

P1〈0〉

I3〈0〉[−1]

P2〈0〉

Ip〈−w〉[−1]

Pp+q〈0〉

P3〈0〉

Ip+1〈0〉[−1]

Ip〈0〉[−1]

Pp〈−w〉

Ip+1〈w〉[−1]

Pp+1〈0〉

Pp〈0〉

Pp+1〈w〉

Figure 5.5: Shape of the component P(0,0) of the

Auslander–Reiten quiver of Db(Cov(H,∂)).

The morphisms satisfy the following:

Hom(P(i,n),P(j,m)) �= 0 if and only if i= j and m ∈ {n,n+ 1},

Hom(P(i,n),Rp,q
(j,m)) �= 0 if and only if i= j and m= n,

Hom(Rp,q
(i,n),P(j,m)) �= 0 if and only if i= j and m= n+ 1,

Hom(Rp,q
(i,n),R

p,q
(j,m)) �= 0 if and only if i= j and m ∈ {n,n+ 1}.
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Figure 5.6: Auslander–Reiten quiver of Db(Cov(H,∂)).

Now we can compute the Auslander–Reiten quiver of the orbit category

Db(Cov(H,∂))/S2〈1〉. We look at the action of the functor S2〈1〉 on the

connected components of the Auslander–Reiten quiver of Db(Cov(H,∂))

(See Figure 5.6). The functor S2〈1〉 acts on the set {P(i,n), i ∈ Z/wZ, n ∈
Z} by

S2(P(i,n))〈1〉= τ(P(i,n))[−1]〈1〉= P(i,n)[−1]〈1〉= P(i+1,n−1).

Then there are exactly |w| orbits which are (S2〈1〉)Z · P(i,0) for i ∈ Z/wZ.

Similarly, S2〈1〉 acts on the sets {Rp
(i,n), i ∈ Z/wZ, n ∈ Z} and {Rq

(i,n), i ∈
Z/wZ, n ∈ Z} by

S2(Rp
(i,n))〈1〉=Rp

(i+1,n−1) and S2(Rq
(i,n))〈1〉=Rq

(i+1,n−1).

Therefore, we get 2|w| orbits which are (S2〈1〉)Z · Rp
(i,0) and (S2〈1〉)Z · Rq

(i,0)

for i ∈ Z/wZ.

Finally, the shape of the Auslander–Reiten quiver of Db(Cov(H,∂))/S2〈1〉
is described in Figure 5.7. This description can be summarized in the fol-

lowing.

Corollary 5.5. Let Λ be an algebra of cluster type Ãp,q and of weight

w �= 0. Then the Auslander–Reiten quiver of Db(Λ) has exactly 3|w| con-
nected components:

• |w| components of type ZA∞
∞,

• 2|w| components of type ZA∞.

5.3. Consequences of the description of the Auslander–Reiten

quiver

From this description we also get the following consequences.
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P(i,0) Rq
(i,0) Rq

(i,0)

Figure 5.7: Auslander–Reiten quiver of the category DbΛ, where

Λ is of cluster type Ãp,q and of weight w > 0.

Corollary 5.6. Let Λ be an algebra of cluster type Ãp,q and of weight

w �= 0. Then Λ is representation-finite.

Proof. The algebra Λ is derived discrete in the sense of [V]. Hence, it is

representation-finite.

Remark 5.7. Let Λ be an algebra of cluster type Ãp,q and of weight

w �= 0. Then the category Db(Λ) is locally fractionally Calabi–Yau of dimen-

sions (p− 2w)/(p−w) and (q+ 2w)/(q+w) in the sense that there exist

objects X and Y such that there are isomorphisms Sp−wX ∼=X[p−2w] and

Sq+wY ∼= Y [q+ 2w]. Such algebras are studied in [AO2, Section 6].

From Section 5.2, we also deduce a result for the image of the derived

category in the cluster category.

Corollary 5.8. Let Λ be an algebra of cluster type Ãp,q and of weight

w �= 0. Then the quiver of the orbit category Db(Λ)/S2 has three connected

components which are of the forms ZÃp,q, ZA∞/(τp), and ZA∞/(τ q).
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Proof. From Corollary 5.3, we have the following diagram:

Db
(
Cov(Λ, δ)

) ∼ Db
(
Cov(H,∂)

)

Db(Λ)
∼ Db

(
Cov(H,∂)

)
/S2〈1〉

Db(Λ)/S2
(
Db

(
Cov(H,∂)

)
/S2〈1〉

)
/S2

The upper functor is a triangle functor; hence, it commutes with S2. There-

fore, the k-equivalence of Corollary 5.3 commutes with S2. Using this, we

deduce that we have a k-equivalence

Db(Λ)/S2
∼ (

Db
(
Cov(H,∂)

)
/S2〈1〉

)
/S2.

Therefore, the Auslander–Reiten quiver of Db(Λ)/S2 is the same as the

Auslander–Reiten quiver of the orbit category (Db(Cov(H,∂))/S2〈1〉)/S2.
Note that since S2 ∼= 〈−1〉 in (Db(Cov(H,∂))/S2〈1〉), we just have to under-

stand the action of 〈1〉 in the category (Db(Cov(H,∂))/S2〈1〉). We know

that the category (Db(Cov(H,∂))/S2〈1〉) has 3|w| components which are

P(i,0),Rp
(i,0), and Rq

(i,0), for i ∈ Z/wZ.

Moreover, we have the equalities

P(i,0)〈1〉= P(i+1,0), Rp
(i,0)〈1〉=Rp

(i+1,0), and

Rq
(i,0)〈1〉=Rq

(i+1,0).

Thus, for each connected component Γ of the Auslander–Reiten quiver of

(Db(Cov(H,∂))/S2〈1〉), we have Γ〈w〉= Γ. Now it is easy to check that for

X ∈R(i,0) we haveX〈w〉 ∼= τ−pX . The action of 〈w〉 on the component P(0,0)

makes P(0,0)/〈w〉 isomorphic to ZÃp,q. Therefore, we get the result.

§6. Explicit description of algebras of cluster type Ãp,q

In this section, we explicitly describe (in terms of quivers with relations)

the algebras of cluster type Ãp,q, and we give an easy method for computing

https://doi.org/10.1215/00277630-2083124 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2083124


ALGEBRAS OF ACYCLIC CLUSTER TYPE 29

the weight of such an algebra. The strategy consists of first describing the

cluster-tilted algebras of type Ãp,q, following [Ba], and then showing that

all algebras of cluster type Ãp,q can been seen as the degree 0 part of a

cluster-tilted algebra of type Ãp,q with an appropriate grading. We start by

describing the algebras of cluster type An using a similar approach.

6.1. Algebras of cluster type An

The aim of this section is to describe all algebras of global dimension at

most 2 which are of cluster type An. By Corollary 3.16, we already know that

they are the algebras of global dimension at most 2 derived equivalent to

kQ, where Q is a quiver of type An. A description of iterated-tilted algebras

of type An was done by Assem [Am]. Here we use other techniques, based

on further developments in cluster-tilting theory.

We start with some definitions.

Definition 6.1. Let Q be a quiver. A cycle a1 · · ·ar in Q is called irre-

ducible if for all 1≤ i �= j ≤ r we have s(ai) �= s(aj). All cycles which are not

irreducible are called reducible.

Definition 6.2. For n ≥ 1, we define the class MA
n of quivers Q that

satisfy the following.

• They have n vertices.

• All nontrivial irreducible cycles are oriented and of length 3.

• A vertex has valency at most 4.

• If a vertex has valency 4, then two of its adjacent arrows belong to one

3-cycle, and the other two belong to another 3-cycle.

• If a vertex has valency 3, then two of its adjacent arrows belong to a

3-cycle, and the third arrow does not belong to any 3-cycle.

The set MA denotes the union of all MA
n . For a quiver Q in MA, we denote

by WQ the sum of all oriented 3-cycles. This is a potential in the sense of

[DWZ].

Theorem 6.3 ([BV, Proposition 2.4]). Let Γ be a basic finite-dimensional

algebra. Then Γ is a cluster-tilted algebra of type An if and only if there exists

a quiver Q in MA
n such that we have an isomorphism Γ∼= Jac(Q,WQ).

The main result of this section is the following.

Theorem 6.4. Let Q be a quiver in MA
n , and let d be a WQ-grading (see

Definition 3.10). It yields a grading on the Jacobian algebra B := Jac(Q,W ).

Denote by Λ :=B0 its degree 0 part. Then Λ is an algebra of global dimension
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at most 2 and of cluster type An. Moreover, each basic algebra of global

dimension at most 2 and of cluster type An is isomorphic to such a Λ.

Proof. We divide the proof into several steps for the convenience of the

reader.

Step 1: The global dimension of the algebra Λ is at most 2.

Denote by Q(0) the subquiver of Q which is defined by Q
(0)
0 := Q0 and

Q
(0)
1 := {a ∈Q1, d(a) = 0}. Then we have

Λ∼= kQ(0)/
〈
∂aWQ, d(a) = 1

〉
.

Note that sinceW is a sum of 3-cycles, the ideal of relations 〈∂aWQ, d(a) = 1〉
is contained in kQ

(0)
2 ; that is, every relation is of length 2. Let i ∈ Q0 be

a vertex, and let ei be the associated primitive idempotent of Λ. Then the

projective resolution of the simple Λ-module associated to i is given by

⊕
b,s(b)=i,d(b)=1

et(b)Λ
(fa,b) ⊕

a,t(a)=i,d(a)=0

es(a)Λ

eiΛ Si 0.

Let b : i→ l be an arrow of degree 1, and let a : j → i such that fa,b �= 0.

Then there exists a 3-cycle

j
a

l

c

i
b

and the map fa,b : elΛ→ ejΛ is induced by c. The arrow c does not belong

to another 3-cycle; therefore, there is no relation between some predecessor

of l and j. Hence, the map fa,b : elΛ→ ejΛ is a monomorphism.

Let a be an arrow with t(a) = i and of degree 0. Then a belongs to at

most one cycle. Therefore, there exists at most one arrow b of degree 1 with

s(b) = i such that fa,b does not vanish. Therefore, the map

⊕
b,s(b)=i,d(b)=1

et(b)Λ
(fa,b) ⊕

a,t(a)=i,d(a)=0

es(a)Λ
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is injective, and the projective dimension of Si is at most 2.

Step 2: We have an isomorphism Jac(Q,WQ)∼= EndCΛ(πΛ).
Since d is a WQ-grading, the set {∂aWQ, d(a) = 1} is a set of minimal

relations for Λ. Therefore, by Theorem 2.5, we have Q
(0)

=Q and WΛ =WQ

and hence Step 2.

Step 3: There is a triangle equivalence CΛ ∼= CAn .

By Theorems 6.3, 2.9, and 2.7, there exists a sequence of mutation s such

that μs(Q,WQ) = (QH ,0). Therefore, we are done by Corollary 3.2.

Step 4: Each algebra of cluster type An and of global dimension at most 2

is isomorphic to the degree 0 part of a graded Jacobian algebra Jac(Q,WQ, d)

where Q ∈MA
n and d is a WQ-grading.

Let Λ∼= kQΛ/I be an algebra of global dimension at most 2 and of clus-

ter type An. Denote by f : CΛ → CQ the triangle equivalence. By Proposi-

tion 3.11, there exists a graded QP (QΛ,W,d), where W is rigid and d is a

W -grading, such that we have

Λ∼=
Z
Jac(QΛ,W,d).

Now the object f(πΛ(Λ)) is a cluster-tilting object in CAn . Thus, by Theo-

rem 6.3, there exists Q ∈MA
n such that we have an isomorphism

Λ∼= Jac(Q,WQ).

It is clear that we have Q = QΛ. We then conclude using the following

lemma.

Lemma 6.5. Let (Q,W,d) be a graded QP where Q ∈MA
n and W is rigid.

Then d makes WQ homogeneous of degree 1, and we have an isomorphism

of Z-graded algebras

Jac(Q,WQ, d)∼=
Z
Jac(Q,W,d).

Proof. Denote by C1, . . . ,Cl the oriented 3-cycles of Q, so that we have

WQ =
∑r

i=1Ci. One easily checks that the irreducible oriented cycles of the

quiver Q are exactly the Ci (up to cyclic equivalence). Therefore, we can

assume that

W =

r∑
i=1

λiCi + extra terms,

where the extra terms are reducible. If there exists i with λi = 0, then the

cycle Ci and all the cycles cyclically equivalent to it are not in the Jacobian
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ideal since there are no cycles of length at most 2 in the quiver Q. Therefore,

since W is rigid, we have λi �= 0 for all i= 1, . . . , r. Now the existence of the

grading d implies that d(Ci) = 1 for all i= 1, . . . , r, so any reducible cycle

is of degree at least 2. Hence, the extra terms in the potential have to be

zero, and we have W =
∑r

i=1 λiCi with λi �= 0.

Remark 6.6. Note that Theorem 6.4 is not true for the other Dynkin

types. Let (Q,d) be the graded quiver

2

1 b

1

0
a

1a′

4,0c

3

0

b′

and let W := cba+ cb′a′. The Jacobian algebra Jac(Q,W ) is a cluster-tilted

algebra of type D4. The grading d is a W -grading, but the degree 0 part of

the graded algebra Jac(Q,W,d) is an iterated-tilted algebra of type A4 and

of global dimension 3, so it cannot be of cluster type D4.

6.2. Cluster-tilted algebras of type Ãp,q

Definition 6.7 ([Ba, Definition 3.3]). For p≥ q ≥ 1, we define the class

MÃ
p,q of quivers Q that satisfy the following conditions (see Figure 6.1).

• The quiver Q has p+ q vertices.

• There exist integers 1 ≤ p1 < p2 < · · · < pr ≤ p and 1 ≤ q1 < q2 < · · · <
qr ≤ q such that Q contains precisely one full subquiver C which is a

nonoriented cycle of type (p1, q1, p2 − p1, q2 − q1, . . . , pr − pr−1, qr − qr−1).

(That is, C is the composition of p1 arrows going in one direction with

q1 arrows going in the other direction, with p2 − p1 arrows going the first

direction, etc.) We denote by a1, . . . , apr the arrows of C going in one

direction, and we call them the p-arrows. We denote by b1, . . . , bqr the

arrows going in the opposite direction, and we call them the q-arrows.

• Each arrow connecting C to a vertex not in C is in exactly one 3-cycle of

Q of the form
u(α)

α′′

t(α)

α′

s(α)
α
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Figure 6.1: Shape of a quiver in MÃ
p,q.

where α is in C. We denote by u(α) the connecting vertex. It has valency

at most 4. When its valency is 4, the adjacent arrows which are not α′

and α′′ belong to exactly one 3-cycle, and when it has valency 3, the third

arrow does not belong to any 3-cycle. Moreover, the subquiver containing

C, α′, and α′′ is a full subquiver of Q. Hence, we cannot have u(α) = u(β)

for α �= β.

• The full subquiver of Q whose vertices are not in C is a disjoint union

of quivers Qα ∈MA, where α is an arrow of the nonoriented cycle. The

quiver Qα is empty if there is no 3-cycle containing α, and the quiver Qα

contains the vertex u(α) if there is a 3-cycle

u(α)

α′′

t(α)

α′

s(α)
α
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• We have the equalities

p=

pr∑
l=1


Qal
0 + pr and q =

qr∑
l=1


Qbl
0 + qr.

For a quiver Q in MÃ
p,q (see Figure 6.1) we denote by WQ the sum of all

oriented 3-cycles. More precisely, we define

WQ :=
∑
α∈C

(α′′α′α+WQα),

where C is the nonoriented cycle of Q. This is a rigid potential in the sense

of [DWZ].

Theorem 6.8 ([Ba, Section 3]). Let Γ be a finite-dimensional algebra.

Then Γ is a cluster-tilted algebra of type Ãp,q if and only if there exists a

quiver Q in MÃ
p,q such that we have an isomorphism

Γ∼= Jac(Q,WQ).

6.3. Algebras of cluster type Ãp,q

We have the same kind of result as for the An case.

Theorem 6.9. Let Q be a quiver in MÃ
p,q, and let d be WQ-grading.

It yields a grading on the Jacobian algebra B := Jac(Q,WQ). Denote by

Λ :=B0 its degree 0 part. Then Λ is an algebra of global dimension at most

2 and of cluster type Ãp,q. Moreover, each basic algebra of global dimension

at most 2 and of cluster type Ãp,q is isomorphic to such a Λ.

The proof of the first assertion is exactly the same as in the proof of

Theorem 6.4 (steps 1, 2, and 3). For the proof of the second assertion, we

will need the following.

Lemma 6.10. Let (Q,W,d) be a graded quiver with reduced potential such

that

• the quiver Q is in MÃ
p,q,

• the potential W is rigid,

• the grading d is a W -grading.

Then there exists an algebra isomorphism ϕ : kQ̂ → kQ̂ (where kQ̂ is the

completion of the path algebra kQ) such that ϕ is the identity on the vertices,

and such that ϕ(WQ) is cyclically equivalent to W . Moreover, there exists a

WQ-grading d′ on Q such that ϕ : (kQ̂, d′)→ (kQ̂, d) is an isomorphism of

graded algebras.
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Remark 6.11. This means that the graded QPs (Q,W,d) and (Q,WQ, d
′)

are graded right equivalent in the sense of [AO1, Definition 6.5].

Proof. We denote by C1, . . . ,Cl the oriented cycles such that WQ =∑l
i=1Ci, we denote by a1, . . . , apr the p-arrows, and we denote by b1, . . . , bqr

the q-arrows of Q. The Ci are irreducible cycles of Q, but contrary to the

An-case, there might be other irreducible cycles in the quiver Q. We treat

here the most complicated case.

Assume that for all i = 1, . . . , pr and all j = 1, . . . , qr, we have Qai �= ∅

and Qbj �=∅.

Denote by Ca a cycle containing exactly once the arrows ai, i= 1, . . . , pr
and b′j , b

′′
j , j = 1, . . . , qr, and denote by Cb a cycle containing exactly once

the arrows bj , j = 1, . . . , qr and a′i, a
′′
i , i= 1, . . . , pr. Then one can check that

the irreducible cycles of Q are Ca, Cb, and the Ci up to cyclic equivalence.

Therefore, we can write

W =

l∑
i=1

λiCi + αCa + βCb + extra terms,

where λi, α,β ∈ k and the extra terms are linear combinations of reducible

cycles.

First, we show that we can assume that λi �= 0 for all i= 1, . . . , l.

If pr + qr ≥ 3, then we have immediately λi �= 0 for i = 1, . . . , l by the

rigidity of W . Assume that pr = qr = 1. Then Q is of this form:

. .

.

a1

a′1a′′1

Qa1

.

Qb1

b1

b′1b′′1

We can assume (up to renumbering) that C1 is cyclically equivalent to

a1a
′
1a

′′
1 and that C2 is cyclically equivalent to b1b

′
1b

′′
1 , and we have Ca =

https://doi.org/10.1215/00277630-2083124 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2083124


36 C. AMIOT AND S. OPPERMANN

a1b
′
1b

′′
1 and Cb = b1a

′
1a

′′
1 . Then it is easy to see that the rigidity of W implies

that λi �= 0 for i = 3, . . . , l and that λ1λ2 − αβ �= 0. Therefore, up to the

automorphism of Q exchanging a1 and b1, we can assume that λ1λ2 �= 0.

Since the potential W is homogeneous of degree 1, we have

d(ai) + d(a′i) + d(a′′i ) = d(bj) + d(b′j) + d(b′′j ) = 1
(6.3.1)

for all i= 1, . . . , pr, j = 1, . . . , qr.

By definition, we have

d(Ca) =

pr∑
i=1

d(ai) +

qr∑
j=1

(
d(b′j) + d(b′′j )

)
and

(6.3.2)

d(Cb) =

qr∑
j=1

d(bj) +

pr∑
i=1

(
d(a′i) + d(a′′i )

)
.

Hence, combining (6.3.1) and (6.3.2), we get

(6.3.3) d(Ca) + d(Cb) = pr + qr.

Using (6.3.3) and the fact that d(Ca) and d(Cb) are nonnegative (since d is

a map Q1 →{0,1}), we divide the proof into four subcases.

Case 1: d(Ca)≥ 2 and d(Cb)≥ 2.

In this case, since W is homogeneous of degree 1, we have α= β = 0, and

there is no extra term in the potential W . For i= 1, . . . , l, we denote by ci
the arrow such that Ci = c′′i c

′
ici. Then we define ϕ on Q1 by

ϕ(x) =

{
λici if x= ci,

x otherwise.

It is then clear that ϕ is an isomorphism of the graded algebra (kQ,d)

sending WQ onto W .

Case 2: d(Ca) = 1 and d(Cb)≥ 2.

In this case, since W is homogeneous of degree 1, we have β = 0, and

there is no extra term in the potential W . Up to cyclic equivalence and

renumbering, we can assume that C1 = b′′1b
′
1b1 and that Ca = b′′1b

′
1C

′
a. For

i= 2, . . . , l, we denote by ci the arrow such that Ci = c′′i c
′
ici. Now we define

ϕ on Q1 by

ϕ(x) =

⎧⎪⎨⎪⎩
λ1b1 + αC ′

a if x= b1,

λici if x= ci, and i≥ 2,

x otherwise.
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Since Ca = b′′1b
′
1C

′
a and C1 = b′′1b

′
1b1 are oriented cycles, the path C ′

a has the

same source and the same target as b1; thus, ϕ is an algebra morphism.

Moreover, since λi �= 0, ϕ is an isomorphism of the completion kQ̂. Now, we

have

d(C ′
a) = d(Ca)− d(b′1)− d(b′′1) = 1− d(b′1)− d(b′′1) = d(b1).

Therefore, ϕ is an isomorphism of the graded algebra (kQ̂, d) sending WQ

onto W .

Case 3: d(Ca) = 1 and d(Cb) = 1.

From (6.3.3) we automatically have pr = qr = 1. All the cycles C1 =

a′′1a
′
1a1, C2 = b′′1b

′
1b1, Cb = a′′1a

′
1b1, Ca = b′′1b

′
1a1, C3, . . . ,Cl are homogeneous

of degree 1. For i= 3, . . . , l, we denote by ci the arrow such that Ci = c′′i c
′
ici.

Since W is rigid, we have λ1λ2−αβ �= 0. And since the grading d makes W

homogeneous of degree 1, there is no extra term in the potential W , and we

have d(a1) = d(b1). Then we can define

ϕ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ1a1 + βb1 if x= a1,

λ2b1 + αa1 if x= b1,

λici if x= ci, and i≥ 3,

x otherwise.

Since λ1λ2 − αβ = 0, this algebra morphism is an isomorphism. Moreover,

since d(a1) = d(b1), ϕ : (kQ,d)→ (kQ,d) is an isomorphism of graded alge-

bras. By construction, it sends WQ onto W .

Case 4: d(Ca) = 0.

From (6.3.3), we have d(Cb)≥ 2. Hence, sinceW is homogeneous of degree

1, we have α= β = 0. In this case, since the degree of Ca is 0, the oriented

cycles of the quiver Q which are homogeneous of degree 1 are cyclically

equivalent to something of the form CiC
n
a where n ∈N. Thus, we can write

up to cyclic equivalence:

W =
l∑

i=1

CiPi(Ca),

where Pi ∈ k[[X]] is a power series with constant term λi �= 0. For each

i= 1, . . . , l, we write Ci = c′′i c
′
ici, and we define

ϕ(x) =

{
ciPi(Ca) if x= ci,

x otherwise.

https://doi.org/10.1215/00277630-2083124 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2083124


38 C. AMIOT AND S. OPPERMANN

Then ϕ is an automorphism of the completion kQ̂ since λi �= 0 for all i =

1, . . . , l. Since d(Ca) = 0, this automorphism is an automorphism of the

graded algebra (kQ̂, d).

The other cases, when

• there exists 1≤ i≤ pr and 1≤ j ≤ qr such that Qai =∅ and Qbj =∅, and

• for all i= 1, . . . pr, we have Qai �=∅, and there exists j such that Qbj =∅,

are simpler since in these cases there are fewer irreducible cycles. The proof

is left to the reader.

Remark 6.12.

(1) Note that the first part of this lemma can be deduced directly from

[DWZ, Theorem 5.7]. Indeed, since W is rigid, the quiver with poten-

tial (Q,W ) is right equivalent in the sense of [DWZ, Definition 4.2] to

(Q,WQ). (There exists a sequence s such that μs(Q) is acyclic; there-

fore, μs(Q,W ) is right equivalent to μs(Q,WQ).) By definition, this

implies that there exists an automorphism of completed path algebras

ϕ : kQ̂→ kQ̂ which is the identity on the vertices, and such that ϕ(WQ)

is cyclically equivalent to W . However, we have proved this lemma con-

structing explicitly the isomorphism ϕ.

(2) In the case pr = qr = 1, it might happen that λ1λ2 = 0. Then the auto-

morphism ϕ constructed above will exchange the arrows a1 and b1. The

degree map d′ will satisfy d′(a1) = d(b1) and d′(b1) = d(a1). This is the

only case where d and d′ are not the same.

From Lemma 6.10, we deduce the following result, which is a restatement

of the second part of Theorem 6.9 and finishes the proof of Theorem 6.9.

Corollary 6.13. Let Λ be an algebra of global dimension at most 2 and

of cluster type Ãp,q. Then there exist a quiver Q ∈MÃ
p,q and a WQ-grading

d′ such that Λ is isomorphic to the degree 0 part of Jac(Q,WQ, d).

Proof. By Proposition 3.11, there exists a reduced graded quiver with

potential (Q,W,d), such that Λ∼
Z
Jac(Q,W,d). Moreover, W is rigid, and d

is a W -grading. By Theorem 6.8, the quiver Q is in MÃ
p,q. By Lemma 6.10,

there exists a WQ-grading d′ such that we have Jac(Q,W,d)∼
Z
Jac(Q,WQ,

d′). Therefore, Λ is isomorphic to the degree 0 part of Jac(Q,WQ, d
′).
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Remark 6.14.

(1) This corollary implies that an algebra Λ of cluster type Ãp,q is always

isomorphic to an algebra of the form kQΛ/I , where the relations are

paths of length 2.

(2) This corollary gives a description of the iterated tilted algebras of global

dimension at most 2 of type Ãp,q. A description of all iterated tilted

algebras (not distinguishing with respect to their global dimension) of

type Ãp,q has been given in [AmS, Theorem (A)].

Corollary 6.15. There are only finitely many algebras (up to Morita

equivalence) of global dimension at most 2 and of cluster type Ãp,q.

Proof. There are only finitely many quivers in the set MÃ
p,q, and given

Q ∈MÃ
p,q, there are finitely many WQ-gradings.

6.4. An alternative description of the weight

In this section, we give an explicit way to compute the weight of an

algebra of cluster type Ãp,q.

Definition 6.16. Let Q be a quiver in MÃ
p,q, and let d be a Z-grading

on Q such that the potential WQ is homogeneous of degree 1. Then let

a1, . . . , apr be the p-arrows, and let b1, . . . , bqr be the q-arrows, of Q. The

weight of the graded quiver (Q,d) is defined to be

w(Q,WQ, d) :=

pr∑
l=1

d(al)−
qr∑
l=1

d(bl).

The aim of the section is to show the following.

Proposition 6.17. Let Q ∈MÃ
p,q, and let d be a WQ grading. Let Λ be

the degree 0 part of the graded algebra Jac(Q,WQ, d). Then Λ is an algebra

of global dimension at most 2 and of cluster type Ãp,q, and we have

w(Λ) =w(Q,WQ, d).

Proof. The first part of the statement follows from Theorem 6.9.

Let s be a sequence of mutation such that μs(Q,WQ) = (H,0), where QH

is an acyclic quiver of type Ãp,q. Define a grading ∂ on QH by μL
s (Q,WQ,

d) = (H,0, ∂). By definition, we have w(Λ) =w(H,0, ∂). Hence, the proof of

the proposition comes directly from the following technical lemma.
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Lemma 6.18. Let Q be a quiver in MÃ
p,q, and let d be a Z-grading on Q

such that WQ is homogeneous of degree 1. Let i be a vertex of Q. Then we

have

w
(
μL
i (Q,WQ, d)

)
=w(Q,WQ, d).

Proof. We define the grading d′ on the quiver μi(Q) by μL
i (Q,W,d) =

(μi(Q,W ), d′). We distinguish the following different cases.

Case 1: There exists α in the nonoriented cycle C of Q such that i ∈Qα

and i �= u(α).

Then the vertices adjacent to i are not in the nonoriented cycle. Therefore,

the mutation of Q at i does not affect the nonoriented cycle, so the weight

clearly remains the same.

Case 2: i= u(α) for some arrow α which is on the nonoriented cycle C.

Assume that α is a p-arrow. There exists a 3-cycle α′′α′α which is a

summand of W .

The new arrows (α′)∗ and (α′′)∗ become p-arrows in the nonoriented

cycle. Therefore, we have

w
(
μL
i (Q,W,d)

)
= w(Q,W,d)− d(α) + d′

(
(α′)∗

)
+ d′

(
(α′′)∗

)
= w(Q,W,d)− d(α)− d(α′)− d(α′′) + 1

= w(Q,W,d).

The last equality holds since α′′α′α is a summand in the potential W , and

hence we have d(α) + d(α′) + d(α′′) = 1.

Case 3: i is on the nonoriented cycle C between two p-arrows.

Then the quiver Q locally looks like
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The arrows at and at+1 are replaced by the new p-arrow [at+1at] in the

nonoriented cycle. Hence, we have

w
(
μL
i (Q,W,d)

)
= w(Q,W,d)− d(at)− d(at+1) + d′

(
[at+1at]

)
= w(Q,W,d).

The case where i is between two q arrows is similar.

Case 4: i is a sink of the nonoriented cycle C.

Assume that i is the target of the p-arrow al and the target of the q-arrow

bt.

Then the arrows al and bt are replaced by the arrows a∗l and b∗t , and we

have

w
(
μL
i (Q,W,d)

)
= w(Q,W,d)− d(al) + d(bt) + d′(b∗t )− d′(a∗l )

= w(Q,W,d)− d(al) + d(bt) +
(
−d(bt) + 1

)
−
(
−d(al) + 1

)
= w(Q,W,d).

The case where i is the source of one p-arrow and of one q-arrow is similar.
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This alternative description of the weight gives us the following conse-

quences.

Corollary 6.19. The number of derived equivalence classes of algebras

of cluster type Ãp,q is [p/2] + [q/2] + 1 if p �= q and [p/2] + 1 if p= q.

Proof. Let Q be a quiver in MÃ
p,q. It is clear from the definition that

w is maximal when the WQ-grading satisfies d(al) = 1 for l = 1, . . . , pr and

d(bj) = 0 for j = 1, . . . , qr. In this case, the weight is equal to pr = p −∑pr
l=1 
Q

al
0 . But since d is a WQ-grading, d(al) = 1 implies that the quiver

Qal is nonempty. Then we have w = pr = p−
∑pr

l=1 
Q
al
0 ≤ p− pr. Thus, we

have w ≤ [p/2]. For the same reason, we have w ≥−[q/2]. Now it is easy to

see that all values −[q/2],−[q/2] + 1, . . . , [p/2] can occur.

Corollary 6.20. Let Λ be an algebra of cluster type Ãp,q, which is not

piecewise hereditary. Then there exists a tilting object T in Db(Λ) such that

the quiver of EndDb(Λ)(T ) has an oriented cycle.

Proof. Let −q/2≤w ≤ p/2 be a nonzero integer. We construct an algebra

B of cluster type Ãp,q of weight w such that QB has an oriented cycle.

Without loss of generality, we can assume that w > 0. We define B as follows:

It is clear that B is the degree 0 part of the Jacobian algebra Jac(Q,WQ, d)

with the graded quiver

Then by Theorem 4.5, this algebra B is the endomorphism algebra of some

tilting complex T ∈Db(Λ).
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Corollary 6.21. Let Λ be an algebra of cluster type Ãp,q and of weight

w; then the Coxeter polynomial of Λ is

Xp+q − (−1)wXp−w − (−1)wXq+w + 1.

Proof. By definition, the Coxeter matrix is the matrix of the automor-

phism τ at the level of the Grothendieck group K0(Db(Λ)) in the basis

{[Si] | 1 ≤ i ≤ p + q} consisting of the representatives of the simples. The

Coxeter polynomial C(X) is its characteristic polynomial.

The result is already known for w = 0. Without loss of generality, we can

assume that 0 < w ≤ p/2. By the above results, we can assume that Λ is

given by the following quiver with relations:

Then for 0≤ j ≤w− 1, the projective resolution of S2j+1 is given by

0 P2j+3 P2j+2 P2j+1 S2j+1 0.

Thus, one easily checks that,

for 0≤ j ≤w− 1, τ [S2j+1] =
[
S2j+3[1]

]
=−[S2j+3]

(6.4.1)
in K0

(
Db(Λ)

)
.

We also have the projective resolutions

0 Pp+2 P2w+1 S2w+1 0 and,

for p+ 2≤ j ≤ p+ q, 0 Pj+1 Pj Sj 0,

where we use the convention p+ q+ 1= 1. Hence, we have

τ [S2w+1] = [Sp+2] and,
(6.4.2)

for p+ 2≤ j ≤ p+ q, τ [Sj ] = [Sj+1] in K0

(
Db(Λ)

)
.
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Combining (6.4.1) and (6.4.2), we get

τ q+w[S1] = (−1)wτ q[S2w+1] = (−1)w[S1].

Similarly, we have

(6.4.3) for 2w+ 3≤ j ≤ p+ 1, τ [Sj ] = [Sj−1] in K0

(
Db(Λ)

)
.

Now we have to separate the case where w = 1. Assume that w ≥ 2; then

we have

τ [S2w+2] = [P2w−2] in K0

(
Db(Λ)

)
,(6.4.4)

for 2≤ j ≤w− 1, τ [P2j ] =−[I2j ] =−[P2j−2] in K0

(
Db(Λ)

)
.(6.4.5)

Hence, if p+ 1≥ 2w+ 2, then we have I2 ∼= Pp+1, and we get the following

equalities in K0(Db(Λ)):

τp−w[P2] =−τp−w−1[Pp+1] = τp−w+2[Sp+1]

= τw−1τp−2w−1[Sp+1] = τw−1[S2w+2] by (6.4.3)

= τw−2[P2w−2] by (6.4.4)

= (−1)w[P2] by (6.4.5).

If p+1= 2w+1, we have I2 ∼= P2w, and we also get τp−w[P2] = (−1)w[P2].

Assume that w is odd. Then one can checks that the set{
[S2j+1],0≤ j ≤w

}
∪
{
[Sj ],2w+ 2≤ j ≤ p+ q

}
∪
{
[P2j ],1≤ j ≤w− 1

}
∪
{
[I2]

}
is a basis of K0(Db(Λ)). Therefore, the Coxeter matrix is diagonalizable,

and C(X) = (Xq+w + 1)(Xp−w + 1).

Assume that w is even. Then the set{
[S2j+1],0≤ j ≤w

}
∪
{
[Sj ],2w+ 2≤ j ≤ p+ q

}
∪
{
[P2j ],1≤ j ≤w− 1

}
is linearly independent in K0(Db(Λ)), and we have the relation

[I2]−
p+1∑

j=2w+2

[Sj ]−
w−1∑
j=1

(−1)j [P2j ] =

p+q∑
j=p+2

[Sj ] +
w∑

j=1

(−1)j [S2j+1].

https://doi.org/10.1215/00277630-2083124 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2083124


ALGEBRAS OF ACYCLIC CLUSTER TYPE 45

This element is an eigenvector of the eigenvalue 1. Hence,

(Xq+w − 1)(Xp−w − 1)

(X − 1)

divides the Coxeter polynomial C(X). Since the degree of C(X) is p+ q,

and since we know that both the leading coefficient and the absolute term

of C(X) are 1, it follows that

C(X) =
(Xq+w − 1)(Xp−w − 1)

(X − 1)
· (X − 1) = (Xq+w − 1)(Xp−w − 1).

For the case w = 1, we introduce the following notations for 4≤ j ≤ p:

Mj := Ker(I2 → Ij+1 ⊕ Ij+1)∼= Coker(P2 → Pj ⊕ Pj),

M3 := Ker(I2 → I4 ⊕ I4)∼= P2,

Mp+1 := Coker(P2 → Pp+1 ⊕ Pp+1)∼= I2.

Then we have,

(6.4.6) for 4≤ j ≤ p+ 1, τ [Mj ] = [Mj−1].

Therefore, we get the equalities in K0(Db(Λ)) :

τp−1[P2] =−τp−2[I2] = τp−2[Mp+1] =−[M3] =−[P2].

Finally, it is easy to see that the set{
[Mj ],3≤ j ≤ p+ 1

}
∪
{
[S1], [S3]

}
∪
{
[Sj ], p+ 2≤ j ≤ p+ q

}
is a basis of Q⊗Z K0(Db(Λ)). This finishes the proof.

We end this section by giving a result linking the weight of an algebra of

cluster type Ãp,q with the set of cluster-tilting objects of C
Ãp,q

coming from

tilting complexes in Db(Λ). We start with some notation.

Let Λ be an algebra of global dimension at most 2 which is τ2-finite. We

define a subset TΛ of the set of tilting complexes of Db(Λ) by

TΛ :=
{
T ∈Db(Λ) tilting

∣∣ gldim(
EndDb(Λ)(T )

)
≤ 2

}
.

By Theorem 2.4, the set πΛ(TΛ)⊂ CΛ is a subset of the set of cluster-tilting

objects of CΛ. Moreover, if Λ1 and Λ2 are derived equivalent, they are cluster

equivalent, and we clearly have πΛ1(TΛ1) = πΛ2(TΛ2). We prove here the

converse in the case of algebras of cluster type Ãp,q, and we compare the

sets πΛ1(TΛ1) and πΛ2(TΛ2) when w(Λ1) �=w(Λ2).
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Proposition 6.22. Let Λ1 and Λ2 be two algebras of global dimension 2

and of cluster type Ãp,q. Then we have

• 0≤w(Λ1)<w(Λ2)⇒ π2(TΛ2)� π1(TΛ1),

• w(Λ2)<w(Λ1)≤ 0⇒ π2(TΛ2)� π1(TΛ1),

• w(Λ1)w(Λ2)< 0⇒ π1(TΛ1) \ π2(TΛ2) �= ∅ �= π2(TΛ2) \ π1(TΛ1).

Proof. We first show the inclusion in the first claim. Without loss of

generality, we can assume that w(Λ2) =w(Λ1)+1> 0. It is enough to show

that π2(Λ2) ∈ π1(TΛ1). We denote by H some hereditary algebra of type

Ãp,q, and we denote by π2 a triangle functor π2 : Db(Λ2)→CH .

Let (Q,WQ, d) be a graded quiver with potential such that we have iso-

morphisms of Z-graded algebras EndCH (π2Λ2) ∼= Jac(Q,WQ, d). Since

w(Λ2) ≥ 1, there exists a p-arrow ai ∈ Q such that d(ai) = 1. Since d is

a WQ-grading, the subquiver Qai is not empty. More precisely, there exists

arrows a′i and a′′i such that aia
′
ia

′′
i is an oriented triangle in Q.

Define a new degree d′ on Q by

d′(x) =

⎧⎪⎨⎪⎩
0 if x= ai,

1 if x= a′i,

d(x) otherwise.

It is immediate to see that d′ is a WQ-grading. Define the algebra Λ3 as

the degree 0 part of the graded Jacobian algebra Jac(Q,WQ, d
′). By The-

orem 6.9, it is an algebra of global dimension 2 which is of cluster type

Ãp,q, and by Corollary 3.2 we can assume that π2(Λ2) = π3(Λ3), where π3
is a triangle functor π3 : Db(Λ3)→CΛ3 . Moreover, by Proposition 6.17, we

have w(Λ3) = w(Λ2)− 1 = w(Λ1). Therefore, by Theorem 4.5, the algebra

Λ3 is derived equivalent to Λ1. The image of Λ3 through this equivalence is

clearly an object X in TΛ1 which satisfies π1(X)∼= π2(Λ2).

For any 0 ≤ w ≤ [p/2], one can easily construct a quiver Q such that

Q admits a WQ-grading of weight w but no WQ-grading of weight w + 1.

Therefore, the inclusion is strict.

The second point holds by symmetry.

For the third point, it is enough to see that for any w > 0, the quiver Q

constructed in the proof of Corollary 6.20 satisfies the following: there exists

a WQ-grading of weight w, and for any w′ < 0 there is no WQ-grading of

weight w′. The argument for w < 0 holds by symmetry.

We end this section by asking the following intriguing questions.
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Question 6.23.

• Let Λ1 and Λ2 be τ2-finite algebras of global dimension at most 2 which

are cluster equivalent. Do we have the implication

π1(TΛ1) = π2(TΛ2)⇒Db(Λ1)∼=Db(Λ2)?

• Let Λ be a τ2-finite algebra of global dimension at most 2. Does the

following implication hold?

πΛ(TΛ) = {X ∈ CΛ |X cluster-tilting}⇒Λ piecewise hereditary.

6.5. Example

In this section we compute explicitly all basic algebras (up to isomor-

phism) of global dimension at most 2 and of cluster type Ã2,2 and organize

them according to their derived equivalence classes.

The strategy consists of first describing all quivers (up to isomorphism

of quivers) which are in the set MÃ
2,2. In our case, an easy computation or

[K1] shows that there are only four different quivers in MÃ
2,2:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Note that since p= q, there is an isomorphism between the two quivers

corresponding to pr = 2, qr = 1 and pr = 1, qr = 2:

.

.

.

.

.

.

.

.

Then one can easily check that there are 11 graded quivers (Q,d) with Q ∈
MÃ

p,q and d a WQ-grading up to isomorphism of graded quiver. Therefore,

there are exactly 11 nonisomorphic algebras of global dimension 2 and of

cluster type Ã2,2.

The only possible weights are |w| = 0 or |w| = 1. Therefore, these 11

algebras are divided into two derived equivalence classes.
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There are eight algebras of global dimension at most 2 which are derived

equivalent to Ã2,2:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

There are three algebras of global dimension at most 2 which are of

cluster type Ã2,2 and are not derived equivalent to Ã2,2. They are all derived

equivalent to each other and not piecewise hereditary:

.

.

.

.

.

.

.

.

.

.

.

.
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