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Abstract. Let Eaðu; vÞ be the extremal algebra determined by two hermitians u
and v with u2 ¼ v2 ¼ 1. We show that: Eaðu; vÞ ¼ f fþ gu : f; g 2 CðTÞg, where T is
the unit circle; Eaðu; vÞ is C�-equivalent to C�ðGÞ, where G is the infinite dihedral
group; most of the hermitian elements k of Eaðu; vÞ have the property that kn is
hermitian for all odd n but for no even n; any two hermitian words in G generate an
isometric copy of Eaðu; vÞ in Eaðu; vÞ.

2000 Mathematics Subject Classification. 47A12, 47B15.

1. Introduction. This is a continuation of [2], except that we are concerned here
only with the extremal Banach algebra Eaðu; vÞ determined by two hermitian invo-
lutions u and v (we use involution here in the group sense, namely that u2 ¼ v2 ¼ 1).
In [2] we presented Eaðu; vÞ as an abstract completion of a group algebra. Here we
present it as a specific algebra of pairs of continuous functions on the unit circle and
we prove that it is even C�-equivalent for the natural star operation on Eaðu; vÞ
which makes the generators u and v unitary elements. The hermitian element defined
by h ¼ ði=2Þðuv
 vuÞ has the remarkable property that hn is hermitian for every odd
n but for no even n; and yet the subalgebra generated by h is C�-equivalent to
C½
1; 1�. The algebra Eaðu; vÞ is equivalent to the C�-algebra of the infinite dihedral
group G. We give a simple explicit description of the space of hermitian elements in
Eaðu; vÞ; we also show that most of the hermitian elements k of Eaðu; vÞ have the
property that kn is hermitian for all odd n but for no even n. Permutations of G
induce (isometric) automorphisms of C�ðGÞ. We show that there are also many
(isometric) isomorphisms onto subalgebras of Eaðu; vÞ.

We use without comment some elementary properties of hermitians which may
be found in [1].

Glasgow Math. J. 44 (2002) 255–260. # 2002 Glasgow Mathematical Journal Trust.
DOI: 10.1017/S0017089502020062. Printed in the United Kingdom

*This author acknowledges the support of a Scheme 2 Grant from the London Mathematical Society.

https://doi.org/10.1017/S0017089502020062 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502020062


2. Ea(u,v) is C*-equivalent. We repeat here some essential notation from [2]. We
write G for the infinite dihedral group generated by x and u, where u2 ¼ 1 and
ux ¼ x
1u. In relation to the algebra Eaðu; vÞ we have x ¼ uv. PutH ¼ fxn : n 2 Zg so
that G ¼ H [Hu. Put A0 ¼ C½G� and recall the (algebra) involutions * and y given by

X
�gg

� ��
¼

X
�gg


1;
X

�gg
� �y

¼
X

�gg

1:

For a 2 A0 we note that a� ¼ ay()a 2 R½G�. Let J � C½G� be the set of all finite
products of elements of the form p ¼ cos � þ i sin �xnu, where � 2 R; n 2 Z. Since
ðxnuÞ
1 ¼ xnu, we have p� ¼ cos � 
 i sin �xnu 2 J , and p�p ¼ 1 ¼ pp�. It follows
that, for all a 2 J , a�a ¼ 1 ¼ aa� and a� 2 J . Hence J is a group in A0. Identities
such as cos � þ i sin � xu ¼ ðiuÞðcos � þ i sin � vÞð
iuÞ show that this is the J of [2].
Since xn ¼ ð
ixnuÞðiuÞ, we have xn 2 J and so H � J .

Since G ¼ H [Hu, each a 2 A0 can be written as a ¼ bþ cu with b; c 2 C½H�.
For c 2 C½H�, we have uc ¼ cyu. For b; c 2 C½H�, this gives ðbþ cuÞ� ¼ b� þ c�yu;
define an involution z onA0 by ðbþ cuÞz ¼ by 
 cu. By contrast, note that ðbþ cuÞy ¼
by þ cu. Then a�z ¼ az� for a 2 A0, and a� ¼ az if a 2 J . For a 2 A0, a� ¼ az if and
only if a ¼ bþ icu for some b; c 2 R½H�; then a�a ¼ b�bþ c�c ¼ aa�.

Lemma 2.1. Let K ¼ fa 2 A0 : a� ¼ az; a�a ¼ 1g. Then J ¼ K.

Proof. From the above, J � K. Clearly K is also a group. Any a 2 K,
a 62 �ðHUiHuÞ, may be written

a ¼ �px
p þ � � � þ �mxm þ i�qx

quþ � � � þ i�nx
nu ð1Þ

where p; q;m; n 2 Z, p � m, q � n, �p�m�q�n 6¼ 0 and �k; �k 2 R for all k. Suppose
that m
 p > n
 q. Then the coefficient of xm
p in a�a is �p�m 6¼ 0. Since a�a ¼ 1,
this coefficient is 0. Similarly we rule out n
 q > m
 p. Therefore m
 p ¼ n
 q;
call this common value the length of a. We show that a 2 K implies a 2 J by
induction on the length of a. If a has length 0 then a ¼ �px

p þ i�qx
qu ¼

xpð�p þ i�qx
q
puÞ 2 J , since 1 ¼ a�a ¼ �2p þ �2q. Suppose that our claim holds for

elements of length less than N, and consider a as above of length N. For � 2 R, cos �þ
i sin � xq
pu 2 J � K and so a0 ¼ aðcos � þ i sin � xq
puÞ 2 K. Here a0 has the form of
ð1Þwith �p replaced by �

0
p ¼ �p cos � 
 �q sin �. We choose � so that �0p ¼ 0. Then a0 has

length less than N and, by hypothesis, a0 2 J . Therefore a 2 J , as required. &

As in [2], we now define a norm on A0 by

kak ¼ inf
XN

1
j�kj : a ¼

XN

1
�kak;N 2 N; �k 2 C; ak 2 J

n o
:

Let T denote the unit circle in C. With each element b ¼
P

�nx
n of C½H� we

associate the function on T given by bð�Þ ¼
P

�n�
n. We can now regard A0 as the set

of all elements fþ gu where f; g are polynomials in � and �
1 ¼ � on T. We also have
a representation as 2� 2 matrices of functions of � 2 T by

	ð fþ guÞ ¼
fð�Þ gð�Þ
gð�Þ fð�Þ

� �
:
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The involutions on C½H� correspond to

f �ð�Þ ¼ fð�Þ; f yð�Þ ¼ fð�Þ:

We have J ¼ J� ¼ Jz, and so � and z are isometric for k � k. We write j � j1 for the
supremum norm over T. Of course the element x corresponds to the function
xð�Þ ¼ �.

Lemma 2.2. Let f 2 R½H� with j f j1 < 1. Then there exists g 2 R½H� such that
f�fþ g�g ¼ 1.

Proof. Put F ¼ 1
 f �f, so that F is a positive trigonometric polynomial with
real coefficients. By [3, pp 117–8], F can be written as g�g, and the proof in [3] shows
that the trigonometric polynomial g also has real coefficients. &

Corollary 2.3. For f 2 R½H�, we have k f k ¼ j f j1. For f 2 C½H�, we have
j f j1 � k f k � 2j f j1. The completion of ðC½H�; k � kÞ is CðTÞ, with j f j1 � k f k �
2j f j1 for all f 2 CðTÞ.

Proof. Let f 2 R½H� with j f j1 < 1. By Lemma 2.2, there exists g 2 R½H� such
that f *fþ g*g ¼ 1. Then a ¼ f� igu satisfy a� ¼ az and a�a ¼ 1. By Lemma 2.1,
f� igu 2 J . Therefore k f� iguk ¼ 1, and k f k � 1. By linearity, k f k � j f j1 for
f 2 R½H�. For bþ icu 2 J , we have

jbð�Þj2 þ jcð�Þj2 ¼ ðb�bþ c�cÞð�Þ ¼ 1

and so jbð�Þj � 1 for � 2 T. Hence, for f 2 C½H�, k f k � j fð�Þj, and so k f k � j f j1,
which gives k f k ¼ j f j1 for f 2 R½H�.

Let f ¼
P

�nx
n 2 C½H�. Note that f *y ¼

P
�nx

n, and j f �yj1 ¼ j f j1. Thus
fþ f *y 2 R½H� and j fþ f �yj1 � 2j f j1. This gives k fþ f *yk � 2j f j1.
Also, ið f
 f *yÞ 2 R½H�, which gives k f
 f *yk � 2j f j1 and hence k f k � 2j f j1. The
final part follows by the Stone-Weierstrass theorem. &

The involutions � and y extend in the natural way to CðTÞ, and a routine
approximation argument gives the next corollary. Define CSðTÞ ¼ ff 2 CðTÞ :
f * ¼ f yg.

Corollary 2.4. Let f 2 CSðTÞ. Then k f k ¼ j f j1.

We define a norm j � j on C½G� by jaj ¼ supfjabj2 : b 2 ‘2ðGÞ; jbj2 ¼ 1g, where
j
P

�ggj2 ¼ ð
P
j�gj

2Þ
1=2. The completion of ðC½G�; j � jÞ is the C�-algebra C�ðGÞ.

Lemma 2.5. Let L be a subgroup of G. Let a ¼
P

g2G �gg 2 C½G�, and
d ¼

P
g2L �gg its projection in C½L�. Then jdj � jaj.

Proof. Write a ¼ dþ f where f 2 linðG n LÞ. If b 2 ‘2ðLÞ then db 2 ‘2ðLÞ and
fb 2 ‘2ðG n LÞ. Therefore jabj2 ¼ jdbþ fbj2 � jdbj2. Taking the supremum over
jbj2 ¼ 1, we have jaj � jdj. &
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Note that, with the notation of Lemma2.5, jdj is the samewhether taken overL orG.

Theorem 2.6. As algebras,

Eaðu; vÞ ¼ C*ðGÞ ¼ f fþ gu : f; g 2 CðTÞg;

with uf ¼ f yu and j f j ¼ j f j1 ð f 2 CSðTÞÞ. For a 2 Eaðu; vÞ, jaj � kak � 4jaj.

Proof. Let a ¼ fþ gu with f; g 2 C½H�. Lemma 2.5 gives j f j � jaj. Since
au ¼ gþ fu, also jgj � jauj ¼ jaj. We have j f j ¼ j f j1. From the Stone-Weierstrass
theorem we deduce that C*ðGÞ ¼ f fþ gu : f; g 2 CðTÞg.

It is now enough to prove that jaj � kak � 4jaj for a ¼ fþ gu, f; g 2 C½H�. We
have that jaj � kak by the extremal nature of k � k. Also, kak � k f k þ kgk �
2j f j þ 2jgj � 4jaj by Corollary 2.3. &

Corollary 2.7. The extremal Banach algebra on one generator with all odd
powers hermitian is C*-equivalent with j � j � k � k � 2j � j where k � k is the extremal
norm and j � j the C*-norm.

We extend � and z to Eaðu; vÞ by the earlier formulæ. For the above matrix
representation, z gives the adjugate matrix.

3. Properties of Ea(u,v). We begin by identifying the space of hermitian ele-
ments in Eaðu; vÞ. In [2] we noted the obvious hermitian elements (in A0) given by
xnu (n 2 Z), 1 and iðxn 
 x
nÞ (n 2 N). As expected, the space H of hermitian ele-
ments of Eaðu; vÞ is the closed real linear span of these elements. In fact, we can give
a more elegant, and useful, description in terms of the involutions � and z.

Theorem 3.1. We have H ¼ fh 2 Eaðu; vÞ : h* ¼ h; hþ hz 2 Rg.

Proof. Suppose that h 2 Eaðu; vÞ with h* ¼ h and hþ hz ¼ � 2 R. Replacing h
by h
 �=2, we assume that � ¼ 0. We approximate h by elements k in A0 satisfying
k ¼ k* ¼ 
kz. We verify that k is a real linear combination of elements xnu and
iðxn 
 x
nÞ for n 2 Z. Hence k, and so its limit h, is hermitian.

Now suppose that h 2 H. By extremality, h is also hermitian in C�ðGÞ, and so
h� ¼ h. Let � 2 T and � 2 C. Define a linear functional � on A by

�ðbþ cuÞ ¼ ð1
 2�Þbð1Þ þ �bð�Þ þ �bð�Þ ðb; c 2 CðTÞÞ:

Then �ð1Þ ¼ 1. If bþ cu 2 J then, as in Corollary 2.3, 
1 � bð1Þ � 1, jbð�Þj � 1 and
bð�Þ ¼ bð�Þ. These give j�ðbþ cuÞj � maxf1; j1
 4�jg. If j1
 4�j � 1 then j�ðJ Þj � 1
and so k�k � 1. For these �, � is a support functional of 1. Hence �ðhÞ 2 R. Write
h ¼ fþ guwith f; g 2 CðTÞ. We deduce that fð1Þ 2 R and fð�Þ þ fð�Þ ¼ 2fð1Þ. Therefore
hþ hz ¼ fþ f z ¼ 2fð1Þ, as required. &

The proof of the next result is routine.
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Proposition 3.2. The centre Z of Eaðu; vÞ is given by Z ¼ ff 2 CðTÞ : f ¼ f yg and
Z \H ¼ R.

We show that most hermitian elements h of Eaðu; vÞ have the property that hn is
hermitian for all odd n but for no even n. On the other hand, when h contains a non-
zero multiple of the identity, we usually have no other power hermitian. We remark
that these latter hermitians cannot generate the extremal algebra on one hermitian
generator because they generate C�-equivalent subalgebras.

Let H0 ¼ fh 2 A : h� ¼ h ¼ 
hzg, so that H0 # H.

Theorem 3.3 Let n 2 N.
(1) If h 2 H0 and n is odd then hn 2 H.
(2) If either h 2 H0 and hn 2 H with n even, or h 2 H nH0 and hn 2 H with

n > 1, then PðhÞ ¼ 0 for some quadratic polynomial P.

Proof. (1) Since h ¼ h� ¼ 
hz, we have hn ¼ hn� ¼ 
hnz for n odd, and so
hn 2 H0.

(2) For some ; � 2 R, hþ hz ¼  and hn þ hzn ¼ �, where  ¼ 0 and n is even, or
 6¼ 0 and n > 1. Consider the even polynomialQð�Þ ¼ �n þ ð
 �Þn 
 �, which has at
most two real zeros. Then QðhÞ ¼ 0, and each factor h
 � of QðhÞ with � 62 R may be
cancelled since h has real spectrum. This leaves a real quadratic P with PðhÞ ¼ 0. &

An example of the situation in Theorem 3.3 (2) is h ¼ iðx
 x
1Þ þ ðxþ x
1Þu.
Here h 2 H0 and h2 ¼ 4. In these cases, hn 2 H ðn 2 NÞ.

The infinite dihedral group G has many subgroups which are isomorphic to G
and hence the C�-algebra generated by such is isometrically isomorphic to C�ðGÞ.
There are natural related questions to ask for Eaðu; vÞ. Since kuk ¼ ku
1k ¼ 1, the
mapping a ! uau is an isometric monomorphism of Eaðu; vÞ. Thus the closed sub-
algebra generated by u; uvu is a copy of Eaðu; vÞ. Equally for the closed subalgebra
generated by vuv; v. By applying these two mappings repeatedly we easily see that
the closed subalgebra generated by xnu; xnþ1u is a copy of Eaðu; vÞ for any n 2 Z. On
the other hand, this simple method will not identify for us the closed subalgebra
generated by uvu; vuv (i.e. xu; x
2u). We show in fact that any two hermitian ele-
ments xmu; xnu with m; n 2 Z;m 6¼ n generate a copy of Eaðu; vÞ.

Let AS ¼ fa 2 Eaðu; vÞ : a� ¼ azg. We easily verify that AS ¼ f fþ igu :
f; g 2 CSðTÞg. Also, AS is a real C�-algebra with the involution � and norm j � j.

Proposition 3.4. We have kak ¼ jaj for a 2 AS.

Proof. Let a 2 AS with jaj < 1. By [4], a is a convex combination of elements of
the form cos b ec, where b; c 2 AS, b* ¼ b, c* ¼ 
c. Then b 2 CSðTÞ, b is real valued,
cos b 2 CSðTÞ and so k cos bk ¼ j cos bj1 � 1. Also, ðicÞ* ¼ 
ic* ¼ ic ¼ 
ðicÞz and
so ic 2 H0, ke

ck ¼ 1. Therefore kak � 1. It follows that kak � jaj for all a 2 AS. But
jaj � kak by Theorem 2.6. Hence kak ¼ jaj. &

Theorem 3.5. Let xmu, xnu be any two hermitian words in G (where m; n 2 Z).
Then they generate an isometric copy of Eaðu; vÞ in Eaðu; vÞ.
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Proof. In G, xmu and xnu generate an isomorphic subgroup G1 ¼ H1 [ K1, where
H1 � H and K1 � Hu. Define a norm k � k1 on C½G1� via J 1 ¼ fa 2 C ½G1� :
a* ¼ az; a*a ¼ 1g. The involutions �, z of C½G1� agree with those of C½G�. Then
ðC½G1�; k � k1Þ is an isometric copy of A0. It is enough to show that k � k1 is just the
restriction of the norm k � k of A0.

Let a 2 J , and d its projection in C½G1�. By Lemma 2.5, jdj � jaj ¼ 1. From
a* ¼ az we deduce that d* ¼ dz. By Proposition 3.4, kdk1 ¼ jdj. Hence kdk1 � 1.

Now consider a 2 C½G1�. Suppose a ¼
P

�kak with �k 2 C and ak 2 J . Let dk be
the projection of ak inC½G1�. Then kak1 ¼ k

P
�kakk1 ¼ k

P
�kdkk1 �

P
j�kj. It follows

that kak1 � kak. But since J 1 � J , kak1 � kak. Therefore kak1 ¼ kak. &
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