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Abstract. We discuss the self-consistent time-dependent numerical boundary conditions 
on the basis of theory of characteristics for magnetohydrodynamics (MHD) simulations 
of solar plasma flows. The importance of using self-consistent boundary conditions is 
demonstrated by using an example of modeling coronal dynamic structures. This example 
demonstrates that the self-consistent boundary conditions assure the correctness of the 
numerical solutions. Otherwise, erroneous numerical solutions will appear. 
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1. Introduction 

From recent observational and theoretical studies, we have recognized that 
the evolution of the solar magnetic field and its interaction with plasma 
flows are the major physical processes which are responsible for the global 
solar atmosphere dynamics. These physical processes are best described by 
the theory of magnetohydrodynamics (MHD) (Parker 1979; Priest 1981). 
The mathematical model for the atmospheric dynamics in the context of 
MHD theory is highly nonlinear; it is almost impossible to seek meaningful 
analytical solutions for realistic physical problems. Therefore, we need to 
utilize appropriate numerical methods to seek approximate solutions which 
are known as numerical simulations. It is well- known that the treatment of 
appropriate boundary conditions is the key to the success of MHD simula­
tion of a realistic physical situation. To proceed otherwise will lead to an 
erroneous physical solution and misinterpretation of the observed physical 
features. One of the theoretical methods for treating the boundary conditions 
is to apply the method of characteristics. Nakagawa (1981) first brought this 
theory to our attention but without specific numerical examples. Wu et al 
(1983,1984,1986) employed this formulation to treat wave and mass trans­
port in the solar atmosphere and flare energy build-up due to photospheric 
shear. In particular, Hu and Wu (1984) developed a numerical algorithm 
named "Fully- Implicit-Continuous-Eulerian (FICE) scheme to implement 
the method of characteristics for the treatment of boundary conditions for 
the MHD numerical simulation of initial-boundary value problems. To illus­
trate this scheme, Nakagawa, Hu and Wu (1987) presented a study of the 
evolution of magnetic arches in the solar atmosphere. Through these stud­
ies, we found the importance of the method of characteristics for boundary 
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conditions in the numerical MHD simulation. In particular, when the flow is 
in the subsonic and sub-Alfvenic regimes, the solution in the computation­
al domain will effect the properties on the boundary and vice-versa. This 
means that there is a coupling between the parameters at the boundary 
and properties (solution) in the computational domain. The proper math­
ematical model governing this coupling relationship involves the compati­
bility equations derived from the theory of characteristics as given by Wu 
and Wang (1987) and Nakagawa, Hu and Wu (1987). Moreover, Wu and 
Wang (1987) presented a complete set compatibility equations to govern 
the boundary conditions according to the flow regimes. It has been demon­
strated that conventional fixed boundary conditions will lead to erroneous 
solutions (Sun et al, 1995). However, it is our opinion that the convention­
al fixed boundary will be suitable for laboratory conditions. We know that 
laboratory conditions are controlled conditions; therefore, the boundary con­
ditions determine the solution in the domain of interest. On the contrary, 
there is strong coupling in astrophysical and space physical problems when 
the flow in the subsonic and sub-Alfvenic regime exists between the solution 
in the domain of interest (which represents the observables) and the bound­
ary conditions for which we have no way of knowing a priori. Thus, the 
method of characteristics boundary conditions must be used. In this paper 
we shall further illustrate the importance of this type of boundary condi­
tions by using a two-dimensional, time-dependent MHD model for coronal 
structures. A brief discussion of the fundamental idea of the method of char­
acteristics is given in Section 2. Numerical results are presented in Section 
3, and concluding remarks are included in Section 4. 

2. Fundamental Idea of Method of Characteristics 

We refer to the work of Hu and Wu (1984); Wu and Wang, (1987); Nakagawa, 
Hu and Wu (1987) and most recently, Sun, Wu and Dryer (1995) for the 
detailed treatment of the method of characteristics. Here we shall briefly 
summarize some of the important ideas. 

Let us consider the simplest partial differential equation system of a func­
tion f(x,t) of two independent variables x and t such as: 

df df 

Equation (1) can be written as a total differential equation of the form 

df 
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This equation provides the definition of the directional derivative in the (x,t) 
plane along a curve s(x,t) to be: 

^=d£m d£dx_ 
ds dt ds + dx ds' l ' 

where the direction of the curve s(x,t) is 

dt | 4 [ ' 
ox 

Thus, the solution of Eq. (1) can be obtained by integrating Eq. (2) along 
the curve s(x,t) for both linear and nonlinear cases of u and g being general 
functions of x and t in the form 

f(s) = f(o) + [' gds (5) 
Jo 

with f(o) being the values of f(x,t) at s = o. 
This is the fundamental idea of the method of characteristics to obtain the 

solutions of nonlinear hyperbolic partial differential equations. The curves 
along which total differential equations can be derived are called the char­
acteristics, while the resultant equations are called the compatibility equa­
tions. In practical MHD problems, various physical variables correspond to 
the function f(x,t) and the compatibility equations can be obtained from 
combinations of physical variables along a number of characteristics in a 
one spatial dimensional problem (Akiezer et al. 1975) or a more general two 
or three-dimensional problem. We refer readers to the recent works (Naka-
gawa, 1981; Hu and Wu, 1984; Nakagawa, Hu and Wu, 1987; Wu and Wang, 
1987; and Sun, Wu and Dryer, 1995) for a more extensive and complete 
development. 

3. Numerical Examples 

To illustrate the effects of the boundary conditions on the solution, we have 
chosen a two-dimensional, time-dependent MHD model in spherical coordi­
nates for a coronal streamer structure. The governing equations and method 
of calculation are given by Wang et al (1993). By setting up all the physical 
conditions to be identical, we used three different types of boundary condi­
tions for this test. These three different types of boundary conditions are: 
(i) all fixed values (i.e., density, temperature, velocity and magnetic field 
strength) on the lower boundary; (ii) time-dependent boundary condtions 
using method of characteristics; and (iii) time-dependent boundary condi­
tions using a numerical procedure (i.e., linear extrapolation). These three 

https://doi.org/10.1017/S0252921100030086 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100030086


152 S.T. WU ET AL. 

types of boundary conditions represent two catagories; Case 1 is the con­
ventional way to specify the boundary conditions. This type of boundary 
condition is suitable for those problems with controlled conditions on the 
boundary (i.e., laboratory experiments). Cases 2 and 3 are for the cases 
in which the properties on the boundary must vary to satisfy the realistic 
physical conditions. To implement the time-dependent boundary conditions, 
we have used two techniques; (a) method of characteristics (Wu and Wang, 
1987) for Case 2 and (b) numerical procedure (i.e., linear extraplation) for 
Case 3. The results for density and radial velocity distribution are shown 
in Figure 1 which immediately demonstrate that Case 1 showed develop­
ment of erroneous solution when compared with Case 2. In fact, we tried 
unsuccessfully to obtain a solution for Case 3. 

4. Concluding Remarks 

In this study we presented the fundamental idea of the method of character­
istics as the numerical boundary conditions for the numerical simulation of 
solar atmospheric dynamics. The importance of this type of self-consistent 
boundary conditions was outlined. Presently, a number of authors (Wu et 
al. 1983; 1984; 1995; Wang et al, 1993) have applied this procedure to a 
number of dynamical features such as coronal streamers, initiation of CMEs 
and flare energy buildup. Most recently Linker et a/( 1994) and Linker and 
Mikic (1995) also emphasized the importance of the self-consistent method 
of characteristic boundary conditions that we have developed. Finally, we 
conclude that the application of self-consistent boundary conditions are cru­
cial to obtain correct results for numerical MHD simulations. 
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The results for density and radial velocity distribution for Case 1 and Case 2. 
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