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Abstract
We prove that ifA⊆ [X, 2X] and B⊆ [Y , 2Y] are sets of integers such that gcd (a, b)�D for at least δ|A||B|
pairs (a, b) ∈A× B then |A||B| �ε δ−2−εXY/D2. This is a new result even when δ = 1. The proof uses ideas
of Koukoulopoulos and Maynard and some additional combinatorial arguments.

2020 MSC Codes: Primary 11A05; Secondary 11B75

1. Introduction and proof strategy
Fix ε ∈ (0, 1) throughout the paper; implied constants and thresholds may depend on ε but are
otherwise absolute. Let p0 be a threshold which (at the start of Section 3) will be taken to be
sufficiently large. Given a finite set S⊂N, write P(S) for the set of primes dividing some element
of S, and Psmall(S) for the set of primes p� p0 dividing some element of S.

Our main result is the following.

Theorem 1.1. Let X, Y ,D ∈ [1,∞), and suppose that D�min (X, Y). Let δ ∈ (0, 1]. Suppose that
A⊂ [X, 2X] and B⊂ [Y , 2Y] are sets of integers with the following property: for at least δ|A||B| pairs
(a, b) ∈A× B, gcd (a, b)�D. Then we have the bound

|A||B|� (1000)1+#Psmall(A∪B)δ−2−εXY
D2 .

Let us make some remarks on this theorem.
1. This obviously implies the cruder bound |A||B| � δ−2−εXY/D2, mentioned in the abstract.

The more precise form we have stated seems of little additional interest in its own right, but is
critical for the proof. Perhaps the most natural case is when A= B and X = Y , when the result
says the following: if, for a proportion δ of all pairs (a, a′) ∈A×A we have gcd (a, a′)�D, then
|A| � δ−1−εX/D.

2. We believe that the result is new even when δ = 1, that is to say when gcd (a, b)�D for all
a ∈A and b ∈ B. In this case, the result is clearly sharp up to a multiplicative constant. Indeed,
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assuming that D is an integer, we may take A= {x ∈ [X, 2X] :D|x} and B= {y ∈ [Y , 2Y] :D|y}.
One might wonder whether all the tight examples have approximately such a structure; however,
Chow has constructed a different family of tight examples for δ = 1 (see [1, Section 15]) in which
there is no single d 
D that divides a positive proportion of A and B.

3. For δ ∈ (0, 1) the result is also sharp for a wide range of parameters, apart from the fac-
tor of δ−ε . To see this, let D� δ−1 be given, set D0 := �δD�, and consider the sets A= B=
{x ∈ [X, 2X] :D0|x}. Evidently, |A||B| ∼ δ−2X2/D2. However, if x=D0m, x′ =D0m′ withm,m′ ∈
[X/D0, 2X/D0] and gcd (m,m′)�D/D0, then x, x′ ∈A and gcd (x, x′)�D. The proportion of
pairs of integers with gcd k is 1/k2ζ (2), and so the proportion of pairs of integers with gcd � k is

 1/k. It follows (at least if X/D0 is big enough compared toD/D0) that the number of such pairs
(x, x′) is 
 δ|A||B|.

4.WhenA= B, X = Y and δ = 1, the result says the following: if gcd (a, a′)�D for all a, a′ ∈A,
then |A| � X/D. However (we are rather embarrassed to admit), Zachary Chase pointed out to
the authors that this particular result is trivial, because the assumption implies that |a− a′|�D
whenever a �= a′. This argument does not, however, appear to extend to the other cases.

5. A straightforward dyadic decomposition argument would allow one to establish similar
results under the assumption that A⊂ [X] and B⊂ [Y]. We leave the details to the reader.

Notation. Our notation is standard. If p is a prime and a ∈Z, we write vp(a) for the largest k
such that pk|a. We extend this to rationals by vp(a/b)= vp(a)− vp(b). Implied constants in the
O(),� and 
 notations are absolute (though they may depend on ε, which is fixed throughout
the paper).

Strategy.Our strategy for proving Theorem 1.1 is essentially to proceed by induction on #P(A∪
B), but we will phrase the argument in terms of a hypothetical counterexample with minimal
#P(A∪ B). The first main business is to show that such a minimal counterexample has a very
specific structure.

Proposition 1.2. Suppose we have a counterexample to Theorem 1.1 with the set P(A∪ B) min-
imal in size. Let � ⊂A× B, with |�| = δ|A||B|, be the set of pairs for which gcd (a, b)�D. Then
there is �′ ⊂ �, with |�′|� 1

2 |�|, and an integer N such that the following is true. For all primes p
and for all (a, b) ∈ �′ we have |vp(a/N)| + |vp(b/N)|� 1.

Though such a statement does not appear explicitly in their work, this proposition should be
considered essentially due to Koukoulopoulos and Maynard [1]. We will give a fairly short, self-
contained proof. On some level, this is equivalent to the argument of [1], but we phrase things
rather differently.

To complete the proof of Theorem 1.1, we prove the following counterpart to Proposition 1.2.

Proposition 1.3. Suppose that A⊂ [X, 2X], B⊂ [Y , 2Y], �,D, δ,N are as in Proposition 1.2. Then
|A||B|� 1000δ−2XY/D2.

Evidently, this means that A, B do not in fact give a counterexample to Theorem 1.1.
Combining Propositions 1.2 and 1.3 shows that no minimal counterexample to Theorem 1.1
exists, so Theorem 1.1 is true.

The proof of Proposition 1.3 uses some combinatorial arguments and is not found in [1].

2. Concentrated measures on Z2

In this section, we prove a result about concentration of probability measures on Z
2. It is the key

technical ingredient in the proof of Proposition 1.2, where it is used to concentrate the pair of
valuation functions (vp(a), vp(b)) around a diagonal pair (k, k).
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Here, as in the rest of the paper, we write q= 2+ ε and write q′ for the conjugate index to q
(i.e. 1q + 1

q′ = 1).

Lemma 2.1. Let c� 1 and λ� 4
5 . Suppose that μ is a finitely supported probability measure on Z

2.
Suppose that there are sequences x= (xi)i∈Z, y= (yj)j∈Z of non-negative reals such that ‖x‖

�q
′ (Z) =

‖y‖
�q

′ (Z) = 1, and such that for all (i, j) ∈Z
2 we have

μ(i, j)� cλ|i−j|xiyj. (2.1)

Then c� 1
9 , and μ is highly concentrated near some point (k, k):

∑
|i−k|+|j−k|�2

μ(i, j)� λq+ε . (2.2)

Proof. We first prove the lower bound on c. Using (2.1),
∑

Z2 μ(i, j)= 1,
∑

m∈Z λ|m| � 9 and
q′ < 2, we have

1
c
�

∑
i,j

λ|i−j|xiyj �
∑
i,j

λ|i−j|(xiyj)
q′
2 � 9 sup

m

∑
i

(xiyi+m)
q′
2 � 9,

where the last step follows from the Cauchy–Schwarz inequality and the assumption ‖x‖
�q

′ (Z) =‖y‖
�q

′ (Z) = 1. The lower bound on c follows.
Turning to (2.2), write supi xiyi = 1− γ for some γ ∈ [0, 1], and suppose this supremum

attained when i= k. Then, xk, yk � 1− γ , so
∑
i�=k

xq
′
i ,

∑
j�=k

yq
′
j � γ and xi, yj � γ 1/q′

when i, j �= k. (2.3)

For n= 1, 2, 3, 4, 5, 6 write 	n := ∑
(i,j)∈Sn μ(i, j), where S1, . . . , S6 are the following sets, which

partition Z
2:

S1 := {(i, j) ∈Z
2 : i �= j �= k �= i}, S2 := {(k, j) : |j− k|� 2},

S3 := {(i, k) : |i− k|� 2}, S4 := {(k, k± 1), (k± 1, k)}, S5 := {(i, i) : i �= k},
and finally S6 := {(k, k)}. We bound the 	n in turn.

Bound for 	1. By (2.1) and (2.3), we have

	1 �
∑
i,j�=k
i�=j

λ|i−j|xiyj � γ
2
q′ (1−

q′
2 )

∑
i,j�=k
i�=j

λ|i−j|(xiyj)
q′
2 = γ

2
q′ −1 ∑

m �=0
λ|m|∑

i,i+m �=k
(xiyi+m)

q′
2 .

By Cauchy–Schwarz and (2.3), for each fixedm we have

∑
i,i+m �=k

(xiyi+m)
q′
2 �

⎛
⎝∑

i�=k
xq

′
i

⎞
⎠

1/2 ⎛
⎝∑

j�=k
yq

′
j

⎞
⎠

1/2

� γ .

Since
∑

m �=0 λ|m| � λ, putting these together gives 	1 � λγ
2
q′ .
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Bounds for 	2,	3. For 	2, we use the trivial bound xk � 1 and (2.3) for yj. This gives (using
the assumption that λ� 4

5 )

	2 �
∑

|j−k|�2

(5λ/4)|j−k|(4/5)|j−k|yj � λ2
∑

|j−k|�2

(4/5)|j−k|yj � γ
1
q′

(
1− q′

2

)
λ2

∑
|j−k|�2

(4/5)|j−k|y
q′
2
j .

By Cauchy–Schwarz and (2.3),

∑
|j−k|�2

(4/5)|j−k|y
q′
2
j �

⎛
⎝∑

j�=k
(4/5)2|j−k|

⎞
⎠

1/2 ⎛
⎝∑

j�=k
yq

′
j

⎞
⎠

1/2

� γ 1/2.

Combining these bounds gives 	2 � γ
1
q′ λ2, and an essentially identical argument yields 	3 �

γ
1
q′ λ2.

Bound for 	4. From (2.1), (2.3) we immediately get 	4 � γ
1
q′ λ.

Bound for 	5. A trivial modification to the argument used for 	1 (allowing i= j, which gives
just a term withm= 0) shows that 	5 � γ

2
q′ .

Bound for 	5 + 	6. By (2.1) and the fact that supi xiyi = 1− γ ,

	5 + 	6 �
∑
i

xiyi � (1− γ )1−
q′
2

∑
i

(xiyi)
q′
2 � (1− γ )1−

q′
2 � 1−

(
1− q′

2

)
γ ,

where we used Cauchy–Schwarz yet again.

Putting all this together gives

1=
6∑

n=1
	n � 1−

(
1− q′

2

)
γ +O

(
λγ

1
q′

)
.

This implies that λ 
 γ
1− 1

q′ , i.e. γ � λq. Finally, we see that

∑
|i−k|+|j−k|�2

μ(i, j)= 	1 + 	2 + 	3 + 	5 � λ
2q
q′ + λ

2+ q
q′ � λ

2q
q′ ,

(since q� 3). The result follows, noting that 2q
q′ = q+ ε.

3. Properties of a minimal counterexample
We turn now to the proof of Proposition 1.2. We first reduce matters to the following “local”
statement at a single prime p.

Proposition 3.1. Suppose we have a counterexample to Theorem 1.1 with the set P(A, B) min-
imal in size. Let � ⊂A× B, with |�| = δ|A||B|, be the set of pairs for which gcd (a, b)�D. Let
p ∈ P(A, B) be a prime. Then, p> p0(ε), and there is kp ∈Z�0 and �p ⊂ � such that for all
(a, b) ∈ �p we have |vp(a)− kp| + |vp(b)− kp|� 1, and such that |� \ �p| � p−1−ε/3|�| .
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Proposition 1.2 follows quickly from this by taking N = ∏
p pkp and �′ := ⋂

p �p. We have

|�′|� |�|
⎛
⎝1−O

⎛
⎝∑

p>p0
p−1−ε/3

⎞
⎠

⎞
⎠� 1

2
|�|,

if p0 is big enough (this is the point at which p0 is constrained).
It remains, then, to establish Proposition 3.1. Fix, for the rest of this section, the prime p. For

i, j ∈Z�0, we define Ai := {a ∈A : vp(a)= i}, Bj := {b ∈ B : vp(b)= j}, and write αi := |Ai|
|A| and

βj := |Bj|
|B| for the relative densities of these sets. Write μ(i, j) := |�∩(Ai×Bj)|

|�| , thus μ is a finitely
supported probability measure on Z

2
�0.

For any i, j, consider the sets Āi := p−i ·Ai and B̄j := p−j · Bj. These are sets of integers, coprime
to p, with Āi ⊂ [ Xpi ,

2X
pi ], B̄j ⊂ [ Ypj ,

2Y
pj ] and gcd (x, y)� D

pmin (i,j) whenever x= p−ia, y= p−jb with
(a, b) ∈ �.

By the minimality assumption, these sets cannot be a counterexample to Theorem 1.1, and
therefore we have the inequality

|Āi||B̄j|� (1000)1+#Psmall(Āi,B̄j)
(

δμ(i, j)
αiβj

)−2−ε X
pi

Y
pj(

D
pmin (i,j)

)2 . (3.1)

On the other hand,

|Āi||B̄j| = αiβj|A||B|� (1000)1+#Psmall(A,B)αiβjδ
−2−ε XY

D2 . (3.2)

Note also that P(Āi, B̄j)⊂ P(A, B) \ {p}, and so

#Psmall(Āi, B̄j)� #Psmall(A, B)− 1p�p0 . (3.3)
Comparing (3.1), (3.2), and (3.3) gives, for all i and j,

μ(i, j)� 10−1p�p0 (αiβj)
1+ε
2+ε p− |i−j|

2+ε , (3.4)
since ε < 1. This puts us in the situation covered by Lemma 2.1, with (in that lemma)

q= 2+ ε, q′ = 2+ ε

1+ ε
, λ = p− 1

q , c=
(

1
10

)1p�p0
, xi := α

1/q′
i , yj := β

1/q′
j .

The hypotheses of the lemma are satisfied, since p− 1
q � 2− 1

3 � 4/5. The lemma implies, first of all,
that c> 1

10 ; this immediately tells us that p> p0. We conclude that there is some k such that∑
|i−k|+|j−k|�2

μ(i, j)� λq+ε � p−1−ε/3. (3.5)

This is precisely what is needed in Proposition 3.1, taking

�p =
⋃

|i−k|+|j−k|�1

(
� ∩ (

Ai × Bj
))

.

4. Finishing the argument
In this section, we complete the proof of Theorem 1.1 by establishing Proposition 1.3. That is, our
task is as follows. Suppose that A⊂ [X, 2X], B⊂ [Y , 2Y], that � ⊂A× B has size δ

2 |A||B|, and
that gcd (a, b)�D whenever (a, b) ∈ �. Suppose that there is some positive integer N such that
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|vp(a/N)| + |vp(b/N)|� 1, (4.1)

for all primes p and for all (a, b) ∈ �. We are to show that, under these assumptions, we have the
bound

|A||B|� 1000
δ2

XY
D2 . (4.2)

Let us begin the proof. In the course of the argument, it will be convenient to use a little of
the language of graph theory. Thus, if a ∈A, then we write deg (a) := #{b ∈ B : (a, b) ∈ �}, and
analogously for b ∈ B. Write A′ := {a ∈A : deg (a)> 0} and B′ := {b ∈ B : deg (b)> 0}.

If a ∈A′ then, by (4.1), vp(a/N) ∈ {−1, 0, 1} for all primes p. We define the defect a∗ to be
the product of all primes for which vp(a/N) �= 0. Now we make the crucial observation that if
(a, b) ∈ � then

a∗b∗ = ab
gcd (a, b)2

. (4.3)

To prove this, we take p-adic valuations. It is easily seen that

vp(ab/ gcd (a, b)2)= |vp(a)− vp(b)| = |vp(a/N)− vp(b/N)|,
so we need only prove that

vp(a∗)+ vp(b∗)= |vp(a/N)− vp(b/N)|, (4.4)

whenever (a, b) ∈ �. This follows immediately from (4.1), noting that vp(a∗)= 1 if vp(a/N)= ±1
and vp(a∗)= 0 otherwise, and similarly for vp(b∗).

As a consequence of (4.3) and our assumptions, we see that

a∗b∗ �
4XY
D2 , (4.5)

whenever (a, b) ∈ �. This would allow us to conclude very quickly, were it not for the fact that
the map a �→ a∗ need not be injective (see Section 5 for some further remarks on this point).
Fortunately, we have the following substitute for injectivity.

Lemma 4.1. Let T ∈R>0. The number of a ∈A′ for which a∗ � T is at most 2T. Similarly, the
number of b ∈ B′ for which b∗ � T is at most 2T.

Proof. If a ∈A′, write a+ for the product of all primes with vp(a/N)= 1, and a− for the product
of all primes with vp(a/N)= −1. Thus,

a∗ = a+a−. (4.6)

Since vp(a/N) ∈ {−1, 0, 1}, we have
a+
a−

= a
N
. (4.7)

Since A⊂ [X, 2X], it follows by multiplying (4.6) and (4.7) that if a∗ � T then

a+ �
(
aT
N

)1/2
�

(
2XT
N

)1/2
. (4.8)
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Similarly, dividing (4.6) by (4.7), we see that if a∗ � T then

a− �
(
NT
a

)1/2
�

(
NT
X

)1/2
. (4.9)

It follows from (4.8), (4.9) that the number of choices for the pair (a+, a−) is at most 2T. However,
if we know a+, a− and N then we can recover a uniquely, so the map a �→ (a+, a−) is injective.
The proof for B′ is the same.

Now we finish the argument. By a standard averaging argument there is a set Ã⊂A with |Ã|�
δ|A|/4 such that deg (a)� δ|B|/4 for all a ∈ Ã. Clearly, Ã⊂A′, so by Lemma 4.1 there is some
a ∈ Ã such that

a∗ � δ|A|/8. (4.10)

Set B̃ := {b ∈ B : (a, b) ∈ �}. Thus, |B̃|� δ|B|/4. Clearly B̃⊂ B′, so by Lemma 4.1 there is some
b ∈ B̃ such that

b∗ � δ|B|/8. (4.11)

By construction we have (a, b) ∈ �, so we have the upper bound (4.5).
Comparing (4.5), (4.10), (4.11) immediately yields (4.2).

5. Further results and remarks
Suppose that A and B are finite sets of square-free positive integers. In this instance, we may
assume that the positive integer N that satisfies (4.1) is also square-free, and thus the map a �→ a∗
is injective, since knowing N and a∗ determines a. This enables us to circumvent Lemma 4.1, and
prove the following theorem.

Theorem 5.1. Let Q ∈ [1,∞) and δ ∈ (0, 1]. Suppose that A, B are finite sets of square-free positive
integers with the following property: for at least δ|A||B| pairs (a, b) ∈A× B, ab/ gcd (a, b)2 �Q.
Then we have the bound

|A||B|� (1000)1+#Psmall(A∪B)δ−2−ε Q
4
.

Of course this result implies the cruder bound |A||B| � δ−2−εQ. It also implies Theorem 1.1, upon
taking Q= 4XY/D2.

Proof. The proof of Proposition 1.2 holds mutatis mutandis. Analysing the minimal coun-
terexample as before, we conclude that a∗b∗ �Q (by analogy with (4.5)). Using graph theoretic
language as before, there exists a set Ã⊂A with |Ã|� δ|A|/4 such that deg (a)� δ|B|/4 for all
a ∈ Ã. Since a �→ a∗ is injective, there is some a ∈ Ã for which a∗ � δ|A|/4. Letting B̃ := {b ∈
B : (a, b) ∈ �}, we have |B̃|� δ|B|/4 and for all b ∈ B̃ we have b∗ �Q/a∗. Therefore, since b �→ b∗
is injective, we have

δ|B|
4

� |B̃|� max
b∗ : b∈B̃

b∗ � Q
a∗

� 4Q
δ|A| .

This rearranges to |A||B|� 16δ−2Q, which shows that the minimal counterexample is not in fact
a counterexample, thus settling the theorem.

One might wonder whether the bound |A||B| � δ−2−εQ holds for general finite sets of integers
A and B (not just for square-frees). However, there is a counterexample to this assertion, even with
δ = 1, given by
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A= B=
⎧⎨
⎩

⎛
⎝∏

p�X
p

⎞
⎠ m

n
:mn� X, μ2(m)= μ2(n)= 1, gcd (m, n)= 1

⎫⎬
⎭ .

One may establish that for all (a1, a2) ∈A×A one has the bound a1a2/ gcd (a1, a2)2 � X2. Yet
|A| 
 X log X.

By this, one notes that the use of dyadic ranges in the proof of Lemma 4.1 was critical.
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