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Abstract

The best lattice quantizers seem to be duals of extreme lattices. The quantizing constant as-
sociated with the dual lattice of Barnes's senary form 4>6 is found, together with a new type
of quantizing technique. The quantizing constant is better than expected in the sense that it is
better than Z)$ even though D6 provides a denser packing. This is the smallest dimension for
which this occurs.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 11 H 06, 11 H 55.

1. Introduction

In the past it has been found that the duals of lattices corresponding to
extreme forms are good quantizing lattices.

In 1957 Barnes [2] enumerated all the extreme six-dimensional forms, six
in all. The quantizing constants for four of the six dual lattices are known,
namely those corresponding to E6, E\, A*6 and D*6 . In this paper the quan-
tizing constant for one of the remaining lattices is calculated and is found
to be better than its packing properties suggest. An innovative quantizing
technique is also found for the lattice.
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2. Preliminaries

A lattice A is usually considered to be the span over the integers of a set
of linearly independent vectors (independent over the reals). An independent
set of vectors which generate the lattice A is called a basis. There is a natural
correspondence between lattices and positive definite quadratic forms.

From the above y is in An if and only if y = zB, where z is in Z" and
the rows of B form a basis for A, . Hence for

n

x , y i nA n ,

(x,y) = xyr

= zxBBTzy where zx, zy e Z"

We call H the Gram matrix associated with A and H obviously corresponds
to a positive definite form [8].

A positive definite form is called extreme if Mn/D is a local maximum
under perturbations of the coefficients of the Gram matrix, where n is the
dimension of the lattice, D is the determinant of the Gram matrix H and
M is the minimal length of non-zero lattice vectors. In an intuitive sense,
we have made the short vectors of the lattice as long as possible without
increasing the volume of the spanning parallelepiped. If an M-dimensional
form has Mn/D being an absolute maximum then it is said to be absolutely
extreme.

A lattice An is called integral if the inner product (x, y) is in Z for all
x, y in An . We call An even if norms (x, x) are always even. The Dual
Lattice of an integral lattice A, denoted by A*, lies in the real span of A
(W, say) and is the set

{v in W : (v, x) e Z for all x in A}.

The quantizing constant G of a region V about the origin is

in n-dimensional space.
Loosely speaking, this is the average squared error per bit of information

that is induced by approximating x in V by the origin. The constant is
invariant to scale changes. In a lattice the quantizing constant is the average
error induced by approximating a point in W by the closest lattice point.

The Voronoi region of An about 1 in An is the convex polytope

V{\) := {x in W : (x - 1, x - 1) < (x - l ' , x - l') for all l ' in A J .

https://doi.org/10.1017/S1446788700032973 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032973


[3] Dual lattice 375

The best-known lattice quantizers in dimensions up to six are given in
Table 1 [7].

TABLE 1

dim
1
2
3
4
5
6

A
Ai
A2

A*

D*
E*

G(A)
.0833..
.0801..
.0785..
.0766..
.0756..
.0742..

A'
Ai
A2

A3

DA
D5

E6

In the first three dimensions the lattice quantizers are known to be the best
possible for that dimension [3]. The dual lattices are all extreme; indeed,
they are absolutely extreme [10]. This, and the best-known results in higher
dimensions (Table 1), give rise to the following conjecture.

CONJECTURE. The best quantizing lattice in a given dimension is the dual
of the best packing lattice. More weakly, the best quantizing lattice is the
dual of an extreme lattice.

All the six-dimensional extreme forms are known [2]. The main purpose
of this account is to find the quantizing constant of the dual of the lattice
associated with the extreme form labelled by Barnes [2] as <j>6 .

3. The lattice A6

Barnes [1] characterized the lattice A6 associated with (f>6 (note that this
is not the laminated lattice which Conway and Sloane call A6 [6], [8]) as
follows:

A6 := {y e Z7: £>,. = 0, £ iyt = 0 (mod7)} .

Conway and Sloane [8] characterized this lattice as a repeated difference.
Now the vectors

m0 := (-1 1 0 0 0 0 0 )
m, := (0 - 1 1 0 0 0 0)

m6 := (1 0 0 0 0 0 - 1)

generate A6 and satisfy £ m. = 0. Also A6 is generated by m. - m/+, for
/ = 0, . . . , 6, where m7 is understood to be m0 .
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Craig [11] found an expression of A6 in terms of algebraic integers and
ideals. Let 6 be a primitive root of unity of order seven; then the ideal
{1-6) corresponds to A6 and the ideal (1 - 6)2 corresponds to A6.

The lattice A6 corresponds to the three-dimensional complex laminated
lattice h\ of [6] and Q6(l) of [9].

Another characterization is the basis-free one which follows. Let A be
any integral lattice embedded in R"+1 such that ^.x, = 0. Define c(x) to
be x - x' where x' is obtained from x by a cyclic shift one place to the
right.

We define the lattice function c so that c(A) := {c(x): x e A} . The dual
lattice to A6, A*, is generated by the vectors

±(-3 - 2 - 1 0 12 3)
^(3 - 3 - 2 - 1 0 1 2)

±(-2 -1 0 1 2 3-3).
Taking the first six of these vectors (which form a basis) we get the Gram
matrix

4 1 - 1 - 2 -2 -1
1 4 1 - 1 - 2 - 2

-1 1 4 1 - 1 - 2
- 2 - 1 1 4 1-1
-2-2-1 1 4 1
-1-2-2-1 1 4

The basis of A,,
bj = ( 1 - 1 - 1 1 0 0 0),
b 2 = ( 0 0 0 1 - 1 - 1 1),
b3 = (—1 —1 1 0 0 0 1),
b 4 = ( 0 0 1 - 1 - 1 1 0),
bs = ( - l 1 0 0 0 1 -1 ) ,
b 6 = ( 0 1 - 1 - 1 1 0 0),

has Gram matrix
4 1 - 1 - 2 - 2 - 1
1 4 1 - 1 - 2 - 2

-1 1 4 1 - 1 - 2
- 2 - 1 1 4 1-1
- 2 - 2 - 1 1 4 1
- 1 - 2 - 2 - 1 1 4

Thus A6 is isomorphic to its dual Ag. An integral lattice A is called
unimodular if it is its own dual. Thus it is sufficient to investigate A6 to
study Ag.
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It can quickly be checked, using spanning vectors v( such that 2 vi = 0 >
that c(A6) = A*6 , c(A^) = A6 and c(A6) = A6 . It is known that there are
2.6.7.8 automorphisms of A6 [1].

Two automorphisms immediately present themselves:

m. : x —> - x order 2,

m2 : x x order 7.

The basis
b, = ( 1 - 1 - 1 10 0 0),
b2 = ( 1 - 1 0 0 0 - 1 1),
b 3 = ( 1 1-1 0 0 0 - 1 ) ,
b4 = ( - l 0 1 0 1 0 - 1 ) ,
b 5 = ( 0 0 1 - 1 0 - 1 1),
b6 = (-1 0 0 - 1 1 0 1),

has the Gram matrix
4 2 1 - 2 - 2 - 2
2 4 0 - 2 - 1 - 2
1 0 4 - 1 - 2 - 2

- 2 - 2 - 1 4 0 1
- 2 - 1 - 2 0 4 2
- 2 - 2 - 2 1 2 4

which gives rise to the automorphism

m3

of order 2.
Other generating automorphisms m4, m5, m6 and m1 (of orders 3 , 2 , 2

and 2 respectively) of the automorphism group were found by sending the ba-
sis 38 to a basis with the same Gram matrix. These automorphisms have no
clear interpretation in the A6 depiction of the lattice. However, in the corre-
sponding complex integral laminated lattice A3 [6] they are clearly visible as
permutations and sign changes in the three complex coordinates. Conversely
m2 is not visible in A3 and m3 conjugates A3 (which means it is not an
automorphism of A3).

The Voronoi region about the origin was found using the following algo-
rithm.

1. Find points v; such that
(a) 2(f(., v.) = (f(., f() for six independent f(. e A6 ,
(b) 2(f, vy.) < (f, I) for all / e A 6 .

2. Generate the set of orbits of these points Vj under the automorphism
group.
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3. If this collection of points forms the vertices of a polytope with vol-
ume \/\H\ then they are the complete set of vertices of the Voronoi region.

Using a program written by Worley which was used to investigate the
Voronoi regions of E^ and E^ [13], [12], the following inequivalent (with
respect to automorphisms keeping the origin fixed) Voronoi vertices were
found:

vx = ^ ( -6 - 4 - 2 0 2 4 6),

which is equidistant from

8 norm squared 4 points and

2 norm squared 8 points;

v2 = \{4 - 4 - 5 1 7 - 1 - 2 ) ,

which is equidistant from

6 norm squared 4 points,

3 norm squared 6 points and

1 norm squared 8 point;

v3 = i ( - 5 - 2 8 - 3 0 3 - 1 ) ,

which is equidistant from

5 norm squared 4 points,

4 norm squared 6 points and

1 norm squared 8 point.

The vectors u3, v2 and v3 are equivalent with respect to translation by
lattice vectors. For example

i ( - 6 - 4 - 2 0 2 4 6)

= ( - 1 0 0 - 1 + 1 0 + 1 )

+ ± ( 1 - 4 - 2 7 - 5 4 - 1 ) .

There is also the obvious vertex

v4 = ( - l - 1 0 0 0 0 0 ) ,

which is equidistant from

4 norm squared 4 points and

2 norm squared 6 points,

which the program failed to find because of the much higher probability of
finding vertices with ten bounding planes than those with six bounding planes.

The vectors • , , . . . , v4 were then mapped by the automorphism group.
The orbits were found to be of length 42, 336, 84 and 336 respectively.
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FIGURE 1

It is worth noting that these vectors (the conjectured set of Voronoi vertices
about 0) are exactly the set S of points satisfying

x e A*6 such that (x, x) = 2 or (x, x) = -^.

A program was written which calculated the subpolytopes of the convex poly-
tope formed by the above-mentioned set of points. Basically the algorithm
was used

five-*/ subpolytopes are the intersection between 5 and one
plane 2(x, f() = (f., f(), four-rf subpolytopes are the inter-
section between S and two planes 2(x, f(.) = (f(, f(),

and so on.
The second moments U and volumes V of the Voronoi region were cal-

culated using the recursive formulae

Refer to [4].
The volume of the convex polytope S is the same as the volume of a

spanning parallelepiped. Hence the convex polytope S is the Voronoi region
of the origin.

Thus the quantizing constant for A6 is

It is worth noting that the convex polytope S has some unusual asymmetrical
features, namely that for some of the bounding polytopes the centroid of
a subpolytope ((^)£™v;) is not the closest point to the centroid of the
polytope it bounds.

For example, a non-equilateral, isosceles triangle is asymmetrical, as A is
the centroid of the triangle but B is into the centroid of the bounding edge
(see Figure 1).

It should be noted that the ranking of lattices according to packing density
is not the same as the ranking according to the quantization constant of the
dual lattices, as (2/M)6D(D6) < (2/M)6D(A6) but G(D*) > G(A6). This is
the lowest dimension in which this happens.
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TABLE 2. Known quantizing constants of extreme six-dimensional lattices.

[8]

lattice
A6

\

E*

{2/M)6D
7

i = 5.35
4

£ = 3.80
3

lattice*
A*

\
D*
E6
E*

G(A')
.0765

.07506

.07512

.0743

.0742

In the verification of this, the quantizing constant of A5, the dual of the
extreme lattice A\ [7], was calculated as

G{A\) = 2"39/5.3~u/5.5"1.947 = 0.07580... .

4. A quantizing algorithm for A6

The quantizing algorithm for A6, which is outlined below, is a new type
of algorithm.

The algorithm uses A6 D A6 rather than the sublattice quantizing algo-
rithm which uses A6 D \ / 7 ^ 6 . This 'new' algorithm is twice as fast as the
sublattice algorithm.

As c(Ag) = A*6 , c(A*6) = A6 and c(A6) = A6 s A' there is a sublattice
of A6 isomorphic to A6. Furthermore, as the lattice function c gives a
sublattice of index seven, the sublattice isomorphic to A6 has index forty-
nine. This can be utilized to find a quantizing algorithm for A6 [5]. There
is, however, an alternate quantizing algorithm which, rather than using the
fact that A6 is a sublattice of A6, uses the fact that A6 is itself a sublattice
of A6.

First we need some notation.
By QA(x) = A we mean that the closest lattice point of A to x is A;

A is the set of elements of A*6 of squared length less than or equal to -y .
An element of A is either the origin or a Voronoi vertex of the origin with
respect to the lattice A6 .

It can be shown by exhaustion that for all Voronoi vertices X of A6 about
the origin, there exists an a in A such that Q{k + a : A6) = 0.

By convexity, for any point x such that Q(x : A6) = 0 there exists a vector
a in A such that Q(x + a : A6) = 0 .

Hence the only candidates for Q{x : A6) are {(Q{\ + a : A6); where
a £ A} and the closest of these to x is Q(x : A6).
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This search (amongst the Q(x + v)^46)'s can be made systematic by subdi-
viding these v's (in A) into cosets (mod^6) and then further subdividing
these cosets into subcosets (modA6) and arranging these subcosets so that
^2 iXj increases by 1 with each new coset.

The following algorithm makes use of the fact that for v, w in A and
v = w (modA6)

if Q(x + \, A6) € A6 , then Q(x + w, A6) e A6 if and only if
v = w (modA6) in which case Q(x+\, A6) = Q(x+\, A6) +
(w - v).

Thus the algorithm is as follows:
1. Form Q(x, A6) = a. If a e A6 , then Q(x, A6) = a, otherwise perform

steps 2 to 7.
2. Look at the first coset (mod^46) of the v's in A.
3. Look at the first subcoset (modA6).
4. Quantize one x + v( to form a = Q(x + v(, A6).
5. Let 22iai = m (mod7), where a = (a{, a2, . . . , an). If m = 0

(mod 7), then a € A6 and a is a candidate for Q(x, A6) . Determine other
candidates by examining the rest of the subcoset (and performing 4).

If m ^ 0 (mod 7), then a £ A6 and we are in the wrong subcoset
(modA6). The subcosets are arranged so that 5Z/a, increases by 1 with
each successive subcoset. Thus candidates a are found by examining the
(8 - w)th subcoset.

6. Repeat steps 3, 4, 5 for all cosets (mod A6) to determine the set of all
possible candidates for Q(x, A6) .

7. The closest of these candidates to x is Q(x, A 6 ) .
In the following example, the first element of a subcoset is expressed in the

usual way, for example, 7 ( - 3 - 3 - 3 - 3 4 4 4 ) with the remaining elements
being written as elements of A6 , for example ( 1 0 1 0 - 1 - 1 0 ) . This
vector represents the sum of itself with the subcoset leader. For example,
(10 10 - 1 - 1 0) represents

7(4 - 3 4 - 3 - 3 - 3 4) = 7 ( - 3 - 3 - 3 - 3 4 4 4)+ ( 1 0 1 0 - 1 - 1 0 ) .

For brevity's sake the algorithm is illustrated on the fourth coset (modAn)
only, and the first and fourth subcosets only.

Fourth coset (mod^4n)
First coset (modA6)

7 ( - 3 , - 3 , - 3 , - 3 , 4 , 4 , 4 ) ; ( 1 , 0 , 1 , 0 , - 1 , - 1 , 0 ) ;

( 1 , 0 , 0 , 1, - 1 , 0 , - 1 ) ;

( 0 , 1 , 1 , 0 , - 1 , 0 , - 1 ) ; ( 0 , 1 , 0 , 1 , 0 , - 1 , - 1 ) .
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EXAMPLE. Quantize x = £ ( - 3 4 , 13, 60, - 2 9 , - 16 , - 4 1 , 47). Thefirst
subcoset leader is

v= } ( - 3 , - 3 , - 3 , - 3 , 4, 4, 4).

Therefore x+v = £ ( - 4 3 , 4, 51, - 3 8 , - 4 , - 2 9 , 59). Thus Q(x+v, A6) =
( -2 , 0, 2, - 2 , 0, - 1 , 3) = a with m = £ / a . = 4 (mod 7). Hence we look
at the (8 - 4)th subcoset mod (A6).

The fourth subcoset leader is v = ±(4, - 3 , - 3 , - 3 , - 3 , 4, 4), which
gives x + v = £ ( - 2 2 , 4 , 5 1 , - 3 8 , - 2 5 , - 2 9 , 5 9 ) with Q(x + v,,46) =
( - 1 , 0 , 2 , - 2 , - 1 , - 1 , 3 ) = X e A6 and the other candidates from this
subcoset (formed by A + w where w e A6 in fourth subcoset) are

( - 2 , 1 , 2 , - 2 , 0, - 2 , 3); ( -2 , 0, 3, - 1 , - 1 , - 2 , 3);
( - 2 , 0 , 3 , - 2 , 0 , - 1 , 2 ) ; ( - 1 , 1 , 2 , - 1 , - 1 , - 2 , - 2 ) .

These candidates are at squared distances of

919 1134 563 1092 672
II2 II2 I I2 II2 I I2

from x respectively. It turns out that if we look at all the cosets 6

we find that Q(x, A6) = ( -2 , 0, 3, - 1 , - 1 , - 2 , 3).
The quantizing algorithm given above requires approximately one half the

number of calculations as the sublattice quantizing using A6. It is conjec-
tured that the quantizing algorithm would work in other dimensions.

CONJECTURE. If Q(\,c(An)) = X, then Q(x + \,An) = k where v is
some Voronoi vertex (or 0) in An .

If the conjecture is true, then the savings of the Voronoi vertex quantizing
method over the sublattice quantizing method would be even greater for larger
n when n + 1 is prime.

In general c"(An) = {n + l){An) = An , and hence we would naively have
expected A6 to be a sublattice of c{A6) of order 75, not 72 as was dictated
by c(A6) = {c(A6)}*. This circumstance does not repeat itself in higher
dimensions for n + 1 prime. This is because c(An) is extreme for n > 6,
n + l prime [10], but {c(An)}* is not, that is, {c(An)}* ¥ c(An).

So it would seem likely that the Voronoi vertex quantizing algorithm would
be a lot better than a sublattice quantizing algorithm in these higher dimen-
sions.
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