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The impact of a liquid droplet with another droplet or onto a solid surface are important
basic processes that occur in many applications such as agricultural sprays and inkjet
printing, and in nature such as pathogens transport by raindrops. We investigated
the head-on collision of unequal-size droplets of the same liquid on wetting surfaces
using the direct numerical simulations technique at different size ratios. The unsteady
Navier–Stokes equations are solved and the liquid–gas interface is tracked using the
geometric volume-of-fluid method. The numerical model is validated by comparing
simulation results of two extreme cases of droplets bouncing with the experimental
data from previous studies and the agreement is quite accurate. The validated model is
employed to simulate droplets bouncing at several size ratios at different Weber numbers
and Ohnesorge number. Two distinct regimes are identified, namely, the inertial regime,
where the restitution coefficient is a constant value close to 0.3, the viscous regime, where
the restitution coefficient declines. To understand the bouncing behaviour, the velocity
field is analysed and an energy budget calculation is performed. The distribution of the
sessile droplet energy is found to be important and the sessile droplet surface energy is
calculated by its deformation characteristics such as crater depth. Finally, a scaling analysis
is performed to rationalize the insensitivity of the coefficient of restitution in the inertial
regime, and its decline in the viscous regime, at large size ratios.
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1. Introduction

The impact of a liquid droplet with another droplet or onto a solid surface are important
basic processes that occur in many applications and in nature. In plants, pathogens are
transported by raindrops, which, upon impact with infected leaves, produce an air vortex
ring and disperse plant pathogens (e.g. spores of fungi) away from the host plant (Kim et al.
2019). In applications involving spray devices, the outcome of droplet collisions plays an
important role in the development of the number density and the size distribution of the
droplets in dense sprays, which in turn substantially affect the subsequent vaporization and
combustion of the spray. There are several collision outcomes in binary droplet collision,
namely coalescence, bouncing, reflexive separation, stretched separation and splatter (Pan,
Chou & Tseng 2009; Tang, Zhang & Law 2012). In applications such as drop-on-demand
technologies, droplet bouncing is unfavoured as small quantities of fluid need to be
delivered to specific positions on a surface (Zaugg & Wagner 2003; Poozesh et al. 2016).
In agriculture, pesticide droplets during spraying may collide with the previously sprayed
droplets, dew or rainwater on leaves. In these collisions, the colliding droplet either stays
attached or bounces away and causes contamination of soil (Bergeron et al. 2000; Gilliom
et al. 2006; Massinon & Lebeau 2012).

The earliest work on the bouncing of a water droplet from a pool of water was
carried out by Reynolds (1881). Reynolds observed that a water droplet can hover over
a pool before sinking, owing to the presence of the air layer between them. A detailed
investigation of various aspects of droplet impact phenomena, such as splashing, was
experimentally performed by Worthington (Worthington 1908), which sparked the interest
of other researchers in this field. Further advancement in this field was achieved by
Schotland (Schotland 1960), who performed experiments on the coalescence of water
droplets at a gas–water interface. Schotland suggested that the outcome of the collisions
was predominantly controlled by fluid and gas inertia and depended on the Weber
number (defined as We = ρU2R/γ for droplets with equal size, where ρ, U, R and γ

are density, relative impact velocity, droplet radius and surface tension, respectively),
which measures the relative importance of the droplet inertia compared with the surface
tension. Droplets with sufficiently high inertia coalesced whereas lower-Weber-number
droplets bounced. Droplet bouncing on an undisturbed interface at variable impacting
angles was first studied in detail by Jayaratne & Mason (1964) experimentally. They
established a relationship between the drop radius, impact speed and impact angle at which
the bouncing–coalescence threshold occurs between droplets. Building on the work of
Gopinath & Koch (2001), Bach, Koch & Gopinath (2004) studied the droplet impact of
small aerosol droplets (R ≤ 50 μm) impacting a fluid bath. They developed a rarefied gas
model to describe the dynamics of the gas layer separating the droplet and bath, and used
an inviscid potential flow model to describe the transfer of energy from the droplet to the
bath during impact. It was found that the criterion for drop bouncing is more sensitive to
the gas mean-free path and gas viscosity than to the Weber number itself. More recently,
droplets bouncing repeatedly on a vertically oscillated bath have received considerable
interest (Couder et al. 2005; Bush & Oza 2020).

Most of the earliest studies were focused on the impact of droplets with a pool of fluid
due to the experimental ease and retention of most of the physics applicable in related
applications. With rapid development in high-speed digital photography, studies related to
droplet collisions have become popular. Binary droplet collisions have been extensively
studied in the past. Early experimental studies conducted with water at atmospheric
pressure observed two distinct collision outcomes: permanent droplet coalescence and
droplet separation after temporary coalescence (Adam, Lindblad & Hendricks 1968;
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Ashgriz & Poo 1990). It was established that the collision outcomes are mainly influenced
by the collision Weber number and the impact parameter, B, which measures the deviation
of droplet colliding trajectory from that of an exact head-on collision. This study was
further extended to alkane droplets by Jiang, Umemura & Law (1992). They found that a
low We (O(1)) results in droplet bouncing, while a moderately high We (O(10) and above)
results in separation with satellite droplet(s) formation (referred to as the reflex separation
regime). It was established that, for the droplets to coalesce, the air layer between them
must be drained out and the interfaces of droplets must come very close to each other
(e.g. of the order of 100 nm), while bouncing happens because the air layer’s pressure
rises to a point where the droplets are pushed away before the air can drain out entirely.
Subsequently, the well-known collision nomogram was proposed in the We − B parameter
space by Qian & Law (1997). They observed stretched droplet separation at high B values
and argued that the different collision behaviour between water and hydrocarbon droplets
was due to the differences in their viscosity and surface tensions. They also found that
increasing ambient pressure promotes droplet bouncing. More complex behaviours have
also been observed for droplet collisions at high We numbers or with droplets of different
liquids. For example, droplet collision at We > 200 can result in droplet splattering (Pan
et al. 2009), and collisions with dissimilar liquid droplets favoured a reflex separation
tendency over stretched droplet separation, as compared with droplets of the same liquid
(Chen 2007).

Droplet size disparity (i.e. droplets with different diameters) adds substantial complexity
to droplet collision processes and its effect has not been explored much. Tang et al. (2012)
studied the dynamics during head-on collision of unequal-size droplets. They proposed
a collision regimes diagram in a We − Δ parameter space, where We = ρU2Rf /γ for
unequal-size droplets (Rf is the radius of the smaller droplet) and Δ is defined as the
ratio of the large droplet diameter to the small droplet diameter. Their experiment was
limited to Δ < 3. They corroborated that droplet separation is suppressed in unequal-size
droplet collisions due to enhanced viscous dissipation through the internal motion that
helps to stabilize the coalesced droplet. More general collision scenarios that included the
oblique collision of unequal-sized liquid droplets were investigated by Chaitanya, Sahu &
Biswas (2021). They reported that the asymmetric flow, caused by both the unequal sizes
of droplets and the oblique collision, affects the collision outcomes. The aforementioned
studies extensively investigated binary droplet collision, without the presence of a solid
surface.

A few recent studies have investigated the dynamics of a falling droplet impacting
a sessile droplet, providing some useful insights into the droplet-to-droplet impact on
solid surfaces. Impact of a sessile droplet on a hydrophobic substrate was studied by
Wang, Feng & Zhao (2008), where they observed four different regimes for the impact
outcome: coalescence, complete rebounding, coalescence accompanied by conglutination
and partial rebound after conglutination. A similar study on a hydrophilic surface was
performed by Wakefield, Tilger & Oehlschlaeger (2016). Following this, drop-on-drop
impacts on superhydrophobic surfaces were experimentally examined by Damak &
Varanasi (2018). They observed that a droplet impacting a sessile droplet on a solid surface
(after coalescence) behaved similarly to a single droplet hitting the solid surface during the
receding phase. Ramírez-Soto et al. (2020) used both experiments and DNS simulations
to study the collision dynamics of an oil droplet impacting a sessile droplet sitting on a
superamphiphobic surface. Thereafter, Abouelsoud & Bai (2021) investigated the effect of
the wettability on the impact outcomes by using different solid surfaces such as smooth
glass, aluminum, copper, Teflon and coated glass. They observed complete coalescence for
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droplet impact on a hydrophobic surface (e.g. coated glass that has a contact angle of 119◦),
whereas both coalescence and bouncing were seen for hydrophilic surfaces that depend
on Weber number. Very recently, Ray et al. (2023a) experimentally studied the collision
of unequal-size droplets on a hydrophilic surface, and observed droplet coalescence,
bouncing and partial coalesences after the impact. The experiments were performed at
a large size ratio (i.e. Δ = O(10)), as compared with the experiments (i.e. Δ = 1.4)
from Abouelsoud & Bai (2021). Although the droplet size ratio adopted by Abouelsoud
& Bai (2021) and Ray et al. (2023a) differs considerably, the experiments seemingly
corroborated a universal behaviour during head-on bouncing at different size ratios on
wetting surfaces, where the restitution coefficient (defined as the ratio of bouncing velocity
to impacting velocity of the falling droplet, and denoted as ε) is insensitive to the droplet
size ratio at various Weber numbers (e.g. from 2–4.6). However, the comparison was made
at only two greatly different size ratios without including the intermediate size ratios.

Therefore, we aim to investigate the head-on bouncing of two droplets on a wetting
surface with a wider range of droplet size ratios using direct numerical simulation (DNS).
The specific objectives of this study are: (1) to analyse the head-on bouncing dynamics
of a falling droplet with a droplet on a hydrophilic surface with varying size ratios, (2) to
determine the dependency of the coefficient of restitution on droplet size ratio and whether
there exists a universal behaviour, and (3) to prove the universal behaviour if it exits, by
using scaling analysis.

The rest of this paper is organized as follows. Section 2 summarizes the numerical
methodology adopted in this study. Section 3 discusses the numerical and scaling analysis
results, as well as validation against experiments. This is followed by a summary of this
study in § 4.

2. Numerical methodology and specifications

2.1. Numerical method
The flow is considered incompressible and the fluids are Newtonian. The continuity and
Navier–Stokes equations are expressed as

∇ · u = 0, (2.1)

ρ

[
∂u
∂t

+ u · ∇u
]

= −∇p + ∇ · (2μD) + γ κnδs, (2.2)

where u is the velocity vector, ρ is the density, p is the pressure, μ is the dynamic viscosity
and D is the deformation tensor defined as (∇u + ∇uT)/2. The last term on the right-hand
side of (2.2) is the surface tension term that is modelled using the continuum-surface-force
model developed by Brackbill, Kothe & Zemach (1992), where δs is the Dirac delta
function, γ is the surface tension coefficient, κ is the local curvature and the unit vector n
is normal to the local interface. Equations (2.1) and (2.2) are solved by using the standard
fractional-step projection method.

A conventional geometric volume of fluid (VOF) with height-function curvature
estimation is employed to track the interface between the liquid and gas phases. To resolve
the interface, a three-dimensional (3-D) octree adaptive mesh refinement is used. The cells
in the region of interest including the droplets and region near the droplets are refined to
maximum refinement level (i.e. 212 cells) using a wavelet-based error method (Van Hooft
et al. 2018). This region is specified by a cylindrical region for each simulation (e.g. for
the case of Δ = 10.0, the radius of the cylindrical region is Rs plus 2Rf , and the height
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is taken as the height of the sessile droplet plus 3Rf ). Outside this region the cells are not
refined and kept at a minimum level of refinement (i.e. 28 cells). A two-volume fractions
method is used to track the interface of each droplet. The volume fraction ci (i = 1, 2) is
governed by the advection equation, which is expressed as

∂ci

∂x
+ ∇ · (ciu) = 0, (2.3)

where ci = 0 for the gas phase, ci = 1 for the liquid phase and 0 < ci < 1 for the
gas–liquid interface. The density and dynamic viscosity are calculated using the volume
fractions as ρ = (c1 + c2)ρl + (1 − c1 − c2)ρg and μ = (c1 + c2)μl + (1 − c1 − c2)μg,
where subscripts l and g denote liquid and gas phases, respectively.

The mesh resolution close to the interface has a significant impact on the traditional
VOF technique, and the accurate modelling of droplet bouncing necessitates an extremely
fine-grained mesh at a significant computational expense. The two-volume fractions
method independently describes the two droplets with no explicit conditions imposed for
avoiding the overlap of interfaces. The maximum excess of the combined volume fractions,
defined as the maximum of (c1 + c2 − 1), was used to verify that the interfaces belonging
to the two droplets cannot contact and that there is no overlap between the different VOF
functions. It is noted that this method would always enforce droplet bouncing for any
droplet collision process and, thus, is applied in the present study for droplet bouncing
cases that have been verified by experiments reported in previous studies (Coyajee &
Boersma 2009; He, Xia & Zhang 2019).

The DNS of droplet collisions on a hydrophilic surface are performed using the
open-source software Basilisk C (Popinet 2013). The free contact lines (FCL) condition
has been used on solid surfaces to characterize the wettability of the surface by previous
studies (Sakakeeny & Ling 2020) and the same approach is used in this work. The FCL
condition represents the motions of the contact line with a fixed contact angle. The
height-function method developed by Afkhami & Bussmann (2008) is employed to specify
the contact angle.

To accurately model the air film between two droplets, an extremely fine grid size
is necessary due to the small size (around 100 nm) of the air film (Jiang et al. 1992).
This significantly increases computational costs, and the effects of rarefied gas dynamics
become significant. To overcome these difficulties, a 2-VOF approach has been proposed
and used by several researchers (Ramírez-Soto et al. 2020; Alventosa, Cimpeanu & Harris
2023) to study droplet bouncing. By avoiding overlap between the two-volume fraction
fields, a situation similar to an incompletely drained air film with a large air film gap can
be simulated, ensuring the occurrence of bouncing (see Appendix). It is assumed that the
cases studied in this paper belong to a bouncing regime.

2.2. Numerical specifications
In the simulation all variables are made non-dimensional. The governing equations are
non-dimensionalized using the radius of the falling droplet (Rf ), the capillary time
scale (tc = (ρlR3

f /γ )1/2) and the capillary velocity (Vγ = Rf /tc = (γ /ρlR3
f )

1/2). Then
the dimensionless impact velocity can be expressed as U/Vγ = (We)1/2. The relevant
dimensionless numbers used in this work are the Weber number We = ρU2Rf /γ , the
Ohnesorge number Oh = μ/(ργ Rf )

1/2, the Bond number Bo = ρgR2
f /γ , the Reynolds

number Re = ρURf /μ and size ratio Δ = Rs/Rf . It should be noted that the spherical
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Figure 1. The computational domain used for 3-D simulation of droplets collision on a hydrophilic surface.

cap radius of the sessile droplets has been employed to define Δ. The present problem
for droplets bouncing on a solid surface is controlled by three parameters (We, Δ and θ )
with fixed gas–liquid density, viscosity ratios and ambient pressure. The falling droplet
diameter is also fixed at 300 μm, based on the previously reported experiments from
the authors’ group (Ray et al. 2023a). The 3-D computational domain is illustrated in
figure 1. All the simulations performed in this work are three dimensional. The domain
is a cube with an edge length L = 8Ds. Thus, the computation domain is big enough to
avoid the influence of boundaries. The bottom face is a solid wall with no-slip boundary
conditions. A fixed value of the contact angle with the no-slip condition is specified at
the wall. Free outflow boundary conditions are specified at all other surfaces. A sessile
droplet with the diameter Ds and a falling droplet with diameter Df and velocity U in the
downward direction are initialized using the two-volume fractions method. The finest grid
points in the computational domain correspond to 212 uniform grids in each direction.
Thus, the minimum cell size is 0.02 times the initial falling droplet radius, which in terms
of dimensional length is equal to 3 μm. The number of grid points inside the falling
droplet corresponds to 100 uniformly spaced grid points. In the present study, water droplet
collisions at one atmospheric pressure are considered, again, same as the experiments
(Ray et al. 2023a). The time is non-dimensionalized with the inertial-capillary time
scale (i.e. tc = (ρlR3

f /γ )1/2, where Rf is the radius of the falling droplet). By setting
the CFL (Courant–Friedrichs–Lewy) number to 0.5, the time steps in the simulations are
determined, resulting in a dimensionless time step of 4 × 10−4. In a typical simulation,
there are 8 × 105 grid points in the entire domain, and it takes about 200 h of physical
time to perform each simulation on a single processor of 3.2 GHz kernel with one core
and 64 GB memory.

2.3. Energy budget calculations
To get further insights into the dynamics of the bouncing droplets on a hydrophilic
surface, the interchange of energy among different forms is investigated. The energy
budget followed in this paper is similar to the one employed by Wildeman et al. (2016). The
total energy is the sum of the mechanical energy (Em), surface energy (Eγ ) and viscous
dissipation (Eμ) and is expressed as

E = Em + Eγ + Eμ, (2.4)
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where Em = Ek + Eg, Ek is the kinetic energy and Eg is the gravitational potential
energy. Here Ek includes the translational kinetic energy and the oscillation and rotational
energies. The energy terms can be found as

Ek =
∫

Ω

1
2
ρ(u · u) dΩ, (2.5)

Eγ =
∫

A
γ dA +

∫
A′

γ (1 − cos θ) dA′, (2.6)

Eμ =
∫ t

0

(∫
Ω

φ dΩ

)
dt, (2.7)

Eg =
∫ t

0
ρgz dt, (2.8)

where g, dΩ , dA and dA′ are acceleration due to gravity, the differential volume, surface
area at the liquid–gas interface and surface area at the liquid–solid surface, respectively,
and φ is the viscous dissipation rate, expressed as

φ = 2μ

[(
∂u
∂x

)2

+
(

∂v

∂y

)2

+
(

∂w
∂z

)2
]

+ μ

[(
∂u
∂y

+ ∂v

∂x

)2

+
(

∂v

∂z
+ ∂w

∂y

)2

+
(

∂w
∂x

+ ∂u
∂z

)2
]

, (2.9)

where u, v and w are the components of velocity in the X, Y and Z coordinate directions,
respectively.

3. Results and discussion

3.1. Comparison with experiments
To validate the present numerical set-up, the head-on collision of droplets on a solid
surface at different size ratios is simulated and the simulation results are compared against
the experimental results from Ramírez-Soto et al. (2020) and Ray et al. (2023a). Two
cases with greatly different size ratios and surface wettability are considered, in order to
demonstrate the robustness of the DNS model.

In the first case we considered the collision of low-surface tension droplets with a
small size ratio on a low-wetting surface. The experiment was performed by Ramírez-Soto
et al. (2020) who studied the impact of an oil droplet on a sessile oil droplet with equal
volume on a low-wetting surface with a contact angle (θ ) of 164.0◦. The initial diameter
of the falling droplet is about 2.05 mm, with a We number of 1.30. The Bond number
(Bo) and Ohnesorge number (Oh) for this case are 0.308 and 0.0216, respectively. The
impact process is illustrated in eight different instances during the collision, as shown
in figure 2(a) where the moment of initial contact between the falling droplet and the
sessile droplet is referred to as t = 0 ms. As can be seen from figure 2(a), upon the falling
droplet impacting the sessile droplet, both droplets deform and spread radially. During
this stage (e.g. t = 0–5.5 ms), the kinetic energy of the falling droplets is transferred to
the surface energies of both deformed droplets. After attaining the maximum horizontal
diameter (e.g. t = 8.0 ms), the flow inside the droplets reverses and the receding phase
begins. During this process, the sessile droplet transfers energy back to the falling droplet,
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increasing the kinetic energy of the falling droplet. Finally (e.g. t = 25.0 ms), the falling
droplet bounces off while the sessile droplet stays on the solid surface and oscillates.
Eventually, the oscillating sessile droplet loses the excess surface energy and attains
the equilibrium shape (this stage is not shown in figure 2a). During the collision, part
of the initial impact energy is converted to the surface energy of the sessile droplet
and another part is lost as viscous dissipation energy inside the droplets and in the
surrounding. It is clear from figure 2(a) that these characteristics and the corresponding
timings are excellently reproduced by the simulation results. There is a small shift in the
trajectory of the falling droplet at t = 25.0 ms. This shift occurs as the collision is not
perfectly head-on in the experiments (i.e. the impact parameter B is small O(10−2) but
not zero). The restitution coefficient and bouncing time calculated from the experiment
are 0.615 and 4.40, respectively, while their corresponding values calculated from DNS
are 0.629 and 4.35, respectively. Small discrepancies in the restitution coefficient between
experimental and numerical values could arise from the presence of surface contamination
on the droplets. Past research has demonstrated that even minute amounts of contaminants
can influence the dynamics of air film drainage (Klaseboer et al. 2000) and impact
interfacial mobility (Vakarelski, Yang & Thoroddsen 2022), ultimately affecting the
bouncing behaviour.

In the second case a falling water droplet with a diameter of 0.32 mm impacting
a sessile water droplet with a much greater diameter (i.e. 2.29 mm) on a polyvinyl
chloride surface in ambient air is considered. The experiment is taken from a previous
study from the authors (Ray et al. 2023a). The dimensionless numbers were We = 4.6,
Oh = 0.0092, Bo = 0.0034. The density ratio and viscosity ratio between the surrounding
and the droplets were 1 × 10−3 and 3 × 10−3, respectively. The modelling results and the
experimental data are summarized in figure 2(b), where the modelling results are overlayed
on the experimental images at eight different timings during the collision process, similar
to the layout in figure 2(a).

Immediately seen from figure 2(b) is the correspondence between the modelling and
experimental results, particularly with respect to the deformation of the falling droplet
and the capillary wave near the collision point. It is also obvious from DNS results that
a cavity is formed in the sessile droplet near the contact region upon the impact of the
falling droplet, which first grows, then reaches a maximum depth and diminishes with
time afterwards. The restitution coefficient and the bouncing time (tb) (defined as the time
duration from the beginning of contact between the falling droplet and the sessile droplet to
the first separation of the droplets) are 0.331 and 1.025 ms, respectively, in the experiment
and 0.334 and 1.050 ms, respectively, from the simulation, which agree well with each
other.

A direct comparison between the trajectory derived from the simulation results and
the experimental data are shown in figure 2(c,d), which corresponds to figure 2(a,b),
respectively. The simulated trajectories of the top, centre of mass and bottom positions for
both the falling droplet and the sessile droplet are reported. The distances are measured
from the solid surface to the top, centre and bottom of the droplets along the z axis
(vertically upward direction). However, a portion of the falling droplet’s bottom position
trajectory is not shown due to its entry into the cavity within the sessile droplet. The
experimental images do not provide clear visibility of the droplets interface in this region.
With comparisons in figure 2 for the two extreme scenarios, it has been demonstrated
that the DNS model can adequately capture the dynamics during head-on bouncing of
unequal-size droplets at different size ratios, from which the restitution coefficient and
bouncing time of droplets can be accurately determined.
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Figure 2. Snapshots showing the collision of droplets on solid surfaces at different size ratios. (a) Bouncing
of an oil droplet impacting a sessile oil droplet of equal volume on a soot-templated glass slide (We, Δ, θ) =
(1.3, 1.08, 164.0). (b) Bouncing for water droplets with a greatly different size ratio on a polyvinyl chloride
surface (We, Δ, θ) = (4.6, 7.2, 72.6). The images are taken from experimental videos from Ramírez-Soto et al.
(2020) and Ray et al. (2023a), and the simulation results are shown as lines. The falling droplet shape is
demonstrated by an orange colour line while that of the sessile droplet by a light blue colour line. Plots (c,d)
show the trajectories of the falling droplet (subpanel (i)) and the sessile droplet (subpanel (ii)) for the case
corresponding to (a) and (b), respectively. The dashed line shows experimental droplet trajectories.
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Parameter Ramírez-Soto et al. (2020) Ray et al. (2023a) This study

Falling droplet diameter (mm) 2.05 0.28–0.36 0.30
Sessile droplet diameter (mm) 2.22 2.29–2.98 2.29–3.00
Static contact angle (deg.) 164.0 67.3–78.0 75.0
Size ratio, Δ = Rs

Rf
1.08 7.20–12.30 1.40–10.00

Weber number, We = ρU2Rf
γ

1.30 1.85–4.60 2.00–4.50
Ohnesorge number, Oh = μ

ργ R1/2
f

0.0216 0.9 × 10−2–1.0 × 10−2 1.0 × 10−2

Bond number, Bo = ρgR2
f

γ
0.308 2.6 × 10−3–4.3 × 10−3 3.0 × 10−3

Reynolds number, Re = ρURf
μ

53 140–230 141–212

Table 1. Value of relevant parameter ranges used in this work and their comparison with the previous
experiments. Note that the experimental conditions (reported by Ramírez-Soto et al. 2020; Ray et al. 2023a)
specified here are corresponding to bouncing cases.

3.2. Head-on bouncing dynamics of unequal-size droplets
To get insight into the effect of size ratio on bouncing behaviour, we performed DNS for
a wide range of size ratios. It is well known that bouncing is observed for a certain range
of We for equal-size droplet collision in air (Qian & Law 1997). In this study, the ranges
of parameters leading to bouncing are selected based on experimental data from studies
by Ramírez-Soto et al. (2020), Abouelsoud & Bai (2021) and Ray et al. (2023a), as well
as observations from similar phenomena reported by Qian & Law (1997) and Alventosa
et al. (2023). The ranges of parameters used in DNS are summarized in table 1.

Simulations are performed for a wide range of We and size ratios so that universal
behaviour can be captured. The restitution coefficient (ε) is calculated for wider We − Δ

parameter space. The size ratio Δ is varied from 1.4 to 10.0 while We is varied in
the range of 2.0 to 4.5. The fluid considered in the present study is water and the
falling droplet diameter is chosen as 0.30 mm. The contact angle at the solid surface can
affect the bouncing behaviour that can further sophisticate the problem and, therefore,
it is kept constant at 75◦. These conditions are similar to the conditions in which the
experiments were performed by Ray et al. (2023a) and showed bouncing. The value of
density, surface tension and dynamic viscosity of water are 998 kg m−3, 72.9 mN m−1

and 1.0 × 10−3 Pa s, respectively, taken at 22 ◦C. Thus, the calculated values of Oh =
1.0 × 10−2 and Bo = 3.0 × 10−3, which are kept fixed.

Figure 3(a) (surface plot) shows the variation of ε with Δ and We. It can be seen that
the values of ε decline first and then attain almost constant value with increasing size ratio
Δ at a fixed We. This trend is similar to other We considered here. The values of ε are less
than 0.7 and, thus, the collisions are inelastic. This inelastic behaviour indicates that a part
of the impact energy of the falling droplet is lost during the bouncing process. The energy
exchange during the bouncing process is analysed in detail in the subsequent discussion.
Also, it is interesting to note that the value of ε at a large size ratio is constant in a wide
parameter space and this behaviour is explored further. The restitution coefficient as a
function of We and Δ is plotted in figure 3(b). It can be observed that ε remains insensitive
to We when Δ is large (indicated by the dark red colour). The comparison between
the simulation and experimental values demonstrates a satisfactory level of quantitative
agreement.
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Figure 3. (a) Surface plot showing the variation of ε with Δ and We. (b) Two-dimensional plot showing ε as
a function of Δ and We. The numerical results are shown as a coloured surface and coloured lines in the plot,
while the experimental data (obtained from Ray et al. 2023a and Abouelsoud & Bai 2021) are indicated by
markers.

To understand the mechanism governing the constant behaviour of ε in head-on
bouncing of unequal-size droplets, further analysis is performed at a specific We, i.e.
We = 4.0. The variation of ε as a function of Δ at We = 4.0 is first shown in figure 4(a).
It can be seen that ε decreases with increasing Δ at a lower value of Δ (e.g. Δ < 3),
while becoming insensitive to Δ with further increase in Δ. The restitution coefficient ε

reaches an asymptotic value of 0.293 for large Δ, which is identical to the measured value
of ε for droplet impact with a pool under similar conditions as reported by Alventosa
et al. (2023). Figure 4(b) shows the variation of the dimensionless bouncing time (tb) with
respect to Δ. It can be seen that the bouncing time is constant and is independent of Δ

for Δ > 7.0, where bouncing time fluctuates due to a different characteristic response
time of the falling droplet and the sessile droplet that is proportional to their natural
oscillation time, tosc = (ρR3/γ )1/2 (where R is the radius), at lower Δ (< 7). Based on
the trends observed in figure 4, the entire Δ space can be divided into three regimes.
Regime I is specified by Δ < 3 (Δ close to 1), where ε is high and changes with Δ. In
this regime the falling droplet can recover a larger portion of its initial kinetic energy
and, thus, a high ε value. Both the droplets have similar mass and oscillate similarly in
the first mode (i.e. expansion and compression). As Δ increases further (e.g. 3 < Δ < 7),
regime II is entered where ε remains constant but the bouncing time varies. The sessile
droplet size is bigger than the falling droplet, with the mass ratio of the sessile droplet
to the falling droplet at approximately O(10). Resonance can occur in this regime that
reduces the bouncing time significantly. For Δ > 7, regime III is present where both ε and
bouncing time are insensitive to Δ. Within this regime, the sessile droplet mass is O(103)
times heavier than the falling droplet mass, and capillary wave propagation on the sessile
droplet surface becomes dominant.

Numerical simulations can provide detailed information on the velocity field and energy
exchange between the droplets that are further analysed. Figure 5 shows the viscous
dissipation rate, the velocity field and the contour plot of velocity magnitude at two
different size ratios, namely Δ = 2.0 and 10.0. In figure 5(a) it can be seen that upon
impact, the falling droplet induces flow inside the sessile droplet during its downward
motion. Also, both droplets are compressed and an increase in the overall surface area of
the droplets is noticed. A cavity is seen at the apex of the falling droplet (e.g. t/tc = 0.9),
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Figure 4. (a) Coefficient of restitution, and (b) dimensionless bouncing time for a water droplet bouncing
from a sessile water droplet on a hydrophilic surface as a function of droplet size ratio, Δ, (We = 4.0, Oh =
1.0 × 10−2, Bo = 3.0 × 10−3, θ = 75◦). Horizontal dashed line in subplot (a) corresponds to ε = 0.293 and
in subplot (b) corresponds to t/tc = 4.6. In (b), numerical data are indicated by circular filled markers and
experimental data (Ray et al. 2023a) are denoted as star markers.

which is quite dissimilar from a pancake shape (or flat D shape) observed during the impact
of a droplet onto a solid surface (Clanet et al. 2004). This cavity creates a low-velocity field
nearby as indicated by the light blue colour velocity contour. The low velocity creates a
low-pressure region, which pulls the liquid in the falling droplet in the upward direction.
Thus, large velocity vectors are present in the air near the apex region at t/tc = 1.25.
Although the velocity magnitudes are larger in the region, the kinetic energy of the air is
still small due to the low density of air, which is O(10−3) times smaller than the droplet
density. Also, the viscous dissipation in the air is low as the dynamic viscosity of air is
much lower than that of water. It is interesting to note that in this instant (i.e. t/tc = 1.25),
the flow inside the falling droplet near the apex region is upward whereas the flow near
the bottom region is still downward. This opposing motion causes the falling droplet to
expand along the Z axis. At t/tc = 2.40, the flow in the falling droplet is completely
reversed and the velocity vector is upward in trend. As the flow velocity of the bottom
part of the falling droplet is greater than the top part of the falling droplet, the bottom of
the falling droplet is forced to expand to both sides, as seen at t/tc = 3.0. At the same
time, the sessile droplet retracts, and the water flows from both sides to the centre of the
sessile droplet, forcing the sessile droplet to stretch upward from its apex. At t/tc > 4.4,
the upward flow in the sessile droplet is suppressed and further reversed, while the falling
droplet keeps travelling upward, eventually leading to the separation of the two droplets
(e.g. t/tc = 5.0). The viscous dissipation rate is prominent near the impact location and
near to both droplet surfaces. It is obvious that considerable deformations exist in the
sessile droplet at bouncing.

When the droplet size ratio increases from 2.0 to 10.0, as seen in figure 5(b), the overall
dynamics and flow patterns are similar to those observed in figure 5(a). Nevertheless,
noticeable differences can be observed between the two cases. Specifically, (1) the cavity
formed near the apex of the falling droplet does not create a stronger pull, and thus, the
velocity field (near the apex of the falling droplet) is not too large (i.e. t/tc = 1.25);
(2) a cavity with larger depth is formed in the sessile droplet (i.e. t/tc = 1.80); (3) the
deformation of the sessile droplet occurs at a localized region near the collision point; and
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Figure 5. Snapshots of DNS with viscous dissipation rate, velocity vectors and contours of velocity
magnitude shown: (a) Δ = 2.0 and (b) Δ = 10.0 (We = 4.0, Oh = 1.0 × 10−2, Bo = 3.0 × 10−3, θ = 75◦).

(4) the shape of the sessile droplet surface near the apex just after the onset of bouncing
(i.e. t/tc = 4.70) is similar to that before impact (i.e. t/tc = 0.00), whereas the shape is
quite dissimilar in the case with a smaller droplet size ratio.

Figure 6 shows the variation of energies with respect to time for the falling and sessile
droplets during the collision and bouncing, which are determined by energy budget
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Figure 6. Variations of different energies with non-dimensional time. Subscript ‘s’ denotes the sessile droplet
and subscript ‘f ’ denotes the falling droplets. The dashed grey vertical line represents time of maximum
deformation of the falling droplet (tm) and the solid vertical line denotes the time of bouncing (tb). Here TE
denotes total energy.

calculations as described in § 2.3. Five different energies are determined (namely kinetic
energy of the falling droplet, kinetic energy of the sessile droplet, change in the surface
energy of the falling droplet, change in the surface energy of the sessile droplet and total
viscous dissipation energy) at the two size ratios as adopted in figure 5. All these energy
terms are non-dimensionalized with ρR3

f V2
γ . For instance, the impact kinetic energy of

the falling droplet (KE) is (1/2)ρU2(4πR3
f /3), which when divided by ρR3

f V2
γ yields

the dimensionless kinetic energy Ek = (1/2)ρU2(4πR3
f /3)/ρR3

f V2
γ = (2π/3)U2/V2

γ =
(2π/3)U2/(γ /ρRf ) = (2π/3)U2ρRf U2/γ = (2π/3)We (here the definition of capillary
velocity and the Weber number are used). Thus, for We = 4.0, Ek = (2π/3) × 4 ≈ 8
(as seen in figure 6). Let us consider head-on impact at Δ = 2.0 (figure 6a). First, the
falling droplet impacts the sessile droplet and the falling droplet decelerates as its motion
is opposed and it stretches radially. The kinetic energy of the falling droplet decreases
with time and it is converted into the surface energies of both droplets. At t/tc = 0.9,
the falling droplet has minimum kinetic energy as flow reversal occurs, as can be seen
from figure 5(a). Maximum deformation of the falling droplet occurs at this time instant
(t/tc = 0.9). Afterward the kinetic energy of the falling droplet recovers gradually with
some oscillation. The surface energy of the falling droplet increases with time and attains
a maximum value at a maximum deformation time instant, as can be seen from figure 5(a).
Thereafter, the surface energy oscillates between the maximum and minimum values due
to the harmonic oscillation of the falling droplet. It can be noticed that the change in
the surface energy of the falling droplet is quite small at the bouncing time. The kinetic
energy of the sessile droplet reaches a maximum value at the maximum deformation of the
falling droplet as the internal flow is the strongest at around that time, as can be seen from
figure 5(a). It reduces to nearly zero at t/tc = 2.0 as a result of maximum deformation
of the sessile droplet, and reaches another peak at t/tc = 3.0 due to retraction motion
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enhancing the internal flow, as shown in figure 5(a). The surface energy of the sessile
droplet keeps increasing until t/tc = 2.0, as this is the timing when it reaches maximum
deformation, as illustrated in figure 5(a). It decreases during retraction up until t/tc = 3.2,
and increases again afterward as the droplet is being pulled upward. It is clear that a part of
the energy from the falling droplet is transferred to the sessile droplet during the collision,
either in the form of surface energy or kinetic energy (internal flow). The total viscous
dissipation energy increases with time. From this energy budget calculation, it can be seen
that the surface energy of the sessile droplet and the kinetic energy of the falling droplet
are the dominant energy term at the bouncing time.

The energy distribution before the maximum deformation of the falling droplet is very
similar between the two droplet size ratios, as also can be seen from the deformation
and internal flow patterns of the falling droplets in figure 5(a,b). However, the energy
distribution and oscillation patterns are dramatically different between the large size ratio
(figure 6b) and the small size ratio (figure 6a) at t/tc > 0.85. Again, these correlate with
figure 5(b), where capillary waves are generated on the sessile droplet and move on its
surface and affect the internal flow motion. For a large size ratio, the deformation and flow
inside the sessile droplet occur mostly in a region near the impact and the flow intensity
inside is much weaker compared with the case of a small size ratio. Also, the kinetic energy
and the change in the surface energies of the falling droplet are smaller at a large size ratio.
It is further noticed that the energy distribution near bouncing remains almost unchanged.
It can be noted that the gas-phase energies are negligible due to significantly lower values
of the density and viscosity of air (∼O(10−3) smaller) as compared with water. Also, the
change in potential energies of both the failing droplet and the sessile droplet are negligible
(<0.3 % of total energy) and, thus, neglected (Ray, Han & Cheng 2023b).

Although the energy distribution with time provided great insight into the bouncing of
unequal droplets, we are particularly interested in the energy distribution at the bouncing
time that determines the values of the restitution coefficient. Thus, the variation of the
energy distribution at the bouncing time with size ratio is further analysed. For the sake
of simplicity and ease of comparison, all the energies are represented as a fraction of the
initial impact energy. The important energy terms, that is, total viscous dissipation, and
the surface and kinetic energies of the sessile droplet are only plotted as a function of Δ

at bouncing time, as shown in figure 7. The energies of the falling droplet are not shown
as the change in its surface energy is negligible and its kinetic energy can be deduced
by energy balance, as can be seen from figure 6. It can be seen that the ratio of total
viscous dissipation energy to the impact energy, Eμ/E0, first decreases, then increases
followed by further decline and then remains almost constant with increasing Δ. The
fractional surface energy of the sessile droplet, ES,s/E0, shows an oscillating pattern
followed by extremely gradual increments with rising Δ. The fractional kinetic energy of
the sessile droplet first increases, then attains an almost constant value with enhancing Δ.
The change in the surface energy of the falling droplet is negligible during bouncing, as
indicate by near-zero values of ES,f /E0 for different size ratios. The kinetic energy of
the falling droplet decreases and eventually reaches a nearly constant value as Δ increases.
These energy trends indicate that the fractional energies of the sessile droplet and viscous
dissipation attained a nearly constant value at large size ratios.

From the foregoing discussion, it is apparent that energy distribution and oscillation
are governed by the magnitude of deformation. As such, the deformation of the sessile
droplet is further analysed quantitatively. In order to do so, we introduce the parameter
of crater depth and wave amplitude, denoted as δ and A, respectively. The normalized
crater depth and normalized wave amplitude are indicated as δ̃ and Ã, respectively, both
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Figure 7. (a) Variation of the ratio of viscous dissipation energy at bouncing to initial impact energy with Δ.
(b) Variation of the ratio of the surface energy of the sessile droplet at bouncing to initial impact energy with
Δ. (c) Variation of the ratio of the kinetic energy of the sessile droplet at bouncing to initial impact energy with
Δ. (d) Variation of the fractional surface energy of the falling droplet with Δ. (e) Variation of the fractional
kinetic energy of the falling droplet with Δ (We = 4.0).

of which are normalized with respect to Rf . To find the crater depth (δ), the height of the
sessile droplet (denoted by h(t)) is tracked with time, then it is subtracted from the initial
(also undisturbed) height of the sessile (denoted by H) (see figure 8a). The evolution of
wave amplitude with angular coordinate α (as defined in figure 8a) and time are shown in
figure 8. Here, α = 0◦ denotes the left-hand vertex whereas α = 180◦ represents the right
vertex, and α = 90◦ is the apex of the sessile droplet.

The spatial variation of normalized capillary wave amplitude (Ã) at different time
instants for Δ = 10.0 is shown in figure 8(b). By definition, wave amplitude is zero
everywhere at t/tc = 0. As the falling droplet impacts the sessile droplet, a crater is
formed at the apex (α = 90◦) that grows with time until it reaches the maximum depth
(i.e. t/tc = 2.0) and then decreases with time. Since the complete shape of the sessile
droplet is well defined for a known crater depth at the axis of symmetry (Z axis), the
temporal evolution of the crater depth at the Z axis is plotted for two size ratios, 8.0 and
10.0, as illustrated in figure 8(c). It is seen that the cavity depth increases monotonically,
reaches a maximum depth (δ̃m, where subscript m denotes maximum value), and eventually
declines. Also, the maximum depth of the crater for Δ = 10.0 is slightly greater than for
Δ = 8.0 (i.e. t/tc = 2.0). The decline is qualitatively and quantitatively similar for both
size ratios (i.e. t/tc > 2.0).

The dimensionless maximum crater depth (δ̃m) is plotted as a function of Δ at a fixed
We and as a function of We at a fixed Δ in figure 9(a,b). The surface energy of the sessile
droplet is related to δ̃m (Jayaratne & Mason 1964). It is observed that the dimensionless
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Figure 8. Deformation of the sessile droplet. (a) Schematic diagram showing capillary waves on the sessile
droplet. The dashed brown line represents an undeformed droplet whereas the solid black line shows a deformed
sessile droplet during the bouncing process. (b) Variation of normalized wave amplitude with angle α at
different time instants. (c) Evolution of normalized crater depth at the Z axis with time.

maximum crater depth remains constant with increasing Δ at a fixed We, while it decreases
linearly with increasing We at a fixed Δ. This information is utilized in the next section for
scaling analysis.

Figure 10(a) depicts the variation of normalized crater velocity with time. The crater
velocity is defined as the rate of change of the crater depth with time (i.e. uct = dδ̃/dt̃,
where t̃ = t/tc), and it is obtained by numerically differentiating the crater depth over time.
It can be observed that the crater depth velocity initially remains constant, then decreases
to a minimum and subsequently sharply increases followed by a gradual increase. Notably,
the initial normalized crater velocity is interestingly close to 0.5 (until t/tc = 1.0). This
velocity matches the velocity of the air layer between a water droplet and a pool of the
same liquid during droplet impact, as reported by Tran et al. (2013). This suggests that at
these size ratios, the capillary wave on the sessile droplet resembles the waves generated
in a pool. In Tran et al. (2013) it is observed that a thin air film is present between the
droplet and the pool, which persists even when the droplet enters inside the pool and
creates a crater. This air film exists during the downward motion and break-up, when the
crater nearly reaches its maximum depth. Similarly, in the case of droplets bouncing on a
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Figure 9. (a) Variation of the dimensionless maximum crater depth with Δ at a fixed We. (b) Variation of the
dimensionless maximum crater depth with We at a fixed Δ.
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Figure 10. (a) Variation of the normalized crater velocity with time. (b) Variation of the normalized initial
crater velocity with Δ.

solid surface with large size ratios, as studied in this work, an air film exists between the
droplets throughout the entire bouncing process. Considering the similarity between these
two processes, a comparison is made between the crater velocities associated with them.
Figure 10(b) shows the variation of the normalized initial crater velocity (uct−0/U) with
Δ at a fixed We. It is observed that the normalized initial crater velocity remains almost
constant with increasing Δ.

In order to gain a more comprehensive understanding of the bouncing behaviour
exhibited by different liquids, characterized by their respective Oh numbers, further
simulations are performed. The variation of the restitution coefficient with Oh number,
ranging from 10−5 to 0.5, are depicted in figure 11(a) for two different size ratios,
considering negligible gravity (Bo = 0). At low Oh values, referred to as the inertia
regime, the restitution coefficient remains almost constant, with values similar to those
shown in figure 3. As Oh increases to intermediate values (i.e. O(10−1)), the restitution
coefficient decreases monotonically due to increased energy loss caused by viscosity. This
region is denoted as the viscous regime. Snapshots of numerical simulations illustrating
these three regimes are provided in figure 11(b). At Oh = 10−5, both the falling droplet
and the sessile droplet exhibit significant deformation, similar to the scenario depicted
in figure 2(b). As Oh increases from 10−5 to 0.1, the deformation in both the droplets
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Figure 11. (a) The restitution coefficient as a function of the Oh number. (b) Snapshot of simulations at
different Oh number (Oh = 10−5 for subpanel (i) and 0.1 for (ii)). (c) The trajectory of the falling droplet
(subpanel (i)) and the dimensionless crater depth (subpanel (ii)) at different Oh number.

decreases. To further quantify the differences between these regimes, the trajectories of the
falling droplet (at three locations – the top, centre of mass and bottom of each droplet) and
dimensionless crater depth are plotted as a function of time in figure 11(c,d), respectively.
It is observed that a shallow crater depth is formed at higher Oh numbers. Moreover, in the
viscous regime the retraction of the crater occurs slowly, requiring a longer time to reach
an equilibrium position.

3.3. Scaling analysis
In this subsection we use scaling arguments to rationalize the independence of the
coefficient of restitution at large size ratios (in regime III). As revealed in the prior
subsection, at a fixed We, the coefficient of restitution remains constant at large size ratios
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(figure 4a) and is determined by the energy distribution. From energy calculations as
shown in figure 7, we already know that energy distribution near bouncing for a large
size ratio does not change much with increasing size ratio. We propose the scaling for
different energy terms and use the energy balance to determine the scaling of the restitution
coefficient.

To begin with, we write the energy balance at the beginning of impact and the
occurrence of bouncing:

E0 = EK + ES + Eg + Eμ. (3.1)

Here E0 is the initial impact energy, EK is the kinetic energy, ES is the change in
surface energy, Eg is the change in potential energy and Eμ is the viscous dissipation
until the bouncing time. The subscripts 0, K, S, g and μ stand for initial, kinetic, surface,
gravitational and viscous, respectively. The initial impact energy is the kinetic energy of
the falling droplet and is expressed as

E0 = 1
2πρR3

f U2 ∼ ρR3
f U2, (3.2)

where U is the falling droplet impact velocity at the beginning of collision. Each other
term on the right-hand side of (3.1) has a contribution from both the falling droplet and
the sessile droplet. Thus, EK = EK,f + EK,s, where subscript f and s denote falling droplet
and sessile droplet, respectively.

Let Vb be the velocity of the falling droplet at bouncing time. Then the kinetic energy at
bouncing (i.e. t = tc) can be expressed as

E0 = 1
2πρR3

f V2
b ∼ ρR3

f V2
b . (3.3)

To determine EK,s, we assume that the falling droplet induced a spherical symmetric
radial flow in the sessile droplet. A crater in the shape of a spherical cap of radius of δm
is present on the top of the sessile droplet. Consider a thin liquid shell at radial distance r
and thickness dr as shown in figure 12. The centre of this shell is at the apex of the sessile
droplet at the beginning of the impact (denoted as point O in figure 12). The velocity
of this thin shell (V) is obtained by balancing the momentum of the falling droplet with
the momentum of liquid inside the shell in the sessile droplet, i.e. 4

3πρR3
f U ≈ 4

3πρr3V .
Thus, V ≈ UR3

f /r3. This approach is similar to the approach used by Tang et al. (2018) for
droplet bouncing from a pool. The key distinction is that while Tang et al. (2018) uses an
upper limit of ∞ (infinity), our study employs Rs as the upper limit. To find the kinetic
energy of the sessile droplet, the kinetic energy of the liquid shell is integrated from δm to
Rs and can be expressed as

EK,s =
∫ Rs

δm

ρ(2πr2)V2 dr =
∫ Rs

δm

ρ(2πr2)

(
UR3

f

r3

)2

dr

= 2πρU2R6
f

∫ Rs

δm

dr
r4 = 2πρU2R6

f

∣∣∣∣ r−4+1

−4 + 1

∣∣∣∣
Rs

δm

= 2πρU2R6
f

(
1
δ3

m
− 1

R3
s

)
. (3.4)
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Falling droplet

Shell

Sessile droplet

dr

r

O

Figure 12. Schematic diagram showing the liquid shell inside the sessile droplet.

By using δm ∼ Rf (see figure 9a) and imposing the condition Rs > Rf for a large size ratio,
1/δ3

m � 1/R3
s . Now, (3.4) can be written as

EK,s ≈ 2
3
πρU2

R6
f

δ3
m

≈ 2
3
πρU2

R6
f

R3
f

= 2
3
πρU2R3

f . (3.5)

It should be noted that the surface area of the liquid shell will change with increasing r,
and thus, (2πr2) in (3.4) can be replaced with (a2πr2), where a is a constant such that
a < 1. Equation (3.5) becomes

EK,s ≈ 2
3πaρU2R3

f ∼ ρU2R3
f . (3.6)

It should be noted that (3.6) provides the kinetic energy of the sessile droplet at bouncing
time (i.e. t = tc). Combining (3.3) and (3.6), the total kinetic energy at bouncing is
expressed as

EK = EK,f + EK,s ∼ ρU2R3
f + ρU2R3

f ∼ ρU2R3
f . (3.7)

Thus, the fractional kinetic energy is

EK

E0
∼ ρU2R3

f /ρU2R3
f ∼ O(1), (3.8)

(3.6) agrees with the trend observed in figure 7(c). For low Bond numbers, Eg can be
neglected.

At a large size ratio, the change in surface energy of the sessile droplet is much greater
than the falling droplet at bouncing, i.e. ES,f 	 ES,s (in fact, ES,f is close to zero,
see figure 7d), then ES = ES,f + ES,s ∼ ES,s. Following the work of Jayaratne &
Mason (1964), the surface energy of the sessile droplet is considered as a proposal to the
square of the maximum crater depth times surface tension, i.e.

ES ∼ ES,s = Cπδ2
mγ ∼ δ2

mγ, (3.9)

where C is a constant and δm is the maximum depth of the crater formed at the sessile
droplet surface. Therefore,

ES,s

E0
∼ δ2

mγ /ρR3
f U2 = δ̃2

m/We. (3.10)

From (3.10), for a fixed We, we obtain that ES,s weakly depends on Δ as δm slightly
changes with Δ, which agrees with figure 9(a). When We is decreased, then δm also
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decreases (see figure 9b) such that δ̃2
m/We remains constant in (3.10). This is also observed

from figure 7(b).
Due to viscosity, energy is lost inside the falling droplet, the sessile droplet and the

surrounding air. Following Alventosa et al. (2023), the rate of viscous energy dissipation
(per unit volume) inside a droplet can be estimated to scale as μ(∇u)2 ∼ μU2/R2 (where
R is the droplet radius). For a characteristic fluid volume R3, the viscous energy dissipation
rate scales as μU2R. As shown in the prior sections (figure 4b), the bouncing time tb ∼ tc.
Thus, the viscous dissipation inside the falling droplet can be expressed as

Eμ,f ∼ μU2Rf tb = μU2Rf

√
ρR3

f /γ . (3.11)

The fractional viscous energy loss inside the falling droplet is

Eμ,f

E0
∼

μU2Rf

√
ρR3

f /γ

ρR3
f U2

= Oh. (3.12)

To find the viscous dissipation energy inside the sessile droplet, the thin liquid shell is
considered again. By integrating the viscous dissipation in the liquid shell, the viscous
dissipation energy inside the sessile droplet is expressed as

Eμ,s =
∫ tc

0

∫ Rs

δm

μ

(
V
r

)2

(a2πr2) dr dt =
∫ tc

0

∫ Rs

δm

μ

(
UR3

f

r4

)2

(a2πr2) dr dt

=
∫ tc

0

∫ Rs

δm

(μa2πU2R6
f )

dr
r6 dt

=
∫ tc

0

(
2
5
πμaU2R6

f

)(
1
δ5

m
− 1

R5
s

)
dt. (3.13)

In (3.13) the variable a (such that a < 1) represents the change in the surface area of a
spherical liquid shell as the radius r increases. Again, by using δm ∼ Rf (see figure 9a)
and imposing the condition Rs > Rf for a large size ratio, we observe that 1/δ5

m � 1/R5
s .

Now, (3.13) can be written as

Eμ,s =
∫ tc

0

(
2
5
πμaU2R6

f

)(
1
δ5

m

)
dt ≈

∫ tc

0

(
2
5
πμaU2R6

f

)(
1

R5
f

)
dt

≈ 2
5
πμaU2Rf tc ∼ μU2Rf

√
ρR3

f γ . (3.14)

The fraction of viscous dissipation for the sessile droplet can be written as

Eμ,s

E0
∼

μV2
s Ri

√
ρR3

f /γ

ρR3
f U2

∼
μU2Rf

√
ρR3

f /γ

ρR3
f U2

= Oh. (3.15)

As the dynamic viscosity of air is much small than water, the viscous dissipation loss in the
surrounding air is neglected. Therefore, the total fraction of viscous energy loss is given
as

Eμ

E0
= Eμ,f + Eμ,s

E0
∼ Oh. (3.16)

For a fixed Oh, (3.16) indicates that Eμ/E0 is insensitive to the size ratio, which agrees
with figure 7(a).
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Now we replace each energy term in the energy balance, (3.1), with their corresponding
scales. Thus, (3.1) can be rewritten after using (3.6), (3.10) and (3.16) as

1 = EK

E0
+ ES

E0
+ Eμ

E0
∼ V2

b

U2 + O(1) + δ̃2
m

We
+ Oh. (3.17)

By definition, Vb/U is the restitution coefficient ε. After rearranging (3.17), we get the
restitution coefficient as

ε ∼
[

O(1) − δ̃2
m

We
− Oh

]1/2

. (3.18)

From (3.18), it can be seen that for a fixed We and Oh, ε is very weak depending on
Δ through. This proves that the restitution coefficient is constant at large size ratios.
Furthermore, it can be noted from (3.18) that ε decreases nonlinearly with Oh as observed
in figure 11(a). This further validates the proposed scaling analysis.

4. Conclusion and outlook

In this paper we studied the head-on collision of two unequal-size droplets on a wetting
surface to a wide range of size ratios using the DNS technique. The robustness of the
numerical model is established by comparing the DNS of two extreme cases with the
experimental data from previous studies. Direct numerical simulation accurately predicts
the droplet’s shape, the coefficient of restitution and bouncing time. Applying this
validated model to more size ratios at different Weber numbers and Ohnesorge numbers,
we observed a universal behaviour in head-on bouncing of unequal-size droplets on a
wetting surface.

Bouncing is characterized by the restitution coefficient that is related to the fraction
of energy lost during bouncing. It is observed that the restitution coefficient decreases
and then attains a constant value with an increasing size ratio. In the inertial regime, the
restitution coefficient is close to 0.3 and becomes insensitive to size ratios for a size ratio
greater than 7.0. Moreover, the bouncing occurs at 4.55 times of inertial-capillary time
scale (tc) for large size ratios.

In order to understand the governing mechanism, we looked at the detailed flow patterns
and dynamics during collision at a representative Weber number. We observed that the
flow and bouncing characteristics are dramatically different at small and large size ratios.
To understand the energy distribution associated with the different collision dynamics and
flow patterns, we performed energy budget calculations. Results correlate well with the
flow patterns and collision dynamics, which indicate a more stable energy distribution at
large size ratios near bouncing time, which is mostly contributed by the sessile droplet.
Since energy distribution is governed by the deformation characteristics, we quantified
the deformation of the sessile droplet by crater depth, and again observed consistency
in crater depth velocity. The velocity ratio (crater depth velocity to impact velocity) is
equal to 0.5 that is similar to the ratio reported in the bouncing of a droplet on a pool. At
large size ratios, a crater is formed due to the impact of the falling droplet and generates
capillary waves on the sessile droplet surface. These capillary waves store the energy and
create a flow inside the sessile droplet and, thus, dictate the kinetic energy and viscous
energy dissipation of the sessile droplet. The cause of the universal behaviour (constant
restitution coefficient) is that above a certain size ratio, the deformation characteristics of
the sessile droplet become nearly identical at different size ratios. A similar behaviour has
been observed for a droplet bouncing on a pool in earlier studies. Two distinct regimes are
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Figure 13. The variation of the normalized minimum gap (h̃c) between the falling droplet and the sessile
droplet with dimensionless time at different cell sizes (We = 4.0, Δ = 10).

identified for different Ohnesorge numbers. Finally, we performed a scaling analysis, and
rationalized the independence of the coefficient of restitution in the inertial regime and
its decrease with increasing Ohnesorge number for large size ratios. Scaling for different
energy forms is proposed and scaling for the restitution coefficient is determined using
energy balance.

Most of the previous studies on droplet impact on a droplet resting on a solid surface,
including the present study, are limited to the similar liquid. The impact of droplets of
dissimilar liquids on solid surfaces can be performed in the future. The numerical model
developed in this work has the potential to analyse the rich subject of capillary rebounds
in nature and industries.

Funding. This work was supported by grants from the Research Grants Council of the Hong Kong Special
Administrative Region, China (PolyU P0039589 and PolyU P0046985 for ECS project funded in 2023/24
Exercise).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Saroj Ray https://orcid.org/0000-0003-4798-1873;
Yu Han https://orcid.org/0009-0009-8663-6029;
Zongyu Yue https://orcid.org/0000-0002-3622-7376;
Hengjie Guo https://orcid.org/0000-0002-1576-2249;
Christopher Yu Hang Chao https://orcid.org/0000-0002-2974-0403;
Song Cheng https://orcid.org/0000-0001-6494-8659.

Appendix

To ascertain whether droplet interfaces, obtained using the 2-VOF approach, overlap,
we observed the minimum gap (i.e. hc) (representing the air layer) between a falling
droplet and a sessile droplet. In figure 13 the evolution of the normalized minimum gap
(normalized with Rf ) between the droplets is shown over dimensionless time. As the
falling droplet approaches the sessile droplet, the minimum gap sharply decreases. After a
collision, the gap remains nearly constant and it increases rapidly upon bouncing. Notably,
the normalized minimum gap between the droplets during bouncing is approximately of
the order of x/2 (where x varies from 0.01 to 0.04 that is the minimum normalized
cell size) during collision, consistent with findings from previous studies (He et al. 2019;
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Ramírez-Soto et al. 2020). It can be seen that the minimum gap in the simulations scales
with x/2 even across different mesh resolutions. Since the gap remains consistently
positive, it indicates that the interfaces of the droplets do not overlap. While decreasing
the cell size (x) in simulations can reduce the air gap between droplets, the gap size
cannot be reduced below a value of the order of x/2, as demonstrated in previous studies
(He et al. 2019; Ramírez-Soto et al. 2020). Therefore, the minimum gap value in
the simulation can be quite larger than its value in the experiment. As observed in
the validation section (§ 3.1), the simulated bouncing behaviour closely resembles the
experimentally observed behaviour. Therefore, it is argued that the difference in the
minimum gap value does not significantly impact the simulation results. To determine
the normalized minimum gap between droplets, the interface locations of both the falling
and sessile droplets are identified where the volume fraction value is 0.5. Subsequently, the
distance of each point on the sessile droplet’s interface is measured from every point on
the interface of the falling droplet. From these distances, the minimum value is extracted,
representing the minimum gap between the droplets.
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