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COMPLETELY CONTINUOUS ELEMENTS OF BANACH
ALGEBRAS RELATED TO LOCALLY COMPACT GROUPS

M.J. MEHDIPOUR AND R. NASR-ISFAHANI

Let G be a locally compact group and L^(G) be the Banach space of all essentially
bounded measurable functions on G vansihing an infinity. Here, we study some fami-
lies of right completely continuous elements in the Banach algebra LQ*(G)* equipped
with an Arens type product. As the main result, we show that Lf(G)* has a certain
right completely continuous element if and only if G is compact.

1. INTRODUCTION

Let G denote a locally compact group with a fixed left Haar measure A. The group
algebra L1 (G) is defined as in [6] equipped with the convolution product * and the norm
|| • ||i. Also, let L°°(G) denote the usual Lebesgue space as defined in [6] equipped with
the essential supremum norm || • H^. Then L°°(G) is the dual of Ll(G) for the pairing

= f f(x)<t>(x)d\(x).
JG

for all <j> G Ll(G) and / G L°°(G). We denote by Lg°(G) the subspace of L°°(G) consisting
of all functions / G L°°(G) that vanish at infinity; that is, for each e > 0, there is a
compact subset K of G for which \\fxG\K\\<x> < £> where XG\K denotes characteristic
function of G\K on G. For every n G LQ°(G)* and 5 G Lg°(G), we denote by ng the
function in L°°(G) defined by

(ng, <j>) = (n, —(/) * gj

for all 4> G Ll(G), where (^(x) = ^(x"1) for all x G G and A denotes the modular function
of G. The space Lg°(G) is left introverted in L°°(G); that is, for each n G io°(G)' and
g G L^(G), we have np G L^(G). This lets us endow L^(G)* with the first ylrens
product "." defined by

(m • n, g) = (m, np>
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for all m,n G L%>{GY and g G Lg°(G). Then £g°(G)' with this product is a Banach
algebra. This Banach algebra was introduced and studied by Lau and Pym [9]; see also
Isik, Pym and Ulger [8] for the compact group case. The functional m • y, G Lg°(G)* is
defined in a similar way for all m G Lg°(G)* and \i G M(G). The measure algebra of G
as defined in [6] endowed with the convolution product * and the total variation norm.

Let 21 be a Banach algebra; a bounded operator T : 21 —¥ 21 is called a right multiplier

if T(ab) = aT{b) for all o, b G 91. For any a G 21, the right multiplier 6 >->• 6a on 21 is
denoted by pa\ also, a is said to be a right completely continuous element of 21 if pa

is a compact operator on 21. Compact right multipliers on the second dual algebras
Ll(G)** and M(G)** have been studied by Ghahramani and Lau in [3] and [4]; see also
Ghahramani and Lau [5] and Losert [11]. In [4], among other things, they have proved
that G is amenable if and only if there is a non-zero compact left multiplier on L}(G)**

or M(G)"
In this work, we study compact right multipliers on Ljj°(G)*. We prove that G is

compact if and only if there is a non-zero compact right multiplier on LQ>(G)*. We also
study some families of right completely continuous elements of Lg°(G)*.

2. T H E RESULTS

For each <j> G L1(G), let <p also denote the functional in Lg°(G)* defined by

(<p, g) := / (p(x)g(x)dX{x) (g G L{j°(G)).
JG

Note that this duality defines a linear isometric embedding of L1(G) into L^(G)*. Also,
observe that <p • rp = <p * ip for all <p,xp € Ll(G). It is well known that Ll(G) is a closed
ideal in Z,g°(G)*; see [9]. Furthermore, an easy application of Goldstein's Theorem shows
that L}{G) is weak* dense in Lg°(G)*. For any n in L%>(G)*, the map m r t m - n i s
weak*-weak* continuous on Ljj°(G)*. For an element m in Lg°(G)*, the map n >-¥ m • n
is in general not weak*-weak* continuous on Lo°(G)* unless m is in L1(G); see Lau and
Ulger [10] for details.

We begin with the following result which is needed in the sequel. First, let us remark
that any right multiplier T on LQ>{G)* is of the form pm for some m G Lg°(G)*; indeed,
T = pr(u) for all u G Ao(G), the set of all mixed identities u with norm one in Lo°(G)*;
that is, <p • u = u • <j> = <f> for all (p G Ll{G).

PROPOSITION 2 . 1 . Let G be a locally compact group and n G L^(Gy. Then

pn : Lg°(G)* -»• Io°(G)* is compact if and only if pn \Li(G) : L
l{G) -4 Ll{G) is compact.

P R O O F : Let m be an element in the unit ball of L^(Gy. Then there exists a net
(<?iQ) in Ll(G) with H^QHJ ^ 1 and <pi -* m in the weak* topology of L^(Gy. Thus
<pa • n —> m • n in the weak* topology of Ljj°(G)*. So, if pn \v(G) '• Ll{G) —* Ll{G) is
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compact, then there exists a subnet (<t>p) of (#Q) such that 4>& • n converges to an element
of L1(G) in the norm topology. We therefore have \\<j>p • n — m • n\\ —• 0. This shows that

{m-n:me L g W , ||m|| < l}C {«A • n : </> 6 Ll{G), ||0||x < l}"'"•>.

It follows that n is a right completely continuous element of L{j°(G)*. The converse is
trivial. U

In the following, the set of all positive functional in the C*-algebras Ljj°(G)* is
denoted by Po(G). Furthermore, for / C Lg°(G)*, the right annihilator of / is denoted
by ran(/) and is defined by {r e / : / • r = {0}}. Let us remark that ran(Lg°(G)') is
the weak* closed ideal

ker(P) = {n-u-n:ne Lg°(G)'}

in £g°(G)' for all u € A0(G); see Isik, Pym and Ulger [8, p. 139].

THEOREM 2 . 2 . Let G be a locally compact group. Then the following assertions
are equivalent.

(a) G is compact.

(b) Lg°(G)* has a non-zero right completely continuous in PQ(G).

(c) Ig° (G)* has a right completely continuous element in Lg°(G)'\ ran(Lg°(G)*).

PROOF: If G is compact, then the constant function one 1Q is a non-zero right
completely continuous element of LX{G). So, by Proposition 2.1, \Q € PQ(G) is a non-
zero right completely continuous element of Lg°(G)*. That is (a) implies (b). That (b)
implies (c) is clear.

To complete the proof, suppose that Lg°(G)* has a right completely continuous
element in Lgo(G)*\ran(Lgo(G)*). The the right multiplier pn : Ll{G) -»• Ll{G) is
compact. On the other hand, ^(G) • n is weak* dense in Lg°(G)* • n by the continuity
properties of the first Arens product. This together with Lg°(G)* • n ^ {0} imply that
Ll(G) • n ^ {0}. That is pn : Ll{G) -* Ll{G) is also non-zero. Now, we only need to
recall from Sakai [12, Theorem 1] that G is compact if there is a non-zero right compact
multiplier on Ll(G). D

COROLLARY 2 . 3 . Let G be a locally compact group. Then G is compact if and

only if there is a non-zero compact right multiplier on Z/o°(G)*.

PROOF: This follows immediately from Theorem 2.2 together with the fact that
n G Lg°(G)*\ ran(Lg°(G)*) if and only if />„ is non-zero. D

COROLLARY 2 . 4 . Let I be a left ideal in Lg°(G)' such that ran(/) = {0}. IfG

is not compact, then there is no non-zero compact right multiplier on I.

P R O O F : Suppose that T : / -» / is a compact right multiplier. Fix ti, i^ € / . Then

T(ti t2) is a right completely continuous element of Lg°(G)*; indeed, for each k € LQ>(G)*
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with ||fc|| ^ 1 we have i2 • k € / , hence

k • T( t i • i2) = k • Li • T{b2)

Since G is not compact, it follows from Theorem 2.2 that

This together with T{LX • t2) e / yield that T(ti • t2) 6 ran(I), and hence T ^ •i2) = 0 by
assumption. Thus /.T(t2) = {0}, and hence T(ii) € ran(J). That is, T(H) = 0. D

Let us remark that Corollary 2.4 is, in particular, applicable to L1(G). So, it is a
more general statement of Sakai [12, Theorem 1].

THEOREM 2 . 5 . Let Gbea locally compact group and n 6 L%>{G)*\ ran(Lg°(G)*).
Then n is a right completely continuous element of Lo°(G)* if and only ifG is compact
and n has the form n = cp + r for some <f> € Ll{G) and r € ran(Lo°(G)*).

PROOF: Suppose that n is a right completely continuous element of Lg°(G)*. Since
L1(G) is an ideal in Lg°(G)*, it follows that pn \L^(G) is a compact right multiplier on
L1(G). Thus there exists <f> e L1(G) with pn = p^ on L1(G); see Akemann [1]. Now, let
u € Ao(G), and choose a bounded approximate identity (e7) for L1(G) such that e7 ->• u
in the weak* topology of Lo°(G)'; see [2]. So e7 • n = e7 • <f> for all 7, and thus

u • n = u • <p = <j>

by the weak* continuity properties of the Arens product. Therefore

m - ( n — (j>) = m-n — m - <j>

= m-n — m- (it • n)

= 0

for all TO € L^{G)*. That is r := n - <$> € ran(Lg°(G)'). Moreover, G is compact by
Theorem 2.2.

For the converse, recall from Akemann [1, Theorem 4] that if G is compact, then
4> is a right completely continuous element of LX{G), and of course a right completely
continuous element of L^(G)* by Proposition 2.1. The proof will be complete if we note
that pt+r = p<j, for all r € ran(Lg°(G)*). D

Let V : LQ°(G)* -*• M(G) be the map that associates to any bounded functional
on Lg° (G) its restricton to Go(G), the Banach space of all continuous functions on G
vanishing at infinity; note that V is an algebra homomorphism; in fact, for each m, n €
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L^(G)*, there exist two nets (<fia) and (tpp) in Ll(G) with <j>a -» m and ipp -> n in the

weak* topology of Lo°(G)*, and so

m n = weak* — lim weak* — lim<j>a *ifrp.
a 0

COROLLARY 2 . 6 . Let G be a locally compact group, and n be a right completely
continuous element of Ljj°(G)*. Tien tie following statements hold.

(i) V{n)eL\G),
(ii) n-7>(n)€ran(L§°(G)'),
(iii) u • n = V(n) for ail u e A0(G),

(iv) V(n) is a right completely continuous element of Ljj°(G)*.
(v) pn is a iinear combination of compact right multipliers p^ for some positive

functions fa € Ll{G)(i = 1,2,3,4).

PROOF: The first three statements are immediate consequences of Theorem 2.5.
The statment (iv) follows from that pn = PvM- For (v), note that V(n) is a linear
combination of fa for some positive functions fa e L1(G) (i = 1,2,3,4). Now, if pn is
non-zero, then G is compact by Theorem 2.2 and so p^ is a compact right multiplier on
Ll(G)\ see Akemann [1, Theorem 4]. Now, apply Proposition 2.1. D

In the following, let AQ(G) denote the set of all non-zero multiplicative linear func-
tionals on Banach algebra jLjj°(G).

COROLLARY 2 . 7 . Let G be a locally compact group. Then the following asser-
tiona are equivaient.

(a) G is finite.

(b) Any m £ Ao(G) is a right completely continuous element of L^(G)*.

(c) Ljj°(G)* Las a right completely continuous element in A0(G).

PROOF: The implications (a)=»(b)=»(c) are trivial. To complete the proof, suppose
that L^(G)* has a right completely continuous element n in A0(G). Then V{n) is a non-
zero multiplicative linear functional on the Banach algebra Go(G); indeed, n € Po(G)
and hence 11̂ (̂ )11 = IMI / 0 by [9, Lemma 2.5]. So, there is an element x G G such
that V{n) is a non-zero scalar multiple of the Dirac measure Sx at x; see for example
[7, Exercise 20.52]. This together with Corollary 2.6 yield that Sx is a right completely
continuous element of Ljj°(G)*. Therefore, the closed unit ball of LQ°(G)* is norm compact
in Ig°(G)'. Thus, L^(G)' is finite dimensional; or equivalently, G is finite. D

In our last result, P(G) denotes the set Po(G) n Ll(G) of all positive functions in

L\G).
COROLLARY 2 . 8 . Let G be a locally compact group. Then the following asser-

tions are equivalent.

(a) G is compact.
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(b) Any <j> e Ll{G) is a right completely continuous element ofLjj°(G)*.

(c) Any <j> e P(G) is a right completely continuous element ofLffiG)'.

(d) L{j°(G)* has a non-zero right completely continuous element in P(G).

(e) LQ°(G)* has a non-zero right completely continuous element in Ll{G).

PROOF: Suppose that G is compact. Then any <j> € Ll{G) is a completely continuous
element of ^(G); see Akemann [1, Theorem 4]. This together with Proposition 2.1 imply
that <)> is a completely continuous element of Lf(G)*. That is, (a) implies (b). Also, the
implications (b)=>(c)=>(d)=>(e) are trivial. Finally, (e) implies (a) by Theorem 2.2. D
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