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ON STABILIZATION OF PARTIAL

DIFFERENTIAL EQUATIONS BY NOISE

TOMÁS CARABALLO, KAI LIU and XUERONG MAO

Abstract. Some results on stabilization of (deterministic and stochastic) par-
tial differential equations are established. In particular, some stability criteria

from Chow [4] and Haussmann [6] are improved and subsequently applied to
certain situations, on which the original criteria commonly do not work, to
ensure almost sure exponential stability. This paper also extends to infinite di-
mension some results due to Mao [9] on stabilization of differential equations
in finite dimension.

§1. Introduction

In this work,we shall present an investigation to stabilization of stochas-

tic partial differential equations by noise. In order to motivate our theory,

let us firstly analyze the following example from Haussmann [6].

Consider a one-dimensional rod of length π whose ends are maintained

at 0◦ and whose sides are insulated. Assume that there is an exothermic

reaction taking place inside the rod with heat being produced proportionally

to the temperature. The temperature in the rod may be modeled to satisfy



























∂X
∂t

= ∂2X
∂y2 + rX, t > 0, 0 < y < π,

X(t, 0) = X(t, π) = 0,

X(0, y) = x0(y),

where r depends on the rate of reaction. If we assume r = r0, a constant,

then we can solve

X(t, y) =

∞
∑

n=1

ane
−(n2−r0)t sinny,
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where x0(y) =
∑∞

n=1 an sinny. Hence we obtain exponential stability if

n2 > r0 for all n ∈ N, or equivalently, r0 < 1. Observe that, in general, for

r0 ≥ 1 the trivial solution is not stable.

Suppose now that r is random, and assume it is modeled as r0 + r1ẇ,

so that the equation becomes

(∗) dX =

(

∂2

∂y2
+ r0

)

X dt+ r1X dw,

where w is a one-dimensional Wiener process. Haussmann proved in [6] that

when r0 < 1 (i.e. the unperturbed system is very stable), the perturbed

system (∗) remains pathwise exponentially stable if r21 < 2(1 − r0), i.e., if

the perturbation is sufficiently small so that this relation is satisfied. On the

other hand, since a new noise term is involved in the perturbed system (∗),

a natural problem now arises: as r0 > 1 (a case where Haussmann’s results

fail to be applied), is it possible to deduce any exponential stability results

for the perturbed system? As we are going to see, by virtue of some general

stabilization results to be derived in Section 3 below, we can actually prove

that for arbitrary r0 ∈ R1, if r21 > 2(r0 − 1), the perturbed system becomes

exponentially stable. In other words, the multiplicative noise now plays the

role to stabilize unstable deterministic systems. It is also worth pointing

out that if r0 < 1, by employing our results we deduce meanwhile that for

arbitrary r1 ∈ R1, the system (∗) is still almost sure exponentially stable.

This result greatly improves the original one in Haussmann [6].

Another more important fact we want to mention is that noise can also

be used to stabilize some stochastic partial differential equations. Indeed,

in the previous situation, i.e., if r0 > 1 and r1 ∈ R1 satisfies r21 ≤ 2(r0 − 1),

we do not know whether the trivial solution is stable or not. But, if the

system is perturbed by another multiplicative noise of the same type, say

r2Xẇ1, where w1 is another one-dimensional Wiener process independent

of w, as a consequence of our main result (Theorem 4.1), it can be deduced

that the system

(∗∗) dX =

(

∂2

∂y2
+ r0

)

X dt+ r1X dw + r2Xdw1,

becomes once more pathwise exponentially stable if r2 is chosen large

enough.

There existed some work on stabilization of stochastic differential equa-

tions by noise in finite dimension. The first one is due to Has’minskii [5],
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who stabilized a system by using two white noise sources. Later, Arnold et

al. [1] showed, in particular, that the system ẋ(t) = Ax(t) can be stabilized

by zero mean stationary parameter noise if and only if trace A < 0. On

the other hand, in the nonlinear case, Scheutzow [11] provided some exam-

ples on stabilization and destabilization in the plane, and Mao [9] obtained

some results on stabilization and destabilization by Brownian motion for

certain class of nonlinear stochastic differential equations. However, as far

as we know, there existed no papers devoting themselves to the investiga-

tion of the analogous problems in infinite dimension, that is, stabilization of

(nonlinear) partial differential equations. In this paper, we shall fill this gap

and meanwhile improve some stability criteria in Caraballo and Liu [3],

Chow [4] and Haussmann [6].

The organization of this paper is as follows. In Section 2, we shall

prove some results in order to stabilize systems modeled by deterministic

partial differential equations. Section 3 is devoted to applying the results

obtained in Section 2 to analyze, in particular, the exponential stability

of a stochastic nonlinear monotone equation which improves a stability

result from Caraballo and Liu [3] and Chow [4]. Finally, we shall establish

a stabilization result for stochastic partial differential equations in Section

4 which permits us to stabilize the stochastic systems studied in Section 3.

§2. Stabilization of deterministic partial differential equations

First of all, we introduce the framework where our analysis is going to

be carried out.

Let H be a real, separable Hilbert space and V a real, reflexive and

separable Banach space such that

V ↪→ H ≡ H ′ ↪→ V ′ ,

where the injections are continuous and dense. In particular, we also assume

both V and V ′ are uniformly convex.

We denote by ‖ · ‖ , | · | and ‖ · ‖∗ the norms in V , H and V ′

respectively; by 〈·, ·〉 the duality product between V , V ′ , and by (·, ·) the

scalar product in H . Let β be the constant of the injection V ↪→ H, i.e.

|x| ≤ β‖x‖, ∀x ∈ V.

Consider the following problem
{

dx(t) = F (t, x(t)) dt

x(0) = x0 ∈ H,
(1)
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where F (t, ·) : V → V ′, t ∈ R+, is a family of (nonlinear) operators satis-

fying F (t, 0) = 0 and the following hypothesis:

There exist a continuous function ν(·) and a real number ν0 ∈ R1 such

that

2〈x,F (t, x)〉 ≤ ν(t)|x|2, ∀x ∈ V,(2)

where

lim sup
t→∞

1

t

∫ t

0
ν(s) ds ≤ ν0.(3)

Assume that for each x0 ∈ H there exists a unique strong solution to

problem (1), x(t;x0) ∈ L2(0, T ;V )∩C(0, T ;H). Observe that, when F (t, ·)

satisfies a coercivity condition of the type

2〈x,F (t, x)〉 ≤ −ε‖x‖p + α|x|2, ε > 0, α ∈ R1, p > 1,(4)

and a monotonicity hypothesis, there exists a unique strong solution to (1)

in Lp(0, T ;V ) ∩ C(0, T ;H) (see, for instance, Lions [7]).

Note that this coercivity assumption obviously implies (2).

Now we can propose the following question: If problem (1) is not sta-

ble, can it be stabilized by using a stochastic perturbation of the type

g(t, x(t))dw(t)? Here w(t) is (for simplicity) a standard real Wiener process

defined on a certain complete probability space (Ω,F , P ) with filtration

(Ft)t≥0, and g(t, ·) : H → H satisfies g(t, 0) = 0 and the following condition

|g(t, x) − g(t, y)|2 ≤ λ(t)|x− y|2, t ∈ R+, x, y ∈ H,(5)

where λ(·) is a nonnegative continuous function such that

lim sup
t→∞

1

t

∫ t

0
λ(s) ds ≤ λ0 ∈ R+.(6)

The answer to this question is affirmative for a suitably chosen g. In-

deed, consider the following perturbed problem

{

du(t) = F (t, u(t))dt+ g(t, u(t))dw(t), t > 0

u(0) = u0 ∈ H.
(7)

As we are mainly interested in stability properties of the trivial solution

to problem (7), we suppose that for each u0 ∈ H there exists a unique

strong solution to (7) in Ip(0, T ;V ) ∩ L2(Ω;C(0, T ;H)) for all T > 0, and

certain p > 1 ,where Ip(0, T ;V ) denotes the space of all V -valued processes
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u(t), measurable and satisfying E
∫ T
0 ‖u(t)‖p dt < ∞. (See, for instance,

Pardoux [10] or Caraballo [2] for conditions under which there exists such

a unique solution for initial values u0 ∈ L2(Ω,F0, P ;H))

Assume V (t, x) : R+ ×H → R+ is a C1,2-positive functional such that

for any x ∈ V , t ∈ R+, V ′
x(t, x) ∈ V . We define operators L and Q as

follows: for x ∈ V , t ∈ R+

LV (t, x) = V ′
t (t, x)+ < V ′

x(t, x), F (t, x) > +
1

2
(V ′′

xx(t, x)g(t, x), g(t, x))

and

QV (t, x) = (V ′
x(t, x), g(t, x))2

.

Theorem 2.1. Assume the solution of (7) satisfies that |u(t)| 6= 0 for

all t ≥ 0 a.s. provided |u0| 6= 0 a.s. Let V (x) ∈ C2(H;R+) and ψ1(t) ∈ R1,

ψ2(t) ≥ 0 be two continuous functions. Assume that there exist constants

p > 0, γ ≥ 0 and θ ∈ R1 such that

(a) |x|p ≤ V (x), ∀x ∈ V ;

(b) LV (t, x) ≤ ψ1(t)V (x), ∀x ∈ V, ∀t ∈ R+;

(c) QV (t, x) ≥ ψ2(t)V
2(x), ∀x ∈ V, ∀t ∈ R+;

(d) lim sup
t→∞

∫ t
0 ψ1(s)ds

t
≤ θ, lim inf

t→∞

∫ t
0 ψ2(s)ds

t
≥ 2γ.

Then the strong solution of equation (7) satisfies

lim sup
t→∞

log |u(t, u0)|

t
≤ −

γ − θ

p
a.s.

where u0 ∈ H is an F0-measurable random vector such that |u0| 6= 0 a.s. In

particular, if γ > θ, the solution is almost sure exponentially stable.

Proof. Fix u0 ∈ H such that |u0| 6= 0 a.s. It is easy to deduce by Itô’s

formula that

log V (u(t, u0)) ≤ log V (u(0)) +M(t)(8)

+

∫ t

0

(LV (s, u(s))

V (u(s))
−

1

2

QV (s, u(s))

V 2(u(s))

)

ds,

where M(t) =
∫ t
0

1
V (u(s))(V

′
x(u(s)), g(s, u(s)))dw(s).
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By applying the exponential martingale inequality (e.g., see Lemma 1.1

in [8]), we can deduce

P
{

ω : sup
0≤t≤w

[

M(t) −

∫ t

0

u

2

1

V 2(u(s))
QV (s, u(s))ds

]

> v
}

≤ e−uv

for any positive constants u, v and w. Assigning ε > 0 arbitrarily and taking

u = α, v = 2α−1 log k, w = kε, k = 1, 2, 3, . . . ,

where 0 < α < 1, we then apply the well-known Borel-Cantelli lemma to

obtain that there exists an integer k0(ε, ω) > 0 for almost all ω ∈ Ω such

that

M(t) ≤ 2α−1 log k +
α

2

∫ t

0

QV (s, u(s))

V 2(u(s))
ds

for all 0 ≤ t ≤ kε, k ≥ k0(ε, ω). Substituting this into (9) and using condi-

tions (b)(c), we see that there exists a positive random integer k1(ε) such

that almost surely

log V (u(t)) ≤ log V (u(0)) + 2α−1 log k +

∫ t

0
ψ1(s)ds−

1

2
(1 − α)

∫ t

0
ψ2(s)ds

for all (k − 1)ε ≤ t ≤ kε, k ≥ k0(ε, ω)∨ k1(ε) which for the preceding ε > 0,

together with (d), immediately implies that

log |u(t)|

t
≤

log V (u(t))

pt

≤
1

pt

(

log V (u(0)) + 2α−1 log k + (θ + ε)t−
1

2
(1 − α)(2γ + ε)t

)

.

Therefore,

lim sup
t→∞

log |u(t)|

t
≤

1

p

[

(θ + ε) − (1 − α)(γ +
ε

2
)
]

a.s.

Letting α→ 0, ε→ 0, we can immediately obtain

lim sup
t→∞

log |u(t, u0)|

t
≤ −

γ − θ

p
a.s.

As a direct consequence, we immediately obtain the following:
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Theorem 2.2. Assume the solution of (7) satisfies that |u(t, u0)| 6= 0

for all t ≥ 0 almost surely provided |u0| 6= 0 almost surely. In addition to

hypotheses (2), (3), (5) and (6), assume the following one holds :

(g(t, x), x)2 ≥ ρ(t)|x|4, ∀x ∈ H,(9)

where ρ(·) is a nonnegative continuous function such that

lim inf
t→∞

1

t

∫ t

0
ρ(s) ds ≥ ρ0, ρ0 ∈ R+.(10)

Then, if u(t, u0) denotes the solution to (7), it follows

lim sup
t→∞

1

t
log |u(t, u0)|

2 ≤ −(2ρ0 − ν0 − λ0), P − a.s.(11)

for any u0 ∈ H. In particular, if 2ρ0 > ν0 + λ0 the equation (7) is almost

surely exponentially stable.

Proof. The proof follows immediately from Theorem 2.1 by setting

V (t, x) = |x|2, x ∈ H.

Remarks. 1. Observe that this result can be interpreted as follows.

Given the deterministic system (1) satisfying (2)–(3), if a stochastic mul-

tiplicative noise, say g(t, u)ẇ(t) , appears in the system, the perturbed one

(7) becomes exponentially stable with probability one (w.p.1 in the sequel)

for suitable g. In particular, one can always stabilize the system (1) by

considering linear perturbations of the type g(t, u) = ρ0u , ρ0 ∈ R1.

2. An analogous result holds when g(t, ·) : V → H, assuming the fol-

lowing condition instead of (2)–(6):

2〈x,F (t, x)〉 + |g(t, x)|2 ≤ δ(t)|x|2, t ∈ R+, x ∈ V,(12)

where δ(·) is a nonnegative continuous function such that

lim sup
t→∞

1

t

∫ t

0
δ(s) ds ≤ δ0 ∈ R.(13)

In this case, (11) is replaced by

lim sup
t→∞

1

t
log |u(t, u0)|

2 ≤ −(2ρ0 − δ0), P − a.s.(14)
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§3. Applications

3.1. A linear example

First of all, let us consider the simple linear case described in the be-

ginning of Section 1. We put this problem into our formulation by setting

V = H1
0 ([0, π]), H = L2([0, π]), F (t, u) = ∂2u

∂y2 + r0u, u ∈ V , g(t, u) =

r1u, u ∈ H.

Now, it is easy to check that Theorem 2.2 can be applied to this problem

with ρ0 = λ0 = r21 and ν0 = 2(r0−1). Thus, one can obtain for the solutions

to (∗)

lim sup
t→+∞

1

t
log |X(t)| ≤ −(r21 − 2(r0 − 1))

with probability 1. In other words, we get pathwise exponential stability if

r21 > 2(r0 − 1).

Observe that, in particular, when r0 < 1, the trivial solution to Eq. (∗) is

P -almost surely exponentially stable for all r1 ∈ R, which greatly improves

the results obtained in Haussmann [6] since the restriction imposed on r1
is not necessary here.

3.2. A nonlinear example

Now we are going to apply Theorem 2.2 to analyze the pathwise stabil-

ity of a nonlinear stochastic partial differential equation (which contains the

first example as a special case). Consider the following problem previously

studied, among others, by Pardoux [10], Caraballo and Liu [3] (and also by

Chow [4] in the autonomous case):

{

du(t) = A(t, u(t))dt +B(t, u(t))dw(t)

u(0) = u0 ∈ H,
(15)

where A(t, ·) : V → V ′ is a family of nonlinear operators defined a.e.t.

satisfying A(t, 0) = 0 for all t ∈ R+; B(t, ·) : V → H, satisfies

(b.1) B(t, 0) = 0;

(b.2) There exists k > 0 such that

|B(t, y) −B(t, x)| ≤ k‖y − x‖, ∀x, y ∈ V, a.e.t;

In [3] it is proved the following result:

Theorem 3.1. In addition to (b.1)–(b.2), assume the following coer-

civity condition:
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There exist α > 0, p > 1 and λ ∈ R1 such that for almost all t ∈ R+

and all x ∈ V ,

2〈x,A(t, x)〉 + |B(t, x)|2 ≤ −α‖x‖p + λ|x|2.(16)

Then, there exists r > 0 such that

E|u(t;u0)|
2 ≤ E|u0|

2e−rt, ∀t ≥ 0,

if either one of the following hypotheses holds :

(i) λ < 0 (∀p > 1);

(ii) λβ2 − α < 0 (p = 2).

Furthermore, under the same assumptions the solution is almost surely

exponentially stable. That is, there exist positive constants ξ, η and a subset

Ω0 ⊂ Ω with P (Ω0) = 0 such that, for each ω 6∈ Ω0, there exists a positive

random number T (ω) such that

|u(t, ω;u0)|
2 ≤ η|u0|

2e−ξt, ∀t ≥ T (ω).

Observe that, in the practical applications, conditions (i) and (ii) mean

that the term containing B must be small enough with respect to A. For

example, let O be an open, bounded subset in RN with regular boundary

and let 2 ≤ p < +∞. Consider the Sobolev spaces V = W
1,p
0 (O) , H =

L2(O) with their usual inner products, and the monotone operator A:V →

V ′ defined as

〈v,Au〉 = −
N

∑

i=1

∫

O

∣

∣

∣

∣

∂u(x)

∂xi

∣

∣

∣

∣

p−2
∂u(x)

∂xi

∂v(x)

∂xi
dx

+

∫

O

au(x)v(x) dx ∀u, v ∈ V ,

where a ∈ R1 . We also consider B(t, u) = bu , u ∈ H , where b ∈ R1.

Finally, let w(t) be a standard real Wiener process.

Then,

2〈x,A(t, x)〉 + |B(t, x)|2 = −2‖x‖p + 2a|x|2 + b2|x|2, x ∈ V,(17)

so (16) holds with equality for α = 2 and λ = 2a+b2. Now, condition (i) re-

quires 2a+ b2 < 0, so a < 0 and b2 < −2a. On the other hand, (ii) will hold
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whenever (2a+b2)β2−2 < 0, that is, b2 < 2β−2−2a. Therefore, Theorem 2.2

guarantees exponential stability of paths w.p.1 only for these values of a

and b which means (as one can easily check) that the deterministic system

du(t) = A(t, u(t)) dt is exponentially stable and the random perturbation is

small enough. However, Theorem 2.2 ensures exponential stability for suf-

ficiently large perturbations although the deterministic system is unstable.

Note that, in this case, it is not difficult to see that

2〈x,A(t, x)〉 = −2‖x‖p + 2a|x|2 ≤

{

2a|x|2 (if p > 2)

(2a− 2β−2)|x|2 (if p = 2),
(18)

so, ν(t) = ν0 =

{

2a (if p > 2)

(2a− 2β−2) (if p = 2)
, λ0 = ρ0 = b2, and then Theo-

rem 2.2 yields

lim sup
t→∞

1

t
log |u(t;u0)|

2 ≤

{

−(b2 − 2a) (if p > 2)

−(b2 − 2a+ 2β−2) (if p = 2)
,

and, consequently, we get pathwise exponential stability w.p.1 if

b2 >

{

2a (if p > 2)

2a− 2β−2 (if p = 2).

In general, we can prove the following.

Theorem 3.2. Assume (b.1),(b.2),(16) and that there exists a non-

negative continuous function b(·) such that

(B(t, x), x)2 ≥ b(t)|x|4 ∀x ∈ V(19)

with

lim inf
t→+∞

1

t

∫ t

0
b(s) ds ≥ b0 ∈ R+.(20)

Then, P -a.s. it follows

lim sup
t→+∞

1

t
log |u(t;u0)|

2 ≤

{

−(2b0 − λ) (if p > 1)

−(2b0 − λ+ αβ−2) (if p = 2).
(21)

for any u0 ∈ L2(Ω,F0, P ;H) such that |u0| 6= 0, P-a.s.

Proof. The proof easily follows from Theorem 2.2 and Remark 2 in

Section 2.
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Remark. Observe that if λ < 0, then (15) is pathwise exponentially

stable w.p.1 for all p > 1 and all b0 ∈ R+; while when λ > 0, (15) is stable

if 2b0 > λ (for p 6= 2) or 2b0 > λ − αβ−2 (for p = 2). Now, taking into

account Theorem 2.2 and Theorem 3.1, let us summarize the analysis for

the preceding particular example:

• Case 1: The nonlinear problem, i.e., p > 2. Observe that in this case,

the problem is exponentially stable for all b ∈ R1 when a ≤ 0. How-

ever, if a > 0 Theorem 2.2 gives stability provided b2 > 2a. Note that,

we do not know what happens if a > 0 and b2 ≤ 2a.

• Case 2: The linear problem, i.e., p = 2. As in the preceding case, when

a ≤ 0 the system is almost surely exponentially stable for all b ∈ R1.

But if a > 0, we need check (ii) which requires b2 < 2β−2 − 2a, or

it should hold b2 > 2a − 2β−2. So, if a ≤ β−2 exponential stability

w.p.1 follows for all b ∈ R1. But, when a > β−2, we only can ensure

stability for b2 > 2a − 2β−2 and we do not know what happens for

b2 ≤ 2a− 2β−2.

In conclusion, our analysis permits us, in particular, to guarantee expo-

nential stability for a wide range of values of a and b where Theorem 3.1 can

not be applied. Of course, this also means that, given the deterministic sys-

tem dx(t) = A(t, x(t)) dt, if a stochastic perturbation of the type bx(t)dw(t)

appears, the perturbed systems become exponentially stable when the pa-

rameter of the noise satisfies the conditions above. But when this does not

happen, that is, when we do not know whether the system is stable or not,

what can we say? The answer motivating the following section is that the

perturbed stochastic system once again can be stabilized by introducing

another noise of the same type.

§4. Stabilization of stochastic PDEs

In the previous sections, we have already shown that stochastic per-

turbation can stabilize a deterministic partial differential equation. Now

we shall prove that noise can also be used to stabilize stochastic partial

differential equations.

Consider the system

{

dx(t) = F (t, x(t)) dt + g(t, x(t)) dw1(t) + h(t, x(t)) dw2(t), t > 0

x(0) = x0 ∈ L2(Ω,F0, P ;H),
(22)

https://doi.org/10.1017/S0027763000022169 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000022169


166 T. CARABALLO, K. LIU AND X. MAO

where w1 and w2 are two independent standard Wiener processes on the

same probability basis, F (t, ·) : V → V ′ is a family of (nonlinear) operators

with F (t, 0) = 0, g(t, ·), h(t, ·) : H → H are Lipschitz continuous, satisfying

g(t, 0) = h(t, 0) = 0 and the following assumptions:

There exists a continuous function ν̃(·), t ≥ 0, and ν̃0 ∈ R1 such that

lim sup
t→∞

1

t

∫ t

0
ν̃(s) ds ≤ ν̃0,(23)

and

2〈x,F (t, x)〉 + |g(t, x)|2 ≤ ν̃(t)|x|2, t ≥ 0, x ∈ V ;(24)

There exist nonnegative functions λ̃(·) ρ̃(·), t ≥ 0, and λ̃0, ρ̃0 ∈ R+ such

that

|h(t, x)|2 ≤ λ̃(t)|x|2, t ≥ 0, x ∈ H,(25)

(x, h(t, x))2 ≥ ρ̃(t)|x|4, t ≥ 0, x ∈ H,(26)

where

lim sup
t→∞

1

t

∫ t

0
λ̃(s) ds ≤ λ̃0, lim inf

t→∞

1

t

∫ t

0
ρ̃(s) ds ≥ ρ̃0.(27)

As in Section 2, we suppose that for each u0 ∈ L2(Ω,F0, P ;H), there

exists a unique strong solution to (22) in Ip(0, T ;V )∩L2(Ω;C(0, T ;H)) for

all T > 0, and certain p > 1. Observe that equation (22) can be regarded

as the stochastically perturbed system of the following one

{

du(t) = F (t, u(t)) dt + g(t, u(t)) dw1(t), t > 0

u(0) = x0 ∈ L2(Ω,F0, P ;H),
(28)

Now we can prove the following generalization of Theorem 2.2.

Theorem 4.1. Assume hypotheses (9), (10), (23)–(27) hold. Then the

strong solution of the equation (22), denoted by x(t, x0), satisfies

lim sup
t→∞

1

t
log |x(t, x0)|

2 ≤ −(2(ρ0 + ρ̃0) − ν̃0 − λ̃0), P − a.s.(29)

for any x0 ∈ L2(Ω,F0, P ;H) such that |x0| 6= 0, P−a.s. In particular, if

2ρ̃0 > ν̃0 + λ̃0 − 2ρ0, the equation (22) is almost surely exponentially stable.
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Proof. Fix any x0 ∈ L2(Ω,F0, P ;H) such that |x0| 6= 0, P−a.s. Then,

in view of uniqueness and continuity of the solution, |x(t)| := |x(t, x0)| 6= 0

for all t ≥ 0 P−a.s. On the other hand, by Itô’s formula we have

log |x(t)|2 = log |x0|
2 +

∫ t

0

2

|x(s)|2
〈x(s), F (s, x(s))〉 ds(30)

+
1

2

∫ t

0

[

2|g(s, x(s))|2

|x(s)|2
−

4(x(s), g(s, x(s)))2

|x(s)|4

]

ds,

+
1

2

∫ t

0

[

2|h(s, x(s))|2

|x(s)|2
−

4(x(s), h(s, x(s)))2

|x(s)|4

]

ds,

+

∫ t

0

2

|x(s)|2
(x(s), g(s, x(s))) dw1(s)

+

∫ t

0

2

|x(s)|2
(x(s), h(s, x(s))) dw2(s).

Since the last two terms in (31) are continuous martingales vanishing at

t = 0, it follows from the law of the iterated logarithm that

lim
t→+∞

1

t

∫ t

0

2

|x(s)|2
(x(s), g(s, x(s))) dw1(s) = 0, P − a.s.

lim
t→+∞

1

t

∫ t

0

2

|x(s)|2
(x(s), h(s, x(s))) dw2(s) = 0, P − a.s.

Therefore, taking into account the hypotheses in the theorem we can get

lim sup
t→+∞

1

t
log |x(t)|2 ≤ −[2(ρ0 + ρ̃0) − ν̃0 − λ̃0], P − a.s.

Applications. As applications of this result we can conclude that

for those examples in Section 3, whose stability properties are commonly

not true, we can however stabilize those by introducing another stochastic

perturbation.

More precisely, for the example modeled by Eq. (∗∗), one can easily

check that ν̃0 = 2(r0 − 1) + r21, λ̃0 = ρ̃0 = r22 and ρ0 = r21. So, (29) becomes

lim sup
t→∞

1

t
log |x(t, x0)|

2 ≤ −(r21 + r22 − 2(r0 − 1)), P − a.s.
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and, consequently, almost sure exponential stability follows if r22 > 2(r0 −

1) − r21.

On the other hand, consider the problem (15) and assume (b.1), (b.2),

(16), (19), (20) hold. Suppose that another stochastic perturbation appears,

i.e., consider

{

dx(t) = A(t, x(t))dt +B(t, x(t))dw1(t) + C(t, x(t))dw2(t)

x(0) = x0 ∈ L2(Ω,F0, P ;H),
(31)

where C(t, ·) : V → H satisfies

(c.1) C(t, 0) = 0;

(c.2) There exists k > 0 such that

|C(t, y) − C(t, x)| ≤ k1‖y − x‖, ∀x, y ∈ V, a.e.t;

and there exists a nonnegative continuous function c(·) such that

(C(t, x), x)2 ≥ c(t)|x|4, ∀x ∈ V(32)

with

lim inf
t→+∞

1

t

∫ t

0
c(s) ds ≥ c0 ∈ R+.(33)

Then,

lim sup
t→+∞

1

t
log |x(t;x0)|

2 ≤

{

−[2(b0 + c0) − λ] (if p > 1)

−[2(b0 + c0) − λ+ αβ−2] (if p = 2).
(34)

So, for the situations where 2b0−λ < 0 (if p 6= 2) or 2b0−λ+αβ−2 < 0

(if p = 2), we can always choose a linear perturbation C(t, x) = c
1/2
0 x with

c0 sufficiently large such that 2(b0+c0)−λ > 0 or 2(b0+c0)−λ+αβ−2 > 0

which imply that the perturbed system is almost surely exponentially stable.
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[7] J.L. Lions, Quelque méthodes de résolution des problemes aux limites non lineaires,

Dunod Gauthier–Villars, Paris, 1969.

[8] K. Liu, On stability for a class of semilinear stochastic evolution equations, Stoch.

Proc. Appl., 70 (1997), 219–241.

[9] X. R. Mao, Stochastic stabilization and destabilization, Systems and Control Letts.,

23 (1) (1994), 279–290.
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