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CONVERGENCE OF INTERPOLATION TO 
TRANSFORMS OF TOTALLY POSITIVE KERNELS 

N. DYN AND D. S. LUBINSKY 

1. Introduction. Convergence of exponential sums 

2 a/ eXJx 

that interpolate to Laplace transforms 

Too 

(1.1) / ( * ) : - J 0 0 e-x'dp(t), 

have been studied by several authors [3, 6, 8, 15]. For rational functions 
that interpolate to Markov functions (also called Hamburger or Stieltjes 
Series or Hilbert Transforms) 

(1.2) / ( * ) : = f \ x 1/(1 - xt)dK0, 

far more detailed convergence results are available (see [10, 11, 16] 
and references therein). Both (1.1) and (1.2) are special cases of the 
transform 

(1.3) / (*):= j K(x, t)dfi(tl 

where K(x, t) is a strictly totally positive kernel. 
There is a well-developed qualitative theory for interpolation by gener

alized X-polynomials to functions of the form (1.3) or even more gen
erally, of the form 

(1-4) fa(x):= f K(x, t)a< (t)dii(tX 

where a(t) is a bounded real function and dfi(t) is a non-negative measure, 
the support of which contains infinitely many points, and may be un
bounded. This theory is closely associated with generalized monosplines, 
generalized Gauss quadratures, optimal approximation and «-widths; see 
for example [2, 5, 7, 14] and references therein. 
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CONVERGENCE OF INTERPOLATION 751 

It is the purpose of this paper to use some of this qualitative theory 
to study convergence of interpolation by generalized polynomials of the 
form 

n 

(1.5) 2 ajK(x9 Vjl 
7 = 1 

or 

(1-6) 2 \ajK(x, r,j) + bjj^x, /),=„.} 

to functions of the form (1.4). While the interpolation points will be 
subject to mild restrictions, the fy} will be chosen as Hobby-Rice 
nodes or Gauss nodes associated with the measure d/x(/) and the interpola
tion points. We use "nodes" to distinguish the {TJ } from the interpolation 
points. This corresponds to choosing the exponents in exponential inter
polation, or fixing the poles in rational interpolation, according to the 
interpolation points. 

The novelty of our results lies in the generality of the kernel K(x, /), the 
arbitrariness of a(t), and the use of the Hobby-Rice nodes. In the case of 
the Markov function (1.2), we extend convergence to the complex plane in 
an unusual way. In all cases, we obtain rates of convergence independent 
of a(t), \a(t) | = 1, using a Bernstein comparison argument. For simpli
city of presentation, we treat interpolation only at simple (distinct) inter
polation points, and merely comment on the conditions required for the 
(straightforward) generalization to multiple interpolation points. 

This paper is organized as follows: In Section 2, we state our results 
associated with the Hobby-Rice nodes, and we present their proofs in 
Section 3. In Section 4, we present additional results specifically for the 
rational kernel. Finally, in Section 5, we present our results associated 
with the Gauss nodes. 

2. Hobby-Rice nodes: simple node interpolation. In this section, we 
investigate convergence of interpolation by generalized polynomials of the 
form (1.5). First we define our notation: 

Definition 2.1. Let / and / be (finite or infinite) real intervals, and let 

K(x, t):I X J -» R 

be continuous. We say that K(x, t) is STP (strictly totally positive) if for 
each n = 1, 2, 3, . . . , and JC1? x2, . . . xn e /, tx, t2, • . . tn ^ J with 

xx < x2 < .. . < xn and tx < t2 < • . . < tn, 

we have 

https://doi.org/10.4153/CJM-1988-033-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-033-9


752 N. DYN AND D. S. LUBINSKY 

(2.1) *[* j ; ; ; *»] : = det(tf(x„ /,) )? J = , > 0. 

Three important examples of STP kernels are 

K(x, t) : = e**, x, t e R, 

#(x, 0 : = 1/(1 - JCOY, -x, * e ( - 1 , 1), y > 0, 

and the Gaussian kernel 

AX*, 0 : = e~{x~l)\ x, t e R. 

See [9, pp. 9-20] for these and further examples. 
Throughout this section, we assume that K(x, t) is STP and we use 

(2-2) £„ : = (£w l , £„2? • • • > £*«) 

to denote an «-tuple of interpolation points in /, with 

(2.3) £nl < in2 < . . . < Zm, 

n = 1, 2, 3 , . . . . Further, throughout this section, d/i(/) denotes a non-
atomic, non-negative Borel measure on J with infinitely many points in its 
support, such that for each x e J, 

(2.4) / (*) := I K(x, t)dn(t) 

is defined and finite. Given a (possibly complex-valued) function «(/), 
locally integrable with respect to dii(t) and satisfying 

(2.5) \a(t) | ^ 1, f e / , 

we set 

(2.6) /„(*) : = JjKix, t)a(t)dKt), x e / . 

Given the interpolation points £w, and an «-tuple of points in / , 

(2.7) T]„ : = (nnl9 TJ„2, . . . , y)nn):i)nX < i)n2 < . . . < ??„„, 

there is a unique generalized polynomial [9, Chapter 1] 

n 

(2.8) £/„(*,«):= 2 û & y , 
y = l 

which interpolates to X ( x ) a t l„> so that 

(2.9) [/„(£„,, a) = /„(£„,), y = 1, 2 «. 

Here we choose r\n to be the «-tuple of Hobby-Rice nodes associated 
with d\x{t) and £n\ As usual, sign(x) is taken to be + 1, 0, or — 1, according 
to whether x is positive, zero or negative. 
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CONVERGENCE OF INTERPOLATION 753 

Definition 2.2. Given a non-atomic, non-negative Borel measure dy^t) 
on / as above, and given interpolation points £n as in (2.2) and (2.3), the 
Hobby-Rice nodes rjn are the unique nodes satisfying (2.7) and 

(2.10) I mnl, t) s i g n j n (t - vnj) } * ( 0 = 0, / = 1, 2 , . . . n. 

We shall use also the notation 

(2.11) an(t):= s i g n j n (* - ^ ) }, * €= / . 

See, for example, [13] for the existence and uniqueness of r\n. When 
{K(£nl9 t\K(£n2, t\ . . . , K{£n„ t), f(t) } is a Chebyshev system, then by 
the well known characterization of best Lx -approximation, the generalized 
polynomial 

n 

P(t) = 2 ajKtinJ, t) 
7=1 

that interpolates to f(t) in TJ„ is a best .^-approximation to / , namely 

11/(0 - P(t) \<M) = min I |/(0 - 2 ^(|„y, /) 
b\,b2...bn j=\ 

d^t). 

Our use of the Hobby-Rice nodes not as interpolation points, but as 
"nodes" (or exponents or poles) is motivated by the following convergence 
result: 

THEOREM 2.3 Assume the notation and assumptions (2.2) to (2.11) and 
that for each x e / , there exists j = j(n, x) such that 

(2.12) Urn è • = x. 
n-^oo 

Then, uniformly in compact subsets of I, 

(2.13) Urn Un(x, a) = fa(x). 

The condition (2.12) states that each x e / should be a limit of inter
polation points. The proof of Theorem 2.3 uses the continuity of K(x, t)9 

but this could be replaced by the condition that uniformly for x, y in 
compact subsets of / , 

lim f \K(x9 t) - K(y, t) |J/x(0 = 0. 

When K(x, t) is analytic in x, we can somewhat weaken (2.12). We use \A \ 
to denote the cardinality of a set A. 
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THEOREM 2.4. Assume that K(x, t) is analytic in x and continuous in t for 
x e D, t e J, where D is some connected open subset of C containing I. 
Assume further the notation (2.2) to (2.11) and that 

I !*(*> (2.14) JfJ*(x,0kW0 
is uniformly bounded for x in each compact subset ofD. If there is a compact 
interval 7| contained in the interior of I, such that 

(2.15) lim | {£„„ in2,..., £„„} n J, | = oo, 

then uniformly in compact subsets of I, 

lim Un(x, a) = fjx). 
n—*oo 

Only for the rational kernel can we extend the convergence in I to D; 
see Section 4. One may prescribe a rate of convergence independent of a(t) 
satisfying (2.5): 

THEOREM 2.5. With the notation (2.2) to (2.11), we have for each 
x ^ I and n = 1, 2, 3, . . . , 

(2.16) \fa(x) - U„(x,a)\ ë I 4 ( x ) | , 

where 

(2.17) fa(x) := jjKix, t)on(t)dv(tX x e / , 

am/ Wzere aw(/) w given by (2.11). Further, 

f \ n I 
(2.18) \fa(x) | = min / * ( * , 0 - 2 W ^ , , 0 U < 0 , X e / , 

a«<i wŵ fer f/ie conditions of Theorem 2.3, 

(2.19) l i m / a ( x ) = 0, 

uniformly in compact subsets of I, while under the conditions of Theorem 2.4, 
(2.19) holds uniformly in compact subsets of D. 

For kernels K(x, t) such as ext of 1/(1 — xt), the conditions on £n under 
which generalized polynomials 

n 

2 bjK(ïnp t) 
7=1 

are dense in the space of continuous functions on an interval are classical. 
In these cases, one may use (2.18) and (2.16) to obtain rates of con
vergence, and to weaken the conditions on the interpolation points in 
Theorems 2.3 and 2.4; see Section 4. 
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The inequality (2.18) also shows that the choice of nodes r\n is optimal 
for the class {fa:\a\ ^ 1}, given the interpolation points £„: When 
a = on, there is equality in (2.16); see the proof of Lemma 3.1. 

For the exponential kernel, Sidi and Lubinsky [15, Theorems 4.1, 4.2, 
5.5] investigated convergence and rates of convergence of exponential 
sums to fa(x) for equally spaced interpolation points and Gauss nodes. 
While the a(t) in [15] is more general, and uniform convergence was 
obtained in unbounded sectors of the plane, the choice of interpolation 
points here is more general. With a careful choice of interpolation points, 
Braess and Saff [6] recently obtained what are evidently optimal rates of 
approximation by interpolating exponential sums to completely monotone 
functions, such as f(x) of (2.4). 

Finally, we note that we may allow consecutive interpolation points to 
coincide, provided that K(x, t) is extended totally positive in x, up to an 
order matching the maximum multiplicity of the interpolation points. 

3. Proof of the results of Section 2. Throughout this section, we assume 
the notation of Section 2, but also use abbreviations such as 

K\ 

First, we establish a well-known error formula: 

LEMMA 3.1. For n = 1, 2, 3 , . . . and x e / , 

(3.1) fa(x) - Un(x, a) = I A„(x, t)a(t)dti(t), 

where 

(3.2) A „ ( x , 0 : = * | 

Furthermore, 

(3.3) f0n{x) = I A„(x, / K C W ) 

(3.4) 

x in 
A : = K 

X inX- • ' **nn 

J -nJ t •n„\ • • • vnn\ 

x UJK\U 

s i g n j n (x - Q ) I |A„(x, 0 \d^t). 

Proof. Expanding 

K\ 

by its first row, we see that 

n 

A„(x, t) = K(x, 0 - 2 C:(t)K(x, IJ ), 
7 = 1 
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where Cj(t)9 j = 1, 2 , . . . n, are functions of / only. Hence the right-hand 
side of (3.1) may be expressed in the form^(x) — Q(x\ where Q(x) is a 
generalized polynomial of the same form as Un(x, a). Further, 

K\ 
x £n 

vanishes identically as a function of t, when x e {£„i, £„2> • • • £««}• Th e 

uniqueness of the interpolating polynomial Un(x, a) then yields (3.1). 
To obtain (3.3), we set a : = on in (3.1). Since (2.10) implies that 

£„(Q = o, / = 1,2,...n, 
we have 

Un(x9 an) s 0, 

and so (3.3) holds. The fact that K(x, t) is STP together with row and 
column interchanges show that 

(3.5) sign^J* | j ) = s i g n { n (x - £„,) ) s i g n { l l (t - Vnj) }• 

Then (3.4) follows. 

It is easy to see that Theorems 2.3 and 2.4 follow from Theorem 2.5. In 
the proof of the latter, we shall need the following lemma: 

LEMMA 3.2. Let Ix be a compact subinterval of I. Then 

/(*):= I K(x, t)dvit) 

is uniformly convergent for x in Ix, in the sense that given e > 0, there is a 
compact subinterval Jx of R such that 

(3.6) jfV] K(x, t)dn(t) ^€, x e /,. 

Further, f(x) is continuous in I. 

Proof Let Ix : = [a, b]. Then for x e IX and s, t e J such that / > s, we 
have as K(x, t) is STP, 

K\ x b 
s t 

^ 0 , 

whence 

K(x, t) ^ K(b, t)K(x, s)/K(b, s). 

Fix s and set 

Cx : = max{^(x, s)/AT(6, s):x e / J . 
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Then 

for ail B e / such that B > s and for all JC e 71# Note that Cj is in
dependent of A: and B. 

Next, for x e Ix and t, u ^ J such that / < w, we have 

A] 

whence 

7 w 
^ 0, 

K(x, t) ^ tf(a, f)*X*, u)/K(a, u\ 

Fix w and set 

C2 : = max{AXjc, u)/K(a, u)\x e / J . 

Then 

for all 4̂ e / such that v4 < w and for all JC e T^ Here C2 is independent of 
x and ^4. 

Since the integrals f(b) and / (# ) are finite, we can choose A and B such 
that the right-hand sides of (3.7) and (3.8) are each bounded by c/2. 
Setting Jx : = [A, B] then yields (3.6). 

Finally, the continuity of f(x) follows as 

Jj} 

is continuous in x for any compact interval Jl9 and as the tail (3.6) of the 
integral may be made uniformly small for x in a compact interval. 

Proof of Theorem 2.5. We first establish (2.16). Let 

(3.9) èn(x) : = s i g n { n (x - Q ) , x e / , 

and note that by (3.5), 

sign(A„(x, 0 ) = on(x)an(t), x e J, / e / . 

Then by Lemma 3.1, and by (3.5), 

fa{x)±{fa{x) - Un{x,a)) 

= on(x) j |A„(x, 0 |{1 ± an(t)a(t) }dtff). 
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As \on(t)a(t) 1 = 1, and from (3.4), we deduce that for x e / , 

sign{/an(x) ± (fa(x) - Un(x, a) ) } sign{fa(x) } g 0. 

Then (2.16) follows. 
Next, if *>,,... bn e R, then by (2.10), 

(3.10) I \K(x, t) - 2 bjKtinj, t) \di*t) 

â I {#(*, t) - i bjK(ènj, t) y„(x)an(t)dKt) 

= Aan(x)fan(x) = \f„n(x) |. 

If x e {^1? £n2 . . . ^ w } , equality of both sides of (2.18) is immediate for 
then both sides are 0. If x is not in this set, choose bl9 b2, . . . bn so that 

n 

7 = 1 

interpolates K(x9 t) at / = TJ , y = 1, 2, . . . w. By strict total positivity of 
K9 K(x9 t) — P(t) can vanish only at / = TJ , y = 1, 2, . . . n. Hence for 
some S(x) = zhl, 

j f |AT(JC, 0 - />(/) |dW0 = I {K(x9 t) - P(t) }8(x)on(tW(t) 

= S(x)fan(x) = \fa(x) |. 

This and (3.10) yield (2.18). 
Next, assume the conditions of Theorem 2.3, and let Ix be a compact 

subinterval of / , and let c > 0. Note that if y : = j(n, x) is chosen so that 
inj is the closest interpolation point among |„ to x e / J , then 

Hm £ • = x, 
n—*oo 

uniformly for x ^ Ix. This is an easy consequence of (2.12) and the 
compactness of Iv Thus if / ] is a compact subinterval of J9 then 

(3.11) Urn f \K(x, t) - K&nj9 t) \d^t) = 0, 
«—xx> *,J\ 

uniformly for x e Ix. With a suitable choice of Jl9 this last statement and 
Lemma 3.2 show that we can choose n0 = n0(e9 Ix) such that 

I \K(x9 t) - K(£nj9 t) W(t) = €, x e l l 9 n ^ n0(e). 

In view of (2.18), we then have (2.19) uniformly in Ix. 
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Finally, suppose that the conditions of Theorem 2.4 are satisfied. It 
follows from well-known results [12, Theorem 17.21, p. 421] that^( jc) is 
analytic in D, n = 1, 2, 3 , . . . . Also from (2.17), 

\fa(x) | g I \K(x9 t) IrftfO, x e D, n = 1, 2, 3 . . . . 

Thus {fa (x) }T=\ i s a normal family in D. Further, (2.15) ensures that the 
number of zeros of fa (x) in the compact subinterval Ix increases to oo as n 
approaches oo. Hurwitz' Theorem then shows that any limit of some 
subsequence of {fa(x)}T=\ ^ a s infinitely many zeros in Ix and so 
vanishes identically in D. Then (2.19) follows pointwise in D, and the 
normality yields uniform convergence in compact subsets of D. 

4. The Hobby-Rice nodes and the rational kernel. In this section, we let 
/ : = / : = ( - 1 , 1), and 

(4.1) K(x, t) := 1/(1 - xt), 

and extend the convergence results of Section 2 to the complex plane. In 
this case 

(4.2) fa{z) : = / ! _ ° f ) 4 t ( ° , z G C\{ ( - o o , - 1 ] U [1, cx>) }, 
J l 1 — zt 

while 

n 

Un(z9 a) := 2 V(l - vO, 
7 = 1 

is defined by the interpolation conditions (2.9), and has the form 

n 

P(Z)/U (1 " Vn/l 
7 = 1 

where P(z) is a polynomial of degree at most n — 1. 
There is a well-developed convergence theory for interpolation to 

Markov functions of the form (4.2), especially when a(t) = 1 (see, for 
example, [10, 11, 16, 18] and references therein). While the results 
presented here are of a modest nature, we feel they are still of interest, 
since we place very few restrictions on a(t), djjj(t) and the interpolation 
points, while the poles are independent of a(t). Since we fix the poles given 
the interpolation points, the appioximants are, in the terminology of 
C. Brezinski, "Padé-type approximants". 

THEOREM 4.1. Assume the notation and assumptions of (2.2) to (2.11), 
with K(-, •) defined by (4.1), and let 

(4.3) A : = C \ { ( - o o , - - l ] U [1, oo) }. 
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Further assume that 

(4.4) lim 2 {1 - l*J -1(l - Vl - 4 ) } = «>•• 

Then, uniformly in compact subsets of A, 

(4.5) lim Un(z9 a) = fa(z). 

When £nk = 0, we interpret \£nk\ \l - V l - & ) as 0. The condi
tion (4.4) is known to be a necessary and sufficient condition for each 
continuous function g(t) on [—1, 1] to be uniformly approximable by 
rational functions of the form 

n 

2 bn/(l - è„jt); 
7 = 1 

see [1, pp. 254-5]. In view of the inequality 

U | _ 1 {1 - V l - X2} â |*|, X G ( - 1 , 1), 

we note that (4.4) is implied by the simpler condition 

n 

(4.6) Urn 2 {1 - \HJ } = oo. 

This, in turn, is true if an unbounded number of £wl, £w2 • • • ènn stay inside 
some compact subinterval of (— 1, 1), or if they do not approach ± 1 too 
rapidly. 

Following is a rate of convergence: 

THEOREM 4.2. Under the conditions of Theorem 4.1, we have for z e A, 

(4-7) \fjz) - U„(z, a) | 

f(l + U] XI - | R e z | ) - ' | / 0 n ( z ) | , |Rez | < 1, 

[(1 + \z\ )(1 + |Re z\/\lmz\ ) | / a /z) |, |Im z\ * 0. 

Here 

E 
(4-8) / . ( , ) - / , : # « * > 

tz 

satisfies 

(4.9) 

uniformly in each compact subset of A. 

(4.9) l i m / a ( z ) = 0, 
n—*oo n 
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Clearly, Theorem 4.1 is a corollary of Theorem 4.2. The proofs are 
based on the results of Section 2 and 

LEMMA 4.3. Let 

n 

(4.10) Rn(z) : = I T (z - V>/(1 - £„/), n = 1, 2, 3 . . . . 

Then for z e A, 

(4.11) fa(z) - Un(z, a) = Rn{\/zTl f RfMt)d^t), 
J 1 1 — tz 

and 

(4.12) |/„(z) | = \R„(l/z) I"1 I f l^^dl*t) I. 
" l*7 l 1 — fz l 

Proof. We see by partial fraction decomposition that 

Rn(l/z)-1^^- = 1/(1 - tz) + 2 fl.(0/(l - V ) ' 

where ^(f )> Û2(0» • • • a
n(0

 a r e functions of / only. Further, this last expres
sion vanishes identically as a function of t, when z = £ -, j = 1,2,. . . n. Thus 
the right-hand side of (4.11) has the same form as the left-hand side, and 
has the same zeros (and singularities). Uniqueness of the interpolant Un(z, 
a) then yields (4.11). Since (2.10) implies that 

fOn(Q = 0, j=\,2,...n, 

we have Un(z9 on) == 0. Further, 

|*W(0I =Rn(t)o„(tl t e ( - l , 1), 

so (4.11) then yields (4.12). 

We remark that various versions of (4.11) are well known in the 
literature. 

Proof of Theorem 4.2. From (4.11) and (2.5), for z e A, 

(4.13) \fa(z) - Un(z, a) | ^ \Rn(l/z) \~x f J M ^ / t f , ) 
J x \\ — tz\ 

=§(i + v\)\R„(\/Z)r1 /'_ -IMli ^ 0 . 

^ A |1 — tz\ 

Next, note from (4.12) that 
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(4.14) \fap)\ 

= \Rn(\/z)rl \f r ^ 4 ( i - emt) 
iJ ' 1 — tz\ 

= \R„(\/z) 1-1 I/*1 l*„(0 I 
\J -» Il - te 

r{l - r R e z + i? Im Z}Û?KO 

= : \Rn(l/z)rl\g„(z) + ihn(z)\, 

where g„(z) and ft„(z) are real valued. Next, if |Re z| < 1, 

1 - t Re 2 ^ 1 - |Rez | > 0, 

so from (4.13) and (4.14), 

|/„(z) - <7„(z, a) | 

^ 1 + 1*1 
1 - |Rez | 

1 + 1*1 
1 - |Rez | 

\Rn(l/z)\-1 / ' JM1I {i - , R e z W 0 
^ v \\ — tz\ 

\Rn{\/z)\-\n{z)\, 

giving (4.7) in this case. If, on the other hand, Im z =£ 0, we obtain from 
(4.13) and (4.14), 

\fa(z) - Un(z9 a) | 

: g ( l + \z\)\Rn(\/z)\-X 

X 
H \Rn(t)\ t 

•/-Mi - ^ l 2 l 
R e z 1 

1 — t Re z •— z- it Im z W/x(/) 

(1 + \z\)\R„(l/z)rl\\gn(z)\ + [\gn( 

Im z 

R e z 

Im z K(z) 

Then (4.7) follows. 
Because the conditions on the interpolation points are weaker in 

Theorem 4.1 than in Theorem 2.4, we cannot apply the latter, but proceed 
along similar lines: From (4.8), 

| / ( z ) | ^ / ' - * < £ > ; ^ , M U 3 
J l |1 — tz\ 

Thus {fa (z) }™=l is a normal family in A. Further, for x e (— 1, 1), (2.18) 
in Theorem 2.5 shows that 

I/J*> 

= mm / ! _ , | ( 1 - f * ) - 1 - 2 6/1 - £ „ / > - 1 MO-
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Now condition (4.4) guarantees that one may uniformly approximate con
tinuous functions on [ — 1, 1] by sums of the form 

£ bj(\ - V)"1; 

see [1, pp. 254-5]. Although there £n7 = |-, that is, the poles are in
dependent of n, the proof goes through without alteration for the present 
case. Thus 

l i m / a ( x ) = 0, x e ( - 1 , 1). 

The convergence continuation theorems and uniform boundedness then 
yield the result. 

Theorem 4.1 is an obvious consequence of Theorem 4.2. We close the 
section with an example in which the Hobby-Rice nodes may be computed 
as zeros of an orthogonal polynomial: 

Example 4.4. Let 

dKO:=dt, t e [ - 1 , 1], 

n 

X«(0:= I l (1 - V>> 

n 

Q„(t):= I l O - Vnj), 
7 = 1 

and 

wn(t) : = V l - t2/x
2
n(t), t e [ - 1 , 1]. 

In the present case, (2.10) takes the form 

/ _ j sign(0„(0 )/(l - ^ ) ^ = 0, j = 1, 2 , . . . n. 

Taking linear combinations of this last relation, we obtain 

) \ x Pn_x{t) s ign (0„ (0 ) /x„ (0^ = 0, 

for each polynomial Pn_x(t) of degree at most n — 1. A classical result of 
Bernstein (see [1, pp. 251-3] and use co : = x« there) shows that Qn(t) is 
the monic orthogonal polynomial of degree n for the weight wn(t). 
Thus the Hobby-Rice nodes (the zeros of Qn(t)) may be computed as the 
zeros of an orthogonal polynomial (namely Qn(t)) satisfying for each 
polynomial Pn_x(t) of degree at most n — 1, 
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/ ' _ , Pn-X(t)Qn{t)wn{t)dt = 0. 

We now use this fact to bound the coefficients in the interpolant Un(x, a). 
To this end, let Xnh Xn2 . . . Xnn denote the Gauss-Christoffel numbers for 
the weight WW(JC), and let Sn_Y[g](x) denote the nth partial sum of the 
orthonormal expansion of g(x) in orthogonal polynomials with respect to 
wn(x)9 whenever defined. Note that Sn_Y[g] has degree at most n — 1. 
Given a(t), let us set 

(4 .15) ank : = KkXn(Unk)Sn-Aa/(XnWn) ^nk)' k = 1 , 2 , . . . W. 

Then, if Pn_x(x) is a polynomial of degree at most n — 1, the Gauss 
quadrature formula for wn(x) yields 

n 

2 a„kPn-i(v„kVXn(vnk) k=\ 

= / _ , Pn-\(t)Sn_x[a/{Xnwn)](t)Wn{t)dt 

= J -x P„-\(t){<x/(xnwn)Xt)wn(t)dt 

= jX_x{Pn-x(tVxn(t)}*(t)dt, 

by definition of wn(t) and orthonormality. Since the above relation holds 
for each polynomial Pn_x of degree at most n — 1, we obtain 

" r\ 
2 ank/(\ - injif]nk) = J _ l a(/) /( l - injt)dU j = 1, 2, . . . », 

or 

!/„«„,, a) = /„(£„,), y = 1, 2 , . . . ii, 

where 

n 

Un(x9 a) : = 2 ^ / ( l - xiy^). 
A : = l 

Thus in this special case, we have the explicit representation (4.15) for the 
coefficients in the interpolating polynomial. The theory of product 
integration rules, which suggested (4.15), [15] enables us to estimate the 
ank\ Using the Gauss-quadrature formula, Cauchy-Schwarz' inequality, 
Bessel's inequality, and the bound 0 < 1 — innt < 2 for t G (— 1, 1), we 
obtain 

https://doi.org/10.4153/CJM-1988-033-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-033-9


CONVERGENCE OF INTERPOLATION 765 

J2 \ank\ ^ V^j/!., x'(0(l - UT\(t)dt} 

x {/!_, («(0/(x„OK(0)2%(0^}1A 

1/2 

=^{/!..i^*n/ i-' t f2(o/vT:r7*} i /2-
This last bound is independent of n and In, and may be used to investi
gate convergence of Un(x, a) when (2.5) is weakened to 

J x a\t)/Vl - t2dt < oo. 

5. Gauss quadrature nodes: double node interpolation. In this section, 
we briefly discuss convergence of generalized polynomials of the form 
(1.6) that interpolate to functions of the form (1.4). First, we must define a 
suitable notion of extended total positivity: 

Definition 5.1. Let / and / be real intervals, and let K(x, t):I X / —> R 
be continuous. We say that K(x, t) is ETP(2) in t (extended totally positive 
of order 2 in /) if 

K0l(x,t):=-K(x,t) 
ot 

is continuous for x G / , / E J, and if for « = 1, 2, 3 , . . . , and xx, x2,.. • 
xn e / ; tu t2,.. . tn e J satisfying 

xx < x2 < .. • < xn and tx ^ t2 = ... = tn, 

with at most 2 consecutive tj equal, we have 

(5.1) K* : = d e t ( ^ . ( x ^ y ) ) ^ = 1 > 0 , 

where #y e {0, 1} is defined as 

(5.2) q. : = max{/:/ /_ / = tj}, j = 1, 2 , . . . n. 

Throughout this section, we assume that K(x, t) is ETP(2) in t, and we 
use 

(5-3) fe„ '• = (fe„,i, few,2» • • • > fe«,2«) 

to denote a 2«-tuple of interpolation points in /, with 

(5.4) è2n,l < fe„,2 < < fen>-
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Further, throughout this section, d\i(t) denotes a (possibly atomic) non-
negative Borel measure with infinitely many points in its support, such 
that for each x e / , f(x) defined by (2.4) is finite. Further, we define fa(x) 
by (2.6) for a(t) satisfying (2.5). 

A 

Given the interpolation points £2n
 an (^ a n «-tuple of points in / , 

(5.5) rn : = (rnl9 rn2, . . . rnn):rnl < rn2 < < Tnn, 

there is a unique generalized polynomial [9, Chapter 1] of the form 

n 

(5.6) V2n(x, a) : = 2 {ajK(x, rnj) + bfafa rnJ) }, 
7 = 1 

satisfying 

(5-7) V2n{i2nJ, a) = f ^ j l I = 1, 2 , . . . In. 

Here we choose rn to be the unique «-tuple of Gauss nodes associated 
with d\i(t) and ç2n: 

Definition 5.2. Given a non-negative Borel measure dfi(t) on J with 
infinitely many points in its support and such that for each x e / , f(x) of 
(2.4) is finite, and given interpolation points |2 w

 a s i n (5.3) and (5.4), the 
Gauss quadrature nodes rn are the unique nodes satisfying (5.5) and 

(5.8) I K(t2nJ, t)d(iit) = 2 \njm2nJ, rnj), I = 1, 2,. .. In. 

Here the Gauss weights À satisfy 

(5.9) X̂ - > 0, j = 1, 2, . . . n. 

Note that (5.8) implies that 

n 

(5.10) F2„(x, 1) = 2 KjK{x, T ). 

Following is our analogue of Theorems 2.3 and 2.5 : 

THEOREM 5.3. For each x e / awJ n = 1, 2, 3 , . . . , 

(5.11) \fa(x) - V2n(x, a) | â | / (x) - F2„(x, 1) |. 

Furthermore, if for each x e / , //z^re exists j = j(n, x) such that 

n—*oo 

then, uniformly in compact subsets of the interior of I, 

(5.12) lim V2n(x, 1) = f(x). 
n—*oo 
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The proof of this theorem is similar to that of Theorem 2.5. Here (2.18) 
is replaced by [5]: 

(5.13) \f(x) - V2n(x, 1) | = min / \K(x, /) ~ 2 W 2 „ „ t) 
In 

where the minimum is taken over all {bi'}]tLl such that for t e / , 

(5.14) s i g n j n (x - £2nJ }{K(X, t) - 2 W W 0 } = 0. 

The convergence follows as in Section 3, with (3.11) replaced by 

(5.15) lim / \K(X, /) - Kiitoj, t)*tX'S\\dtit) = 0, 

where s e / \ / j is fixed and £2nj approaches x from only one side, to 
guarantee the correct sign of the difference in (5.15) according to (5.14). 

We remark that when / is compact, and K(x, t) is analytic i n x G D D / 
and continuous in t e / , then under conditions (2.14) and (2.15) of 
Theorem 2.4, one can show that 

lim V2n(z, 1) = f(z) 
n—*oo 

uniformly in compact subsets of D. This together with (5.11) yields the 
analogue of Theorem 2.4. 

Finally, we note that for the rational kernel K{x, t) : = 1/(1 — tx), 
the results of Section 4 can be extended to the Gaussian nodes case by re
placing Rn(z) in (4.10) by 

n - In 

Rn{z) := n (z - v> 2 /n (i - injz). 
7=1 7=1 
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