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Abstract

In the theory of vehicular traffic flow on a highway the traffic interaction
process is often considered as a collision similar to the particles' interaction
in the kinetic theory of gases. This concept leads to a Boltzmann-type
nonlinear integro-differential equation which governs the traffic density
function. The purpose of this paper is to present a constructive method for
the determination of a solution for this type of equation under certain
boundary and initial conditions. Our method is by successive approximation
which yields existence of both global and local solutions of the problem.

1. Introduction

In the investigation of vehicular traffic flow on a highway Prigogine et al.
[7-9] proposed a model for the traffic concentration using the kinetic theory
of gases. In their theory, the rate of change of the traffic density function is
governed by two kinds of processes called interaction and relaxation. This
may be expressed as

dt dt dx \dtjm, \dt

where / = f(t, x, v) is the density function at time /, position x moving with
velocity v, (df/dt),m is the change of vehicular density due to traffic interac-
tions and (df/dt)re, is the so-called relaxation term. The physical meaning of
the interaction process is that under not very dilute traffic conditions, a
fast-moving vehicle has to slow down when it catches up with a slow-moving
vehicle and cannot pass. On the other hand, the relaxation process enables a
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driver to speed up towards the desired speed when there is a chance to pass or
when the traffic is very dilute. The desired speed depends on several factors
such as the driver's wishes, the legal constraints, the vehicular characteristics
and the road and weather conditions. Using the arguments usually made in
the kinetic theory of gases Prigogine et al. (cf. [7] or [9], p. 23) established the
following relations:

(If) =^-p)fit,x,v)[\v'-v)f{t,x,v')dv'
\OI/inl Jv,

where p = p(t, x, v) is the probability of passing ( O g p g 1), v,,v2 are two
fixed velocities with OgDi<D2<0 0 and To>0 is the relaxation time. The
function /0, which is called the desired speed distribution function, is the
vehicular density that would be realized if the traffic is very dilute or there is
no interaction between vehicles. This function is assumed in the form of

r "2

fn(t,x,v)=\ k(v,v')f(t,x,v')dv',
Jv,

where k(v, v') is a prescribed function (cf. [1], [9]). Under these conditions,
Eq. (1.1) becomes the following nonlinear Boltzmann-type traffic equation

^+VH + Tof=J{t'X'V'f) ( 0 < ' = T> 0<xSA«1^«s«I), (1.3)

where / is the length of the highway and

t,x,v;f) = ±r k(v,v')f(t,x,v')dv'
' 0 Jv,

(l-p)f(t,x,v)f~I(v'-v)f(t,x,v')dvl

In the definition of J(t, x, v; /) we have introduced an inhomogeneous term q
which takes into account any other possible source such as the source from
the boundary through a suitable transformation. Notice that the relaxation
term given in (1.2) leads to an essential distinction between the traffic
equation (1.3) and the classical Boltzmann equation.

In addition to Eq. (1.3) we consider the following boundary and initial
conditions:

/(r,0, v) = 0 ( 0 g / g r , D , S D S i ) 2 ) (1.4)

f(0,x,v)=<f>(x,v) (0<x^l,Vl^v^v2). (1.5)
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The purpose of this paper is to show the existence and uniqueness of a
solution for the initial boundary-value problem (1.3)—(1.5) and to give a direct
method for the construction of the solution. It is to be noted that the
consideration of the homogeneous boundary condition (1.4) is only for
convenience since a non-homogeneous condition in the form of f(t,0,v) =
h(t,v) can be reduced to (1.4) through the transformation f-*f-h (assum-
ing that h is continuous in v, continuously differentiable in t and h(0,v) =
<£(0, u)). In this situation, Eqns. (1.3) and (1.5) remain the same form except
with some different functions k, q, <p and the coefficient of /.

The vehicular traffic flow equation (1.3) has also been discussed by a
number of other investigators in the field of transportation (cf. [1-5]). The
existence problem has recently been investigated by Belleni-Morante and
Barone [1] using semi-group approach which leads to the existence of a local
solution. In this paper we prove the existence of a global solution using the
approach of [6] in the treatment of Boltzmann equation for neutron transport.
The advantage of this approach is that it yields an explicit recursion formula
for the construction of the solution. This formula involves only straightfor-
ward integration and thus our method gives both analytical results and
computational significance.

2. Successive approximations

Throughout the paper, we assume that q, k and <j> are continuous
functions of their respective arguments, <f> is differentiable in x and $(0, v) =
q(t,O, v) = 0. Let D = [0, T] x [0, /] x [«,, v2] and let C(D) be the linear space
of all continuous functions /(/, x, v) on D with /(/, 0, v) = 0 on [0, T] x [vu v2\.
Define the usual maximum norm in C(D) by

||/|| = max{ | / ( / , x ,« ) | ; (r, *, u ) e D } .

Then C(D) is a Banach space. (In fact, C(D) is a closed subspace of the
Banach space of all continuous furfctions with the above norm.) For any
preassigned constant M > 0 we define a function J(t,x,v;f) by

(2.1)J(t,x :,»;/) = •
f J{t,x,

J{t,x,
U(t, x, v

V

v,
; / )
M)
- M )

if
if
if

1
/

f\ =
f>
< -

i M
M
- M

Then we consider the following initial boundary-value problem:

+ j h t f ) ( 0 < t S (2.2)
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f(t,O, v) = 0 (0<(ST,u,gugu!) (2.3)

f(0,x,v)=<f>(x,v) (0<x^l,v,^v^v2) (2.4)

where ((d/dt) + v(d/dx))f is considered as the substantial derivative of /. The
system (2.2}-(2-4), called a modified problem of (1.3)—(1.5), coincides with the
original problem except with J replaced by J. Hence if f(t, x, v) is a solution of
(2.2)-(2.4) then it is also a solution of (1.3)-(1.5) for as long as |/(f, x, u ) | g M .
To investigate the existence of a solution for (2.2)-(2.4) we make the
transformation /—»e~A'/ to obtain the transformed system

+ (A + To 1 ) /=e - A 70 ,x , t ) ; e7 ) (2.5)

f(t,0,v) = 0 (2.6)

f(0,x,v)=<t>(x,v) (2.7)

where A g 0 is a constant to be determined (see Theorem 1). We first show
that the transformed problem (2.5)-(2.7) has a unique solution which can be
constructed by successive approximation.

Let /(0> be any function in C(D). Define a sequence {/'"'} successively
from the linear system

f(n\t, 0, v) = 0 (0<lST,i),SDgii2)

f("}(0,x,v)=<t>(x,v) (0< x § /, u, s v g v2)

n = 1,2,'

(2.8)

The sequence {/<n)} is well-defined and is given by the recursion formula

f"\t,x, v)=e'A"'<f>(x-vt,v)

1 ['
Jo

eTlT"J(T,x - v(t - T), v;e"fin"\T,x - v(t - T), v))dr

n = l,2, ••• (2.9)

where Ao= A + 7V (see Lemma 1). In obtaining the above formula we have
set

f(t,x, v) = q(t,x, v)= <f>(x, v) = 0 when x < 0 . (2.10)

Our main concern is to show that the sequence {/<n)} converges in C(D) to a
unique solution of the transformed problem (2.5)-(2.7). For this purpose, we
define operators A, JA by
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Af={i+vJx~)f+Xof (/£D(A))|
[ (2.11)

(/A(/))(/, x, v)= e-xlJ(t,x, v; e"f(t, x, v)) ( / £ C(D)) J

where D(A) is the domain of A given by

D(A) = {fEC(D);AfeC(D) and / satisfies (2.6),(2.7)}. (2.12)

Then the problem (2.5)-(2.7) is equivalent to the operator equation

Af = l(f) ( /£D(A)) (2.13)

in the Banach space C(D) and the system (2.8) becomes

W* = Jx<f"-xy) (/<n)£D(A)). (2.14)

The requirement of / and / '" ' in D(A) is to insure that these functions satisfy
the boundary and initial conditions (2.6), (2.7). Thus it suffices to show that
the sequence {/*"'} determined from (2.14) converges to a unique solution of
(2.13). To accomplish this, we derive the recursion formula (2.9) and establish
some properties for the operators A and /A in the following lemmas.

LEMMA 1. For any /<0) £ C(D) the sequence {/<n)} in the system (2.8) is in
D(A) and is given by the recursion formula (2.9).

PROOF. Let n be fixed and let / = T, X' = x — vt. Then the first equation
in (2.8) is equivalent to

VT, V)

(2.15)

where [/(/)](f, x, v) = J(t,x, v;f). Multiplication by e v followed by integra-
tion from 0 to I yields

e^fin)(t, x'+ vt, u) - f " ' ( 0 , x', v)
i

-A)T[J(eirf"-'))lT,x'+VT, v)dr. (2.16)= f
Jo

Upon replacing x' by x - vt and using the initial condition we obtain the
formula (2.9). It is obvious that the function / '" ' given by (2.9) satisfies the first
and third equations in (2.8). Since by (2.10),

= q(r, - v(t-T), v) = 0 for
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we see from the definition of / and (2.9) that /<n)(f, 0, v) ~ 0. This shows that
/<n) satisfies the boundary condition in (2.8). Therefore / ( n ) £ D(A) and is the
desired solution of (2.8).

LEMMA 2. The inverse operator A"1 exists on C(D) and

| |A-g1-A-1g2 | |SAo-I | |g.-g2| | (gl,g2tC(D)). (2.17)

PROOF. We first show that A'1 exists by establishing the inequality

(2.18)

It is obvious that (2.18) holds when / , = f2. For /, ^ f2 we set / = /, - f2 and let
Zo = (to,Xo,vo)ED such that | | / | | = |/(r0, x0, vo)\. Then from /(0, x, u) =
f{t, 0, v) = 0 we have t0 ̂  0 and x0 ^ 0. Since

, - A/2)(2o)] = \(ft + vo^f2(zo)+Xof2(zo) (2.19)

and since f'{zn) is a positive maximum in D we see that the first term on the
right side of (2.19) is either zero or positive. This implies that

|| /1| || A/, - Af21| g /(zo) [(A/, - A/2) (zo)] S Ao || /1|2

and thus (2.18) follows. Now for any g,,g2E C(D) the proof of Lemma 1
insures that there exist / , , / ; £ D{A) such that A/, = g,, A/2 = g2. Then by
(2.18) we obtain (2.17) immediately.

We next give some estimates for the function /. For convenience, we set

k, = supj I | k(v, v')\ dv'; v, S v g v2\

k2 = supj I | v' — v | dv'; v, Si v ^ v2 \

kM = T(T'fe, + 2fc2M.

LEMMA 3. For any fuf2& C(D) and any fixed point z =(t,x,v) in D,

\J(z,e 7 , (z) ) - J(z, e "f2(z)) | g KMeA' || /i - /2||. (2.20)

PROOF. For each i = 1,2, define functions / by

f.(t,x,v') =
Me"' when f,(t,x, v')> Me""

f,(t,x,v') when |/,(r,x, v')\ s; Me'1"
- Me A1 when /,(/, x, u') < - Me"A1

Then by the definition of J,
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/(Z,e72(z))-7(Z,^7,(z))

= ̂  P k(v, v')[e%(t,x, v')-e%(t,x, v')]dv'
I It J VI

+ (1 - p)e%(z) \"\v'- v)[e%(t,x, v')-e%(t,x, v')]dv'
Jv,

+ 0 - P)[exih(z)-e%(z)] P («' - v)e%(t,x, v')dv'.
J v\

W e first s h o w t h a t for any u ' G [vu v2],

\f2(t,x,vl)-fl(t,x,v')\£\f2(t,x,v')- fs(t,x, v')\. (2.21)

The above inequality is clearly satisfied if for both i = 1,2, either \f, (t, x, v')\ g
Me"Al or |/, (r, x, v')\> Me'"". Thus it suffices to show the cases

(i) f2(t,x,v')> Me'^J^x^v^SMe-"' and
(ii) -Me~" tsf2(t,x,v')^Me-*',fl(t,x,v')< - Me'M.

Let 2' = (t, x, v'). Since by the definition of / (z'), f2(z') g f2(z') when /2(z') §
— Me''". We see that for both cases (i) and (ii),

o <;2(2')-/.(*') s/2(z')-/>')•

But / . (z ' )^/ ,^ ' ) when /,(z')^Me"A1 we obtain

0</2(z')-/.(z')=i/2(z')-/.(;')•

This proves the inequality (2.21). In view of this inequality and the fact that
|/"(2')|gMe-" we have

|J(z,e72(z))-J(z,e7,(z))|

\k(v,v')\ \f2(t,x,v')-f,(t,x,v')\dv'

0-p)MeMj°2\v'-v\\f2(t,x,v')-fl(t,x,v')\dv'

\v'-v\dv'. (2.22)

Since the first term on the right side is bounded by (k,/T0)e'" | | / 2 - /, || and the
second and third term are both bounded by (1 — p)Mk2e

x' \\f2 — / i | | we
conclude that the right side of the above inequality is bounded by

Since O i p S l the inequality (2.20) follows immediately from (2.22).
We now prove the existence theorem for the modified problem.
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THEOREM 1. Let A be any constant satisfying A § Km. Then with any
/(0)G C(D) the sequence {/<n)} given by (2.9) converges uniformly in D to a
unique solution f of the problem (2.5)-(2.7). Furthermore,

(2.23)n r / i i g ^
Ao 1\

where Ao = A + TV.

PROOF. It suffices to show that the sequence {/'"'} determined from
(2.14) converges in C(D) to a unique solution of (2.13). Since for each
n = 1,2, •• -,JA(/"•"") is in C(D) and by Lemma 2 A"1 exists on C(D) we may
write (2.14) as

ft* = A''Kf"'1) n=\,2,--- (2.24)

We show that the operator A~'JX is a contraction mapping on C(D). Let
/ , , / 2 e C(D) and let z be any point in D. By the definition of /A(/) and (2.20)
we have

S K M | | / . - M | . (2-25)

The above inequality implies that

| | / A ( / , ) - A ( / 2 ) N ^ M | | / , - / 2 | | ( / , , / 2ec(D)) . (2.26)

In view of Lemma 2,

^ Ao' IIA (/-) - -̂  (A) || ̂  (i^M/Ao)||/, - /* II. (2.27)

Hence the choice of A g KM insures that A "' 7A is a contraction on C(D) with
a contraction constant (KM/Xt,)< 1. It follows from the contraction property
of A~'JX that the sequence {/""} given by (2.24) converges in C(D) to a
unique solution / of the equation

f=A-'l(f) (2.28)

and satisfies the error estimate (2.23). This implies that fGD(A) and
Af = ]„{]), that is, / is the desired solution of (2.13). Since (2.13) is equivalent
to (2.5)-(2.7) and (2.14) is equivalent to (2.8) the conclusions in the theorem
follow immediately. This proves the theorem.

By letting F(n)(t, x, v) = e"'fin\t, x, v) for each n then the formula (2.9)
becomes
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F<n)(t, x, v) = e-illT°><i>(x - vl, v)

e-{l~r)IT"J(T,x-v(t-T), v;Fin-'\T,x-v{t-T), v))dr

n = \,2,--. (2.29)

Since the convergence of {/(n)} to / implies the convergence of {F(n)} to / = e *'/
and since the problem (2.5)-(2.7) reduces to the problem (2.2)-(2.4) with the
substitution of / by eA'f we obtain the following

THEOREM 2. For any F( 0 )EC(D) the sequence {F""} given by (2.29)
converges uniformly in D to a unique solution f of the problem (2.2)-(2.4).

REMARK. In Theorem 1 there is an error estimate for the approxima-
tions /(n). However, we do not have a direct error estimate for F(n>.

In view of the definition of / the solution / of the modified problem
(2.2)-(2.4) is the solution of the original problem (1.3)—(1.5) for at least
\f(t, x,v)\^sM. Since the value of M can be preassigned we see that for each
M greater than the maximum of the initial function <(>(x, v) there exists a
TM > 0 s u c h t h a t \ f ( t , x , v ) \ ^ M f o r 0 g t g TM, 0 § x S I, v,^vS v2. T h i s

observation leads to the following conclusion for the original problem.

THEOREM 3. The problem (1.3)—(1.5) has a unique solution f(t,x,v)
which is either bounded on the whole domain D or there exists finite T* § T
such that f(t, x, v) exists on [0, T*) and is unbounded at some point (x, v) when
t —» T*. In any case, the solution f can be obtained from the recursion formula
(2.29) with J replaced by J.

PROOF. The existence of the solution / as well as its construction follow
from Theorem 2. Now if there is an M such that the solution / obtained from
Theorem 2 is bounded by M then / is the desired solution of the original
problem. If, on the other hand, | | / | | >M' for every value of M' in the
definition of / then / is the solution of (1.3)—(1.5) only for \f(t,x, v)\ g M. In
this case the original solution / must be unbounded. For it were bounded (say,
by Mo) then by defining 7 with M = Mo we have J(J) = J(J) and thus the
solution / coincides with /. Notice that in any case, the function / is bounded
and can be determined from (2.29).

The result of Theorem 3 gives a direct method for the calculation of
approximate solutions to the problem (1.3)—(1.5) even if the solution is
unbounded. It is to be noted that in the process of calculating the approximate
solutions F(n), the modified function / should be used in the recursion formula
(2.29) throughout the calculation since it is not known whether the sequence
{F'"'} converges if the original function J is used. Since the solution / of the
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modified problem can always be constructed through the recursion formula
(2.29), if we assign M very large then / is the desired solution of the original
problem for any finite interval [0, T] unless the original solution grows
unbounded in a finite time T* ts T (which is unlikely from physical point of
view). This procedure has some practical implications since the solution of
(1.3)-(1.5) can be constructed from (2.29) without the usual process of
continuation of a solution which requires a new initial function in each step of
continuation. On the other hand, it is easily seen from the proof of Lemma 3
that Theorems 1 to 3 remain true if the function k(v, v') is replaced by a
continuous function k(t, x, v, v') which may depend on t and x. In fact, the
above method can be used for more general type of desired distribution
function /,,.
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