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Abstract. In this paper we introduce the spaces of Hankel convolutors. We
characterize the dual spaces of certain Hankel transformable function spaces as spaces of
Hankel convolutors. Here the Hankel convolution and the Hankel transformation play an
important role.

1. Introduction and preliminaries. A. H. Zemanian ([14], [15] and [16]) investigated
the Hankel transformation defined by

ha()(y) = f Vi ()(x) dx, y e (0, ),

on certain spaces of distributions. The results obtained by A. H. Zemanian for the
h,-transformation are analogous to other well-known ones for the Fourier transformation
([13]). Throughout this paper u always will denote a real number greater than ~1/2 and
the real interval (0, ) will be represented by 1.

In [14] there was introduced the space ¥, that consists of all those complex valued
and smooth functions ¢(x), (x e I), such that

() e

Vma(®)=sup (1+ xy™ <,

for every m,k € N. 3, is endowed with the topology generated by the family {y4 i}nixen
of seminorms. Then ), becomes a Fréchet space. Moreover h,, is an automorphism of %,
provided that u = —-1/2.

For every a>0, A. H. Zemanian [15] defined the space B, , as follows: a complex
valued and smooth function ¢(x), (x € I), is in B, , if and only if ¢ € &, and ¢(x) =0,
for every x =a. We consider on B, , the topology induced in it by #, and then B,.,

becomes a Fréchet space. The space B, = B,., is endowed with the inductive limit
a=1

topology. The Hankel transform of B, is characterized in {15].
Throughout this paper we shall denote by K the following set of functions

K ={M e C¥([0, ®)), M(0) = M'(0) =0, M'() = = and M"(x)>0, x e I}.

For every M € K we shall denote by M* the Young dual function of M [7, p. 18].
Useful properties of functions in K can be found in [6].
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Let M € K. We say that a complex valued and smooth function ¢ = ¢(x), x € 1, is in
#,.m when for every m ,k e N the quantity

1 m
viki(9) = sup e (1) s 0]

is finite. %, m is endowed with the topology associated to the family {yI¥}nxen Of
seminorms. Then #, », becomes a Fréchet space. It is easy to see that 3, , is contained
in %, and that inclusion is continuous. Moreover, if we define for every m,k e N and
d) € %p,M

M) = sup e kOx kT2 ST (x),

where S, =x"#"'2Dx***'Dx™#"'2, the family {n7%}m.on Of seminorms generates on
%, m the same topology as the one generated by {y7 4} «en- (See Proposition 27 §IV of
(12].)

The space @, » consists of all those complex valued functions @ satisfying the
following two conditions

(i) z7#"'?®(z) is an even, entire function, and

(ii) for every m e N and k e N - {0}

PLA®) = sup (1 + 12" 12747 1R0(2)] €™M Ume < oo,
Z€e

@.m is equipped with the topology associated to the family {p7A}menien-io Of
seminorms. Then &, » becomes a Fréchet space.

In Section 3 we shall establish that the Hankel transformation is a homeomorphism
between ¥, » onto &, px.

Our objective here is to develop for the spaces 8, and ¥, ,, a theory similar to the
one studied by P. Mikusinski and M. D. Taylor [11] for the spaces @' and K{M,}'. In our
investigation the Hankel convolution plays an important role. This Hankel convolution
was introduced in [8] and [9]. It has been investigated recently in distributions spaces by J.
J. Betancor and 1. Marrero ([2], [3], [4], [S] and [10]).

In the sequel & will denote a complex Banach space. If fis an &-valued measurable
function on / and ¢ is a complex function on /, we define the #-convolution f#¢ of f and

¢ by
(F#)(y) = fo F@) () ) dx (y ),

provided that the last Bochner integral exists. Here the Hankel translation 7, (y € I), is
defined by

(1,6)(x) = f Du(x,y, )@ dx (x,y € 1),

where

D,(x,y,2)= fo ) Ry 2L ) () L () (2) (2 dr - (x,y,2 €]).
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The space 4, consists of all those €-valued and continuous functions f(x) (x € I),
such that lim x™*7'"2f(x) exists. C, is endowed with the topology generated by the

x—s0*

family {w{}x <n—(0) Of seminorms, where
wi(f) = sup lx=*"2f ()| (f € 6. and k e N~ {0}),

[I || being the norm in €.

Now we denote by H either the spaces B, or ¥, u.

We introduce the convolutive dual H* of H. A continuous &-valued function fin 4,
belongs to H” if and only if for every ¢ € H we have

fo D G dy <o (D),

and

xl-ig{ x P2 IO b ()l dy = a, [5 1 F (D) ()l dy <,

where
1
T T+ 1)
By a convolutor F on H we mean a linear mapping from H into H* such that
F(o#y)=F(d)#y, foreach ¢,y e H.

The space of all convolutors on H will be represented by §(H). We shall say that a
sequence {F,},.n = 4H) converges to F e 4H) provided that for every ¢ € H, F,(¢)—
F(¢),asn—»,in §,.

H’ will denote the space of continuous linear mappings from H into &, and we shall
consider on H' the topology of pointwise convergence.

In this paper we shall characterize the spaces B, (Section 2) and ¥, » (Section 4) as
the spaces of convolutors of B8, and ¥, », respectively.

Throughout this paper, C will denote a suitable positive constant (not necessarily the
same in each occurrence).

We should like to thank J. M. R. Méndez for many helpful conversations and
valuable suggestions concerning this paper.

2. The space B8,. Firstly we describe the convolutive dual space of B,.
ProrosiTion 2.1. Bf =C,.

Proof. 1t is obvious that B# is contained in 4,. Let now f € 4, and let ¢ € B,...,
with a > 0. According to Corollary 3.3 of [2], 7,¢ € B, .+x for every x e I. Hence one has

f: O (56) ()] dy = f FONEmHD)dy<e (xel).

Moreover
lim x™#7%(1,6)(y) = @, $(y) (1)
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uniformly in y e I. In effect, by invoking (1.2) of [3]
x (1 d)(y) = hu[(t) ML) ($) DY) (x,y € D).

Since the functions VzJ,(z) and z™*J,(z) are bounded in /, and since h, () € 7, by
Theorem 5.4-1 of [16], for every b >0 and m e N we have

tp.+l/2

a+y"

f: Vo2, (y)et) ™, (et)] Y ($)(0)] i < Coytolhn () f di (r,yel).

Hence, for each € > 0 there exists by > 0 such that

[ VBN 0,00 - a @O di| <6 @y e @

bo

Finally by taking into account that lim z7%J,(z)=a, we can deduce that for
every £ >0 there exists § > 0 such that =

fo VIO ,01) = I ()0) di | < 3)

wheny e /and 0<x < 4.
By combining (2) and (3) we get (1).

Then
iim <2 [ O (BN dy = e, [ 17160y
x— 0 0
Thus the proof is complete. u

In the next Proposition we characterize the convergence in B, in terms of
convolutors.

ProrosiTiON 2.2. Let (¢,),-o be a sequence in B,,. Then ¢,— 0 as n— = in B,,, if and
only if F(¢,)—>0as n— x in €,, for every F € YB,.).

Proof. To prove that ¢,— 0 as n— « in B, implies that F(¢$,)—0 as n— in €,
for every F € 4B,), we invoke the closed graph theorem. Assume that F is a convolutor
on B, and (,)--o is a sequence in B, such that for certain y e B, and fe C,

¢,— ¢ in B, and F(y,)— fin €, as n— o,

We have for every ¢ € B,

F(yn)# o =F(e)#y,— F(e)#y=F(y)#pasn—xin 4,
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Indeed, since ¢, — ¢ as n— = in B, there exists a >0 such that ¢, e B,, (n e N)
and ¢ € B, Then, for every n € N, m e N — {0}, by invoking again Corollary 3.3 of [2]
we can write

a+m

= (F (@) # (Y — W) = f IF(@))I ™72 [1,(y, — $)(»)| dy

0
=C sup o [Ger) ™, (x0)h (8 = )OI,

for every x € (0, m).

Hence, since h,, is an automorphism on ), by Theorem 5.4-1 of [16] and (xt)™*J,,(x?)
is a multiplier on &, uniformly in x e (0, m), one concludes that

sup )x"‘"’z IF(e)# (¥ = Y)(x)I >0 asn— co.
xe{um

Moreover, it is not hard to see that F(y,)¥#¢—f#¢ as n—» in €,. Hence
F(y)Ro=f#¢, (¢ € B,). Then, from (1) it is deduced that

lim 57712 [ (F ) = HONER)dy = 0 | (FW)=Helr)dy =0,

for every ¢ € B,,. Therefore F(y)=f.

Assume now that (¢,);- is a sequence in 8, such that F(¢,)—0asn— «in €,, for
each F € ¥gB,.). Since B, is the hyperstrict inductive limit of the family {8, s}a>0, ¢ —0
as n— » in B, if and only if the following two conditions hold.

(i) There exists a >0 such that ¢, € B,,,, for everyn e N.

(ii) ,Sup lx~#"128k b, (x)] =0, as n — =, for every k e N, m e N — {0}.

Note EthJa;'t, by virtue of Proposition 2.2 of [10], for every k e N the mapping F,
defined by

E( :pp. - cg;u
¢ Sd. u,

where u & &, is a convolutor in 8,. Hence our assumption implies that (i) holds. Suppose
that ¢, -0 as n— = in B,. Then there exist an increasing sequence (x,),-o in / and an
increasing sequence (g,)n=o in N such that x, — ® as n— », {¢, (x,)| >0, for each n € N,
and ¢,,(x,) =0, for every n, k e N with k <n.

We define the mapping F in 8, by

L]

F(¢)x)= D, (1:0)(¥n)vn (¢ € B, and x € I),

n=0

(v,)n-0 being a sequence in €. Thus F is in 9(B,). In effect, let ¢ € B,,, with a >0. For
every x € (0, m), where m € N— {0}, the sum defining F(¢)(x) is finite (and the number
of non-zero terms does not depend on x e (0, m)) because 7,.¢ € B, 44m, X € (0,m), by

Corollary 3.3 of [2]. Then lim x™*"'2F(¢)(x) = e, io ¢(x,)v,. Also it is not very hard
x—0* n=

to establish that F(¢) is a continuous function on /. Thus we conclude that F(¢) € €,..
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Moreover if ¢,¢ € B,., then since (7,¢)(y) = (1,6)(x)(x, y € I) and since 1,(¢#¢) =
(1.0)#¢ (x € 1), one has

F@#00) = S 5.6#0)00m = 3 (5880100 = 5, (o)) #00)
- F@#9@ el @

To justify the third equality in (4) we have taken into account that, according to
Corollary 3.3 of (2}, if ¢, ¢ € B,., with a >0, then for every x e I we have

[(5,.6)#0)(x) = f " ) (2) de

Also by virtue of §2 of [9], we can write

€. )D)= [ D(tnz,0)6()dt =0

x,—2z

when x €/, 7 € (0,a + x) and n is large enough. Hence we conclude that for fixed x e /
[(1.,#)#¢](x) = 0 when n is sufficiently large. Thus (4) is established.
On the other hand note that

Jim xR ($o) () = ap 22 balxa)vn (K €N).
Hence, by choosing (v,),-o suitably, we obtain F(¢,,)+ 0, as k> = in €,. Thus the
proof is finished. n
We now establish that ¢(8,,) and B, are isomorphic.
ProrosiTiON 2.3. The spaces 4B,.) and B, are isomorphic.
Proof. The mapping J defined by

J:4(Bu)— B
F—>J(F):B,— ¢,
1
¢—J(F)(¢) = lim —x™*7"F(¢)(x),
=0 @,
is an algebraic and sequential isomorphism.
Let F e 4B.). If (¢n)n-0< B, is such that ¢, —0 as n— = in B, then, according to
Proposition 2.2, F(¢,)— 0 as n— > in €,. Hence J(F)(¢,)— 0 as n — ». Thus we have
proved that J(F) € B,..

It is obvious that J is a linear mapping. Moreover if F € 4,) and J(F) =0, then for
every ¢, ¢ € B, one has

JEY$#4) = lim —— 3+ PF($#Y)(x) = lim 2+ AFG#9))

= tim [ F@)OR w0 dy = [ FOW)dy =0
a“x-vO 0 (1}
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Hence F(¢) =0, for every ¢ € B,. Therefore J is one to one.
Also J is onto. In effect, let f € B,.. We define the mapping F in 8, through

F()x)=(f#¢)(x) (xel,deB,).

By proceeding as in the proof of Proposition 4.1 of [2] we can see that F(¢) € €,
¢ € B,., and from Corollary 4.2 of [2] we infer that F € ,). Moreover

lim xTFTR(FRG)x)=(f, )

because lim x *"'?1,¢ = a,¢ in B,. Hence J(F) =f.

ra0*
Let noow (F)n=0 € 4B,.) be such that F,—0 as n— < in (B,). Then F,(¢)—0 as
n—x in 4,, for every ¢ € B,,. Hence we immediately deduce that J(F,)(¢)—0 as
n—» «, for every ¢ € B,,. Thus it is established that J is sequentially continuous.
Finally to see that /™! is sequentially continuous it is sufficient to note that if f,— 0 as
n—«in B, then f,#¢$—0 as n— = in 4, for every ¢ € B,.. (See Proposition 2.11 and
Proposition 4.1 of [2].) |

3. Hankel transformation and Hankel convolution on 3, ,,, We begin this section
by establishing that the Hankel transformation maps ,, » onto g, »x homeomorphically.

ProrosiTion 3.1. The Hankel transformation h, is an homeomorphism from %, »
onto @, . Moreover h,', the inverse of h,,, is given by

B@0) = [ Vi Len0e) d (@€ G
Proof. Let firstly ¢ be in ¥, ». By invoking (5.3b) of [6] we write
fo ) I(z6) T (20| [+ 2p(1)| dr < C fo . eVlmr 2 (0 dt (2 € C).
Hence if |Im z| = k, then from Lemma 2.4 of [6] it follows that
fo ’ I(z0) T (z)* R dr < C J; g2 |$(0)| dr = Ce™ ¢ Dy0% (9) fo Ry

Thus we prove that z7#~"2h,(¢)(z) admits a continuous extension to C. Moreover,
in a similar way, we can see that such a extension is holomorphic. It is clear that
27#712p, (¢)(z) is even. According to Lemma 5.4-1 of [16), for every i e N one has

2B = (1) [ @ e S0 d @ eC)
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Hence, by invoking again (5.3.b), Lemma 2.4 and (2.2) of [6], we obtain

lzy_“_lfzh“(tb)(z)l < CJ; efltm zlpu+172 |S;‘¢(t)| dt< CeMx(ﬂm zI/k)J; eMku+112 |SL¢(t)| dt

< CeM Umzinpbkil( gy | e~MO2u+1 g (i e N,k e N—{0}and z € C).
- 0

Thus we have proved that

piix(h.¢)=C 2 N (¢) (me N,k e N—{0}).

Then h,, is a continuous mapping from ,, » into @, mx.
Let now @ be in g, ux. According to Lemma 6.1 of [6]

R, @) =3 [ e+ im) HHDCE + mOE + )€+ iy dE (),
©)

for every n e I. Here H’ denotes the Hankel function of the first class and order p.
Let m € N. From (5.1.b) of [6] we infer that, for every ¢, n € I,
H”

(o) 1 mha @01 =55 [ ae+mysmHR e+ impe+in

X (§ + in)Zm-#-p.+llZ dg.
Assume now that u =1/2. According to (5.3.c) of [6], we have

‘(%D)M(I'#'lrzhu(@)(f))\ = qu(eﬂqnsl (£ + im)| |& + im|~#+12e 22 g

+ f e IR B + in)] |6 +inf"dE) (t,m € 1)
wE+im)>1

Hence if t =1, then

l(l D)m(t‘#—mh“((b)(tﬂ < C(j e~ |D(£ +in)| |€ + in|* V2 dE

! (€ +in1=1
#] e rinig +inmde) (ne)
#(E+in)>1

If k € N - {0}, then by invoking now Lemma 2.4 of [6] and by taking n e I such that
M'(kt) = % , we obtain

(o) e hono] s crtsoore e =, 0

where | € N is such that 2/ >m + u + 3/2.
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On the other hand if ¢ € (0, 1), then by using (7) §5.1 of [16] we can write

(30) @ @)@ = (-1 [ ey e 2427000) i
t 0
Hence, for every k € N — {0}, one has
(G0) @ @)0)| = Colimti@re e e 0,1) a)

where l e N with I > u + 1.
From (6) and (7) we conclude that h,, is a continuous mapping from &, s into &, u.
When —1/2 < u <1/2 we can proceed in a similar way by using (5.3.d) of [6]. Thus
the proof is finished. ]

In the following Lemma we prove that z7*J,(z) defines a multiplier of @, um.

Lemma 3.1. Let a>0. The mapping ®(z)— (az) "/, (az)®(z) is continuous from
G, m into itself.

Proof. According to (5.3.b) and Lemma 2.4 of [6] one has, for each k e N — {0},
l(az)™*J,(az)| < Ce""™ 2! < CeMWImzV2) (7 & C),
Hence, for every m e N and k e N — {0}, we obtain from (2.2) of [6]
(1 +1zP)"e~ MmO |(az) 4, (az)@(2)] = C(1 + [z ) e hm V2~ MURO) ()]
=C(1 + |z[Yme MUIm 220 | B(z)] (z e C).
Thus the desired result follows. =

Since ¥, » is contained in ¥, by invoking Proposition 2.1 of [10] we deduce that
1.9 € ¥, for every ¢ € ¥, ». Moreover, according to (2.1) of [10], for every ¢ € ¥, »
we have

h (T )(2) = x** " (xz) " #], (x2)h,($)(z) (x €l and z e C).
From Lemma 3.1 and Proposition 3.1 we immediately deduce the following result.

ProrosiTioN 3.2. For every x € 1, 1, defines a continuous linear mapping from %, m
into itself.

Also it is clear that z7*~'2® is a multiplier of @, », provided that ® € @, ». Hence,
from the interchange formula (1.3) of [10] and Proposition 3.1, we deduce the next result.

ProrosiTioN 3.3. The Hankel convolution is a continuous bilinear mapping from
%#'M X %#_M into %“_M.

The following result will be useful in the sequel. B
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ProrosiTion 3.4. Let ¢ € ¥, . The mapping T, defined by
T4:[0, ©) > %, m
x—>x* ", ifxel,
a,¢, ifx=0,
is continuous.

Proof. Let xo e l. According to (2.1) of [10] and Proposition 3.1, to see that T is
continuous in x, it is sufficient to prove that

[(x2)7#J,u(x2) = (x02)™*/u(x02)]P(2) — 0 as x — xo in G, mx. ®)
By invoking (5.3.b) of [6] we conclude that
(x2) ™", (x2) = (x02) " *u(xo2)| = C(e™'™* + g™ 2)
< Ce™o*Wimzt (7 & C and x € (0, xo + 1)).
Let m e N and k € N — {0}. By invoking Lemma 2.4 and (2.2) of [6] we obtain
(L +[2P)™ |27 72 (2)[(x2) M u(x2) = (x02) 4 u(x02)] €M Im 2t
< C(l + IZIZ)'" IZ_“_m(I’(Z)I eXo+1)(Im z{~M*(lIm zV/k)
< C(L+|z])™ |2+~ 1P (g )| &M tm 212k) = MX(m 21/
=C(L+zP)7'p 32 (®) (zeCandx e (0,x0+1))
Hence, if € > 0 there exists r >0 such that for every x € (0,xo+1) and |z| =7
(1 +12P)™ 12742 D(2)[(x2) M, (x2) = (Xo2) Mu(x02)] e MmO < ¢ ©9)

Moreover, since the function z7%J,(z) is uniformly continuous in each compact
subset of the complex plane, for every €>0 there exists 8§ >0 such that for every
x € (0, ) with [x — xo| < § and |z| =< r we have

(1 + 2P 127 0()[(x2) " (x2) = (x02) Mulxe2)] e MM < (10)
By combining (9) and (10) we establish (8).
To see that T, is continuous at the origin we can proceed in a similar way. [

4. The space &, ». In this section we investigate some new properties of the spaces
»m and &, ». Also we characterize ), 5 as the space of Hankel convolutors on #, u.
If Fed, »and ¢ € &, », we define the function F#¢ from / into & by

(F&S)(x)=(F(y), (t.8)(y)) (xel).

Note that a consequence of Proposition 3.4 is that F#¢ € C,, for every F € &, »
and ¢ € K, p.
Next we establish an interesting result on pointwise convergence in #,, .

X,

m

ProrosiTioN 4.1. Let {F,};-o be a sequence in ¥, p. The following two conditions are
equivalent:

(i) (Fn,9)>0asn> = in &, for every ¢ € ¥, m;

(ii) F,#d—>0asn—xin G, for every ¢ € ¥, u
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Proof. We shall prove first that (i) implies (ii).
Let ¢ € ¥, » and m e N. According to Proposition 3.4, the set {x"“'l’zrx¢}xe[0',,,] is
compact in #, ». By invoking the Banach-Steinhauss theorem we conclude that

sup |[(F,, x ™+ 21,)| = Sup ¥ ) (F#)(x) -0

xel[0.m])

asn— . Hence F,#¢p—>0asn— o in 4,.
To see that (ii) implies (i) it is sufficient to note that, according to Proposition 3.4,

lim x™#~ llz(Fm Txd’) <F;n a#qﬁ),

x—0*
where n e N and ¢ € 3, . [ |
”,

We now characterize the convolutive dual %, of %, . An &-valued function f
defined on [ is said to be in L,(I, &) if and only if | f|| belongs to L,().
y.+1/2f

eM ~M(px)

ProrosiTION 4.2. 9% {f € b.: e L,(I, &), for some p e N}

u+12

Proof. Let f € €, be such that ——
can write, for every x € I,

e L,(I, é), where p e N and let ¢ € %, ». We

oM (px)

" p+1R
fo (FEeD] Ir,d:(y)ldySSytg;e“"’”Iy""“’z(rx¢)(y)lfo %Lfy)(y)” dy.

Hence, according to Proposition 3.2, one infers that

fo T EeO)dy <@ (€ D).

Moreover, by virtue of Proposition 3.4, we have

tim 2 O b dy = e, [ IO 16O dy <.

Hence f € ¥ ). Conversely, assume now f e &% » and suppose that there is no
u+l/2

p € N such that —— HGm € L,(1, ). By defining g(x) = || f(x){l, (x € I), it is obvious that we
p+l/2
g(x)
eMwpx)
o(x)=0, (x e I), and ¢(x) =0, (x >1).
For every n e N—- {0}, p € N one has

cannot find p e N for which e L,(I). We choose ¢ € B, such that ¢ #0,

[ s (2eat e )= [ ote) [ 600rm (B )y ay e
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Moreover

p.+l/2 . 7)z
x(xo’/b(,,,) )(y) f &%T‘D#(x,y,z)dz (x,y €).

Hence since D,(x,y,2)=0, (x,y,z € I) by (3) of §2 of [9], and since
f D,(x,y,2)z**"?dz = a,(xy)**'? (x,y el)
o

by (2) of Section 2 of [9], we get

tp+l/2 y.+1/2
n

[[w(Ees=so)w ar= [ g5 6 )
f g(x)f ¢(y)fm /::Z D,(x,y,z)dzdydx

f g(x) M‘;[[:’((i‘)y)] z“HQDu(xvy’ z)dzdydx

<1>(y)y‘““"2
=a”-‘(') x‘ng(x) M[p(-r+y)] d dx

d lxn+l (X)

>C oM @2p0) dxf)"‘ﬂn‘b()’)d}’ (n e N—{0}).

In the last inequality we have used the facts that M is an increasing function and that
¢(x) =0, for every x > 1.
Therefore

x o tu+1/‘2
lim g(x)(—(—'")—#d;)(x) dx =, foreverypeN.

st eMP)

Consequently there exists a sequence of positive numbers {a,},~ such that

[[sm(Eeat" ) >

eM(p!)

Assume that a, >a,.1, p € N. Moreover since ¢ =0, we have also 7,¢ =0 (x /)
and, since M is an increasing function, it is clear that for every 0=a <b

b IF'+1/2 b tu+112
o5 (&) O dt = | s (nd)(O) dt (x e )).
a € a €
Then, for every p e N,

f: g(1) (0, #6)(x) dx > p,

u+172
where wp(X) =x“+1,2, (O<x <aO)9 wp(x) =;m)-’ (al—l =x<ag, I=1,... 9p)’ and

Yp(x) =0, (x=a,).
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w+1/2
Hence, by defining ¢(x)=x*""7 (0<x<ag), ¢(x)= %m, @-1=x<a,

1=1,2,...), we have that
fo g () (Ut ) (x) = . 1)

On the other hand z7#"'?h,(¢) is a multiplier of &, ux Indeed, for every
k € N — {0}, we can write

Iz"‘"”zh,‘(tﬁ)(z)lsCJ:e’ Mt |y (x)) dx

< CeMX(um z'”‘)reM('“)X“H’z |¢(x)| dx (z € C).
0

Moreover the last integral is finite. Hence, by proceeding as in the proof of Lemma
3.1, we conclude that z™#~"2h, (y)® is in g, mx, for every ® e @, »x. Then by invoking
Theorem 2.d [9] one deduces that y#¢ € ¥,

Since f € % » we have

lir{){ r gy) k™ 2r (y#P)(y)ldy = a, r g(y)(W#é)(y)ldy <,
x— 0 0

which contradicts (11). This completes the proof. |
An immediate consequence of Proposition 4.2 is the following result.
COROLLARY 4.1. If f € ¥% y, then f#$ € €, for every ¢ € ¥, u.
“Hlfz’roof. Let f € #%,. According to Proposition 4.2 there exists p € N such that

ZHGn € L,(I,%). Then, by proceeding as in the proof of Proposition 4.2, for every

¢ € #, p and x,y e I we obtain

oc . pw+1/2
‘zeml_!-{)(z)”dz sup e"*0z T+ T(7,4)(2) - (1,$)@)]

I #6)(x) - (FHS) ()| = j

0

Proposition 3.4 leads to the following: for every ¢ € ¥, » and x e I, (f#¢)(y)—
(f#¢)(x)as y—xin &
Moreover, by invoking again Proposition 3.4, we obtain

lim xR #E)E) = e [ FOIB0)dy, for each § & Hu

Thus the proof is complete.

In the following Proposition we characterize the convergence in ¥, » in terms of
convolutors.

ProposiTioN 4.3, Let (¢,)n-o be a sequence in ¥, y. Then ¢,—0asn—x in X, » if
and only if F(¢,)—>0as n— = in €,, for every F € L X, u).
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Proof. We prove firstly that if ¢,— 0 as n— « in ¥, » then F(¢,)—>0asn—x in
€., for every F € Y, »). To see this we shall use the closed graph theorem. Let
F e 4, u). Assume that (,);-0 is a sequence in ¥, » such that ¢,,— ¢ as n— © in
H, . and F(y,)— fas n—  in 6, where ¢ € ¥, » and f € ¥}, . We have to show that
F(§)=f.

For every g € ¥4, gy, —g#y as n— o in €,. In effect, let g € X5 4. There

n+172

exists p e N such that prie=a L, %).

Then for every x in I we have

n+172
e g # (g — )N = f: y_?flln_%mdy sup [e"7(xy) ™ "1, (g — )

(12)
According to (1.2) of [3] we have
XHTR (g — 9)(Y) = () LR (B — WO)Y)  (xy € D).

Hence, since h,, is a homeorphism from %), » to @, »x (Proposition 3.1) and since
(xt)™#J,(xt) is a multiplier in &, »x uniformly in x € (0, m), where m e N—{0} (see
Lemma 3.1), (12) allows us to deduce that, for every m e N — {0},

sup [fx"* V2 (g# (Y. — ¥))(x)| =0, asn—w.
xe(0,m)

Let ¢ € B,.. We can write
F(y)#o=F(o)#y,— F(o)BY=F(Y)#p asn—x»in§,.

Also for every n e N and x e (0, m), where m € N — {0}, one has

I E ) = A= IF) =700 5™ () dy

< (@ +m)+? j e IR ) — IO Gt T, et (2) D)) d.

Here a >0 is such that ¢(x) = 0, for each x > a. Hence, for every m € N — {0}, there exists
C >0 such that

Sup lx=#=2((F(¢a) = )#@)x)| = C Lo Iy ™ Y2(F(¢a) = I (n eN).

Thus we establish that F(y,)#¢— f#¢ as n— « in 6. Therefore F(y)#o=f#¢
and it is not hard to see that

lim 27 [ Q@O0 dy = o [ FOI)60) dy

=, [ f00etdy = timx =72 [ 1) r0)0) dy
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Hence F(y)=f Assume now that F(¢,)—»0 as n—= in ¥4, for every
F e « ¥, »). We shall prove that ¢, — 0 as n— » in ¥, ». It is easy to see that ¢, — 0 as
n— » in ¥, » if and only if the following two conditions hold.
@) (¢>,,),,.=o is bounded in ¥, u; i.e., for every mk e N, there exists C,,, . >0 such
that n7%($,) < Cpux, for every n e N.
(ii) Forevery l e N— {0}, k e N, 51(13)[) #1285 &, (x)| -0, as n — .
xelU,

Note that, by virtue of Proposition 2.2 of [10], for every k € N the mapping F; from
H,u.m into ¥ y, defined by

F(¢)=S5d.u (¢ € Hum),

where u e &, is in 9(%, ). Hence our assumption implies that the condition (ii) holds.
Suppose that ¢, -4 0 as n— « in ¥, » or, equivalently, that (¢,),-o is not bounded
in , ». Then there exist m,k e N such that the set

xel

{sup ererz=e12 574, 1}
neN

is not bounded. Since sup eM*)x~#-12|§7¢ (x)|—0 as n— o we can find w =2 for
: ©.1)
which e

sup eMXyx~r712 | gmg (x)| =w
xe(0,1)

for every n e N. Also there exist n, e N and x, e I (necessarily x; & (0,1)) such that
eMUxIxTu-12)\gmgy (x1)| = w, and there exists C, >0 such that

X2 |SEda ()| =Cyy neN.

Suppose now that we have found for s e N—{0}, {x.}e=1, {Cuto=1 and {¢, }o=:
satisfying the following three conditions forevery a=1,...,s:

(ili) sup |xz*"2STda(xa)| =
neN

5 o 1
(V) | D eMEIxetIngmy (k) =14 Y =

?
i=1 jes—a+12

_ 1
(v) e M <=,
a

We are going to define x,,,, C4; and ¢, ,, such that {x,}it}, {C.}5t} and {¢, Jit} satisfy
the above three conditions, where s is replaced by s +1. We choose p, >0 for which
eM® = (s +1)?, for every x ¢ (0, p,). There exists C > 0 such that

eMi+xly—p-12 \gmgp (x)|=C (xelandi=1,...,s).

C
Hence eM(""x""mIS’,fcﬁ,,,.(x)lsm (xel, i=1,...,5s) and we can find p,

sufficiently large that

1
MRS, (D S 2T (ke (Opi= 1)
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We choose w =2+ eM*&IC + | + eM*&IC satisfying
eME k2150, (x) =w  (x € (0,p;), n € N).

Since the set {sup eM*x~#~12|§m¢ (x)},.n is not bounded, there exist n,., e N

xel

and x,,, € I for which
eM(kx,+1)x;+4Ji—lf2 |S::.l¢n,+|(xs+l)| >w.

It is clear that x,., ¢ (0, p,). Hence e™*+V = (s +1)? and (v) holds. Also we choose
C,+1 >0 such that sup be; 28T (x,41)| < Cyuq. Thus (iii) holds. Also if 1< a <s, then

MO T IBSTG, (11) +. .+ eMESICETIASTS, (3, )]

$
z |3 eME hTIZEnG, (x)| — [eM* xBTS T (X 0l

i=1

>1+21-1 =1+ :.

1
jes—an 2 27 j=G+D)—a+12
Moreover

leMEsy reml2gmey (1) +. ..+ eMETIx BTG (xo4)]

s
= MUy THTIR |G (Xeur)| — D, eMEXTETIZISMG ()|
i=1

5

- > eMEC, =2,

Hence (iv) holds. Thus we have constructed three sequences {x,};-;, {C.}a-; and
{d, o<1 satisfying (iii) and (v), for every @ =1,2,..., and satisfying (iv), for every
s=1,2,...anda=1,2,...,s

We now define the sequence {F,};-, in %%, ») where, for every n e N with n =1
and ¢ € ¥, », we have

F@N0)= 3 M, (S19)e).u (x <),

u being a unit vector in &.
Our next purpose is to show that for every ¢ e &, » the sequence {F,(¢)} -
converges in €,. Let ¢ € &, ». For every n,J e N —{0}, according to (1.2) of [3] we have

n+l

O NE DI - EOII S 3 MMz (STg)x) b
= S e MM D [y 8, (x)h (STH O x|

n+l 1

= ¥ =5 sup eMEDATR () R (an)h, (SN (x € 1),

2
a=n+1 A ze(0®)
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Hence, since for every r e N — {0}, (xr)™*J,(xr) is a uniform multiplier in x € (0, r)
(see Lemma 3.1), {F,(¢)}7=1 is a Cauchy sequence in 4, and, since 4, is a Banach space,
{F(®)}7-1 converges in €,. We define

F(9)=lmF,(9) (4 e Hum)

where the limit is understood in €,,.
Moreover F(¢) e K5 u, for every ¢ € ¥, ». In effect, let ¢ € ¥, 5. By (1.2) of [3)
together with (5.3.b), (2.2) of [6] and Proposition 3.1, there exists / € N such that

eM[(k+1)Xa](xxa)_“_l/2 172 (ST (x)|

< sup eMIE+D2lz~w"12 1y 1) ™41, (xR, (STH)O)(2)| = CeM™ (xel,@=1,2,...).

zel

Then

J’“’X"”” IF (N

A |
eMU+1)x) dax=C 2 ?-
a=1

0

Proposition 4.2 implies that F(¢) € 5 5. To see that F € Y ¥, ») we have to prove that
F(¢)YRy =F(p#y), for every ¢, Y e ¥, ». Let @, € ¥, ». For every | e N—{0} we
can write

x5 R(F, () - F(6) #9100
< f 1E(8) = F@) D) 22 (a0)(y)| dy

o pu+1/2 _
< [LAEG TN gy qup o011 ()24, (i (WO

=Cc 3 1 for each x € (0, ).

2,
a=n+1 &

Hence F,(¢)# ¢y — F(¢p)# ¢ as n—> = in 6,. Moreover F,(¢p)# ¢y =F(d#Y) (neN,
n =1). Therefore F(¢)# ¢y = F(¢#y). Finally we note that, for every / € N, we have

E R YF@ I = x|, M e (576,000 (e e

Then for every [ e N we have

lim x~#712 |[F($,)](x)]| = | D, eMExay w12 lim x 2 (ST dn) (Xa)
x—0* a=1 x—0*

D, My snm12gmy (%)

a=1

= =>
a, =Qy.

Hence F(¢,)-» 0 as n— » in C,,, which contradicts our assumption. [ ]
We now prove that the spaces (¥, ») and ¥, » are isomorphic.

ProrosiTION 4.4. The spaces L X, u) and X, » are isomorphic.
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Proof. We define the mapping J through
J: (-.’;(%“’M)—) %;L,M
FoIF) H . u— €

$—>J(F)($) = lim —x ™ (3)(x)

We are going to prove that J is an algebraic and sequential isomorphism. To see that
J is a linear one to one mapping we can proceed as in the proof of Proposition 2.3. Also J
is onto. In effect, for every f € ¥, », we define

[F()(x)=(f#¢)x) (deH,.mandxel)
From Proposition 3.4, we can infer that f#¢ € €, and that

lim ——xRF()](2) = (F, &),

Therefore, according to Proposition 4.2, F(¢) € #% 4. Moreover, by proceeding as in
Proposition 4.7 of [10] we can see that F(¢)#¢ = F(¢p &), for every ¢, ¢ € ¥, ». Hence
F e 4 ¥, ») and J(F) = f. On the other hand, proceeding as in Proposition 2.3 it follows
that J is sequentially continuous. Moreover, let (f,);-1 be a sequence in &, 5 such that
fi—0as n— «in ¥, ». Then by Proposition 4.1 we deduce that f,#¢ —0 as n— © in
%,. Hence J ! is sequentially continuous. This completes the proof. n

Finally we note that, proceeding in a similar way to that presented here, analogous
results can be obtained for the space #,.
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