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Abstract. In this paper we introduce the spaces of Hankel convolutors. We
characterize the dual spaces of certain Hankel transformable function spaces as spaces of
Hankel convolutors. Here the Hankel convolution and the Hankel transformation play an
important role.

1. Introduction and preliminaries. A. H. Zemanian ([14], [15] and [16]) investigated
the Hankel transformation defined by

= f
•>0

y E (0,

on certain spaces of distributions. The results obtained by A. H. Zemanian for the
/^-transformation are analogous to other well-known ones for the Fourier transformation
([13]). Throughout this paper /i always will denote a real number greater than -1/2 and
the real interval (0, oo) will be represented by /.

In [14] there was introduced the space 24 ,̂ that consists of all those complex valued
and smooth functions <f>(x), (x e / ) , such that

= sup(1 + x2)m\(-D) (x'^'^^ix))
xll \\X I

for every m,k e N. 96^ is endowed with the topology generated by the family {ym,*}m,*eM
of seminorms. Then $fM becomes a Frechet space. Moreover h^ is an automorphism of #fM
provided that /x > -1/2.

For every a > 0, A. H. Zemanian [15] defined the space /3^0 as follows: a complex
valued and smooth function 4>(x), (x E /) , is in B^a if and only if (f> e #?M and <p(x) = 0,
for every x ^ a. We consider on /3M,a the topology induced in it by #?M and then p^

oc

becomes a Frechet space. The space /3^ = U )3M,O is endowed with the inductive limit

topology. The Hankel transform of /3M is characterized in [15].
Throughout this paper we shall denote by K the following set of functions

K = {M e C2([0, oo)), M(0) = M'(0) = 0, M'(oo) = oo and M"(x) >0,xe I).

For every M e K we shall denote by Afx the Young dual function of M [7, p. 18].
Useful properties of functions in K can be found in [6].
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Let M e K. We say that a complex valued and smooth function <j> = <f>(x), x e /, is in
ffluM when for every m,k eN the quantity

p
are/

is finite. $fM,M is endowed with the topology associated to the family {y%ju}m,keN of
seminorms. Then #fMiM becomes a Frechet space. It is easy to see that #?MiM is contained
in $fM and that inclusion is continuous. Moreover, if we define for every m,k e N and

= sup e
xel

where 5M =x~'i'1/2Dx2'x+]Dx'>i'ia, the family { ^ . ' M L ^ N of seminorms generates on
#fM M the same topology as the one generated by {y^'^m *EN- (See Proposition 27 §IV of
[12]-)

The space Q^M consists of all those complex valued functions O satisfying the
following two conditions

(i) z~M~1/2$(z) is an even, entire function, and
(ii) for every m e N and k e N — {0}

p;i((D) = sup (1 + |z|2)m |z-*-1/24>(z)| e-
M(i'mim < oo.

&»M is equipped with the topology associated to the family {p£&}meN,*6N-{o) of
seminorms. Then C^,M becomes a Frechet space.

In Section 3 we shall establish that the Hankel transformation is a homeomorphism
between #fMiAf onto Q^Mx.

Our objective here is to develop for the spaces /3^ and ^ m a theory similar to the
one studied by P. Mikusinski and M. D. Taylor [11] for the spaces 3)' and K{MP}'. In our
investigation the Hankel convolution plays an important role. This Hankel convolution
was introduced in [8] and [9]. It has been investigated recently in distributions spaces by J.
J. Betancor and I. Marrero ([2], [3], [4], [5] and [10]).

In the sequel % will denote a complex Banach space. If / is an ^-valued measurable
function on / and 0 is a complex function on /, we define the #-convolution /#<£ of/and

(/#</>)(>-)=[ / W ( ^ ) ( # (yeI),
Jo

provided that the last Bochner integral exists. Here the Hankel translation iy (y e /) , is
defined by

(Ty<fi)(x)= f>Dli(x,y,z)Hz)dx (x,yel),

where
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The space <£M consists of all those ^-valued and continuous functions f(x) (x e /) ,
such that lim x~*~mf(x) exists. CM is endowed with the topology generated by the

x-»0+

family {w^}AeM_{0) of seminorms, where

= sup
XfL(Q,k)

|| || being the norm in %.
Now we denote by H either the spaces /3M or 3€^.yM.
We introduce the convolutive dual H # of H. A continuous ^-valued function / in

belongs to H* if and only if for every <f> E H we have

f Wf(y)\\\(.rx4>)(y)\dy«» (xe/),
Jo

and

lim x-»-in J£ ||/(y)|| 1(^00)1 dy = aiif% \\f(y)\\ \<f>(y)\ dy < «,

where

By a convolutor F on H we mean a linear mapping from H into H* such that

F(4>#\li) = F(0)#t//, for each f ^ H .

The space of all convolutors on H will be represented by ^(H). We shall say that a
sequence {Fn}neNc <S(H) converges to F e ^ H ) provided that for every <£ e H, Fn(tf>)-+
F(<f>), as /i -»oo, in ^

H' will denote the space of continuous linear mappings from H into &, and we shall
consider on H' the topology of pointwise convergence.

In this paper we shall characterize the spaces /3^ (Section 2) and 3€'^,M (Section 4) as
the spaces of convolutors of /3M and W^M, respectively.

Throughout this paper, C will denote a suitable positive constant (not necessarily the
same in each occurrence).

We should like to thank J. M. R. Mendez for many helpful conversations and
valuable suggestions concerning this paper.

2. The space p'^. Firstly we describe the convolutive dual space of /3M.

PROPOSITION 2.1. /3* = CM.

Proof. It is obvious that /3* is contained in 9?M. Let now / e ^ and let 4> e /3M?a,
with a >0. According to Corollary 3.3 of [2], Tx(f> e P^+x, for every x el. Hence one has

f II/OOII K
Jo o

Moreover
2 (1)

https://doi.org/10.1017/S0017089500032274 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500032274


354 JORGE J. BETANCOR AND LOURDES RODRfGUEZ-MESA

uniformly in y e /. In effect, by invoking (1.2) of [3]

Since the functions vzJ^iz) and z ^J^(z) are bounded in /, and since /tM(<£) E 5if̂  by
Theorem 5.4-1 of [16], for every b > 0 and m E M we have

\VytJ Jy^ixiy^Ju(xt)\ |/iM($)(f)l dt^Cy%,0(hA<f>))\ 5—dt (x,yel).
Jb ' Jb (1 + 1 )

Hence, for each £ > 0 there exists fc0 > 0 such that

<e (x,yel). (2)

Finally by taking into account that lim z M/M(z) = aM we can deduce that for
z-»0+

every e > 0 there exists 8 > 0 such that

/•60

^ j 'v^xr; - ap

'o

(3)

when v E / and 0 < x < S.
By combining (2) and (3) we get (1).
Then

I ||/(30|| |(T^)(y)|dv = aM f ||/(y)|| \<Ky)\dy.
Jo JO

lim x-»

Thus the proof is complete. •

In the next Proposition we characterize the convergence in /3M in terms of
convolutors.

PROPOSITION 2.2. Let (</>n)"=0 be a sequence in /3M. Then <£„ -»0 as /i -»°° in /3M, /
on/y if F((f>n)-* 0 as /J -^ » in ^ , /or every f E

Proo/ To prove that <£„ ̂  0 as n -»00 in /3M implies that ^ (^ J -^O as /1 - » » in <#M

for every F E ^/3^), we invoke the closed graph theorem. Assume that F is a convolutor
on /3M and (i/On^o is a sequence in /3M such that for certain iff E B M and / E CM

i/̂ n -> i/f in jS^ and F(i/fn) - » / in <SM as n - » • » .

We have for every <p E /3M

( ) # / F ( ) # A F( /0# as « -»oo in
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Indeed, since \pn -»• tp as n - » » in /3M, there exists a > 0 such that i/>n e j8M,a (n e N)
and «/r e /3M>a. Then, for every /i e N, m e N - {0}, by invoking again Corollary 3.3 of [2]
we can write

== C sup M
ye'

for every X e (0, m).
Hence, since fcM is an automorphism on 3ifM by Theorem 5.4-1 of [16] and

is a multiplier on #fM, uniformly in x e (0, m), one concludes that

sup Jc-"- i

*e(0,m)

Moreover, it is not hard to see that F(i)/n)#(p-+f#<p as n-*» in <gM. Hence
F(il/)#<p = f#(p, (<p e ^M) . Then, from (1) it is deduced that

lim x-»-m r(F^)-f)(y)(rxV)(y)dy = atiT (Fty) -f){yMy) dy = 0,
x—0+ JO JO

for every <p e (S^. Therefore F(ij/) = / .
Assume now that (<t>n)^0 is a sequence in /3M such that F(^»n)-»0 as n -»°o in ^ , for

each F e ^(/3M). Since /3M is the hyperstrict inductive limit of the family {)3^,a}a>o, $„-*• 0
as n —»oo in /3^ if and only if the following two conditions hold.

(i) There exists a > 0 such that <f>n e /3M>a, for every n e N .
(ii) sup l*-**"1^* <^n(jc)| -»• 0, as n - » » , for every ksN,msN- {0}.

xe(0,m)

Note that, by virtue of Proposition 2.2 of [10], for every A: e M the mapping Fk

defined by

where u e %, is a convolutor in /3M. Hence our assumption implies that (ii) holds. Suppose
that (f>n -t* 0 as n —* oo in /3M. Then there exist an increasing sequence (xn)"=0 in / and an
increasing sequence (<7n)n=o i n ^ such that xn —* oo as n —»oo, |<^flii(xn)| > 0, for each n sN,
and (f>qk(xn)

= 0, for every n, k e N with k < n.
We define the mapping F in /3^ by

oo

*•(*)(*) = 2 (T,*) (JCK (* e ^ and x e /),
n=0

(wn)"=o being a sequence in %. Thus F is in ^(/3M). In effect, let <̂> e /3Mifl with a > 0. For
every x e (0,m), where meN-{0}, the sum defining F((f>)(x) is finite (and the number
of non-zero terms does not depend on x E (0, m)) because Tx# e /3^^,+ m, A: E (0, W ) , by

oo

Corollary 3.3 of [2]. Then lim x~/i"1/2F(</>)(x) = aM 2) 4>(xnW Also it is not very hard
x—»0* n=0

to establish that F ( ^ ) is a continuous function on /. Thus we conclude that F(<f>) e ^
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Moreover if <f>,ip G /3M, then since (Tx<f>)(y) = (ry<f>)(x)(x,y e /) and since T,(0#i/f)
(Tx<t>)#ip (x G 7), one has

n=0 n=0

= (fW)#«(i) (*e/). (4)

To justify the third equality in (4) we have taken into account that, according to
Corollary 3.3 of [2], if <f>, ijt e 0^ with a > 0, then for every i e / w e have

Also by virtue of §2 of [9], we can write

when x e I, z 6 (0, a + x) and n is large enough. Hence we conclude that for fixed x e /
[(TJ J I0)#I^](*) = 0 when n is sufficiently large. Thus (4) is established.

On the other hand note that
oo

lim x-»-mF(4>qk){x) = aM 2 <M*»K (* e M).

Hence, by choosing (vn)^=0 suitably, we obtain F(<f>Qt)-t*O, as / : -»» in <£M. Thus the
proof is finished. •

We now establish that ^(/3M) and (3̂  are isomorphic.

PROPOSITION 2.3. T/ie fpace; *S(/3̂ ) and )3^ are isomorphic.

Proof. The mapping / defined by

= lim — x-" -

is an algebraic and sequential isomorphism.
Let F G ^^3^). If ($,X=o c )3^ is such that <£„ -»0 as n -* «= in /3M then, according to

Proposition 2.2, F(4>n)->0 as «->«> in <i?M. Hence J(F)(<f>n)^>0 as « -»» . Thus we have
proved that J(F) & /3^.

It is obvious that J is a linear mapping. Moreover if F e ^()3M) and J(F) = 0, then for
every 4>, i/f G /3M one has

= lim — x-'i"1/2F((/)#i/r)(x)= lim — 1/2
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Hence F(<f>) = 0, for every <f> e /S^. Therefore J is one to one.
Also J is onto. In effect, let / e /3^. We define the mapping F in /3M through

F(tf>)0O = (/#</>)(*) (* e / , 0 e jBJ.

By proceeding as in the proof of Proposition 4.1 of [2] we can see that F(ct>) e ^M,
<f> E p^, and from Corollary 4.2 of [2] we infer that F e ^(/3M). Moreover

x->0*

because lim x~"~1/2T,<£ = aM<£ in /3M. Hence J(F) = / .

Let now (Fn)"=0 e ^ /3 , J be such that Fn-*0 as « - > » in «(/3M). Then Fn(</>)-»0 as
«-»t» in <gM> for every 0 e/3M. Hence we immediately deduce that 7(/ r

n)(^)-»0 as
n —* oo, for every <j> e /3M. Thus it is established that J is sequentially continuous.

Finally to see t ha t / " 1 is sequentially continuous it is sufficient to note that if fn—*0 as
n -»oo in /3^ then ^ # 0 - » O as n - » » in <gM, for every <j> e /3M. (See Proposition 2.11 and
Proposition 4.1 of [2].) •

3. Hankel transformation and Hankel convolution on ^ M I M- We begin this section
by establishing that the Hankel transformation maps ^M>Af o n t o C^.,MX homeomorphically.

PROPOSITION 3.1. The Hankel transformation h^ is an homeomorphism from
onto Q^jfix. Moreover h~\ the inverse of h^, is given by

r M ) dx (* e ,̂Mx).
Jo

Proof. Let firstly <̂» be in #fMtAf. By invoking (5.3b) of [6] we write

f |(zO"%(«OI r+ 1 / 2*(OI A ^ C f e"
/mz'r'i+1/21*(/)| dt (z e C).

Jo Jo

Hence if |Im z| s k, then from Lemma 2.4 of [6] it follows that

f \{zt)-»Jn(zty+m<t>{t)\dt^c\ ektt»+1/2\<t>(t)\dt<CeMX(k+1)y<j;]M(<l>)i e~'&+i dt.
Jo Jo Jo

Thus we prove that z~'t~1/2/j^(4)(z) admits a continuous extension to C. Moreover,
in a similar way, we can see that such a extension is holomorphic. It is clear that

1/2 is even. According to Lemma 5.4-1 of [16], for every i e N one has

=(-iy f
Jo
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Hence, by invoking again (5.3.b), Lemma 2.4 and (2.2) of [6], we obtain

\z*-»-mK(tf>)(z)l ^ C f e"Im z^+m \SM)\ dt ̂  CeMXimm) \ e"<*V+u2 |5^(r)| dr
Jo Jo

< CeAfXWmz|/*))7j^1(^) f e-
m)t2li^ dt (i E N, Jt E N - {0} and z e C).

Jo

Thus we have proved that

f) £ C 2 ijftft*) ( m ^ , ^ ^ - {0}).

Then /iM is a continuous mapping from #fM>M into
Let now $ be in #M,A*X. According to Lemma 6.1 of [6]

= ; f
Z J —oo

(5)

for every 17 e /. Here / / ^ denotes the Hankel function of the first class and order fi.
Let m sN. From (5.1.b) of [6] we infer that, for every t, 17 e /,

(-1V f°°

Assume now that /i s 1/2. According to (5.3.c) of [6], we have

(7/>
s c ( f

vJ|r

+ f
Hence if f 2 1, then

|(7D)V"-lflM*XOI*c(J

If k e.N- {0}, then by invoking now Lemma 2.4 of [6] and by taking 17 e / such that

M'(kt) = j , we obtain
K

(6)

where / e P*J is such that 2/ > m + /A + 3/2.
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On the other hand if t e (0,1), then by using (7) §5.1 of [16] we can write

) l i + m { ) { ) dx.

Hence, for every k eN- {0}, one has

l \ ^ (r e (0,1)), (7)

where / e N with / > fi + 1.
From (6) and (7) we conclude that h^ is a continuous mapping from G^.,MX m t o

 ^M.M-

When —1/2 <fx < 1/2 we can proceed in a similar way by using (5.3.d) of [6]. Thus
the proof is finished. •

In the following Lemma we prove that z"M/M(z) defines a multiplier of Qy.%M-

LEMMA 3.1. Let a>0. The mapping ^(z)-*(az)~'lJll.(,az)^(z) is continuous from
QnM int<> itself.

Proof. According to (5.3.b) and Lemma 2.4 of [6] one has, for each k <=N- {0},

| (az)-%(oz) | ^ Cea | I m z |< CeM(|Imz|/2*> (z e C).

Hence, for every m GN and k eN- {0}, we obtain from (2.2) of [6]

(z)| (z e C).

Thus the desired result follows. •

Since SifMiAf is contained in 5ifM, by invoking Proposition 2.1 of [10] we deduce that
rx<f> e fflp, for every cf> e "X^M- Moreover, according to (2.1) of [10], for every <f> e #fM>M

we have

M (x e / and z e C).

From Lemma 3.1 and Proposition 3.1 we immediately deduce the following result.

PROPOSITION 3.2. For every x E / , TX defines a continuous linear mapping from SifMiAf

into itself. •

Also it is clear that z~*~m<& is a multiplier of Q^M, provided that 3> e Q^M- Hence,
from the interchange formula (1.3) of [10] and Proposition 3.1, we deduce the next result.

PROPOSITION 3.3. The Hankel convolution is a continuous bilinear mapping from

The following result will be useful in the sequel. •
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PROPOSITION 3.4. Let <j> s dK^.,M. The mapping 7^ defined by

^:[0,cc)-5ifMAf

x-*x-»-mTx<f>, ifxel,

a^, ifx = 0,

is continuous.

Proof. Let x0 e I. According to (2.1) of [10] and Proposition 3.1, to see that T^ is
continuous in x0 it is sufficient to prove that

[(xzT^ixz) - (xoz)-flJli(xoz)Mz)-+0 as x-+x0 in ^.Mx. (8)

By invoking (5.3.b) of [6] we conclude that

|(XZ)-%(JCZ) - (xoz)-%(xoZ)| < C(e*"mzl + ex°[lmz>)

< Ce(x°+1) |Im Jl (z E C and x e (0, x0 + 1)).

Let m eN and k eN- {0}. By invoking Lemma 2.4 and (2.2) of [6] we obtain

(1 + |z |T \z-IL-
|z|2)m \z~*~

<C(l + Iz l 2 ) - 1 / ? ;^^) ( z e C a n d x e (0,x0 + 1)).

Hence, if e > 0 there exists r > 0 such that for every XE(0,X O + 1) and \z\ ^ r

e. (9)

Moreover, since the function z'^J^iz) is uniformly continuous in each compact
subset of the complex plane, for every e > 0 there exists 5 > 0 such that for every
x G (0, oo) with |JC - xo| < 5 and |z | ^ r we have

(1 + \z\2)m |z"'i-1/2«I>(z)[(xz)-%(^) - (xozmxoz)]\ e~M^lmxVk) < e. (10)

By combining (9) and (10) we establish (8).
To see that 7^ is continuous at the origin we can proceed in a similar way. •

4. The space W^M. In this section we investigate some new properties of the spaces
A/ and SifJ,̂ . Also we characterize Stf'^M as the space of Hankel convolutors on ^ , M .
If F G St^M and (f> e ^M, we define the function F # $ from / into % by

Note that a consequence of Proposition 3.4 is that F#<£ G CM, for every F G dfC^
a n d <f> e ^M.

Next we establish an interesting result on pointwise convergence in ^ i M .

PROPOSITION 4.1. Let {Fn}™=0 be a sequence in ^,M. The following two conditions are
equivalent:

(i) (Fn, 4>>-+0 as n - » » in % for every <f> e ^M;
(ii) Fn#(f>->0 as «-*°° in ^ , / o r euery <f> e ^M^.

https://doi.org/10.1017/S0017089500032274 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500032274


HANKEL CONVOLUTORS 361

Proof. We shall prove first that (i) implies (ii).
Let <f> e ffl^ju and m E IU According to Proposition 3.4, the set {x~li~mrx(f>}xe[Otm] is

compact in #fM,M- By invoking the Banach-Steinhauss theorem we conclude that

sup \\{Fn,x-»-mxA)\\ = sup X-»-m\\(Fn#<l>)(x)\\-+0
xe[Ojn] [ O ]

as n->oo. Hence Fn#<j>-*0 as n-»» in <gM.
To see that (ii) implies (i) it is sufficient to note that, according to Proposition 3.4,

where H E W and <f> e S€^%M. •

We now characterize the convolutive dual $?*,« of 'X^M- An ^-valued function /
defined on / is said to be in Lj(/, g) if and only if | | / | | belongs to LX{I).

r x*+mf l
PROPOSITION 4.2. # £ M = | / e %\ M{px) e LX{I, %), for somep e N\.

Proof. L e t / e % be such that M(px\ e Li(/ , g), wherep E M and let <f> e ^ , M . We

can write, for every x e / ,

r
II/OOII | t

p

Hence, according to Proposition 3.2; one infers that

f U(y)\\\*x<P{y)\dy<°° (x en-
Jo

Moreover, by virtue of Proposition 3.4, we have

f ||/(y)|| |r,<K>OI dy = aA ||/(v)|| \<f>(y)\ dy
Jo Jo

lim JC"*4

Hence / e #f£,M. Conversely, assume now / e #fJfiA/ and suppose that there is no

p e N such that M(px) E L ^ / , g). By defining g(x) = | | /(JC)| | , (x E / ) , it is obvious that we

cannot find peN for which — ~ M T 7 ) — e ^ i ( ' ) - We choose <f> E )3M such that 0 # O ,

0(x) > 0, (JC E / ) , and <£(*) = 0, (x > 1).
For every n eN- {0}, p E N one has
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Moreover

x+y

Hence since D^x,y, z) > 0, (x,y,z e /) by (3) of §2 of [9], and since

I Dp(x,y,z)z*+mdz = all(xyy+m (x,yel)

by (2) of Section 2 of [9], we get

r
Jo

n-\

Jrn-1 rl « + y ^ + 1/2

0 -"O Jo °* r ̂
JO

n - 1

In the last inequality we have used the facts that M is an increasing function and that
<f>(x) = 0, for every x > 1.

Therefore

lim

Consequently there exists a sequence of positive numbers {ap}pEN such that

Assume that ap > ap+u p e N . Moreover since 4> ^ 0, we have also Tx</> ^ 0 (JC e /)
and, since M is an increasing function, it is clear that for every 0 s

rb

I
Then, for every p eN,

where ^p(x) = ̂ + 1 / 2 , (0<A:<a0), ^ W = pS(Zo> ( f l / - i S K « h / = l , . . . , p ) , and
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Hence, by defining ^,{x) = x^+m, (0<x<a o ) ,
= 1,2,...), we have that

f
Jo

g(x) ( iW)(x ) = »• (11)

On the other hand z"M~1/2/itt(i/>) is a multiplier of Q^M*- Indeed, for every
k e M - {0}, we can write

| dx

Jo

Moreover the last integral is finite. Hence, by proceeding as in the proof of Lemma
3.1, we conclude that Z~M"1/2/IM(I^)<I) is in 0MiMx, for every $ e Q^*. Then by invoking
Theorem 2.d [9] one deduces that tp#<f> e ^M>Af.

Since / e %%j* we have

lim f'g(y)\x-»-mTx(<l>#<t>Ky)\dy = ali f
x->0+ Jo Jo

which contradicts (11). This completes the proof. •

An immediate consequence of Proposition 4.2 is the following result.

COROLLARY 4.1. / / / e 3^<M, then f#4> e %^, for every <f> e ^j^.

Proof. Let / e Sifjf̂ . According to Proposition 4.2 there exists p eN such that
x»+mf

M(px) e LX{1, %). Then, by proceeding as in the proof of Proposition 4.2, for every

<t> e ^> ,A/ a n c ' JCxy e / we obtain

r /j + l/2|| f(7\\\

emp* dz

Proposition 3.4 leads to the following: for every <f> E 5SfMjVf and jf e /, (f&<l>)(y)
(f#<f>)(x)asy-*xin %.

Moreover, by invoking again Proposition 3.4, we obtain

x—O*
lim x-»-irL(J#<t>)(x) = aM ff(y)Hy) dy, for each <f> e

O* J

Thus the proof is complete.

In the following Proposition we characterize the convergence in X^M in terms of
convolutors.

PROPOSITION 4.3. Let (̂ n)™=o be a sequence in ffl^ju. Then <}>„ -+ 0 as n -* » in 5ifMtW if
and only ifF(<f>n)^>0 asn^>«> in %, for every F e ^
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Proof. We prove firstly that if <f>n -* 0 as n -» « in (eKILjl4 then F( <£„)-» 0 as n -> » in
"5^, for every F e %%C,J.,M)- TO see this we shall use the closed graph theorem. Let
F e ^ ( ^ . A / ) . Assume that (i/0"=o is a sequence in #fMiAf such that tpn -»i/f as n - • » in
5?,,M and F (^n)-»/as n - * » in <<?M, where if/e^M and/ e Sif*M. We have to show that

=f.
For every g e 51f̂ ,M, g#i/'n-»g#i/' as «-•<» in <SM. In effect, let g E Sif*,̂ . There

jV + l/2

s p e N such that M(px* e Li(I, %).

Then for every x in / we have

^ ' l ! ^ ^ 1 ^ sup \eM(py\xy)-^m^Mn ~ My)\.
6 yeJ

(12)

According to (1.2) of [3] we have

Hence, since /iF is a homeorphism from $fMiAf to (?MfA/x (Proposition 3.1) and since
(xtyj^xt) is a multiplier in ^ , M X uniformly in xe(0,m), where m e N - { 0 } (see
Lemma 3.1), (12) allows us to deduce that, for every m sN- {0},

sup ||x-*-

Let ^ G /3M. We can write

as « ̂  oo in

Also for every n e f*sJ and x G (0, m), where m E ^ I - {0}, one has

^ r
Jo

^ (a

Here a > 0 is such that q>(x) = 0, for each x > a. Hence, for every m eN- {0}, there exists
C > 0 such that

sup \\x-»-m((F(<l,n)-f)#<p)(x)\\<C sup | |3'-M-1/2(F(^)-/)(J') | | (nelM).
xe(Q,m) ( 0 )

Thus we establish that F(i/0#9-»/#<P as / i -»» in ^ Therefore F(i/0#<p=/#v>
and it is not hard to see that

lim x~'

- r
Jo

= lim
x-»0*
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Hence F(i/>)=/ Assume now that F(<f>n)-+O as n-»=° in ^M, for every
F E ^5ifM M). We shall prove that <f)n -* 0 as n —>» in #fMiM. It is easy to see that <£„ —> 0 as
n —*» in 3ifMiAf if and only if the following two conditions hold.

(0 (4>n)n=o is bounded in SifMiA/; i-e., for every m,k e N, there exists Cm,k>0 such
that r,Z:k

M(<t>n) < CmJa for every n e IM.
(ii) For every / s N - {0}, ik e N, sup |x~'1-1 / 25^/ I(x) | -+ 0, as n - » » .

»(W)
Note that, by virtue of Proposition 2.2 of [10], for every k e N the mapping Fk from

5PM,M into # ! % , defined by

where u e %, is in ®(5ifMiM)- Hence our assumption implies that the condition (ii) holds.
Suppose that <j>n -A 0 as n -* » in 9ifMM or, equivalently, that (<^n)"=0 is

 n o t bounded
in ^M)A/. Then there exist m,k e f̂J such that the set

is not bounded. Since sup eM<-la)x~>1-1'2\S"<}>n(x)\-*0 as «-*«= we can find w > 2 for
(0l)
p

which

sup

for every n eN. Also there exist nx eN and X I E / (necessarily xx $. (0,1)) such that
H)*-M \s™<f>ni(xi)\s w, and there exists d > 0 such that

Suppose now that we have found for j e N - { 0 } , {*„}„=!, {Ca}
s
a=i and {</»nJa=i

satisfying the following three conditions for every a = 1 , . . . ,s:
(iii) sup \Xa^~ll2S"<t>n(xa)\ =£ Ca,

neN
s °° 1

1 V \ > viJ"(*j:i)v~M~i'^CmA (y i > 1 4. >

(v) e - w s l

We are going to define xI+1, CJ+i and 4>n,tl such that {A:,,}^1!, {Ca}
s
at\ and {^nJa+=i satisfy

the above three conditions, where s is replaced by 5 + 1. We choose ps > 0 for which
; (s + I)2, for every x $ (0, ps). There exists C > 0 such that

-M-i/2 | 5 ^ n (x)| < c (x e / and / = 1 , . . . , s).

H e n c e eM(kx)x~li~m\S1l(f>ni(x)\^-^^ (xel, i = l,...,s) and w e can find

sufficiently large that

2 |S£tf>,,(j:)| ^ TTTTTT (^ S (0, p,), / = ! , . . . , * ) .
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We choose w > 2 + eM{kXl)Ci + ...+ eM(kI'>C, satisfying

Since the set {supeM(fcr)Jc M ll2\S'^<t>n(x)\}neN is not bounded, there exist n,+i e P*d

and xs+1 e / for which

It is clear that JCJ+1 $ (0,pJ. Hence eM(jr*+l)> (s + I)2 and (v) holds. Also we choose
CJ+1 > 0 such that sup |x,7*f 1/25™0n(xJ+1)| < CJ+1. Thus (iii) holds. Also if 1 < a < s , then

SIENI

> 1 + y 1 L_ = 1 + y I
j=s-a + \£ *• / (j + l) + l £

Moreover

1=1

i = l

Hence (iv) holds. Thus we have constructed three sequences {*„}"=,, {CQ}o=1 and
{0«Ja=i satisfying (iii) and (v), for every a = 1 ,2 , . . . , and satisfying (iv), for every
5 = 1,2, . . . and a = 1,2, . . . ,s.

We now define the sequence { ,̂}^=i in ^(SifMiM) where, for every n e N with n £ 1
and <f> E dKpju, we have

[/^(</>)J(JC) = 2^ e Xa* 1^(5™^)(J;) . M (AT E / ) ,

u being a unit vector in %.
Our next purpose is to show that for every (f> E 2 ^ ^ the sequence { (̂</>)}"=i

converges in <<?M. Let <̂> E ^ J W . For every «,/ e N - {0}, according to (1.2) of [3] we have

n+l

H I * 2 •
a=n + l

- sup ew'(*+1)z]z-'i-1/2|/I4(jc0-'i/M^)^(5^)(r)](z)| (x E /).
a ZE(0,»)
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Hence, since for every r e N - {0}, (xt) M./M(xr) is a uniform multiplier in x E (0, r)
(see Lemma 3.1), {/J,(<^)}~=1 is a Cauchy sequence in ^ and, since ^M is a Banach space,

i converges in ^ We define

where the limit is understood in <SM.
Moreover F(<t>) E %%,M, for every <f> s 3€^tM- In effect, let 0 e ^,M- By (1.2) of [3]

together with (5.3.b), (2.2) of [6] and Proposition 3.1, there exists / E f̂J such that

£supe
!E/

(x e / , a = 1,2,.. .).

Then

f
Proposition 4.2 implies that F(<̂ >) E 3f^iM. To see that F e ^ ^ . A / ) we have to prove that
F(<j>)Ut)> = F(<^#«A), for every <£, i// E 9f?Mjw. Let <̂ , i/> e SifM,M. For every / e M - {0} we
can write

C 5) ~» each

Hence F n (0)# i />-»F(0)#^ as n-*o> in <<?M. Moreover Fn(<f>)#tj/ = Fn^U^j) (n E
n a 1). Therefore F(<t>)#i(t = F((f>#ijj). Finally we note that, for every / E N, we have

Then for every / e W we have

lim
JC-.O+

lim

Hence F(<t>n) -A 0 as n -* » in CM, which contradicts our assumption.
We now prove that the spaces %%lljl/l) and ^ , M are isomorphic.

PROPOSITION 4.4. The spaces and 'SC^M ore isomorphic.
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368 JORGE J. BETANCOR AND LOURDES RODRfGUEZ-MESA

Proof. We define the mapping / through

= lim — x-"-
*->o+ a^

We are going to prove that J is an algebraic and sequential isomorphism. To see that
/ is a linear one to one mapping we can proceed as in the proof of Proposition 2.3. Also /
is onto. In effect, for every / e ^JM, we define

(<f> e Xp* and x s I).

From Proposition 3.4, we can infer that/#<£ e ^ and that

lim— x-»-m[F(4>)](x) = (F,<t>).

Therefore, according to Proposition 4.2, F(<f>) e 3€^,M. Moreover, by proceeding as in
Proposition 4.7 of [10] we can see that F(<f>)#i{i = .F(</>#i/r), for every <f>, ijr e ffl^M. Hence
F s ^X^M) and J(F) =f. On the other hand, proceeding as in Proposition 2.3 it follows
that / is sequentially continuous. Moreover, let (/n)^=i be a sequence in 5if^ such that
fn -»0 as n -* oo in W^M. Then by Proposition 4.1 we deduce thatyj,##-»O as /i-»°° in
^ Hence 7"1 is sequentially continuous. This completes the proof. •

Finally we note that, proceeding in a similar way to that presented here, analogous
results can be obtained for the space 96^.
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