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Abstract

In this paper, we discuss a general model for multiple criteria linear cost network flow
problems. This model includes several classes of existing models in the operations research
literature as special cases. Based on this model, a search algorithm for finding a feasible
solution of the concurrent flow problem is suggested and illustrative numerical examples
are given. This search algorithm is also extended to obtain a new algorithm for finding the
efficient frontier of a multiple criteria linear program.

1. Introduction

It is well known that the multiple criteria concept is useful in solving a variety of
optimization problems arising from economics, social sciences and engineering, see
[9] and [12]. In general, multiple criteria optimization problems with general nonlinear
cost are difficult to solve exactly [4, 5]. As a result more research effort has been
directed at linear cost problems in view of their tractability. Since the invention of
the simplex method [2] for solving linear programming problems, many extensions
of the method have been studied. In particular, by exploiting the network structure,
the network simplex method [7] often proves to be several orders of magnitude faster
than the standard simplex method. In another important extension, Yu and Zeleny
[13] developed a multiple criteria simplex method for solving linear programming
problems with several objectives. Recently Ruhe [8] put these ideas together and
developed another simplex method for solving a multiple criteria linear cost network
flow problem.

A simple and effective algorithm for finding the efficient frontier for a bicriteria
network program was developed in Aneja and Nair [1]. This procedure is also
applicable for finding the efficient frontier of a bicriteria linear program.
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The aim of this paper is to consider a more general multiple criteria linear cost
network flow model which includes the problem addressed by Ruhe [8] as a special
case. In addition, this model also includes two other important network flow problems
as special cases; namely (i) finding a feasible solution for the single criterion concurrent
flow problems and (ii) solving the subproblem in a resource directive-decomposition
method for multiple criteria multiple commodity flow problems. This general model
will be formulated in Section 2, with the reduction of the general model to the special
cases discussed in Section 3. A search algorithm for finding a feasible solution to the
concurrent flow problem based on the multiple criteria model is presented in Section
4 with full justification. Using similar ideas as this search algorithm, an extension
of Aneja and Nair's algorithm for finding the efficient frontier of a multiple criteria
linear program is presented in Section 5.

2. The general multiple criteria linear cost network flow problem

Let Rr be an r-dimensional space, Rr
+ = {£ e Rr : £,• > 0, i = 1, . . . , r] be

the (closed) positive octant, Rr_ = —Rr
+ be the (closed) negative octant and define

DEFINITION 1. Let £, 77 € Rr, and we define the following ordering relationships:

The ordering relationships ^ , >, jf, >, ^ are defined similarly. It is clear that £
77 = > £ ji. 77. If r = 1, then either x £ y or x •£ y implies x > y.

DEFINITION 2. The convex hull of points £ , , . . . , £ € Rr is defined by
p

£, : A > 0,
[ /=! .= 1

Consider the following multiple criteria optimization problem:

(MCOP) V-Minimize f(x)
subject to x 6 C,
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where/ : R" —> Rr is a vector-valued function, C is a subset of/?" and V-Minimize
seeks to find all the efficient solutions of the MCOP. A solution x is said to be an
efficient solution [9] of the MCOP if there exists no y e C such that

f(y) </(*).

The corresponding function value/(x) is said to be an efficient point of the MCOP.
Let G = (N, A) be a directed graph, where N denotes a finite set of nodes and A

denotes a finite set of directed arcs.

DEFINITION 3. The node-arc incidence matrix E e /?i/vi*i/li for G is defined by (see
[7]):

+1 , if the source node of arc a is /;

— 1, if the sink node of arc a is i;

0, otherwise.

The concurrent flow problem (namely, the multiple commodity flow problem) is:

(CCFP) Find a flow x that satisfies the constraints:
Exk = b k , k= 1 , . . . ,K

ka<da, Va eA,

0 ^ xk ^ uk,

where da is the shared capacity bound for arc a. The main purpose of the paper is to
introduce a method solving the CCFP. This is done by transforming the CCFP into the
problem of finding a negative efficient point of a multiple criteria linear cost network
program.

We shall first focus our attention on an important special case of the MCOP referred
to as the multiple criteria linear cost network program where/ is linear and C is a
polyhedral set of multiple commodity flows defined by

(GMLN) V-Minimize (cjx,..., cjx)
subject to Exk = bk, k = 1,... , K,

where E e /?|/V|XIA| is the usual node-arc incidence matrix for G and

x = [x],... ,xT
K]T eRKW,

xk = [xku . . . , xkW]T € RiM, k —,l,... , K, is the flow of commodity k,
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bk — [b\k, • • , bmk]
T € Rm, k = 1,... , K, is the requirement of commodity k,

Ci = [cjv ... , cJK]T e RKiM, i = 1, ... ,r, is the cost of criterion i,

cik = [ciki,..., cikw]T e Rw, k = 1 , . . . , K,

u = [uj,... , uJ]T e RKW is the upper bound on x and

Note that the multiple commodity flows xk in the GMLN are coupled by the multiple
criteria but not by any shared capacity constraints.

3. Some special cases of network flow problems

Some important special cases of the GMLN are discussed as follows.

EXAMPLE 1. The special case of the GMLN with K = 1 is given by

(MLNP) V-Minimize (cjx, ••• ,cJx)T

subject to Ex = b,

which reduces to the single commodity, multiple criteria, linear cost network flow
problem previously considered by Ruhe [8]. However by taking the K copies of the
network in the GMLN as a large network and rearranging the variables it is clear
that the GMLN is reduced to the MLNP. A multiple criteria network simplex method
for finding the set of all efficient extreme points has been developed in Ruhe [8] by
specializing the multiple criteria simplex method of Yu and Zeleny [13] and Yu [12]
to take advantage of the network structure. Further restriction of the MLNP to the
single criterion case of r = 1 reduces to the simplest linear cost network flow problem
considered in [7]. As a digression, we note also that the MLNP includes, as a special
case, the multiple criteria efficient path problem which is of sufficient interest in its
own right. Given a source node s and a sink node t for a strongly connected digraph,
we seek a pareto-optimal or efficient path P joining s and / such that the vector cost

is not dominated by another path, that is,

4>(P) t 4>(P'), VP' joining s and t,
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where c" e Rr is a vector cost associated with each arc a e A. Clearly, the efficient
path problem is a special case of the MLNP if we restrict the parameters of the MLNP
such that [Cj]a — [ca],, ua = oo Va, bs = 1, b, — —1, and bt = 0 Vi: ^ s, t. In
practice, the efficient path problem is solved by a specialized technique, see [10].

EXAMPLE 2. Consider the problem CCMP. Note that there is a shared capacity
bound for each arc a. It is this shared capacity constraint that makes the problem
difficult. In principle, this just amounts to finding a feasible solution to a large linear
program and can be solved by the usual artificial variable method commonly used in
the two phase simplex algorithm. In practice, however, one would like to be able to
take advantage of the network structure of the problem and to reduce the problem to
a sequence of decoupled problems of a much smaller size. With a slight twist, it is
possible to get around the shared capacity constraint by posing the CCFP as a special
case of the GMLN. Consider the following problem:

(MCP) V-Minimize

subject to Exk = bk, k = 1 , . . . , K,
0 ^ xk ^ uk.

Note thathere r = \A\. Let/(jc) = fcf=1 xkl-du... , £f= 1 xkr - dr J and let S and

f(<§) be the set of all efficient solutions and efficient points of the MCP respectively.
The following result allows us to determine if a feasible solution to the MCP exists
and to construct it if it does.

THEOREM 1. The problem CCFP has a feasible solution if and only ifj\S)C\Rr_ # 0 ,
where /((f) is the set of all efficient points of the MCP. Furthermore, any efficient
solution x satisfying f(x) e/(<?) D Rr_ is a feasible solution of the CCFP.

PROOF. Assume that the problem CCFP has a feasible solution x. Then x satisfies
the constraints of the MCP and

xka-da<0,VaeA. (1)
k=\

Thus/(x) € Rr_. By a theorem of multiple criteria optimization (see [9]), there exists
an efficient solution x* of the MCP such that/(x*) £ f(x). Th\xsf(x*) e Rr_. So
/((f) D Rr_ # 0. Conversely, if/(<?) n Rr_ ^ 0, then there exists an efficient solution
x* such that x* satisfies (1) and the constraints of the MCP. Thus/(x*) < 0. Therefore
JC* is a feasible solution of the CCFP.
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Since the MCP is a linear problem, the efficient frontier /(<?) is the union of
simplices, where the r = \A\ corners of each of these simplices are images (under/)
of the efficient solutions the MCP. A feasible solution to the CCFP exists if and only
if this efficient frontier intersects the negative octant according to Theorem 1. This
gives us clues to a conceptual algorithm which, at each intermediate iteration, solves
a scalarized problem of the MCP and checks for the non-empty intersection of some
simplex with the negative octant. Whenever the algorithm finds such a non-empty
intersection, it stops and gives a feasible solution to the CCFP, otherwise it continues
for a finite number of steps until it eventually declares that no feasible solution exists.
We will describe this algorithm further in Section 4 and provide all the theoretical
justification. The existence of a feasible solution of the problem the CCFP has also
been investigated in [3, 6] via an alternative theorem.

EXAMPLE 3. Consider the multiple criteria multiple commodity linear cost flow
problem with shared capacity constraints:

V-Minimize (cjx, • • • , cjx)
s u b j e c t t o Exk = b k , k = \ , . . . , K ,

0~g x ^ u.

If the resource-directive decomposition method is used to solve this problem, a se-
quence of subproblems of the following the GMLN are required to be solved (see
[7]):

V-Minimize (cjx, • • • , cjx)
subject to Exk = bk, k = I,... , K,

where v is some modified upper bound to x which is a decision variable for the master
problem, but fixed for the subproblems.

4. A search algorithm to find a feasible solution for the CCFP

Instead of using the usual artificial variable method, we now propose an alternative
which is based on the idea that a large number of decoupled subproblems is easier to
solve than a single large coupled problem and that the decoupled problems can take
advantage of the network structure much more readily than can the coupled problem.
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We begin by defining the scalarized problem P(A) for the MCP, where A e intRr
+.

IK \

Problem P(A) Minimize ^ K f a ( x k ) = y^ka I ^xka - da j
a=\ a=l \*=1 J

subject to Exk = bk, k = 1, . . . , K,
0 ^ x* <; uk.

Let the solution to P(A) be denoted by x*(A) which is an efficient solution to the
MCP; and let/(x*(A)) be the corresponding efficient point in the cost space. We shall
summarize the algorithm as follows and justify the steps shortly. For convenience, a
feasible solution to the CCFP, if it exists, is abbreviated as MFS (multiple commodity
feasible solution).

Let £'! e Rr, i = 1, . . . , r and F = Co(£\ £2, . . . , O be a r - 1 simplex, that is,
{£', £ 2 , . . . , C) are affinely independent. The focal point, denoted by Foc(F), to F is
defined to be the vector of components

min{£{ : j = 1 , 2 , . . . , /•}, where i = 1, 2 , . . . , r.

We now present the following algorithm.

Algorithm 1. The MFS Search Algorithm

Step 1: Let e > 0 be a small number (see Remark 1). Solve, for each a =
1,2,.. . , r, the scalarized problem P(ea), where e" is a vector in Rr with 1 — e in the
alh entry and e/(r - 1) everywhere else, to obtain the solutions x*(el),x*(e2),...,
x*{er).

(i) lff(x*(ea)) € intRr
+ for any a, stop, no MFS exists. (See Proposition 1.)

(ii) If/Cc*(<?")) e Rr- for any a, stop, x*(ea) is an MFS. (See Proposition 2.)
(iii) Otherwise let £a =f(x*(ea)), a = 1, 2 , . . . , r and F = Co(£', £2 , . . . , £r) be

a simplex which is the convex hull of the efficient points £', £2 , . . . , £r. Let the set of
simplices to be searched be initialized as fi <— {F}.

Step 2: If £2 is empty, stop, no MFS exists. (See Proposition 3.) Otherwise pick any
simplex F = Co(£\ £2, . . . , O from Q to search for an MFS.

(i) Check if F D Rr_ is nonempty (by solving for an auxiliary linear program, see
Proposition 4). If so, stop, an MFS can be found from this nonempty intersection.
(See Proposition 5.)

(ii) If F n Rr_ = 0, compute the focal point to the simplex F. If Foc(F) £ Rr_, no
MFS can be found by searching from F (see Proposition 6), go to Step 4.

(iii) Otherwise Foc(F) e Rr_, go to Step 3 to continue search.

Step 3: Let the normal, A = Nor(F), to the simplex F be such that [A]a > 0,

£ = 1. Solve P(A) to get an efficient solution x*(A).
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(i) Iffix* (A)) is the same as any of £ ' ,£ 2 , . . . ,£r, then T is a part of the efficient
frontier and since V n Rr_ = 0, no MFS can be found on T. Q. <— ft \ T and return
to Step 2.

(ii) Otherwise fix* (A)) dominates some efficient point in T. If/(x*(A)) € Rr_,
stop, x*(A) is an MFS. (See Proposition 8.) Otherwise/(x*(A)) £ Rr_ and this new
efficient point will generate r other simplices. Let

r, = CO(/-(JC*(A)), C,..., o ,

rr = Co(£ ' , r , . . . ,/(**(A))).
ft <— ft U {T,, r 2 , . . . , Tr} \ r and return to Step 2.

Step 4: ft <— ft \ T, return to Step 2.

A formal justification to Algorithm 1 is provided by the following propositions.

PROPOSITION 1. In Step 1 (i), iffix*(e")) e intRr
+for any a, then no MFS exists.

PROOF. If an MFS x** existed, it would satisfy that/(***) € Rr_. Hence/(x**) <
fix'ie")) sincef(x*ie")) e int/?+, which contradicts the fact thatx*(efl) is an efficient
solution of the MCP.

PROPOSITION 2. In Step 1 (ii), iffix*iea)) e Rr_ for some a, thenx*iea) is an MFS.

PROOF. x*ie") is an efficient solution for the MCP and lies in Rr_. By Theorem 1,
it is also an MFS.

PROPOSITION 3. If at the start of Step 2 ft is empty, then no MFS exists.

PROOF. If ft is empty, the whole efficient frontier of the MCP would have been
found as the union of a number of simplices. Since none of these simplices intersects
Rr_, (we would have terminated with an MFS otherwise), fi&) P\Rr_ = 0 and from
Theorem 1, no MFS exists.

PROPOSITION 4. In checking for the nonempty intersection ofT D Rr_ in Step 2 (i),
we have: T C\Rr_ ^ 0 if and only i / u w = 0, which is the solution to the auxiliary
linear program:

r

(LP) Maximize w — /^ qa

a=\

subject to -ZTy + q = 0,
y ^ 0, q ^ 0,
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where Z = [f' :£2: • • • i f ] e Rr*r.

PROOF. Let r = Co(£\ £2,... , f ) and Z = [£':£2: • • • if] € Rrxr. Then

r r

r n / ? 1 ^ 0 i f f 3A such that ^ T ^ f ^ 0, ^ A a = \,Xa > 0;

iff the system A > 0, ZA ^ 0 is feasible;
iff the system yx - ZTy = 0, yt > 0, y ^ 0 is infeasible

by the Motzkin theorem of alternative;
iff the system ZTy < 0, y ^ 0 is infeasible;
iff Wmax = 0 solves the above auxiliary linear program.

PROPOSITION 5. In Step 2 (i), ifY nRr_^&, then an MFS can be found.

PROOF. If F n Rr_ # 0 , then 3r) 6 F such that f? ^ 0. If F is not quite part of the
efficient frontier, there exists some other efficient point £ on the efficient frontier such
that £ ^ 77 5: 0. Hence £ is an efficient point lying in Rr_. By Theorem 1, this also
corresponds to an MFS. If F is already part of the efficient frontier, then the point in
F n / f l is an MFS.

PROPOSITION 6. In Step 2 (ii), if Foc(F) £ Rr_, then no MFS can be found by
searching from F.

PROOF. Any efficient point which dominates points on F is contained in the convex
hull with base F and vertex Foc(F), that is, Co(£\ £2, . . . , f, Foc(F)), which is in
turn dominated by the vertex Foc(F) because of the way it is defined. If Foc(F) £ if 1,
no efficient point which dominates points on F can be found in Rr_.

PROPOSITION 7. In Step 3, if the new efficient point f(x* (A)) is the same as one of
the points £', £2, . . . , f, then F is part of the efficient frontier of the MCP.

PROOF. If F = Co(£', £ 2 , . . . , f ) is not part of the efficient frontier, then there
exists some point £ 6 F and some efficient solution x** of the MCP such that/(x**) <
£. Since £ € F, £ = J2a=i A^f > ^ ^ °> E«=i /A, = 1. For A = Nor(F) > 0, then
ATf" = ATf2, Va,, a2 and AT/(*") < A T ( ^ = 1 /Ltflf), or

r

AT/(x~) < T]MaA
Tf = ATf, for any; g {1,.. . ,

a=\

which contradicts the assumption that £" solves P(A).
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PROPOSITION 8. / / in Step 3 (i),/(x*(A)) € Rr_, thenx*(X) is an MFS.

PROOF. X*(X) is an efficient solution of the MCP lying in Rr_. By Theorem 1, it is
an MFS.

REMARK 1. The use of e in Step 1 ensures that solutions found are efficient solutions
and not merely weakly efficient. The e can be chosen to be small enough that the
corresponding function value is the same as that obtained by solving P(e°), where e°
is a vector in Rr with 1 in the a'h entry and 0 everywhere else.

REMARK 2. Note that solving the scalarized problem P(A) amounts to solving K
decoupled single commodity linear cost flow problems:

Problem Pt(A) Minimize ^ A a / 0 ( x t ) = ^ kaxka

a=\ a=\

subject to Exk = bk,
0^xk^ uk,

where k — 1 , . . . , K. These can be solved very efficiently using existing scaled
network simplex algorithms [7].

REMARK 3. In checking for the non-empty intersection of the simplex F with the
negative octant (Step 2 (ii)), we need to solve an auxiliary linear program with 2r
variables and r constraints. This is a much smaller problem than the original multiple
commodity flow problem and can be solved quite efficiently. Alternatively this non-
empty intersection can be checked recursively as shown in [11].

REMARK 4. In Step 3 (ii), the new efficient point generates r new simplices to be
included in the set £2 for subsequent search. In practice, only a few of these new
simplices need to be included since many of them would have their focal points lying
outside the negative octant.

THEOREM 2. Algorithm 1 terminates after a finite number of iterations and either
gives an MFS or concludes that no MFS exists.

PROOF. The efficient frontier for the MCP has only a finite number of simplicial
faces. There is no possibility of cycling (that is, no simplex may enter the set £2 more
than once) since all latter simplices dominate the one they replace. The algorithm
either produces an MFS from one of the intermediate simplices, or terminates in Step
2, whence the whole efficient frontier would have been examined and Proposition 3
asserts that the efficient frontier does not intersect the negative octant.
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The following examples are given to illustrate the MFS search algorithm.

[ill

EXAMPLE 4. Consider the network in Figure 1, where K = 2, da is the shared
capacity of arc a, b{ = (5, 0, —5, 0)T, b2 = (0, 5, 0, —5)T and each xk has no upper
bound, that is, each component of uk is +oo, k = 1, 2. Note that it is only easy to
find an MFS just by inspection because of the way we have constructed the example.
This is done deliberately on order to facilitate an understanding of the steps of the
algorithm.

commodity II = 5

commodity 1 = 5 commodity II = —5

commodity I = — 5

FIGURE 1. An example network.

Step 1. Solve P(e') and letx*(<?') = (x[,x2), i = 1,... , 5. We have:

x\ = (0,5, 0,0, 0)T, x2 = (0,0,0, 7,0)T, /(x*(e')) = (-10, 2, - 5 , 2, -6)T;
x\ = (5,0, 5,0,0)T, x\ = (0,0,0,7, 0)T, /(x*(e2)) = ( -5 , -3 , 0, 2,-6)T;
JC3 = (O,5 ,0 ,0 ,O) T , x3 = (0,0,0,7,0)T, /(x*(c3)) = (-10, 2 , -5 , 2,-6)T;
xf = (0,5, 0, 0, 0)T, x\ = (0, 0,7, 0, 7)T, /(x*(^4)) = (-10, 2, 2, - 5 , 1)T;
xf = (0,5,0,0,0)T, xf = (O,O,0,7,O)T, /(x*(e5)) = (-10,2,-5,2,-6)T.

Check (i) Nof(x*(e')) e intR5
+; (ii) no/(x*(e'')) e int/?i; (iii) since/(x*(e')) =

/(x*(e3)) =/(x*(e5)), let

e1 = (-10, 2, - 5 , 2, -6)T, ^2 = (-5, - 3 , 0, 2, -6)T, £3 = (-10, 2, 2, - 5 , 1),

Note that the simplex F is degenerate but that this does not create any problem for the
algorithm.
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Step 2. Check if m / ? i # 0 to find a point (-8,0, - 1 , 0 , -4) = 0.3143£'+0.4£2 +
0.2857£3, with corresponding MFS flow Xi = (2, 3, 2,0,0)T,x2 = (0, 0,2, 5, 2)T.
Terminate Algorithm 1.

EXAMPLE 5. Consider the same network as in Example 4, but change dj to d^ =
3.

Step 1. Solving P(e'), P(*3), P(«5) gives f(x*(e1)) = (-10, 2, - 3 , 2, - 6 ) T , solving
P(<?2) gives f(x*(e2)) = ( -5 , - 3 , 2 , 2, - 6 ) T and solving P(e4) gives/(x*(<?4)) =
(-10, 2,4, - 5 , 1)T. Check (i) No/(x*(«')) e intJ?*.; (ii) no/(x*(<?')) € intfli; (Hi)

\ 2 3

Step 2. Check that r D R5_ = 0 by solving the auxiliary linear program.
Step 3. A normal to T is A = (0.5,0.5,0, 0, 0)T. Solving P(A) gives

x, = (0, 5,0,0,0)T, x2 = (0,0,0, 7, 0)T, /(x*(A)) = (-10, 2, - 3 , 2, - 6 ) T = £'.

So r is a part of the efficient frontier. Let Q, <— [V] \ {T}. Return to Step 2.
Step 2. Q = 0, stop. No MFS can be found.

5. An algorithm for solving the multiple criteria linear program

Consider the multiple criteria linear program with general linear constraints:

(MCLP) V-Minimize (cjx,...,cjx)
subject to Ax = b,

where Amxn is a general m x n matrix, x, C\, • • • ,cp,u e R",b e Rm. We seek to find
the whole efficient frontier to the problem.

Let A € Rp and A > 0. The scalarized problem of the MCLP is defined as follows:

Problem Q(A) Minimize £?= 1 ktcjx
subject to Ax = b,

Aneja and Nair [1] previously proposed a method for finding the efficient frontier
of a bicriteria linear cost network flow problem. The idea is based on the fact that
the efficient frontier for a bicriteria linear cost problem is a piecewise affine curve in
two dimensional criteria space. To begin, the efficient frontier is first approximated
by a single straight line joining two points obtained by solving for each of the criteria.
Clearly this line is dominated by the efficient frontier, if it is not already the frontier
itself. Hence by solving the scalarized problem Q(\) with A corresponding to the
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normal to this straight line, a point on the efficient frontier can be found. Thus an
improved approximation to the efficient frontier is given by the two linear segments
with this new point as the break point. Continuing in this manner, the efficient frontier
can be determined after a finite number of iterations. It is quite clear that this method
is also applicable to the case of a bicriteria linear program, which is a special case of
the MCLP with p = 2. It is not so obvious, however, that this can also be extended
to find the efficient frontier of the MCLP and this extension will be discussed shortly.
This is a viable and practical alternative to the conceptual algorithm presented in Yu
[12].

The idea here is based on the fact that the efficient frontier to the MCLP is a union
of a number of simplicial faces, each being a p — 1 simplex in the p dimensional
criteria space. We specialize the search algorithm presented in the previous section to
find these simplical faces iteratively.

Algorithm 2. Finding the efficient frontier of the MCLP

Step 1: Let e > 0 be a small number. Solve, for each i = 1,2,... , p, the scalarized
problem P(e'), where e' is a vector in Rp with 1 — € in the Ith entry and e/(p —
1) everywhere else, to obtain the solutions Jt*^1),**^2), . . . ,x*(ep). Let £' =

/(*•(«?'•)). i = 1, 2 , . . . , p and T = Co(£\ £ 2 , . . . , £p) be a simplex. Let the set of
simplices to be searched be initialized as £2 <— [F] and the set of simplices whose
union gives the efficient frontier be initialized as FI <— 0.
Step 2: If Q is empty, stop, the efficient frontier to the MCLP is given by the union
of the simplices in FI. Otherwise pick any simplex I" = Co(£', £2 , . . . , £p) from £2.
Step 3: Let the normal, A = Nor(F), to the simplex F be such that [X]a > 0,
U L i M " = 1. Solve Q(A) to get an efficient solution x*(\).

(i) lff(x*(X)) is the same as any of £', £ 2 , . . . , £p, then T is a simplicial face of
the efficient frontier. Q <— Q \ F and n <— FI U F, return to Step 2.

(ii) Otherwise/(;t*(A)) will generate p other simplices. Let

Q <— n U {rIt T 2 , . . . , rp} \ T and return to Step 2.

The justification of Algorithm 2 is essentially the same as that for Algorithm 1 and
the proof of the following theorem follows from that of Theorem 2.

THEOREM 3. Algorithm 2 will generate the efficient frontier of the MCLP after a
finite number of iterations.
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6. Concluding remarks

In this paper, it is shown that several special linear cost network problems can be
reformulated as a general multiple criteria linear cost network flow problem. Based
on this multiple criteria model, a search algorithm for finding a feasible solution to
the multiple commodity flow problem is suggested. Numerical examples are given to
justify the algorithm. The MFS search algorithm can also be modified to give a new
algorithm for finding the efficient frontier of a multiple criteria linear program.
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