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Abstract

For a family of linear preferential attachment graphs, we provide rates of convergence
for the total variation distance between the degree of a randomly chosen vertex and an
appropriate power law distribution as the number of vertices tends to ∞. Our proof uses
a new formulation of Stein’s method for the negative binomial distribution, which stems
from a distributional transformation that has the negative binomial distributions as the
only fixed points.
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1. Introduction

Preferential attachment random graphs were introduced in [2] as a stochastic mechanism
to explain power law degree distributions empirically observed in real-world networks such
as the World Wide Web. These graphs evolve by sequentially adding vertices and edges in a
random way so that connections to vertices with high degree are favored. There has been much
interest in properties of these models and their many embellishments; the text [21] is probably
the best survey of this vast literature. Like the seminal work [2] (and the mathematically precise
formulation [4]), much of this research is devoted to showing that if the number of vertices
of the graph is large, then the proportion of vertices having degree k approximately decays as
cγ k−γ for some constant cγ and γ > 1; the so-called power law behavior.

Our main result in this vein is Theorem 1.1 below, which, for a family of linear preferential
attachment graphs, provides rates of convergence for the total variation distance between the
degree of a randomly chosen vertex and an appropriate power law distribution as the number
of vertices tends to ∞. The result is new and the method of proof is also of interest since
it differs substantially from proofs of similar results (see, e.g. Section 8.5 of [21]). Our
proof of Theorem 1.1 uses a new formulation of Stein’s method for the negative binomial
distribution, Theorem 1.2 below (see [19] and the references therein for a basic introduction
to Stein’s method). The result stems from a distributional transformation that has negative
binomial distributions as the only fixed points (we will shortly see the relationship between the
negative binomial distribution and power laws). Similar strategies have recently found success
in analyzing degree distributions in preferential attachment models; see [17] and Section 6
of [16]—the latter is a special case of our results and is the template for our proofs. The
remainder of the introduction is devoted to stating our results in greater detail.
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Power laws and Stein’s method 877

First we define the family of preferential attachment models we study; these are the same
models studied in Chapter 8 of [21], which are a generalization of the models first defined in [4],
which in turn are a formalization of the heuristic models described in [2]. The family of models
is parameterized by m ∈ N and δ > −m. For m = 1 and given δ, the model starts with one
vertex with a single loop where one end of the loop contributes to the ‘in-degree’ and the other
to the ‘out-degree’. Now, for 2 ≤ k ≤ n, given the graph with k−1 vertices, add vertex k along
with an edge emanating ‘out’ from k ‘in’ to a random vertex chosen from the set {1, . . . , k} with
probability proportional to the total degree of that vertex plus δ, where initially vertex k has
degree 1. That is, at step k, the chance that vertex k connects to itself is (δ + 1)/(k(2 + δ)− 1).
After n steps of this process, we denote the resulting random graph by G

1,δ
n .

For m > 1, we define G
m,δ
n by first generating G

1,δ/m
nm , and then ‘collapsing’ consecutive

vertices into groups of size m, starting from the first vertex, and retaining all edges. Note that
with this setup, it is possible for a vertex to connect to itself or other vertices more than once
and as many as m times (in fact, the first vertex always consists of m loops) and all of these
connections contribute to the in- and out-degrees of a vertex (e.g. the first vertex has both in- and
out-degrees m).

Here and below, we think of δ and m as fixed and let Wn be the in-degree of a randomly
chosen vertex from G

m,δ
n . We provide a bound on the total variation distance between Wn and

a limiting distribution which is a mixture of negative binomial distributions. For r > 0 and
0 < p ≤ 1, we write X ∼ NB(r, p) if

P(X = k) = �(r + k)

k! �(r)
(1 − p)kpr, k = 0, 1, . . . .

Definition 1.1. For m ∈ N, δ > −m, and U uniform on (0, 1), denote the mixture distribution
NB(m + δ, U1/(2+δ/m)) by K(m, δ).

For our main result, we define the total variation distance between two nonnegative integer-
valued random variables X and Y as

dTV(L(X), L(Y )) = sup
A⊆Z+

|P(X ∈ A) − P(Y ∈ A)| (1.1)

= 1

2

∑
k∈Z+

|P(X = k) − P(Y = k)|, (1.2)

where here and below Z+ = {0, 1, . . .}.
Theorem 1.1. If Wn is the in-degree of a randomly chosen vertex from the preferential attach-
ment graph G

m,δ
n and K(m, δ) is the mixed negative binomial distribution of Definition 1.1,

then, for some constant Cm,δ ,

dTV(L(Wn), K(m, δ)) ≤ Cm,δ

log(n)

n
.

To see the power law behavior of K(m, δ), we record the following easy result which is
a more standard representation of K(m, δ) through its point probabilities. The proof follows
from direct computation and then Stirling’s formula (or Lemma 3.1 below). These formulae
with additional discussion are also found in Section 8.3 of [21], specifically Equations (8.3.2)
and (8.3.9-10), and were first discovered in [7] and [11]. The representation of K(m, δ) as a
mixture of negative binomial distributions does not seem to be well known.
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Lemma 1.1. If m ∈ N, δ > −m, and Z ∼ K(m, δ), then, for l = 0, 1, . . .,

P(Z = l) =
(

2 + δ

m

)
�(l + m + δ)�(m + 2 + δ + δ/m)

�(m + δ)�(l + m + 3 + δ + δ/m)
,

and, for cm,δ = (2 + δ/m)�(m + 2 + δ + δ/m)/�(m + δ),

P(Z = k) � cm,δ

k3+δ/m
as k → ∞.

Before discussing our Stein’s method result, we make a few final remarks. The usual
mathematical statement implying power law behavior of the degrees of a random graph in
this setting is that the empirical degree distribution converges to K(m, δ) in probability (see
Theorem 8.2 of [21]). Such a result implies that the total variation distance in Theorem 1.1
tends to 0 (see Exercise 8.14 of [21]), but does not provide a rate. Another result similar to
Theorem 1.1 is Proposition 8.4 of [21] which states that, for Z ∼ K(m, δ),

|P(Wn = k) − P(Z = k)| ≤ C

n
,

which according to (1.2) neither implies nor is implied by Theorem 1.1. Finally, regarding other
preferential attachment models, our results can likely be extended to some other models where
the limiting distribution is K(m, δ), for example, where the update rule is that we consider
here, but the starting graph is not. For other preferential attachment graphs where the limiting
degree distribution is not K(m, δ) (such as those of [20]), it may be possible to prove analogs
of Theorem 1.1 using methods similar to ours, but we do not pursue this here.

To state our general result which we use to prove Theorem 1.1, we first define a distributional
transformation. For r > 0 and n ≥ 1, let Ur,n be a random variable having the distribution of
the number of white balls drawn in n − 1 draws in a standard Pólya urn scheme starting with
r white balls and 1 black ball. That is, for fixed r , we construct Ur,n sequentially by setting
Ur,1 = 0, and, for k ≥ 1,

P(Ur,k+1 = Ur,k + 1 | Ur,k) = 1 − P(Ur,k+1 = Ur,k | Ur,k) = r + Ur,k

r + k
. (1.3)

Also, for a nonnegative integer-valued random variable X with finite mean, we say that Xs has
the size bias distribution of X if

P(Xs = k) = kP(X = k)

EX
, k = 1, 2, . . . .

Definition 1.2. Let X be a nonnegative integer-valued random variable with finite mean, and
let Xs denote a random variable having the size bias distribution of X. We say that the random
variable X∗r has the r-equilibrium transformation if

X∗r
d= Ur,Xs ,

where we understand Ur,Xs to mean L(Ur,Xs | Xs = k) = L(Ur,k).

As we will see below in Corollary 2.1, X∗r
d= X if and only if X ∼ NB(r, p) for some

0 < p < 1. Thus, if some nonnegative integer-valued random variable W has approximately
the same distribution as W ∗r , it is plausible that W is approximately distributed as a negative
binomial distribution. The next result makes this heuristic precise. Here and below we denote
the indicator of an event B by IB or I[B].
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Theorem 1.2. Let W be a nonnegative integer-valued random variable with EW = µ. Also,
let r > 0 and W ∗r be coupled to W and have the r-equilibrium transformation of Definition 1.2.
If p = r/(r + µ) and cr,p = min{(r + 2)(1 − p), 2 − p} ≤ 2, then, for an event B,

dTV(L(W), NB(r, p)) ≤ cr,pE[IB |W ∗r − W |] + 2(e max{1, r} + 1)P(Bc)

≤ 2(e max{1, r} + 1)P(W ∗r 
= W).

Remark 1.1. Analogs of Theorem 1.2 for other distributions which use fixed points of distribu-
tional transformations are now well established in the Stein method literature. For example, the
book [3] develops Stein’s method for the Poisson approximation using the fact that a nonnegative
integer-valued random variable X with finite mean has the Poisson distribution if and only
if X

d= Xs − 1. Also, there is the zero bias transformation for the normal distribution [9],
the equilibrium transformation for the exponential distribution [15], a less standard distribu-
tion [17], and the special case where r = 1 above, the discrete equilibrium transformation
for the geometric distribution [16] (see also [14] for an unrelated transformation used for the
geometric approximation).

Remark 1.2. The fact that negative binomial distributions are the fixed points of the r-equilib-
rium transformation is the discrete analog of the fact, perhaps more familiar, that a nonnegative
random variable X has the gamma distribution with shape parameter α if and only if

X
d= Bα,1X

s,

where Bα,1 is a beta variable with density αxα−1 for 0 < x < 1 independent of Xs ; see [18].

The layout of the remainder of the article is as follows. In Section 2 we develop Stein’s
method for the negative binomial distribution using the r-equilibrium transformation and prove
Theorem 1.2. In Section 3 we use Theorem 1.2 to prove Theorem 1.1.

2. Negative binomial approximation

The proof of Theorem 1.2 roughly follows the usual development of Stein’s method of
distributional approximation using fixed points of distributional transformations (see the
references of Remark 1.1). Specifically, if W is a nonnegative integer-valued random variable
of interest and Y has the negative binomial distribution, then, using definition (1.1), we want
to bound |P(W ∈ A) − P(Y ∈ A)| uniformly for A ⊆ Z+. Typically, this program has three
components.

1. Define a characterizing operator A for the negative binomial distribution which has the
property that

EAg(Y ) = 0

for all g in a large enough class of functions if and only if L(Y ) ∼ NB(r, p).

2. For A ⊆ Z+, define gA to solve

AgA(k) = I[k ∈ A] − P(Y ∈ A). (2.1)

3. Using (2.1), note that

|P(W ∈ A) − P(Y ∈ A)| = |EAgA(W)|.
Now use properties of the solutions gA and the distributional transformation to bound
the right-hand side of this equation.
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Obviously, there must be some relationship between the characterizing operator of item 1
and the distributional transformation of item 3; this is typically the subtle part of the program
above. For item 1, we use the characterizing operator for the negative binomial distribution as
defined in [5].

Theorem 2.1. ([5].) If W ≥ 0 has a finite mean then W ∼ NB(r, p) if and only if

E[(1 − p)(r + W)g(W + 1) − Wg(W)] = 0 (2.2)

for all bounded functions g.

We need to develop the connection between the characterizing operator of Theorem 2.1 and
the r-equilibrium transformation. To this end, for a function g, define

D(r)g(k) =
(

k

r
+ 1

)
g(k + 1) − k

r
g(k),

and note that the negative binomial characterizing operator of (2.2) can be written as

r(1 − p)D(r)g(W) − pWg(W). (2.3)

The key relationship is the following.

Lemma 2.1. If the integer-valued random variable X ≥ 0 has finite mean µ > 0, X∗r has the
r-equilibrium distribution of X, and g is a function such that the expectations below are well
defined, then

µED(r)g(X∗r ) = EXg(X).

Proof. We show that
ED(r)g(Ur,n) = g(n), (2.4)

which, using the definition of the size bias distribution implies that

µED(r)g(X∗r ) = µEg(Xs) = EXg(X),

as desired. To show (2.4), we use induction on n. The equality is obvious for n = 1 since
Ur,1 = 0. We assume that (2.4) holds for n and show that it holds for n + 1. By conditioning
on the previous step in the urn process defining Ur,n+1 and using (1.3), we find that, for a
function f such that the expectations below are well defined,

Ef (Ur,n+1) = 1

r + n
E(Ur,n + r)f (Ur,n + 1) + E

(
1 − Ur,n + r

r + n

)
f (Ur,n).

Combining this equality with the induction hypothesis in the form

E(Ur,n + r)f (Ur,n + 1) = rf (n) + EUr,nf (Ur,n)

yields

Ef (Ur,n+1) = r

r + n
f (n) + n

r + n
Ef (Ur,n).

Now taking f = D(r)g and using the induction hypothesis again yields (2.4).

We now record the following result which, while not necessary for the proof of Theorem 1.2,
underlies our whole approach for the negative binomial approximation.
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Corollary 2.1. If the integer-valued random variable X ≥ 0 is such that EX = r(1 − p)/p

for some 0 < p < 1, then X ∼ NB(r, p) if and only if

X
d= X∗r .

Proof. If X
d= X∗r then combining Theorem 2.1 and Lemma 2.1, noting representation (2.3),

we easily see that X ∼ NB(r, p).
Conversely, we assume that Y ∼ NB(r, p), and show that Y ∗r

d= Y using the method of
moments. According to (4.3) of [10, p. 178],

E[Ur,n(Ur,n − 1) · · · (Ur,n − k + 1)] = r(n − 1) · · · (n − k)

r + k
,

which implies that, for X with finite k + 1 moments and EX = r(1 − p)/p,

E[X∗r · · · (X∗r − k + 1)] = rE[(Xs − 1) · · · (Xs − k)]
r + k

= p

1 − p

E[X(X − 1) · · · (X − k)]
r + k

.

Now, from Equation (2.29) of [10, p. 84], if Y ∼ NB(r, p) then

E[Y · · · (Y − k + 1)] = r · · · (r + k − 1)

(
1 − p

p

)k

.

Combining this with the calculation above, we find that, for all k ≥ 1,

E[Y ∗r · · · (Y ∗r − k + 1)] = E[Y · · · (Y − k + 1)].
Since Y has a well-behaved moment generating function (i.e. exists in a neighborhood around
0), the moment sequence determines the distribution and so Y

d= Y ∗r , as desired.

The next two lemmas take care of item 2 in the program outlined above, and obtain the
properties of the solution for item 3. We prove Theorem 1.2 immediately after the lemmas. For
a function g : Z+ → R, define �g(k) = g(k + 1) − g(k).

Lemma 2.2. If Y ∼ NB(r, p) and, for A ⊆ Z+, g := gA satisfies the Stein equation

(1 − p)(r + k)g(k + 1) − kg(k) = I[k ∈ A] − P(Y ∈ A), (2.5)

then, for k = 0, 1 . . . ,

|(k + 1)g(k + 1)| ≤ max{1, r}e
p

and |�g(k)| ≤ min

{
1

(1 − p)(r + k)
,

1

k

}
.

Proof. The second assertion bounding |�g(k)| is Theorem 2.10 applied to Example 2.9
of [6]. For the first assertion, from a standard representation of the solution to the Stein
equation for discrete distributions [5, Equation (2)],

(k + 1)g(k + 1) = [P(Y ∈ A, Y ≤ k) − P(Y ∈ A)P(Y ≤ k)]
P(Y = k + 1)

= [P(Y ∈ A, Y ≤ k)P(Y ≥ k + 1) − P(Y ∈ A, Y ≥ k + 1)P(Y ≤ k)]
P(Y = k + 1)

,
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so we find that

|(k + 1)g(k + 1)| ≤ P(Y ≥ k + 1)P(Y ≤ k)

P(Y = k + 1)
, (2.6)

and the bound also holds with either term alone in the numerator.
If r = 1 (the geometric distribution) then we can compute (2.6) exactly as (1 − (1 −

p)k+1)/p ≤ 1/p, as desired. If 0 < r < 1 then Proposition 1(b) of [12] implies that
P(Y ≥ k + 1)/P(Y = k + 1) ≤ 1/p, which implies the result in this case.

If r > 1 then we bound (2.6) in three cases: k +1 ≥ r(1−p)/p, k +1 ≤ (r −1)(1−p)/p,
and (r − 1)(1 − p)/p + 1 ≤ k + 1 ≤ r(1 − p)/p − 1. For the first case, Proposition 1(b)
of [12] implies that, for k + 1 ≥ r(1 − p)/p,

P(Y ≥ k + 1)

P(Y = k + 1)
≤

(
1 − (1 − p)

k + 1 + r

k + 2

)−1

. (2.7)

The right-hand side is decreasing in k, so setting k + 1 = r(1 − p)/p and simplifying, we find
that, for k + 1 ≥ r(1 − p)/p, (2.7) is bounded by r/p − r + 1 ≤ r/p, as desired. For the other
two cases, we use the representation (see, e.g. Equation (2.27) of [1])

P(Y ≤ k) = �(r + k + 1)

�(r)�(k + 1)

∫ p

0
ur−1(1 − u)k du,

which implies that (2.6) is bounded by

(k + 1)
∫ p

0 ur−1(1 − u)k du

pr(1 − p)k+1 . (2.8)

The maximum of the integrand is achieved at p∗ = (r − 1)/(r + k − 1) and if k + 1 ≤
(r − 1)(1 − p)/p then p∗ ≥ p, which implies that∫ p

0
ur−1(1 − u)k du ≤ pr(1 − p)k

and, thus, that (2.8) is bounded by (k + 1)/(1 − p) ≤ (r − 1)/p ≤ r/p due to the restriction
on the value of k.

Finally, assume that (r − 1)(1 −p)/p + 1 ≤ k + 1 ≤ r(1 −p)/p − 1 and note that in order
for such k to exist, 0 < p ≤ 1

3 , which we assume holds for the remainder of the proof. With
p∗ as above, ∫ p

0
ur−1(1 − u)k du ≤ ppr−1∗ (1 − p∗)k,

and the lower bound on the range of k implies that p∗ ≤ p and so we find that (2.8) is bounded
above by

(k + 1)(1 − p∗)k

(1 − p)k+1 ≤ r

p

(
1 − p∗
1 − p

)k

. (2.9)

Recalling that 1 −p ≤ 1 −p∗ = k/(r + k − 1), it is easy to see that the right-hand side of (2.9)
is increasing in k. Substituting the maximum value of k for this case, r(1 − p)/p − 2, into p∗
and then this into (2.9) and simplifying, we find that (2.8) is bounded above by

r

p

(
r/p − 2/(1 − p)

r/p − 3

)r/p−r−2

≤ r

p
e3−2/(1−p) ≤ r

p
e,

where the first inequality follows since r/p−r−2 ≤ r/p−3 and, for a, x > 0, (1+a/x)x ≤ ea .
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We need the following easy corollary of Lemma 2.2.

Lemma 2.3. If, for A ⊆ Z+, g := gA satisfies the Stein equation (2.5) then

sup
k∈Z+

|D(r)g(k)| ≤ max{r, 1}e + 1

r(1 − p)
,

sup
k∈Z+

|�(D(r)g(k))| ≤ min

{
1 + 2

r
,

2 − p

r(1 − p)

}
.

Proof. For the first assertion, since g solves the Stein equation (2.5),

|r(1 − p)D(r)g(k)| ≤ |pkg(k) + I[k ∈ A] − P(Y ∈ A)|
≤ |pkg(k)| + |I[k ∈ A] − P(Y ∈ A)|
≤ max{r, 1}e + 1,

where we have used Lemma 2.2.
For the second assertion, it is easy to see that

�(D(r)g(k)) = r + k + 1

r
�g(k + 1) − k

r
�g(k),

and the lemma follows after taking the absolute value, applying the triangle inequality, and
judiciously using Lemma 2.2.

Proof of Theorem 1.2. Following the usual Stein method machinery, for g := gA solving
(2.5) for A ⊆ Z+ and Y ∼ NB(r, p), we have

dTV(L(W), NB(r, p)) = sup
A⊆Z+

|E[I[W ∈ A] − P(Y ∈ A)]|

= sup
A⊆Z+

|E[(1 − p)(r + W)gA(W + 1) − WgA(W)]|,

= p sup
A⊆Z+

|E[µD(r)gA(W) − WgA(W)]|.

Lemma 2.1 implies that, for g := gA,

pE[µD(r)g(W) − Wg(W)]
= pµE[D(r)g(W) − D(r)g(W ∗r )]
= pµE[(D(r)g(W) − D(r)g(W ∗r ))IB ] + pµE[(D(r)g(W) − D(r)g(W ∗r ))IBc ]
=: R1 + R2.

Using the fact that µ = r(1 − p)/p, we have

pµ|D(r)g(W) − D(r)g(W ∗r )| ≤ 2r(1 − p) sup
k∈Z+

|D(r)g(k)|,

and so Lemma 2.3 implies that |R2| ≤ 2(e max{1, r} + 1)P(Bc).
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To bound |R1|, we write

|D(r)g(W) − D(r)g(W ∗r )|

=
∣∣∣∣I[W > W ∗r ]

W−W ∗r −1∑
k=0

�D(r)g(W ∗r + k) − I[W ∗r > W ]
W ∗r −W−1∑

k=0

�D(r)g(W + k)

∣∣∣∣
≤ sup

k∈Z+
|�(D(r)g(k))||W ∗r − W |.

Combining this with the bound of Lemma 2.3, we find that

|R1| ≤ min{(r + 2)(1 − p), 2 − p}E|W ∗r − W |IB,

which, upon adding to the bound on |R2|, yields the first bound in the theorem. The second
bound is obtained from the first by choosing B = {W = W ∗r }.

3. Preferential attachment proof

In this section we prove Theorem 1.1 following the strategy of proof of the main result of
Section 6 of [16], which is a special case of our results (it will likely help the reader to first
understand the proof there). We use Cm,δ to denote a constant depending only on m and δ

which may change from line to line.
Theorem 1.1 easily follows by the triangle inequality applied to the following three claims.

If I is uniform on {1, . . . , n}, independent of Wn,i defined to be the in-degree of vertex i in
G

m,δ
n , and µn,i := EWn,i , then

1. dTV

(
L(Wn,I ), NB

(
m + δ,

m + δ

µn,I + m + δ

))
≤ Cm,δ

log(n)

n
,

2. dTV

(
NB

(
m + δ,

m + δ

µn,I + m + δ

)
, NB

(
m + δ,

(
I

n

)1/(2+δ/m)))
≤ Cm,δ

log(n)

n
,

3. dTV

(
NB

(
m + δ,

(
I

n

)1/(2+δ/m))
, K(m, δ)

)
≤ Cm,δ

log(n)

n
.

The proofs of items 2 and 3 are relatively straightforward, while the proof of item 1 uses the
following result which we show using Stein’s method (i.e. Theorem 1.2).

Theorem 3.1. Retaining the notation and definitions above, we have

dTV

(
L(Wn,i), NB

(
m + δ,

m + δ

µn,i + m + δ

))
≤ Cm,δ

i
.

The layout of the remainder of this section is as follows. We first collect and prove some
lemmas necessary for the proof of items 1–3 above and then prove these results. We prove
Theorem 3.1 last, since it is relatively involved.

Since G
m,δ
n is constructed from G

1,δ/m
nm , it will be helpful to denote by W

(1,ε)
k,j the in-degree

of vertex j in G
1,ε
k for k ≥ j − 1, where we set W

(1,ε)
j−1,1 := 0. The first lemma is useful for

computing moment information; it is a small variation of a special case of the remarkable results
of [13]; see also Proposition 8.9 of [21].
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Theorem 3.2. ([13].) If j ≥ 1 and ε > −1, then the sequence of random variables

�(k + (1 + ε)/(2 + ε))

�(k + 1)
(W

(1,ε)
k,j + 1 + ε)

is a martingale for k ≥ j − 1, where we take W
(1,ε)
j−1,j := 0. In particular, for k ≥ j − 1,

EW
(1,ε)
k,j + 1 + ε = (1 + ε)

�(k + 1)�(j − 1 + (1 + ε)/(2 + ε))

�(k + (1 + ε)/(2 + ε))�(j)
.

We also need asymptotic estimates for the ratio of gamma functions. The next result follows
from Stirling’s approximation.

Lemma 3.1. For fixed a, b > 0, as z → ∞,

�(z + a)

�(z + b)
= za−b + O(za−b−1).

The next lemma provides a nice asymptotic expression for expectations appearing in the
proofs below.

Lemma 3.2. If n ≥ i and −δ < m ∈ N, and µ
(m,δ)
n,i := EWn,i , then∣∣∣∣µ(m,δ)

n,i

m + δ
+ 1 −

(
n

i

)1/(2+δ/m)∣∣∣∣ ≤ Cm,δ

(
n

i

)1/(2+δ/m) 1

i
,∣∣∣∣ m + δ

µ
(m,δ)
n,i + m + δ

−
(

i

n

)1/(2+δ/m)∣∣∣∣ ≤ Cm,δ(i/n)1/(2+δ/m)

i
.

Proof. The second inequality follows directly from the first. For the first assertion, Theo-
rem 3.2 implies that, for ε > −1 and µ

(1,ε)
k,j := EW

(1,ε)
k,j for k ≥ j − 1,

µ
(1,ε)
k,j = (1 + ε)

[
�(j − 1 + (1 + ε)/(2 + ε))�(k + 1)

�(j)�(k + (1 + ε)/(2 + ε))
− 1

]
.

The construction of G
m,δ
n implies that

µ
(m,δ)
n,i =

m∑
j=1

µ
(1,δ/m)

nm,(i−1)m+j ,

so we find that

µ
(m,δ)
n,i + (m + δ) =

(
1 + δ

m

)
�(nm + 1)

�(nm + (1 + δ/m)/(2 + δ/m))

×
[ m∑

j=1

�((i − 1)m + j − 1 + (1 + δ/m)/(2 + δ/m))

�((i − 1)m + j)

]
. (3.1)

Now using Lemma 3.1 for the ratios of gamma functions, we find that, for i > 1,

µ
(m,δ)
n,i

m + δ
+ 1 = 1

m
((nm)1/(2+δ/m) + O(n−(1+δ/m)/(2+δ/m)))

×
(

m((i − 1)m)−1/(2+δ/m) +
m∑

j=1

O(i−(3+δ/m)/(2+δ/m))

)
.
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The lead term equals (n/i)1/(2+δ/m) (up to the error in changing i−1 to i), and the second-order
term is easily seen to be as desired. In the case that i = 1, similar arguments starting from (3.1)
yield the appropriate complementary result.

To prove items 2 and 3, we have to bound the total variation distance between negative
binomial distributions having different ‘p’ parameters. The next result is sufficient for our
purposes.

Lemma 3.3. If r > 0 and 0 ≤ ε < p ≤ 1, then

dTV(NB(r, p), NB(r, p − ε)) ≤ rε

p − ε
. (3.2)

Proof. Proposition 2.5 of [1] implies that, for r > 0 (their statement is for r ∈ N, but the
same proof works for all r > 0),

dTV(NB(r, p), NB(r, p − ε)) = (r + l − 1)

∫ p

p−ε

q(u) du, (3.3)

where 0 ≤ q(u) ≤ 1 and

l ≤ r(1 − p + ε)

p − ε
+ 1.

Using these bounds on q and l in (3.3) implies the lemma.

Our final lemma is useful for handling the total variation distance for conditionally defined
random variables.

Lemma 3.4. Let W and V be random variables, and let X be a random element defined on
the same probability space. Then

dTV(L(W), L(V )) ≤ E dTV(L(W | X), L(V | X)).

Proof. If f : R → [0, 1] then

|E[f (W) − f (V )]| ≤ E|E[f (W) − f (V ) | X]| ≤ E dTV(L(W | X), L(V | X)).

Proof of Theorem 1.1. Using (3.2) and Lemma 3.2, we easily obtain

dTV

(
NB

(
m + δ,

m + δ

µn,i + m + δ

)
, NB

(
m + δ,

(
i

n

)1/(2+δ/m)))
≤ Cm,δ

i
,

and applying Lemma 3.4 we find that

dTV

(
NB

(
m + δ,

m + δ

µn,I + m + δ

)
, NB

(
m + δ,

(
I

n

)1/(2+δ/m)))
≤ Cm,δ log(n)

n
,

which is item 2 above. Now, we couple U to I by writing U = I/n − V , where V is uniform
on (0, 1/n) and independent of I . From here, use Lemmas 3.3 and 3.4, and then the easy fact
that, for i ≥ 1 and 0 < a < 1,

ia − (i − 1)a ≤ ia−1,
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to find that

dTV

(
NB

(
m + δ,

(
I

n

)1/(2+δ/m))
, K(m, δ)

)
= dTV

(
NB

(
m + δ,

(
I

n

)1/(2+δ/m))
, NB(m + δ, U1/(2+δ/m))

)
≤ Cm,δ

n

n∑
i=1

(i/n)1/(2+δ/m) − ((i − 1)/n)1/(2+δ/m)

(i/n)1/(2+δ/m)

≤ Cm,δ log(n)

n
,

which is item 3 above. Finally, applying Lemma 3.4 to Theorem 3.1 yields the claim in item 1
above so that Theorem 1.1 is proved.

The remainder of the section is devoted to the proof of Theorem 3.1. Since we want to apply
our negative binomial approximation framework we must first construct a random variable
having the (m+δ)-equilibrium distribution of Wn,i := W

(m,δ)
n,i . According to Definition 1.2, we

first construct a variable having the size bias distribution of Wn,i . To facilitate this construction,
we need some auxiliary variables.

We mostly work with G
m,δ
n through the intermediate construction of G

1,δ/m
nm discussed in the

introduction. To fix notation, if, for k ≥ j , W
(1,δ/m)
k,j is the degree of vertex j in G

1,δ/m
k then

we write

Wn,i =
m∑

j=1

W
(1,δ/m)

nm,m(i−1)+j . (3.4)

Furthermore, if we let X
(δ/m)
j,i be the indicator that vertex j attaches to vertex i in G

1,δ/m
j (and

hence also in G
1,δ/m
k for j ≤ k ≤ mn), then we also have

W
(1,δ/m)

nm,m(i−1)+j =
mn∑

k=m(i−1)+j

X
(δ/m)

k,m(i−1)+j . (3.5)

The following well-known result allows us to use the decomposition of Wn,i into a sum
of indicators as per (3.4) and (3.5) to size bias Wn,i ; see, e.g. Proposition 2.2 of [8] and the
discussion thereafter.

Proposition 3.1. Let X1, . . . , Xn be zero–one random variables such that P(Xj = 1) = pj .
For each k = 1, . . . , n, let (X

(k)
j )j 
=k have the distribution of (Xj )j 
=k conditional on Xk = 1.

If X = ∑n
j=1 Xj , µ = E[X], and K is chosen independent of the variables above with

P(K = k) = pk/µ, then Xs = ∑
j 
=K X

(K)
j + 1 has the size bias distribution of X.

Roughly, Proposition 3.1 implies that in order to size bias Wn,i , we choose an indicator
X

(δ/m)
K,L where, for l = m(i − 1) + 1, . . . , mi, k = l, . . . , mn, P(K = k, L = l) is proportional

to P(X
(δ/m)
k,l = 1) (and zero for other values), then attach vertex K to vertex L and sample the

remaining edges conditional on this event. Note that, given (K, L) = (k, l), in the graphs
G

1,δ/m
j , 1 ≤ j < l and k < j ≤ nm, this conditioning does not change the original rule

for generating the preferential attachment graph given G
1,δ/m
j−1 . The following lemma implies

the remarkable fact that in order to generate the graphs G
1,δ/m
j for l ≤ j < k conditional on

X
(δ/m)
k,l = 1 and Gl−1, we attach edges following the same rule as preferential attachment, but

include the edge from vertex k to vertex l in the degree count.
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Lemma 3.5. Retaining the notation and definitions above, for l, s ≤ j < k, we have

P(X
(δ/m)
j,s = 1 | X

(δ/m)
k,l = 1, G

1,δ/m
j−1 ) = I[s = l] + W

(1,δ/m)
j−1,s + δ/m + 1

j (2 + δ/m)
, (3.6)

where we define W
(1,δ/m)
j−1,j = 0.

Proof. By the definition of the conditional probability, we write

P(X
(δ/m)
j,s = 1 | X

(δ/m)
k,l = 1, G

1,δ/m
j−1 )

= P(X
(δ/m)
j,s = 1 | G

1,δ/m
j−1 )P(X

(δ/m)
k,l = 1 | X

(δ/m)
j,s = 1, G

1,δ/m
j−1 )

P(X
(δ/m)
k,l = 1 | G

1,δ/m
j−1 )

,
(3.7)

and we calculate the three probabilities appearing above. First note that

P(X
(δ/m)
j,s = 1 | G

1,δ/m
j−1 ) = W

(1,δ/m)
j−1,s + 1 + δ/m

(2 + δ/m)j − 1
,

which implies that

P(X
(δ/m)
k,l = 1 | G

1,δ/m
j−1 ) = E[W(1,δ/m)

k−1,l + 1 + δ/m | G
1,δ/m
j−1 ]

(2 + δ/m)k − 1

and
P(X

(δ/m)
k,l = 1 | X

(δ/m)
j,s = 1, G

1,δ/m
j−1 )

= E[W(1,δ/m)
k−1,l + 1 + δ/m | X

(δ/m)
j,s = 1, G

1,δ/m
j−1 ]

(2 + δ/m)k − 1
.

Using Theorem 3.2, it easy to see that

E

[
W

(1,δ/m)
k−1,l + 1 + δ

m

∣∣∣∣ G
1,δ/m
j−1

]
= �(k)�(j − 1 + (1 + δ/m)/(2 + δ/m))

�(k − 1 + (1 + δ/m)/(2 + δ/m))�(j)

(
W

(1,δ/m)
j−1,l + 1 + δ

m

)
,

and also that

E

[
W

(1,δ/m)
k−1,l + 1 + δ

m

∣∣∣∣ X
(δ/m)
j,s = 1, G

1,δ/m
j−1

]
= �(k)�(j + (1 + δ/m)/(2 + δ/m))

�(k − 1 + (1 + δ/m)/(2 + δ/m))�(j + 1)

(
W

(1,δ/m)
j−1,l + I[s = l] + 1 + δ

m

)
.

Combining these calculations with (3.7) and simplifying (using in particular the fact that
�(x + 1) = x�(x)) implies that

P(X
(δ/m)
j,s = 1 | X

(δ/m)
k,l = 1, G

1,δ/m
j−1 )

= 1

j (2 + δ/m)

(W
(1,δ/m)
j−1,l + I[s = l] + 1 + δ/m)(W

(1,δ/m)
j−1,s + 1 + δ/m)

W
(1,δ/m)
j−1,l + 1 + δ/m

. (3.8)

By considering the cases s = l and s 
= l separately, it follows that (3.8) equals (3.6).
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The previous lemma suggests the following (embellished) construction of a variable having
distribution (Wn,i | X

(δ/m)
k,l = 1). Here and below we denote quantities related to this

construction by appending (k, l). First we generate G
1,δ/m
l−1 (k, l), a graph with l − 1 vertices,

according to the usual preferential attachment model. At this point, if l 
= k, vertices l and k

are added to the graph, along with a vertex labeled i′ with an edge to it emanating from
vertex k. Given G

1,δ/m
l−1 (k, l) and these additional vertices and edges, we generate G

1,δ/m
l (k, l)

by connecting vertex l to a vertex randomly chosen from the vertices 1, . . . , l, i′ proportional to
their ‘degree weight’, where vertex l has degree weight 1 + δ/m (from the out-edge) and i′ has
degree 1 (from the in-edge emanating from vertex k), and the remaining vertices have degree
weight equal to their degree plus δ/m. For l < j < k, we generate the graphs G

1,δ/m
j (k, l)

recursively from G
1,δ/m
j−1 (k, l) by connecting vertex j to a vertex randomly chosen from the

vertices 1, . . . , j, i′ proportional to their degree weight, where j has degree weight 1 + δ/m

(from the out-edge). Note that none of the vertices 1, . . . , k − 1 connect to vertex k. Also,
define G

1,δ/m
k (k, l) = G

1,δ/m
k−1 (k, l). If l = k, we attach vertex k to i′ and denote the resulting

graph by G
1,δ/m
k (k, l). For all values (k, l), if j = k + 1, . . . , nm, we generate G

1,δ/m
j (k, l)

from G
1,δ/m
j−1 (k, l) according to usual preferential attachment among the vertices 1, . . . , j, i′.

We have a final bit of notation before stating relevant properties of these objects. Denote the
degree of vertex j in this construction by W

(1,δ/m)
nm,j (k, l), and also let

Wn,i(k, l) :=
m∑

j=1

W
(1,δ/m)

nm,m(i−1)+j (k, l).

Let Bk,l be the event that in this construction all edges emanating from the vertices m(i−1)+1,

. . . , mi attach to one of the vertices 1, . . . , m(i − 1). In symbols,

Bk,l =
{

X
(δ/m)
s,j (k, l) = 0 for all j ∈ {m(i − 1) + 1, . . . , mi, i′}

s ∈ {m(i − 1) + 1, . . . , mi, i′}/{k}

}
.

Finally, let W ′ have the r-equilibrium distribution of Wn,i , independent of all else and define

W
∗r

n,i = Wn,i(K, L)IBK,L
+ W ′

IBc
K,L

. (3.9)

Lemma 3.6. Let l ∈ {m(i − 1) + 1, . . . , mi} and k ∈ {l, . . . , mn}, and retain the notation and
definitions above.

1. L(Wn,i(k, l) + W
(1,δ/m)

nm,i′ (k, l)) = L(Wn,i | X
(δ/m)
k,l = 1).

2. If (K, L) is a random vector such that

P(K = k′, L = l′) = EX
(δ/m)

k′,l′

EWn,i

, k′ ≥ l′ ∈ {m(i − 1) + 1, . . . , mi},
then Wn,i(K, L) + W

(1,δ/m)

nm,i′ (K, L) has the size bias distribution of Wn,i .

3. Conditional on the event

{Wn,i(K, L) + W
(1,δ/m)

nm,i′ (K, L) = t},
L(Wn,i(K, L)I[BK,L]) = L(Um+δ,t I[BK,L]), where Ur,t has the Pólya urn distribution
of Definition 1.2 and is independent of all else.

4. W
∗r

n,i has the (m + δ)-equilibrium distribution of Wn,i .
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Proof. Items 1 and 2 follow from Proposition 3.1 and Lemma 3.5. Item 3 follows since,
under the conditioning, if I[BK,L] = 1 then Wn,i(K, L) is distributed as the number of white
balls drawn in t − 1 draws from a Pólya urn started with m + δ white balls and 1 black ball
(it is t − 1 draws, rather than t , since the initial ‘black ball’ degree from vertex i′ is included
in the degree count Wn,i(K, L) + W

(1,δ/m)

nm,i′ (K, L)). Item 4 follows from items 1–3, using
Definition 1.2.

Proof of Theorem 3.1. We apply Theorem 1.2 to L(Wn,i) with W
∗r

n,i as defined by (3.9).
Before constructing the coupling of L(Wn,i) required in Theorem 1.2, we reduce the bound
P(W

∗r

n,i 
= Wn,i).
First note that due to the form of W

∗r

n,i , we have (no matter how L(Wn,i) is coupled)

P(W
∗r

n,i 
= Wn,i) = P(Wn,i(K, L) 
= Wn,i, BK,L) + P(W ′ 
= Wn,i, B
c
K,L)

≤ P(Wn,i(K, L) 
= Wn,i) + P(Bc
K,L). (3.10)

We bound the second term of (3.10) as follows. For l ∈ {m(i − 1) + 1, . . . , mi} and k > mi,
we directly compute

P(Bk,l) =
l−1∏

j=m(i−1)+1

m(i − 1)(1 + δ/m) + j − 1

j (2 + δ/m) − 1

mi∏
j=l

m(i − 1)(1 + δ/m) + j − 1

j (2 + δ/m)

≥
mi∏

j=m(i−1)+1

m(i − 1)(1 + δ/m) + j − 1

j (2 + δ/m)

= 1

(2 + δ/m)m

�(m(i − 1)(2 + δ/m) + m)�(m(i − 1) + 1)

�(m(i − 1)(2 + δ/m))�(mi + 1)
(3.11)

= 1 + O

(
1

i

)
,

where in the last equality we use Lemma 3.1. If k ∈ {m(i − 1) + 1, . . . , mi} then

P(Bk,l) =
l−1∏

j=m(i−1)+1

m(i − 1)(1 + δ/m) + j − 1

j (2 + δ/m) − 1

mi∏
j=l

j 
=k

m(i − 1)(1 + δ/m) + j − 1

j (2 + δ/m)
,

which is greater than or equal to (3.11) (since the omitted term is a probability), so in either
case we find that

P(Bc
K,L) = O

(
1

i

)
.

We have only left to bound the first term of (3.10), for which we must first define the coupling
of L(Wn,i) to Wn,i(K, L). For each (k, l) in the support of (K, L), we construct

{(X(δ/m)
s,j (k, l), X̃

(δ/m)
s,j ) : mn ≥ s ≥ j ∈ {m(i − 1) + 1, . . . , mi}}

to have the distribution of the indicators of the events vertex s connects to vertex j in G
1,δ/m
nm (k, l)

and G
1,δ/m
nm , respectively. With this fact established, define

W
(1,δ/m)
nm,j (k, l) =

nm∑
s=j

X
(δ/m)
s,j (k, l) and W̃

(1,δ/m)
nm =

nm∑
s=j

X̃
(δ/m)
s,j ,
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which have the distribution of vertex j in the indicated graphs, and then set

Wn,i(k, l) =
mi∑

j=m(i−1)+1

W
(1,δ/m)
nm,j (k, l) and Wn,i =

mi∑
j=m(i−1)+1

W̃
(1,δ/m)
nm,j .

From this point we bound the first term of (3.10) via

P(Wn,i(k, l) 
= Wn,i) ≤ P

( mi⋃
j=m(i−1)+1

{W(1,δ/m)
nm,j (k, l) 
= W̃

(1,δ/m)
nm,j }

)

≤
mi∑

j=m(i−1)+1

P(W
(1,δ/m)
nm,j (k, l) 
= W̃

(1,δ/m)
nm,j ), (3.12)

and we show that each term in the sum is O(1/i) (still depending on m and δ, but not on k

and l), which establishes the theorem.
The constructions for different orders of j, k, l are slightly different, so assume that

j < l < k. Let Us,j (k, l) be independent uniform (0, 1) random variables and, for the sake of
brevity, let w = 1 + δ/m. First define

X
(δ/m)
j,j (k, l) = I

[
Us,j (k, l) <

w

j (2 + δ/m) − 1

]
and, for j < s < l, given W

(1,δ/m)
s−1,j (k, l),

X
(δ/m)
s,j (k, l) = I

[
Us,j (k, l) <

W
(1,δ/m)
s−1,j (k, l) + w

s(2 + δ/m) − 1

]
.

Also, let X̃
(δ/m)
s,j = X

(δ/m)
s,j (k, l) for j ≤ s < l. That is, we can perfectly couple the degrees of

vertex j in the two graphs up until vertex l arrives. Now, for l ≤ s < k, given W
(1,δ/m)
s−1,j (k, l)

and W̃
(1,δ/m)
s−1,j , define

X
(δ/m)
s,j (k, l) = I

[
Us,j (k, l) <

W
(1,δ/m)
s−1,j (k, l) + w

s(2 + δ/m)

]
, (3.13)

X̃
(δ/m)
s,j = I

[
Us,j (k, l) <

W̃
(1,δ/m)
s−1,j + w

s(2 + δ/m) − 1

]
. (3.14)

Set X
(δ/m)
k,j (k, l) = 0 and X̃

(δ/m)
s,j as in (3.14) with s = k and, for s > k, define

X
(δ/m)
s,j (k, l) = I

[
Us,j (k, l) <

W
(1,δ/m)
s−1,j (k, l) + w

s(2 + δ/m) − 1

]
,

X̃
(δ/m)
s,j = I

[
Us,j (k, l) <

W̃
(1,δ/m)
s−1,j + w

s(2 + δ/m) − 1

]
.

For j < l < k, we have jointly and recursively defined the variables X
(δ/m)
s,j (k, l) and X̃

(δ/m)
s,j ,

and it is clear they are distributed as claimed above with W
(1,δ/m)
nm,j (k, l) and W̃

(1,δ/m)
nm,j the required
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degree counts. Also, note that X̃
(δ/m)
s,j ≥ X

(δ/m)
s,j (k, l) and W̃

(1,δ/m)
s,j ≥ W

(1,δ/m)
s,j (k, l), and now

define the event

As,j (k, l) = {min{j ≤ t ≤ nm : X̃
(δ/m)
t,j 
= X

(δ/m)
t,j (k, l)} = s}.

Using the fact that W̃
(1,δ/m)
s−1,j = W

(1,δ/m)
s−1,j (k, l) under As,j (k, l), we have

P(W
(1,δ/m)
nm,j (k, l) 
= W̃

(1,δ/m)
nm,j )

= P

( nm⋃
s=j

As,j (k, l)

)

≤
k∑

s=l

P

(
As,j (k, l) ∩

{
W

(1,δ/m)
s−1,j (k, l) + w

s(2 + δ/m)
< Us,j (k, l) <

W̃
(1,δ/m)
s−1,j + w

s(2 + δ/m) − 1

})

≤ EX̃
(δ/m)
k,j +

k−1∑
s=l

P

(
W

(1,δ/m)
s−1,j + w

s(2 + δ/m)
< Us,j (k, l) <

W̃
(1,δ/m)
s−1,j + w

s(2 + δ/m) − 1

)
.

Now using Theorem 3.2, the estimates in Lemma 3.2, and the fact that j, l ∈ {m(i − 1) + 1,

. . . , mi}, we find that

P(W
(1,δ/m)
nm,j (k, l) 
= W̃

(1,δ/m)
nm,j )

≤ EW
(1,δ/m)
k−1,j + w

k(2 + δ) − 1
+

k−1∑
s=l

(EW
(1,δ/m)
s−1,j + w)

(
1

s(2 + δ/m) − 1
− 1

s(2 + δ/m)

)

≤ Cm,δ

[(
k

j

)1/(2+δ/m) 1

k
+

(
k

j

)1/(2+δ/m) 1

jk

+
∞∑
s=l

((
s

j

)1/(2+δ/m) 1

s2 +
(

s

j

)1/(2+δ/m) 1

js2

)]
≤ Cm,δ

i
.

For the case l < j < k, the coupling is similar to that above, except it starts from (3.13)
and (3.14) for j ≤ s < k; the probability estimates are also similar. If j > k then it is easy to
see that the variables can be perfectly coupled. If j = k or j < l = k then the analog of the
coupling above can only differ if the edge emanating from vertex k connects to j in G

1,δ/m
k ,

which occurs with chance of order(
k

j

)1/(2+δ/m) 1

k
= O

(
1

i

)
.

Thus, for any k, l in the support of (K, L) and j ∈ {m(i −1)+1, . . . , mi}, each of the m terms
in the sum (3.12) is bounded above by Cm,δ/i, which establishes the result.
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