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Abstract. Given a manifold M equipped with a free, properly discontinuous, co-
compact Z-action, and a flow <£ on M which is Z-equivariant, we study the qualitative
dynamics of <£. Under certain hypotheses on 4>, we show that the chain recurrent
set of 4> has a decomposition which is the analogue, in the category of Z-equivariant
flows, of Smale's spectral decomposition for recurrent sets of Axiom A flows.

Given a compact manifold M, a flow <f> on M, and a cohomology class a € HX{M; Z),
consider the Z-covering M-* M associated with a, and the lifted flow 4> on M.
What can one say about the qualitative dynamics of 4> ?

In a certain sense, this question is equivalent to the question of how the qualitative
dynamics of <f> are related to the cohomology class a. For example, in the
Schwartzman-Fried theory of cross sections of flows (see [F2]), it is shown that <j>
has a cross-section Poincare dual to the cohomology class o if and only if ^ is a
product flow, that is, M = 5 x R for some compact manifold 5, and <f> is the flow
in the R direction.

Although our question about qualitative dynamics is posed in the somewhat
unfamiliar setting of a non-compact space M, <f> can be extended to a flow <j>c on
the end compactification M c = M u {-oo, +oo}, by letting —oo and +oo be stationary
points. In the special case when <£ is a product flow, notice that the chain recurrent
set R(4>c) of the compactified flow 4>c consists exactly of the two points {-oo, +oo},
each of which forms a separate component of R{4>°). This is the simplest possible
behavior for a compact flow. At the other extreme, one would expect the behavior
of 4>c to be very opaque if -oo and +oo were in the same component of R(<j>c):
there might be orbits going from -oo to +oo and other orbits going back again,
doing very strange things in the middle. We shall avoid this case altogether; that
is, we shall consider only those flows 4> such that -oo and +oo are contained in
separate components of the chain recurrent set of 4>c.

This restriction on 4>c implies in turn a restriction on the cohomology class a,
which can be stated in terms of homology directions for the flow <f>. Homology
directions were introduced by Fried in [F2]; they can be thought of as a version of
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330 L. Mosher

the asymptotic cycles studied by Schwartzman [Sch]. Loosely speaking, a homology
direction of <£ is an element living in the projectivized homology space
H,(M; R)/R+ = {sphere} u {point} which is approximated by the projectivized
homology classes of long, almost closed orbits of </>. Although a cannot be evaluated
on a homology direction d, it does make sense to ask whether a(d) is positive,
negative, or zero. The main result of the Schwartzman-Fried theory is that 4> is a
product flow if and only if a is positive on all homology directions of <f>. It is a
simple extension of Fried's arguments (Proposition 9.1) to show that if —oo and +°o
are in separate chain components of <£c, then a is non-negative on all homology
directions of <f>.

Thus, under the hypothesis that a is non-negative on homology directions of 4>,
we ask: what are the qualitative dynamics of <f> ? We shall give a reasonably complete
answer to this question for one special class of flows </>, namely the pseudo-Anosov
flows, i.e. those 3-dimensional flows which are suspensions of pseudo-Anosov maps
of surfaces. Our main theorem, the Z-Spectral Decomposition Theorem, lists several
properties of <f> in the case that <f> is pseudo-Anosov. The most important property
says that, although the chain recurrent set R{tj>) has infinitely many chain com-
ponents, each chain component is compact, and there are only finitely many orbits
of chain components under the action of Z. This should be compared to the statement
of the original Spectral Decomposition Theorem of Smale [Sm], which says that
the recurrent set of an Axiom A flow has only finitely many components. We will
also prove a property which shows that in a certain sense, 4> is well-behaved near
the ends ±00 of M.

Our interest in the question of the qualitative dynamics of Z-equivariant flows
is motivated by an attempt to generalize the Schartzmann- Fried result, which
classifies those cohomology classes a which are Poincare dual to a cross-section to
<f>. Recall that a cross-section to <f> is a codimension-1 closed submanifold of M
transverse to (f> (i.e. a 'transverse surface') which intersects every flow line. In a
companion paper [M], we consider the following question: given a cohomology
class a, when is a Poincare dual to a transverse surface S to (f> which does not
necessarily hit every flow line? The lifted flow 4> can be employed to shed some
light on this problem: a necessary condition for the existence of S is that the
compactified flow <j>c satisfy our special hypothesis on ±00: S must lift to a compact
transverse surface S to <£ which separates -00 from +00, so the two points -00 and
+00 are in separate components of the chain recurrent set of 4>c. Thus, a must be
non-negative on homology directions of cf>.

The converse question is: given that a is non-negative on all homology directions,
is there a transverse surface to <$> Poincare dual to a ? The course of argument
proposed here is to learn as much as possible about the qualitative dynamics of 4>,
and use this knowledge to construct the desired transverse surface. In this paper,
our investigations cover one half of this course of argument: given that a is
non-negative on all homology directions of <t>, we shall study the qualitative dynamics
of 4>. As the results of Fried cover the case where a is positive on all homology
directions, we are interested here only in the case where a takes on the value zero
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on some homology directions. In a companion paper [M], we use the results proven
here to investigate the remaining half of the argument: in particular, in [M] we
prove that when <f) is a pseudo-Anosov flow and a is non-negative on the homology
directions of <j>, then a is indeed Poincare dual to some transverse surface to <f>.

Our interest in pseudo-Anosov flows was spurred by the results of [Fl], which
gave a flow-theoretic interpretation of certain results of Thurston on the structure
of 3-manifolds which fiber over the circle. Thurston showed [T] that for a 'nice'
3-manifold M, there is a naturally defined norm x on HX{M; U) which is related
to fiberings of M over the circle. The unit ball Bx, instead of having the shape of
an ellipsoid, is a polyhedron with integrally defined faces. Thurston also showed
that if a e H\M; Z) <= HX{M; K) is Poincare dual to a fiber of some fibration over
S\ then there is a top-dimensional face a of Bx such that a eint (Cone (a)), and
every other integral class in int (Cone (o-)) is Poincare dual to a fiber of some
fibration; in this case, a is called a fiberedface of the Thurston norm. Fried proved
that for a fibered face o- of the Thurston norm of an irreducible, atoroidal 3-manifold
M, there exists a flow <£ such that every integral class a e int (Cone (a)) is represented
by a cross-section to </> whose first return map is pseudo-Anosov. In fact, Fried
proved that int (Cone (cr)) consists precisely of those classes which are positive on
all homology directions of the flow <j>. This shows that d(Cone (a-)) consists precisely
of those classes a e Hl(M; R) which are non-negative on all homology directions
of <f> and zero on some homology directions of </>; since the faces of Bx are integrally
defined, there exist such classes a which are integral. Our main result, the Z-Spectral
Decomposition Theorem, can therefore be interpreted as giving information about
the boundary of a fibered face of Thurston's norm. In the companion paper [M],
this interpretation is utilized to settle a question of Oertel [O], by showing that for
a fibered face a of Thurston's norm, there exists a branched surface 2 c M which
carries representatives of every class in Cone (a-).

Although we have restricted our discussion to pseudo-Anosov flows on 3-mani-
folds, our methods may also apply when <j> is any flow with good symbolic dynamics,
to yield a Z-Spectral Decomposition Theorem in those cases. The proof we give of
the Z-Spectral Decomposition Theorem for pseudo-Anosov flows utilizes very
strongly certain properties of Markov partitions, and in particular requires a good
understanding of side identifications among the Markov flow boxes. In the pseudo-
Anosov case, these side identifications are easy to understand, and the proof goes
through. There are probably some difficulties in generalizing this proof to the case
of higher dimensional basic sets of Axiom A flows, because of the complicated side
identification among the Markov flow boxes. On the other hand, our methods do
apply to a 1-dimensional basic set of an Axiom A flow <f> on a manifold M, where
according to Bowen [Bl] there is a Markov partition whose flow boxes have no
boundary identifications at all. In the final section, we shall describe briefly how a
Z-Spectral Decomposition Theorem can be formulated and proven for the 1-
dimensional case. For general basic sets, we show how the theorem can be reduced
to a conjecture concerning the existence of isolating blocks of hyperbolic invariant
sets possessing nice homological properties.
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As our main interest is in applications to the topology of 3-manifolds, we shall
for the most part concentrate entirely on the case of pseudo-Anosov flows. In fact,
this case has some interesting difficulties that do not appear in the Axiom A case,
because of the failure of standard shadowing arguments.

The statement of the Z-Spectral Decomposition Theorem is given in § 0, together
with some preliminary definitions. The proof of the theorem occupies §§ 1-8; the
content of these sections is described briefly at the end of § 0. § 9 contains a few
comments about extending the Z-Spectral Decomposition Theorem to the case of
basic sets of Axiom A flows.

0. Preliminaries and statement of the Z-Spectral Decomposition Theorem
First we review some basic notions concerning pseudo-Anosov maps. The standard
reference for pseudo-Anosov maps is [FLP]; reader is referred there for more
detailed definitions and basic results.

Given a closed, oriented surface 5 and an orientation preserving homeomorphism
/ : S-» S, / is pseudo-Anosov if there exists A > 1 and a pair of transverse measured
foliations 9U and &s which fill up 5 such that/C^) = A"1 • 9S andf(&u) = A • &u.
Given a point s £ S and n > 3, s is an n-pronged singularity of 9S if and only if s
is an n-pronged singularity of ^u; in this case, we say that s is an n-pronged
singularity off, and we write sing {f, n) = {seS\s is an n-pronged singularity of/}.
Also, we write sing (/) = U n 2 3 sing (f, n).

The mapping torus of/ is the 3-manifold M obtained from S x / by gluing (x, 1)
to (/(x), 0) for all xeS. The suspension flow of/ is the flow cj> on M induced by
the semi-flow (x, s) • t = (x, s + t) on Sx I, where 0 < s, t, s +1 < 1. Henceforth, for
any xeM and teR, we shall write x- t as a shorthand for 4>,{x); also, for any
interval [a, b] in R, we shall write x • [a, b] for the flow segment {x • 111 e [a, b]}.

Now we review Fried's theory of homology directions for a flow <j> on a compact
manifold M; details can be obtained in [F2]. Given xe M, a closing sequence based
at x is a sequence (x,-, /,) such that Xj-»x, f,--»oo and d(xit x,- /,)<£,- where e,-*0
as i-»oo. When i is large enough, the fundamental group of each e, ball B(xh £/)
injects trivially into TT^M). Thus, there is a well-defined homology class c,e
Hi(M; R) obtained by concatenating the flow segment x, • [0, f,] with a path from
x,-• tt to Xj staying in B(x,, e,). Let p(ct) denote the projective image of c, in
Hi(M;U)/U+, where the latter space is topologized as a sphere disjoint union a
point. Any limit point of the sequence p(c,) as i -» oo is called a homology direction
for the flow <f>. The set of all homology directions forms a set D0 c H^M; U)/U+.
Given a set A c H,(M; R)/R+, let Cone' (A) denote the smallest closed convex cone
containing the inverse image of A under the projection map / ^ / ^ ( M ; R)-»
Hl(M;R)/R+, and let Cone (A) be Cone' {A)-p~i(An{0}). In other words, if A
does not contain the point p(0), then Cone (A) is obtained from Cone' {A) by
deleting the origin; otherwise, Cone (A) = Cone' (A). Given ae Hl(M;U) and
p{c)e Hi(M; R)/R+, the intersection sign

a(p(c)) = sign(o(c))e{-l,0,l}
is well-defined, independent of the choice of c representing p(c).
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CROSS-SECTION THEOREM (Fried). Given a e H\M;Z), a is Poincare dual to a
cross-section to 4> if and only if a(d)>0 for all d e D^.

Next we describe the Thurston norm on the homology of a 3-manifold (see [T]
for details), and Fried's results [Fl] concerning fibered faces of the Thurston norm.
The Thurston norm x on Hl(M; R) is defined as follows. Given a compact surface
A, if A is connected define x~(A) = max {0, -x(A)}, and if A is a union of connected
components A = A{v • -<JAk define x-(A) = x-{A1) + - • •+x~(Ak). Given a e
H1(M,Z), x(a) is the minimum, over all embedded surfaces A c M Poincare dual
to a, of x~(A). Thurston showed that x extends by homogeneity and continuity to
a semi-norm on Hl{M; U), which is a norm when M is irreducible and atoroidal
(we shall consider H\M;Z) to be embedded in Hl(M;U) in the natural way).
Moreover, he proved the following theorem describing the structure of the unit ball
Bx of x

THEOREM (Thurston). The Thurston norm x is the supremum of finitely many integrally
defined linear functional on H1(M; U). In particular, the unit ball Bx of x is a finite
polyhedron with integrally defined faces. Moreover, there is a specific set of top-
dimensional faces of Bx, called fibered faces, with the property that an integral
cohomology class a e H\M; Z) is Poincare dual to a fiber of a fibration M -» S1 if
and only if ae int (Cone (cr)) for some fibered face a of Bx.

Fried has shown that there is a connection between the fibered faces of Bx and
certain non-singular flows on M:

THEOREM (Fried). Suppose M is irreducible and atoroidal. There is a natural way to
associate, to each fibered face a of Bx, a non-singular flow </> on M with the following
property: for each class a e Hl(M, Z), a is Poincare dual to a cross-section A of <f> if
and only if a eint (Cone (cr)), in which case the first return map of <j> to A is
pseudo-Anosov. 4> is uniquely characterized by this property, up to isotopy and
reparameterization.

The uniqueness property can be restated by saying that the oriented 1-dimensional
foliation underlying </> is unique up to isotopy. We say that <f> is a pseudo-Anosov
flow associated with the face cr. In particular, consider a pseudo-Anosov m a p / : S -* 5
with mapping torus M and suspension flow <j>; the quotient map SxI->M deter-
mines a fibration q.M-^S1 with fiber SxO, so the Poincare dual of a of SxO is
contained in int (Cone (cr)) for some fibered face a of BX(M). Fried's theorem says
that for any other fibration q':M->S\ with fiber S', pseudo-Anosov monodromy
map / ' , and suspension flow </>' on M, if S' is Poincare dual to an element of
int (Cone (cr)), then <f> and <j>' are isotopic, up to reparameterization.

Combining the above theorem with the cross-section theorem, we arrive at:

COROLLARY: FRIED DUALITY FOR PSEUDO-ANOSOV FLOWS. Let <f> be a pseudo-
Anosov flow associated with afiberedface a of an irreducible, atoroidal manifold M3.
Then Cone (cr) is the dual cone to Cone(D^). In other words, Cone(cr) =
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{a e H\M; U) \ a(d) > Ofor all d e D^,}. In particular, given a face F of d(Cone (<r)),
if we define the dual face F* = {aeCone (D<l,)\a(F) = O}, then the correspondence
F-*F* is a 1-1 correspondence between faces of d(Cone (a)) and faces of

Our main theorem, the Z-Spectral Decomposition Theorem, will show how the
flow <j> is related to a class a e d(Cone (o-))nH\M; Z). We shall be concerned
with the qualitative dynamics of the lifted flow 4> on the Z-cover M of M determined
by a. In order to state the theorem, we shall need some generalities used in
the study of the qualitative dynamics of flows; a good reference is Conley's
book [C].

Let a fixed flow < t o n a metric space TV be given, with metric d. For our main
application, TV will be the space M and d will be a Z-equivariant metric. Given a
point x € TV, L+(x), also known in the literature as o>(x), is the set of all limit points
of sequences of the form x- tt, where f,-»+oo as i-»+oo; L_(x), also known as a(x) ,
is defined similarly by letting f, -> -co. Given a set X <= TV, we shall also occasionally
make use of the notation L+(X) = U {L+(x) \x e X}, and similarly for L_(X). Given
e, T > 0, an e, T chain is a pair of sequences x0, X! , . . . , xn e TV, tx,... ,tn e U+, such
that for 1 < i< n, t,> T and d(x,_! • tt, x , )< e; this chain is said to go from x0 to
xn. If xo = xn, this is called an e, T cycle through x0. Given x e TV, R+(x) is defined
as the set of all points y such that for all e, T > 0, there exists an e, T chain from
x to y; R-(x) is similarly defined by taking chains ending at x. The chain recurrent
set R = /?(<&) is the set of all points x e TV such that x e R+(x), i.e. there exists an
e, T cycle through x for all e, T > 0 . It is a fact that the restriction of <1> to R is a
chain recurrent flow, i.e. the chain recurrent set of <t> | R is all of R. A closed invariant
set C of 4> is chain connected or chain transitive if for any x, y e C, there exists an
e, T chain from x to y for all e, T > 0. In general, given any closed invariant set I
of <I> such that «J> | / is a chain recurrent flow, a closed invariant subset C <=• I is
called a chain component of / if it is a maximal chain connected set. It is evident
that the collection of chain components of / is a partition of the set /.

Z-SPECTRAL DECOMPOSITION THEOREM. Given a manifold M3, a pseudo-Anosov
flow (p on M, and a primitive element a € HX{M; Z), suppose that a ( d ) > 0 for all
d e D.J., and a(d) = 0 for some d e D^,. Let M-» M be the Z-cover defined by a, and
let <$> be the flow on M which lifts <f>. Let R be the chain recurrent set of <j>. Then:
(A) Each chain component of R is compact.
(B) There are finitely many orbits of chain components of R under the action of Z.
(C) For any xzM-R, either L+{x) = {+00} or L+(x) is contained in some chain

component of R.
(D) Similarly, for any x e M - R, either L_(x) = {-00} or L_(x) is contained in some

chain component of R.
(E) If L+(x) # {+00}, then there exists a neighborhood U of +00 such that for any

chain component C of R, if C<=- U then C <= /?+(x); a similar statement holds
when L_(x)#{-oo}.
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Because of Fried Duality for Pseudo-Anosov Flows, the hypothesis on a can be
restated as follows: if <x is the fibered face of BX(M) which is associated with the
pseudo-Anosov flow <f>, then a e H\M; Z) n d(cone (a-)). To see that this hypothesis
is non-vacuous, notice that because of Thurston's theorem the faces of BX(M) are
integrally defined, so for any sub-face o-'<=- a, Hl(M; Z) n int (cone (o-')) ̂  0 . This
also follows from Fried's description of Cone (£><£); see Theorem 3.4.

Besides properties (A) and (B), the most interesting property is (E). This says
that, in a certain sense, the flow is well-behaved near the ends of M. This property
is crucial in the construction, given in the companion paper [M], of transverse
surfaces to <£ which separate -oo from +oo. As a consequence of property (E), it
is possible to prove that the chain recurrent set of the compactified flow #c is the
union of the chain recurrent set of 4> with the set of ends {-oo, +oo}.

The proof of the Z-Spectral Decomposition theorem is presented in §§ 1-8, whose
contents are briefly described here.

In § 1, the proof is reduced to the case of a pseudo-Anosov/ which fixes all its
separatrices.

In § 2, we review the symbolic dynamics of pseudo-Anosov maps and flows.
In § 3, the main body of the proof begins. We introduce the main construction

used in the proof, the 'chain kernel' of a. This is a closed invariant subset of the
flow <f>, defined as the set of points x e M such that for all e, T> 0, there exists an
e, T cycle X through x with a(X) = Q. Most of the proof is devoted to studying
properties of the chain kernel of a, with the aim of showing that the total lift of
the chain kernel to M is the same as the chain recurrent set of <£.

Also in § 3, we introduce a notion which is designed to overcome certain difficulties
inherent in the study of pseudo-Anosovs. The main difficulty is that the standard
methods of shadowing theory do not apply: because of the presence of singularities
in pseudo-Anosov maps, pseudo-Anosov flows have e, T cycles which are not
shadowed by any periodic orbits. In order to overcome this difficulty we introduce
the notion of a 'quasi-orbit'; heuristically, a quasi-orbit is a finite number of true
orbits of the flow that, taken collectively, can be used to shadow e, T cycles.

In § 4, we study the symbolic dynamics of quasi-orbits.
In § 5, we continue the study of quasi-orbits, and we develop a shadowing theory

for pseudo-Anosovs, which is used to characterize the chain kernel of a. As a
consequence, we prove that the chain kernel has only finitely many chain com-
ponents, which is the main step in proving property (B). Shadowing theory for
pseudo-Anosovs was introduced by Handel [HI], [H2], who used it to understand
the entropy of surface maps in the isotopy class of a pseudo-Anosov. Our approach
to pseudo-Anosov shadowing theory is motivated by Handel's theory, although our
proofs follow along the more classical lines contained in Shub's book [Sh].

In § 6, we show how each chain component of the chain kernel of a can be lifted
homeomorphically to M, by using isolating blocks.

In § 7, we study the transient behavior of orbits of <j>, and we prove that the total
lift of the chain kernel of a is, in fact, the chain recurrent set of <j>. This section
contains the proofs of properties (A)-(D) of the theorem.
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In § 8, we study the behavior of 4> near the ends of M, and prove property (E)
of the theorem.

In § 9, we give a short discussion of generalizations of the Z-Spectral Decomposi-
tion Theorem to the case of basic sets of Axiom A flows.

1. Reduction to case of fixed separatrices
There are many places in the proof of the Z-Spectral Decomposition Theorem where
it will be convenient to assume that the flow (f> is a suspension of a pseudo-Anosov
map / which acts as the trivial permutation on its singular separatrices. Although
this assumption could be dispensed with at the cost of more intricate arguments, it
is easier to reduce the proof of the theorem to the case of fixed separatrices. We
begin by demonstrating this reduction.

Let / be an arbitrary pseudo-Anosov map, M the mapping torus of f, <f> the
suspension flow on M, and k the least power such that / * fixes separatrices. Let N
be the mapping torus of/*, if/ the suspension flow offk on N. There is a Z/k
covering map p: N -» M corresponding to the kernel of the homomorphism irx (M) -*
Z->Z/k where 77,(M)-»Z is the induced homomorphism of the fibration M^>Sl

corresponding to / iff is the pull-back flow of <f> under p: N -» M.
We shall show that for any a e H\M; Z), the hypotheses of the theorem for M,

(j>, and a imply the hypotheses of the theorem for N, t//, and p*(a)e Hl(N;Z).
Then we shall show that the conclusions of the theorem for N, t//, and p*(a) imply
the conclusions of the theorem for M, <f>, and a. Note that the map p*:H\M;R)->
Hl(N; R) is an injection, and the restriction p*: H\M; Z) -* H\N; Z) takes primi-
tive classes to primitive classes.

Consider the cones of homology directions Cone (D^) c //,(M; R), Cone (D ,̂) c
Hi(N; R), and the dual cones Q <= H\M; R), Q c Hl(N; R). We claim that, under
the injection p*:Hl(M; U)^Hl(N; R), p*(Q,) = Qnimage (/>*). Since a cross-
section of 4> lifts to a cross-section of ip, the inclusion in one direction is obvious.
Conversely, suppose that /3 e int (Q,) n image (p*). Choose a closed 1-form CJ rep-
resenting /3 such that w is positive on flow lines of \f>. Since image (p*) is pointwise
invariant under the action of Z/K on H\M; U), then the average of a> over Z/K
is a closed 1-form «', positive on flow lines of i/», invariant under Z/K, and
representing the cohomology class fi. Thus, a)' is the pull-back of a 1-form on M,
positive on flow lines of <j>. Thus, /?£/?*(Q,).

From the previous paragraph, it follows that if a e3(C^,), then p*(a)ed(Q,). It
follows that the hypotheses of the theorem for M, <j>, and a imply the hypotheses
of the theorem for N, if), and p*(a).

Now let N-> N be the Z-cover associated to p*(a)e H\N; Z) and let <A be the
lift of ifi, and we assume that the conclusions of the theorem hold for i£ By an
analysis of fundamental groups, we shall now show that there is a Z/k covering
map p:N-*M making diagram 1 commute:

Let G = TT,(M); the primitive cohomology class a e H\M; Z) defines an epimor-
phism a:G-»Z, and K=ker(a) is canonically identified with TT,(M). Consider
also the surjective homomorphism j3: G -»2/ k associated with the covering map
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—M

N-
Z/k

DIAGRAM 1.

N-*M. Let / / = ker(/3); then H is canonically identified with 77,(JV). The
cohomology class p*(a)e H\N; Z) associated with the covering N-> N defines an
epimorphism p*{a):H^>Z, which is evidently the same as the restricted map
a | H: H -* Z. Set F = ker (a | H) c H, so that F is canonically identified with TT-,(JV).
It is evident that

and since /3\K:K-*Z/k, this proves the existence of the required Z/k covering
map p:N^*M. This discussion is summarized in the accompanying commutative
diagram of subgroups and epimorphisms of TT^M), in which every linear sub-
sequence is exact (see diagram 2).

It is evident that p respects Z-actions, and that \j> is the lifted flow of (j> under p.
Note that p maps e, T cycles of \\i to e, T cycles of 4>, so p takes R(tjf) to R(4>).
Moreover, this map is surjective, since each e, T chain of <j> pulls back to an e, T
chain of i£ Since chain connected sets go to chain connected sets, each chain
component of R(ip) maps surjectively to a chain component of R(<fi); property (A)
of the Z-Spectral Decomposition Theorem says that chain components are compact,
so property (A) for <fi directly implies property (A) for <j>. Moreover, letting ^(R)
denote the collection of chain components of the chain recurrent set R, there is an
induced map taking ^{R^)) onto "#(/?($)) which respects Z-actions; property
(B) says that there are only finitely many Z-orbits of chain components, so property
(B) for $ follows from property (B) for ij/.

Given xe M-R(<fr), consider L+(x). Choosing yep~l(x), clearly ye N-R(tj/),
and p(L+(y)) = L+{x). Thus, property (C) for <j> follows directly from property (C)
for ij/; a similar statement holds for property (D).

When R is the chain recurrent set of a flow, there is a natural acyclic partial order
on <€(R) defined as follows: if C * C'e <$(R), then C<C if there exists a sequence
C = Co, C , , . . . , Ck = C in ^(R) and a sequence xt,..., xk in the complement of

DIAGRAM 2.
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R, such that L_(x,) c C,_, and L+(x,) c C,. Property (E) is equivalent to the following
statement for the partially ordered set *£= <£(/?(<£)):

Property (E')- For every Ce% there exists a subset V of <£ such that C'e V implies
C < C", and V is a 'neighborhood of +00' in the sense that every increasing sequence
in ^ is eventually contained in V.

The equivalence of property (E) and property (E') is easy to establish; for a detailed
proof, the reader is referred to Proposition 8.1.

By naturality of the chain recurrent set, Z/k acts on ^(/?(i^)); also by naturality,
Z/k preserves the partial order on ^(/?(i^)). Since the group Z/k has finite order,
and since <#(/?((£)) is acyclic, the different elements of ^(R(tji)) in a given Z/k
orbit are non-comparable. Thus, the quotient ^{Ri^/iZ/k) inherits an acyclic
partial ordering. Property (E') for <&= <£(.R(t£)) evidently implies property (E') for
<<?=<£(/?(<£))/(Z/fc). Notice that the natural bijection $
is order preserving. Thus, property (E') holds for <# =

2. Symbolic dynamics
Following the methods in [FLP], we give a description of the symbolic dynamics
of a pseudo-Anosov map. No proofs are given, and the basic definitions are assumed;
the reader is referred to [FLP].

Let/: S •* S be a pseudo-Anosov map on a compact, connected, orientable surface,
with stable and unstable measured foliations 3FU, 3>s. Because of the results of § 1,
we are assuming that / fixes each 5 e Sing (/), and also fixes the separatrices
at s.

An &U,3FS rectangle in / is the image R of an embedding IxI-+S such that
horizontal segments go to leaf segments of ^u , and vertical segments go to leaf
segments of &,. We use 9SR to denote the part of 8R lying on leaves of &s, and
9UR to denote the part of dR lying on leaves of &u; duR is thus the 'horizontal
boundary' of R, and 8SR is the 'vertical boundary' of R. In the literature, if o- is a
component of 3SR or duR, points in int (o-) can be either singularities or regular
points; for our purposes, we shall assume that int (cr) consists entirely of regular
points. Corners of R can be singularities, however.

A Markov partition for / is a finite collection M of 9U, ZFS rectangles satisfying
the following properties:

(i) M covers 5;
(ii) two distinct rectangles in M have disjoint interiors;
(iii) for any R,R'eM, f(int(R))nint(R') is either empty or the interior of a

single 3FU, &s rectangle;
(iv) for any R,R'eJi and any component <r of duR, if /"'(int (K))nint (/?') is

the interior of a rectangle R", and i f / ~ V ) n R" * 0 , then there is a component
o-' of duR' such that f~\<r) <= o-';

(v) for any R,R'eM and any component <r of dsR, if/(int (/?))nint (R1) is the
interior of a rectangle R" and /(o-)<= i ? 7 0 , then there is a component a'
of dsR' such that /(cr) c a'.

In [FLP], it is shown that a Markov partition M always exists for a pseudo-Anosov
map/ In fact, the particular construction given in [FLP] has the following additional
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properties:
(vi) given an n-pronged singularity s of f, s is a corner of exactly 2 • n rectangles

in M;
(vii) for any ReM, duR consists of segments of singular separatrices of &u;
(viii) for any ReM, dsR consists of segments of singular separatrices of &s.

The construction is given in expose 10, § V, starting page 201 of [FLP], and refers
back to expose 9, § V. The heart of the construction is given in lemme 9, expose 9,
§ V: one chooses a collection r consisting of short initial segments of each unstable
separatrix, with endpoints on stable separatrices, with the property that /(T)<= T.

The surface then naturally decomposes (lemma 11) into rectangles satisfying all
properties but (iii). By choosing a subdivision, property (iii) is also obtained (expose
10, § V, pp. 201-202), retaining the rest of the properties.

Recall now how a subshift of finite type is constructed from a Markov partition.
Define A: M x M -»{0,1} so that A(R, R') = 1 if and only if/(int (R)) n int (R1) * 0 ;
A is called the transition matrix of M, and it is a Perron-Froebenius matrix, i.e.
there exists some n > l such that A" has all positive entries [FLP, expose 10, § VI,
Lemma 1, p. 205]. Give Mz the product topology; following Bowen's convention,
elements of Mz are denoted m with m = (mn)neZ, so each mn is an &u, &s rectangle.
Define the shift homeomorphism p:Mz^Mz by p{m)~ m', where m'n = mn_,. Let
SA = {meMz\A(mn,mn+i) = l for all nel) with the subspace topology; SA is
invariant under p. In general, the term symbolic sequence will refer to an element
of SA, and the term finite symbolic sequence will refer to a finite segment of an
element of SA. Also, a symbolic loop of length K is a circular sequence of the form
m = (mk)keZ/K, where A(mk, mk+x) = 1 for each keZ/K; such a sequence is some-
times written out as (m, , . . . , mK), where it is to be understood that 1,..., K are
considered as representatives of Z/K; the sequence is also written out as
(m0, nti,..., n*K = mo)- (Note: we shall not in general distinguish between a sym-
bolic loop /M = (m,)ieZ/K and any loop obtained by a circular order preserving
permutation of the index set Z/K.) Given a symbolic loop m = (mk)k<EZ/K, there is
an associated symbolic sequence m = (m,)ie2 where rht = mk whenever k is the
congruence class of i mod K.

Define a map q:SA^S as follows: given m € SA, the sequence of sets BN(m) =
P) {/"(/»!_„) |-JV< n< N) is a nested sequence of 3FU, $FS rectangles whose intersec-
tion is a single point, which is defined to be q(m). Then q is a continuous semi-
conjugacy taking the shift map p:SA^SA to the pseudo-Anosov map / : S->5, i.e.
q°p=f° q. Note that the semi-conjugacy q is finite-to-one. More precisely, given
xeS, the pre-images of x under q can be counted as follows. If x is an n-pronged
singularity, there are exactly 2 • n pre-images; if x is in the intersection of a stable
singular separatrix and an unstable singular separatrix, there are exactly 4 pre-
images; if x is any other point in a stable or unstable singular separatrix, there are
exactly 2 pre-images; otherwise, there is exactly 1 pre-image.

Now we describe the symbolic dynamics of the suspension flow of a pseudo-
Anosov. Suppose we are given a 3-manifold M, a fibered face a of BX(M), and <f>
the associated pseudo-Anosov flow on M; once and for all, we fix a distinguished
section S of <f>, with pseudo-Anosov first return map f, and we assume that / fixes
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all its singular separatrices. Let <j> be parametrized so that the return time to S is
everywhere equal to 1. Let M be a Markov partition for/ with transition matrix A.
For each Markov rectangle B e M, let B+ = B • [0,1] be the corresponding flow box
for 0, and let M+ = {B+ \ B e M}.

The semi-conjugacy q:SA-> S induces a semi-conjugacy of flows, as follows. Let
Tp denote the mapping torus of p, i.e. the space S4xR modulo the identification
of m x / with p(m)x(/-I), and let Susp (p) denote the suspension flow of p on
Tp. Let Q: Tp -> M be defined by Q(mxt) = <f>(q(m), t); this is easily checked to
be well-defined. Evidently Q is a semi-conjugacy from the flow Susp (p) to the flow
<j>. Given m e S(A), we shall use O(/n) to denote the orbit (?(mxR) = Q(m)-Rof
the point Q(m) under the flow <f>. Notice that p(m) is precisely the point Q(m x 0) =
q(m).

By a periodic orbit of a flow we mean a map of S1 into the space of the flow
which locally immerses S1 into flow segments and takes the local angular parameter
on S1 to the time parameter of a flow segment with constant derivative; a primitive
periodic orbit is an embedding of S1. Notice that a periodic orbit of a flow on a
manifold M determines a homology class in H,(M; Z).

Given a symbolic loop m = (mk)k<EZ/K, there is a corresponding periodic orbit of
Susp (p), whose image in M is a periodic orbit of <f> denoted O(m); the corresponding
homology class in H,(M; Z) is denoted [O(/n)]. A periodic orbit of <f> can be either
regular or singular, depending on whether or not the first return to a local cross-
section looks like a regular point or a singular point of a pseudo-Anosov. A singular
periodic orbit is n-pronged if the local first return map looks like an n- pronged
singularity of a pseudo-Anosov. Given a periodic point x of / of period k, let
Susp (x) denote the corresponding primitive periodic orbit of <f>. If x is a regular
point off, then Susp (x) is regular. If x is an n-pronged singularity off, then Susp (x)
is an n-pronged singular orbit.

Notice that every regular periodic orbit of <f> is equal to O(m) for a unique
symbolic loop m and O(m) is primitive if and only if m is primitive. This follows
from the fact that a regular periodic point x of / has a unique symbolic sequence,
since x does not lie on any stable or unstable singular separatrix. Similarly, an
n-pronged singular periodic orbit of <f> is equal to O(m) for exactly 2n distinct
symbolic loops m, and O(m) is primitive if and only if m is primitive; in fact, each
such m is a constant symbolic loop, and O(m) is primitive if and only if m
has length 1. This follows from the fact that / fixes all singular points and
their separatrices, so each of the 2n symbolic sequences of an n-pronged singu-
larity x are constant. From these considerations, it also follows that for a general
periodic point x off, if susp (x) = O(/n), and if k is the least period of x, then m has
length k.

3. The chain kernel
Now we turn to the proof proper of the Z-Spectral Decomposition Theorem. Once
and for all, fix an element aed(Cone (o-))nH1(M; Z), and suppose that a is a
primitive element of Hl(M; Z).
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First we consider the homology classes of e, T cycles of cf>, and their intersection
numbers with a. Given a e / / ' ( M ) , and given an s, T cycle X =
(x0 , . . . , xn; t ] , . . . , tn), if e is smaller than the injectivity radius inj (M) of M, then
there is a well-defined intersection number (a, X). To define this number, first let
X be a closed path in M obtained by starting from x0, proceeding along the flow
line to x0 ' '1, passing along a path to xx which stays completely in B(x0 • *,, e),
proceeding along the flow line to x, • t2, etc., eventually closing up at the point
xn=x0. Since e<inj(M), the closed path X is well-defined up to homotopy,
independent of the choice, for each i = 1 , . . . , n, of a small path from x,_, • tt to x,.
Thus, the intersection number (a, X) = (a, X) is well-defined.

The chain kernel of a, denoted R(a), is defined to be the set of points x such
that for all 0<e<inj (M) and for all T>0, there exists an e, T cycle X through
x such that (a, X) = 0. For example, any periodic orbit of <j> on which a vanishes
algebraically is contained in the chain kernel of a. It is a simple exercise to show
that R(a) is a closed set invariant under </>. Thus, if we define L(a) = cl (U {periodic
orbits of <l> on which a vanishes}), then it follows that !/(«)<= R(a).

Notice that R(a) depends only on the boundary face F<=Cone(o-) such that
aeint(F) . In fact, if G = F* is the face of Cone (A*) which is dual to F, then
R(a) = {x|there exist e, T cycles X through x such that [X]eG}. This follows
directly from the easily established fact that G = Ker (a) n Cone (A*). We shall
occasionally adopt the notation R(F) or R(G) for the set R(a), when a eint (F)
and G = F*. Theorem 3.4 below, which gives Fried's characterization of D^, shows
that for each face G of Cone (A,,), there is always a periodic orbit X of </> such
that [X] e G; from the comments of the previous paragraph, it follows that i?(G) 5* (f>.
This implies that the collection of all chain kernels for the flow <f>, which form a
partially ordered set under inclusion, is isomorphic to the collection of faces of
Cone (A*) partially ordered by inclusion, and is also isomorphic to the collection
of faces of Cone (cr) partially ordered by containment.

The chain kernel of a is the key to understanding how the qualitative dynamics of
<f> is related to the cohomology class a. Our ultimate goal is to show that R(a) has
finitely many chain components, each of which lifts homeomorphically to a chain
component of R(<j>) (once a lift of a single point is chosen), and that the total lift
of R(a) is R((/>); this takes up most of §§3-7, and properties (A) and (B) of the
Z-Spectral Decomposition Theorem will follow from such considerations. In §7, we
also analyze the homology properties of orbits of <j> which are not in R(a), in order
to understand the transient behavior of the flow <£, and prove properties (C) and
(D). Using the groundwork of the previous sections, property (E) is proven in §8.

We shall begin the study of R(a) by analyzing the symbolic dynamics of the
subset L(a). At this point, it is not clear whether or not L{a) is all of R(a), so for
the moment we must be content with analyzing L(a); later we shall see how to
extend this analysis to all of ft (a). As a consequence of the symbolic dynamics
analysis of L(a), we shall prove in Proposition 3.7 that L(a) has only finitely many
chain components under the restricted flow <f>\L(a); this is a key step in the proof
that ft(a) has only finitely many chain components.
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In order to analyze L(a), we need a method for deciding which periodic orbits
of <f> are contained in R(a). Since periodic orbits are encoded as symbolic loops
of A, what we want is a method for deciding which symbolic loops m satisfy the
condition O(m)c: R(a). First we need some combinatorial tools.

Given two symbolic loops /w = (m,),eZ/L and m' = (mj)jeZ/L., suppose that
mo= m'o. Define a new loop Splice (m, m') = m", where m" = (m")ieZ/L+v, and

ifO<i<L

.<i<L+U.
m,

This is evidently a well-defined symbolic loop. It is not independent of cyclic
permutation of indices, but there are two kinds of cyclic permutations which do
not alter the spliced loop. When m (or m') is not primitive, we can cyclically permute
by a multiple of the primitive period. Also, when there are integers P, Q s 0 such
that P+ <?<min {L, L'}, and mk = m'k whenever -?<<:<(? , then if we cyclically
permute m and m' by the same amount k where -P^k<Q, the spliced loop
does not change.

One important property of the splicing operation is that it behaves well when
passing to homology classes. That is, when Splice (m, m') is defined, we have the
splice equation:

[O(Splice(m, m'))] = [O(m)] + [O(m')] inH^MjZ). (*)

This is a standard fact in symbolic dynamics, and it is usually proven under the
assumption that the Markov flow boxes {B+\BeM} have small diameter; this
assumption can always be achieved by refining the Markov partition. However,
there is an argument which uses only the fact that each local section B is actually
a topological rectangle 7 x 7, so B+ is a topological box. Letting y = O(m), y' = O(m'),
and y* = O(Splice (m, m')), we shall explicitly construct a homology between the
cycle •y + y and the cycle y*; the construction is illustrated in diagram 3. As y*
parallels y through the sequence of boxes mf,... , mt-i, map the strip 7x7 into
M with 7x0 mapping into y, I x 1 mapping into y*, 0x7 mapping into the top of
mj, and 1x7 mapping into the bottom of mj. Similarly, a strip can be constructed
between y' and y* through the sequence of boxes m5+,... ,m'L^_,. Finally, the four

DIAGRAM 3. A homology which proves the splice equation.
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bare boundary segments of these two strips, two on the top of m% and two on the
bottom of m0

+, together with the four bare segments o f y u / u y * passing vertically
through mo, bound a saddle shaped surface in m%. The gluing maps between the
two strips and the saddle shaped surface can easily be shown to preserve orientation,
and the resulting oriented immersed surface clearly has the cycle y + y' - y* as its
boundary.

Let TA be the topological realization of A: TA is a directed graph (digraph) having
vertex set M, and with a directed edge e(m, m') pointing from m to m' if and only
if A(m, m') = 1. Since A is Perron-Froebenius, it follows that TA is transitive, which
means that for any two directed edges e, e' and any sufficiently large n, there is a
directed path of length n starting with e and ending with e'. We shall only make
use of the weaker notion that YA is strongly connected, which means that for any
two vertices v, v' in TA, there is some directed path from v to v', with no conditions
on the length; equivalently, TA is connected and there is a directed loop through
any directed edge of TA.

For each symbolic loop m = (m,)ieZ/L of A, let y(m) denote the corresponding
directed loop in TA, based at the vertex m0; this gives a 1-1 correspondence between
symbolic loops of A and based directed loops in TA. When m = (m,),eZ/L is altered
by a cyclic permutation, then the base point of y(m) changes. Notice that when m,
m' are two symbolic loops such that Splice (m, m') is defined, then

y(Splice(m, m')) = y(m) * y(m'), (**)
where * indicates concatenation of based directed loops.

Now define a function Ua on directed loops of TA by Ua(y(m)) - (a, O(m)}. It
follows from the splice equation (*) and equation (**) that for any two based
directed loops y, y' with the same base point, Ua(y * y') = Ua(y)+ Ua{y'). We wish
to extend this function to a cohomology class on TA, i.e. a function on all (unidirec-
ted) loops of TA which is additive under concatenation. To do this, we need:

LEMMA 3.1. Directed loops span homology in strongly connected digraphs. Given
a strongly connected digraph G, H^G; Z) is spanned by the homology classes of the
directed loops.

Proof. Each element of HX(G; Z) can be represented by a non-directed closed path
y = ef(1) * e"<2) * • • • *ea

K
(K), where a(k) = ±1 and e, represents a directed edge. We

must show that y is homologous to a linear combination of directed closed paths.
This is proven by induction on the number of edges that y traverses backwards, i.e.
the size of the set {1«£fc« K\a(k) = -1}. We can assume that a(l) = - l . Using
strong connectivity, choose a directed path y' from Head (e() to Tail ( e j . Notice that:

Head ( / ) = Tail (e,) = Tail (ej(2) * • • • * ea
K

(K)), and

Tail (?') = Head (e,) = Head (ej(2) * • • • * ea
K

(K)).

Thus, yt = ex * y' and y2 = e°(2) * • • • * £* K) * y' are closed loops in Y, and we
clearly have the following equation in H,(G; Z): [y] = [y2] - [yi]. NOW y, is directed,
and y2 traverses one fewer edge backwards than y. By induction, [y2] is a linear
combination of classes of directed loops, and we are done. D
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Now suppose one is given a function U defined on the collection of directed
loops, which is a homomorphism in the sense that if y, y' are directed closed loops
with the same base point, then U(y * y') = U(y)+ U(y'). Then U can be extended
to a homomorphism on the collection of all closed loops as follows: let y =
e«<» * ej<

2> * • • • * e«<*> be as in the previous proof, where a(l) = -1 and let y' be
a directed path from Head(e,) to Tail (e,); then define U(y)= U(y2)- t/(y,),
where -y, and y2 are defined as above. This is a definition by induction on the
number of negative a(k). The fact that U is a homomorphism on directed loops
shows that U(y) is well-defined independent of the choice of y'. Thus, any
homomorphism defined on the collection of directed loops of a strongly connected
digraph G can be extended to a cohomology class, i.e. an element of Hl{G; Z). In
particular, Ua can be extended to a cohomology class on Hl(FA; Z), still denoted
Ua.

Given a cohomology class l / ona digraph G, U is said to be positive if U(y) > 0
for every directed loop y, and U is non-negative if L/(y)>0 for every directed loop
y. We shall use CX(G; Z) to denote the cycle group freely generated by the collection
of directed edges of G. A cocycle ue C1(G; Z) is called non-negative if w(e)>0
for every directed edge e of G.

PROPOSITION 3.2. Existence of non-negative cocycles. Given a strongly connected
digraph G and a non-negative cohomology class U on G, there exists a non-negative
cocycle u on G representing the class U.

Proof. We shall reduce to the case where U is positive, and then quote a result from
the companion paper [M] to handle that case.

Suppose that U is non-negative but not positive, and let Gv be the union of all
directed edges e of F such that for some directed loop y through e, U(y) = 0; in
other words, Gv is the union of all directed loops y such that U(y) = 0. It follows
that each component of Gv is strongly connected. Now we need:

LEMMA 3.3. For any non-directed loop y in Gv, U(r) = 0.

Proof. By applying Lemma 3.1 Directed Loops Span Homology in Strongly Connected
Digraphs, we need only prove the lemma for a directed loop y. In other words, not
only does Gv contain all directed loops g such that U(g) = 0, but Gv contains no
other directed loops.

Fix a directed loop y = e, * • • • * eK. By definition of Gv, for each i=l,...,K
there is a directed loop y, of the form yt = e, * d,, where d, is some directed path,
and £/(%) = 0. For each i=\,...,K, define a directed loop a, =
e, * e2 * • • • e,, * d,•,* • • • * d2 * dx. To check that a, is actually a loop, the only
non-obvious thing to check is that Head (dk) = Tail (4- i ) for each k=l,...,K;
this follows because Head (dk) = Tail (ek) = Head (efc_,) = Tail (dfc-i)- Notice that
by changing the base points of a, and ai+1, we have a,+l = a, * y,. Thus, we have
(/(«,+,)= l/(a,)+1/(%), and it follows by induction that U(aK) = 0. Also,
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dK * •• • * d, is a loop, and we have aK = y * (dK * • • • * dt), so

U(y)+U(dK * • • • * dj= U(aK) = 0.

Since U is non-negative, both terms on the left hand side of this equation are
non-negative, and their sum is zero, so it follows that they are both zero. In particular,
U(y) = 0. •

Returning to the discussion previous to the lemma, define a quotient map q:G^> G'
to a directed graph G', by collapsing each component of Gv to a single vertex.
Thus, G' has one directed edge for every directed edge in G - Gv. Notice that G'
is strongly connected, for if e' is a directed edge of G', then considered as a directed
edge of G, there is a directed loop y in G passing through e', so q(y) is a directed
loop in G' passing through e'.

Define a cohomology class U'e H1(G'; Z) as follows: for each non-directed loop
y' of G', choose a non-directed loop y of G projecting to y' under the quotient
map q, and define U'(y') = U(y). To see that U' is well-defined, notice that if 8 is
another directed loop with q(S) = y, then the homology class [y] - [5] is a sum of
classes of non-directed loops contained entirely in Gv. As a direct consequence of
Lemma 3.3, U([y]-[S]) = 0, so U' is well-defined.

We claim that U' is positive. For let y' be a non-trivial directed loop of G'. Since
each component of Gv is strongly connected, there exists a directed loop y in G
such that q(y) = y'. Moreover, y <£ Gv, since y' is non-trivial. Thus, as a consequence
of Lemma 3.3, U'(y') = U(y) > 0.

Now we invoke the proposition Existence of positive cocycles from the companion
paper [M], which says that since G' is a strongly connected digraph and U' is a
positive cohomology class on G', then U' is represented by a non-negative cocycle
u' of G'. Now define a cocycle u = q*(u') on G. Evidently u represents U. Also, u
is non-negative, having non-negative value on edges of G - Gv, and zero on edges
Of Gy. U

Returning to the main track of our discussion, where Ua is a non-negative
cohomology class on the strongly connected digraph TA, it follows that there exists
a non-negative cocycle ua on FA representing Ua. As a shorthand, when A(m, m') = 1
we shall write ua(m, m') for ua(e(m, m')); and for a symbolic loop m = (m,),eZ/K

we shall write ua(m) for wa(y(m)) = X,eZ/K "«(«,, »!,+,).
Now we can describe explicitly what subset of Cone(D<()) is represented by

homology classes of periodic orbits of <£. Define the homology kernel of a to be
Ker (a) = {ce HX(M; R) \(a, c) = 0}, and define the kernel of homology directions to
be Ker^ (a) = Ker (a) n Cone (D^). From the Fried duality property for pseudo-
Anosov flows it follows that, if F is the face of Cone (tr) such that a € int (F), then

We shall need another result of Fried, from [F2, Lemma 3, p. 361]; see also [Fl,
theorem 6, p. 260]:

THEOREM 3.4. (Fried). Cone (D^) is the smallest convex cone in Ht(M; R) containing
all homology classes of the form [O(m)] where m is a simple symbolic loop of A.
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Let M(a) denote the collection of all simple symbolic loops m such that Ua(m) =
0. As an immediate corollary, we have:

COROLLARY 3.5. Ker^ (a) is the smallest convex cone in //,(M;Z) containing all
homology classes of the form [O(m)] where m e M(a).

Now let A(a): MxM denote the sub-matrix of A denned by A(a)(m, m') = 1 if
and only if (m, m') occurs as a transition among the loops in the collection M{a).
Equivalently, r ^ c F ^ is the union of all simple directed loops on which Ua

vanishes. We wish to show that rAfa) is, in fact, the union of all directed loops on
which Ua vanishes.

Given collections M, M' of symbolic loops which are closed under cyclic permuta-
tion of indices, let M * M' denote the collection of all loops of the form
Splice (m, m'), where me M, m'e M', and mo= m'o. Let Mk be defined inductively
as M k H * M, and let M* be denned as U {M* | k e Z+}.

Notice that M(a)* = {symbolic loops m\Ua(m) = Q}. The inclusion <= is clear.
To get the opposite inclusion, suppose that Ua(m) = 0. If m is not already simple,
then after cyclically permuting indices, there are shorter symbolic loops m' and m"
such that m = Splice (m1, m"), and from the splice equation it follows that

Ua(m')+Ua(m")=Uo(m) = 0.

Both terms on the left hand side of the equation are non-negative, and their sum
is zero, therefore they must both be zero. By induction, it follows that m', m"e M(a)*,
some M(a)*.

It is evident that TA{a) is the union of all symbolic loops m in M(a)*, so we have:

PROPOSITION 3.6. Characterization of A(a). TA(a) = [J{y(rn)\ Ua{y(m)) = 0}.

Now we can use this result to analyze the symbolic dynamics of the invariant set
L(a) = cl (U {periodic orbits of (f> on which a vanishes}), which is a subset of R{a).
It is evident from Proposition 3.6 that SA(a) is the closure in SA of [J{m\m is
periodic and l/a(m) = 0}. Let T/A(a)<= TP denote the image of SA(a)xR under the
quotient SAxU-*Tp. Clearly Susp (p) | TMa) is the same as Susp (p | SA(a)). It is also
clear that under the semi-conjugacy Q:TP^M, TMa) is the pre-image of L(a).

It is a standard fact in the theory of symbolic flows that, since every component
of A(a) is strongly connected, then Susp (p)| TA(a) = Susp (p\SA(a)) is a chain
recurrent flow, and the chain components of Susp (p)| TMa) are in 1-1 correspon-
dence with the components of the directed graph A(a). Thus, Susp (p)| TMa) has
finitely many chain components. Since Q restricts to a semi-conjugacy from
Susp (p)| TA(a) onto <f> |L(a), each chain component of L(a) contains the image of
a chain component of TMa), so we have proven the main result of this section:

PROPOSITION 3.7. L(a) has only finitely many chain components under the restricted
flow<t>\L(a).

It would, of course, be very nice if L(a) were all of /?(«). If we were working
with a basic set of an Axiom A flow, this would be true. However, for pseudo-Anosov
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flows this is in general false, because of the failure of shadowing. We now proceed
to describe a larger portion of R(a).

Let if = (yj)j<=z/j, be a circular sequence of non-periodic orbits of the flow <f> with
the following property: For eachjeZ/J, there exists a singular periodic orbit 9j of
<f> with L_(5^) = L+(5^_!) = 9t; see § 0 for the definitions of L_ and L+. Then we
say that 5̂  is a periodic quasi-orbit of <f> (since we shall have little occasion to discuss
'non-periodic' quasi-orbits, we shall usually drop the adjective 'periodic').

Certain quasi-orbits if are 'non-shadowed' in the following sense: for each 7 e Z/J,
let Ls be the component of the local stable manifold Ms of 9j such that as t -> +oo,
5^_! spirals into 9j along Ls; and let Lu be the component of the unstable manifold
Mu of 9j that as t-* —<x>, Sfj spirals into 9j along Lu. The collection of components
of Ms and Mu is circularly ordered, and when Ls and Lu are non-adjacent in this
circular ordering, then if is non-shadowed.

To explain the non-shadowed property more fully, let D be a small transverse
disc to the flow which is a local section near 9j. Since 9j is singular, the first return
map to D looks locally like a pseudo-Anosov map near an n-pronged singularity
for some «>3, so D is 'bifoliated' by stable and unstable foliations. Note that
MsnD and Mu n D consist respectively of n stable and unstable 'separatrices'
emerging from the point 9j n D, and the unstable separatrices are interleaved with
the stable separatrices. Now the first return map to D fixes all separatrices (by
hypothesis on / ) , so £u = LunD consists of an initial segment of an unstable
separatrix; similarly for £s = Lsn D. To say that Ls and Lu are not adjacent means
that there is no bi-foliated rectangle B in D with £s, £u c dB.

The reason for introducing quasi-orbits is that we can repair the failure of
shadowing arguments for pseudo-Anosov flows by augmenting the collection of
closed orbits with the collection of non-shadowed quasi-orbits. As we shall see, we
can also define what it means for a quasi-orbit to have zero intersection number
with a. In § 5 we shall show, using a modified shadowing argument, that R(a) is
the closure of the collection of periodic orbits and quasi-orbits having zero intersec-
tion number with a.

Consider a quasi-orbit 3> = (Sfj)j£z/j', we define an intersection number (a,Sf)e
Zs u {+oo}. If there exists j e Z/J such that 9} <£ L(a), define (a, SF) = oo. Otherwise,
assuming that 9j<^L(a) for all jeZ/J, we define a finite intersection number
{a,y)eZ^. Note that [&j]e Ker^(a)<= Ker (a), so it follows that Sf determines a
well-defined element [Sf\ of the group HX{M; R)/Ker (a). A closed path Z represent-
ing [Sf] can be constructed by starting on 9X, jumping a small distance to 5^,,
travelling along ifx and then jumping a small distance to 92, then jumping a small
distance to y2, travelling along Sf2 and then jumping a small distance to 93, etc.
Intersection number with a gives a well defined surjective homomorphism
HX(M, R)/Ker (a) -» U, so defined (a, if) to be the image under this homomorphism
of \.y\ If (a, 50 = 0, then it is clear that the Sf<zR(a) (we abuse notation by
confusing if with the set U {^ \j e Z/J}).

Now let L"(a) = L{a)vc\(\J{if\if is a periodic quasi-orbit, and (a, S>) = 0});
the superscript 'q' in the notation Lq(a) refers to 'quasi-orbits'. The main theorem
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on the structure of R(a) is:

THEOREM 3.8. Characterization of the Chain Kernel of a. R(a) = Lq{a).

It is clear that Lq(a)<= R(a). In § 5, we shall prove the opposite inclusion, using
a modified shadowing argument. This will be based on an analysis of the symbolic
dynamics of quasi-orbits and of the set Lq(a) which is carried out in § 4, generalizing
the analysis of the symbolic dynamics of periodic orbits and of the set L{a). We
shall also use the symbolic dynamics of quasi-orbits to prove in § 4 that Lq(a) has
only finitely many chain components; together with the above theorem, this shows
that R(a) has only finitely many chain components. The symbolic dynamics of
Lq(a) will also be useful in establishing homology properties of orbits of <f> in
M — R(a), which will be used in § 7 to understand properties of transient orbits of
the flow 4>.

4. Symbolic dynamics of quasi-orbits
Our next task is to develop a symbolic dynamics interpretation of a periodic.
quasi-orbit Sf of <}>, and use it to give a method for computing (a, if). This will be
applied to give a symbolic dynamics interpretation of Lq(a). It will follow immedi-
ately (Proposition 4.7) that Lq(a) has finitely many chain components.

We start with a lemma about symbolic loops of singular periodic orbits:

LEMMA 4.1. Let m be a primitive symbolic loop of A, and suppose that O(m) is a
singular periodic orbit of<j>. Then m has length 1. Thus, ifm, m' are primitive symbolic
loops such that both O(m), O(m') are singular periodic orbits of (f>, then m and m'
are either identical or disjoint.

Proof. All but the last sentence was proven at the end of § 2. The last sentence is a
trivial consequence of the preceding. •

Consider now a doubly indexed symbolic sequence of the form m =
(m}i\jeZ/J,ieZ), where mJeSA for each jeZ/J, and mJ is non-periodic; each
symbolic sequence mJ' = (m^),eZ is called apiece of m, so there are / pieces altogether.
Let y} = O(mJ), and suppose that y = (SfJ) is a periodic quasi-orbit. Then we say
that m is a symbolic quasi-loop, and we write O(m) = if. From the previous lemma
it follows that for each j , mJ = (m^)IEZ is eventually constant as i-»+oo; if / is
chosen minimally so that (mJj)izI is constant, then we refer to (wj^)ia.7 as the positive
tail of mJ, and we write mj+ for the primitive period loop, which has length 1. Also,
since mj is eventually constant as i -» -oo, we can similarly define the negative tail
of mJ, and the primitive period loop mL of length 1. These loops have the property
that O(mi) = 91 and O(mJ_) = &J~\

A cyclic permutation of indices of a symbolic quasi-loop m = (j\\j € Z/J, i e Z) is
defined to be any combination of the following two operations: a cyclic permutation
of the j index; or for some fixed j , an order preserving permutation of the indices
of mJ = (mJ,\ieZ).

A symbolic quasi-loop m is simple if, whenever m{ = mj
r, one of the following

two possibilities holds: either j =f and mi, m{ are in the same periodic tail of mJ;
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o r / = y + l mod J, mi is in the positive tail of mJ, and m{ is in the negative tail of
m'. In the latter case, note that mJ+ and mi are the same symbolic loop. One special
case to take note of is when m consists of single piece m°, i.e. when / = 1: the
definition of simple then allows the possibility that m° = m+, as long as no symbol
outside of the positive and negative periodic tail is repeated.

Splicing of symbolic quasi-loops with each other and with symbolic loops is
defined analogously to splicing of symbolic loops. Given a symbolic quasi-loop
W = (mJi\jel/J, ieZ), the 'splicing site' is denned to be i'=y = 0; the splicing site
of a symbolic loop m' = (m'j)ieZ/i is defined to be i = Q. Given symbolic loops or
quasi-loops m, m\ when the same symbols are located at the splicing sites, then
Splice (m,m') is defined in the obvious way.

There is another form of splicing two symbolic quasi-loops, called singular spacing,
which we shall need. Let m = (m')ieZ/I, m' = (m'J)JeZ/J be symbolic quasi-loops,
and suppose that O(m+"1) = O(m'°). Let K = I + J, and define Splice' (m, m') to be
the symbolic quasi-loop m" = (m"k)keZ/K with m"k-mk for 0<fc<7, and m"k =
m'k~' for I<k<I + J.

Given two symbolic loops or quasi-loops m, m', we leave it to the reader to prove
the generalized splice equation

(a, O(Splice (m, m'))> = {a, O(m)) + (a, O(m')>

whenever each term is defined; the terms in this equation all have values in
Z+u{+oo}, and equations involving +oo are interpreted in the obvious way.

Given a symbolic quasi-loop m = (m]\je Z/J, ieZ), we would like to be able to
compute the value of (a, O(m)) exactly as before, using the cocycle ua e C\rA; Z)
representing Ua e H\TA;Z). That is, define ua(m) = £ ua(m

Ji, mJ
i+l), summed over

all j e Z/J and i e Z. This is an infinite sum of non-negative integers, and so has a
value in Z=, u {+<x>}. Unfortunately, it might not be true in general that (a, O(m)> =
ua(m); intuitively, what goes wrong is that ua does not 'know' that different symbolic
loops can represent the same singular orbit of <f>. However, this defect can be
remedied:

LEMMA 4.2. The non-negative cocycle ua can be chosen in its cohomology class so that
for each symbolic loop or quasi-loop m, (a, O(m)) = ua(m).

Proof. Define a directed graph F'A as a quotient of FA, by identifying directed loops
y(m) and y(m') whenever m, m' are symbolic loops of length 1 with O(m), O(m')
both equal to the same singular orbit of <j> on which a vanishes. Thus, for certain
s e Sing (f, h), 2n nodes of FA are identified, and In directed loops of length 1 are
identified. It is evident that T'A is strongly connected. Note that each directed loop
of T \ corresponds uniquely to a symbolic quasi-loop m of FA such that 0 < Ua (m) <
+oo; this allows us to define a Z2 valued function U'a on directed loops of T'A so
that U'a pulls back to Ua under the quotient map rA->TA. The generalized splice
equation shows that U'a is a homomorphism on the directed loops of F'A, and so
extends to a cohomology class in H\rA; Z). Evidently U'a is non-negative, so there
is a non-negative cocycle u'a on T'A representing U'a. Taking ua to be the pull-back
of u'a under TA^>r'A, the lemma follows. •
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When M, N denote collections of symbolic loops or quasi-loops which are
invariant under cyclic permutation of indices, we shall use M * N to denote all
possible loops of the form Splice (m, n) or Splice5 (m,n) with me M and ne N.
Mk and M* are similarly defined using splicing of loops and quasi-loops.

Let M'(a) denote the union of M(a) with the collection of simple symbolic
quasi-loops m such that ua(m) = 0. Let A'(a):M xM->{0,1} be the submatrix of
A such that A'(a)(m, m') = l precisely when (m,m') occurs as a transition among
the elements of M'(a); equivalently, r A ( a ) is the subset of TA consisting of the
union of all directed loops of the form y(m), where m is a simple symbolic loop
satisfying ua(m) = 0, or m = n3is a piece of a simple symbolic quasi-loop n satisfying
ua(n) = 0. It is not necessarily true that rA.(a) is strongly connected. However, we
do have the following analogue of Proposition 3.6:

PROPOSITION 4.3. Characterization of A'(a). r A ( a ) = U {y(m)|m is a symbolic loop
satisfying ua(m) = 0, or m = nJ is a piece of a symbolic quasi-loop n satisfying
»«(") = 0}.

Proof. The exact same proof will work as in the Characterization ofA(a), provided
that we can show that M'(a)* consists of all symbolic loops or quasi-loops m such
that ua(m) = 0. To do this, we need some kind of induction argument for showing
that any m satisfying ua(m) = 0 can be obtained by splicing simpler loops or
quasi-loops. For the induction argument, we shall define a notion of the 'complexity'
of a symbolic quasi-loop, and show that it behaves well under splicing and singular
splicing.

Consider a symbolic quasi-loop m = (mJ)jeZ/J. First define length (mJ) for j e Z/J.
If the positive and negative tails of mJ are (m{)i7sl and (m^)is r , then the length of
mJ is / - / ' . Note that mL and mJ+ are either identical or disjoint, so from the
non-periodicity of mj it follows that / > /', thus length (mJ)>0.

Now define the complexity of m to be the ordered pair (/, Y.jez/j length (mJ)).
Complexities are given the dictionary ordering, and evidently form a well-ordered
set. In order to make the induction argument work properly, we need to investigate
how complexities behave with respect to splicing of loops and quasi-loops, and how
complexities behave for simple loops and quasi-loops.

First we extend the notion of complexity to symbolic loops by defining the
complexity of m = (mt)ieZ/J to be the ordered pair (0, / ) .

Now we say now complexity behaves with respect to splicing:

LEMMA 4.4. Let m, m' be symbolic loops or quasi-loops, and let C = Com-
plexity (Splice (m, m')) or Complexity (Splice1 (m, m')) (assuming that the
appropriate spliced loop is defined). Then C s sup {Complexity (m),
Complexity (m')}, with equality if and only if (up to a reversal of roles of m and m')
m is a symbolic quasi-loop whose splicing site is located in a tail ofm°, and m' is an
iterate of the period loop of that tail

Proof. If m and m' are both symbolic loops, this is obvious.
If m = (mJ)jsZ/J and m' = (m'J) j e Z / r are both quasi-loops, then Splice (m, m') and

Splice5 (m, m') are both made up of J + J' pieces, so the complexity is strictly larger.
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If m is a quasi-loop and m' is a loop, then Splice (m, m') is made up of the same
number of pieces as m, and we need only compare the length of piece 0 of m and
piece 0 of Splice (m, m'). We consider several cases, depending on the location of
the splicing site of m.

Suppose the splicing site of m is not located in a periodic tail of m°. Then the
length of piece 0 of Splice (m, m') exceeds the length of piece 0 of m by an amount
equal to Length (m').

Suppose the splicing site of m is located in a tail of m°, say, the positive tail
(w?)ia/, and suppose that m' is not an iterate of m°+; by definition of the splicing
site, we must have J<0 . Then the length of piece 0 of Splice (m, m') exceeds the
length of piece 0 of m by at least |/ | +1. This uses the fact that the period loop of
a tail of m° is simple, and that the negative tail (m?),s/. does not overlap the positive
tail, i.e. / ' < / .

The only remaining case is that the splicing site of m is located in a periodic tail
of m° and m' is an iterate of the period loop of that tail; then Splice (m, m') = m,
and the complexities are equal. •

Now we examine how to use splicing to reduce the complexity of a non-simple
symbolic quasi-loop:

LEMMA 4.5. If m is a symbolic quasi-loop which is not simple, then up to a cyclic
permutation of indices, we can write m = Splice (m1, m") or Splice5 (m\ m"), where
m', m" are symbolic loops or quasi-loops with strictly smaller complexity than m.

Proof. Suppose first that some symbol occurs in two different pieces of m, say,
mJi = mJ

r, where j^j', and suppose furthermore that the following property holds:

(*) if j'=j+l, then either m\ is not located in the positive tail of m', or m'v is
not located in the negative tail of m'.

Then up to a re-indexing of m, we can write m = Splice (m', m"), where m', m" have
fewer pieces than m; the non-periodicity of the pieces of m' and m" is guaranteed
by (*).

Suppose next that some symbol occurs twice in the same piece of m, and one of
the occurrences is not in a tail; applying the previous lemma completes the proof.

Finally, suppose that some symbol occurs in the positive and negative tail of the
same piece m° of m, and there are no other symbol repetitions in m°. Then m must
consist of more than one piece, for otherwise m is simple. Thus, (m°) forms a
symbolic quasi-loop with one piece, and we can write m = Splice1 ((m°), m'), for
some symbolic quasi-loop m' with one fewer piece than m. •

To complete the proof of Characterization ofA'(a), consider a symbolic quasi-loop
m satisfying ua(m) = 0. Using the previous lemma, if m is not already simple then
we can write m = Splice (m'( m") or Splice5 (m', m") for two symbolic loops or
quasi-loops with smaller complexity than m. The splice equation shows that ua(m') +
"aim") = ua(m) = 0, and since both terms on the left hand side are non-negative, it
follows that ua(m') = ua(m") = 0. By induction, it follows that m', m"e M'(a)*, and
so meM'(a)*. •
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Now we prove that Lq(a) has only finitely many chain components. Consider
the set SA ( a )c SA, which is invariant under the shift map p, and let TA{a) be the
image of SA^a) x U under the quotient map SA x U -> Tp. Proposition 4.3 Characteriz-
ation ofA'(a), together with the definition of Lq(a), show that TA^a) is the pre-image
of Lq{a) under the semi-conjugacy Q:TP^* M. The following lemma tells us what
the orbits of Susp (p) in TAXa)- TMa) look like:

LEMMA 4.6. Given xe TA^a)— TA(a), L+(x) and L_(x) are both contained in TA(a).

Proof. Let m = (m,),6Z e SA^a) — SA(a} be the symbol sequence of the orbit x • U, i.e.
x- R is the image of mxR under the quotient map SAxM-> Tp. In order to show
that L+(x)<= TA(a), it suffices to show that there exists n€SMa) and an integer K
such that for all i > K, m, = «,. The proof that L_(x) <= TMa) is similar.

Since M is finite, there exists some integer K such that mK is repeated infinitely
often in the half-infinite sequence (m,),aK. Thus, there exist symbolic loops QJ =
(nJi)isz/uj) such that L(y")-»oo as j-*°o, and for each j , mK+i = nJj for i =
0 , 1 , . . . , L(j). It suffices to show that for each j , nj eSA{a), which by Proposition
3.6 Characterization ofA(a) is the same as ua{nJ) = 0.

Since meSA'ia), then by Proposition 4.3 Characterization of A'(a), for each j
there exists a periodic quasi-orbit m' of A'(a) such that ua(m

i) = Q and such
that the finite symbol sequence (mK, mK+l,..., mK+L(j)) occurs in one of the
pieces of mJ. This shows that m' can be written as Splice (nJ, m') for some periodic
quasi-orbit m'. From the splice equation it now follows in the usual manner
that ua(n

j) = 0. •

Since TA(a)=Q~\Lq{a)) and TMa)= Q~\L{a)), it follows directly from the
lemma that each orbit of <p contained in Lq(a)-L{a) is asymptotic in forwards
and backwards time to L(a). Therefore, each chain component of Lq(a) contains
a chain component of L(a). We have already proven that L(a) has only finitely
many chain components, so this finishes the proof of:

PROPOSITION 4.7. Lq(a) has only finitely many chain components under the restricted
flow<t>\L"(a).

5. Pseudo-Anosov shadowing theory
In this section, we shall develop a shadowing theory for pseudo-Anosov maps, and
use it to prove Theorem 3.8 Characterization of the Chain Kernel of a, which says
that Lq(a) = R(a).

The shadowing theory was inspired by Handel's papers [HI] and [H2] and Shub's
book [Sh], and was developed with much moral support from Joe Christy. The
notion of 'jumping across a singularity' and the lemma Visitors Enter and Leave
Through Corridors is essentially due to Handel. The primary difference is that
Handel's 'global shadowing' theory takes place in the universal cover of 5, whereas
we shall work directly on the surface S, following along more traditional lines as
in the proof of the Shadowing Lemma taken from chapter 8 of Shub's book [Sh].
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We work with the pseudo-Anosov return map / for the distinguished section 5
of the flow <f>. Recall the assumption that/fixes its separatrices. A sequence z = (z,)ieZ

such that/(z,) = z,+1 is called an orbit of/; a cyclic orbit is similarly denned replacing
Z with Z/7 for some 7>1 . An e-chain of / is a sequence z = (Zj),eZ such that
d(f(zj), zj+i) < e for each i e Z; an e-cycle is similarly defined replacing Z with Z/7
for some / > 1.

A doubly indexed sequence of the form x = (x] \ieZ,je $) is called a quasi-orbit
off if $ is an interval in Z (finite, semi-infinite, or infinite), xJ is an orbit off for
each je$, and if j , 7 +1 e / , then there exists sJe Sing (/) such that:

lim xi
i = si and lim x-j+1 = sJ.

i-*+oo i-» — oo

We describe this by saying that x passes over sJ at / A cyclic quasi-orbit is similarly
defined by replacing $ with Z/J for some / & 1. If x is a cyclic orbit, cyclic e-chain,
or cyclic quasi-orbit off, we define Susp (x) to be the cyclic orbit, cyclic (e, 1) chain,
or cyclic quasi-orbit of the suspension flow <\>, defined as follows: when x is a cyclic
orbit or quasi-orbit of f, the definition is obvious; when x = (xt)isz/i is a cyclic
e-chain of/, set f, = 1 for 1 < i< /, and define Susp (x) = (x0, x , , . . . , x,; f,,..., t,).

We want to prove a shadowing lemma for pseudo-Anosov maps. The proof of
the standard shadowing lemma fails, because of the presence of singular points of
/ We shall show that if one restricts the notion of e-chains by disallowing 'jumps
across singularities', then the classical notion of shadowing by true orbits can be
recovered. Then we shall generalize this by showing that an arbitrary e-chain can
be shadowed in a non-classical sense, using quasi-orbits, where a jump of the e-chain
across a singularity corresponds to the quasi-orbit passing over the same singularity.
To make all this rigorous, the first task is to be precise about what it means for an
e-chain of/ to 'jump across a singularity'.

Given an open set U c s, suppose that there exists an open set V<= c, a homeo-
morphism from U to V, and ann>2 , such that SFS \ U and 3>u \ U are the pull-backs
of the horizontal and vertical foliations of the quadratic differential z"~2 • dz, and
d V is the union of n horizontal and n vertical leaf segments of z"~2 • dz, i.e. V is
a curvilinear 2n-gon with convex angles. When this happens, we say that U is an
9's-3'u chart on S. We define semi-metrics Ds and Du on U, where Ds(x,y) is the
minimum 9S measure of a path between x and y in U, and Du(x, y) is the minimum
S'u measure of such paths. Note that for a leaf segment ^ <= U of &s connecting
points x and y, Du(x, y) is the 3FU measure of <€; similarly for leaf segments of ^u .
Now define a metric D on U by D(x, y) = sup {Ds(x, y), Du(x, y)}; we call this the
box metric on U. Given a point xe U and e >0, consider the ball Be(x) of radius
e around x in the box metric. If e is sufficiently small, the closure in U of Be(x),
denoted Bc(x), is compact. If x is a regular point and e is sufficiently small, then
Be(x) is a closed &s - 3FU rectangle. If xe Sing (/, n) for some n >3 , then BE(x) is
called an 9S-3'U polygon, or more precisely, an &'s-3

i
u 2n-gon. In either case,

we refer to BE(x) as a box neighborhood of x in U.
Since S is compact, there exists a finite covering °U. of S by ^ s - ^u charts, and

a number r>0, with the following properties:
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unstable leaf segment; otherwise, the intersection is empty. A similar statement
holds for unstable corridors and sectors. Also, if Cs, C" are stable and unstable
corridors with corresponding sectors Ks and K", then Cs and C" are adjacent if
and only if Ks and K" are adjacent, in which case the point Cs r>Cu is the corner
of the quadrant Q = Ks n K" opposite the singularity x; we say that Q is the
quadrant corresponding to the adjacent corridors Cs and C".

Notice that for all the sets defined in the previous paragraph, including Wx, Vx,
stable and unstable corridors and sectors at x, and quadrants at x, the definitions
depend on choosing some sufficiently small e > 0. Henceforth, the e used in the
definitions will be clear from context.

Now fix some sufficiently small e>0, and consider an e-chain z of/ Suppose
that z, €int (Vx), for some IeZ and xe Sing (/) . There exist unique /_, /+ e Z u
{±00} so that I~<KI+, z,eint(V;) for ie(I~, I+), and zr, z,+ £int (Vx); we say
that z visits the singularity x in the interval (/", J+). By jiggling z7- and z,+ slightly,
we can assume that zr, z,*i Vx, without altering the fact that z is an e-chain.

LEMMA 5.1. Visitors Enter and Leave Through Corridors. Suppose that the e-chain
z visits the singularity x in the interval (I~, I+). If I~ 5* —oo, then zr is contained in
the interior of a stable corridor of x; and if I+ ^ +00, then z7+ is contained in the
interior of an unstable corridor of x.

Proof. We shall prove this statement for 7+ ^ +00; the proof is similar for I' 5* -00.
Recall that /fixes all singularities and all singular separatrices. Notice that, since

int (Vx) = Bd(e)(x), then /(int (Vx)) c Bx.d(e)(x). In particular, since z,+_, e int (Vx),
and since D(/(z7+_,), z7+)< e, weseethatz7

+e fiA.d(e)+e(x) = int (Wx). Since z7
+g Vx,

it remains to show that Du(x, z,+) < d(e).
Since z/+_, e int (Vx), then Du(x,/(z7+_,)) =£ A"1 • d{e). Since D(/(z7+_,), z7+) < e,

it follows that £>„(/(z,+_,), z,*)<e, so Du(x, z7-)<e + A"1 • d(e) = e + e/(A -1) =
l) = d(e). D

Suppose now that the e-chain z visits x e Sing (/) in the interval (/", 7+); suppose
moreover that / " ^ - o o , 7+^+oo, Cs, C" are the stable and unstable corridors
through which z enters and leaves, and suppose that C* and C are non-adjacent.
Then we say that z jumps across the singularity x in the interval (/", I+). Notice the
following special case: when I~ = -00 or I+ = +00, then z does not jump across the
singularity in the interval (I~, I+).

Now we are ready to formulate our first pseudo-Anosov shadowing lemma. Given
an e-chain z of/ an orbit ¥ of/ and p > 0, we say that ^-shadows z if D(zit S )̂ < p
for each ieZ; shadowing of an e-cycle by a cyclic orbit of the same period is
similarly defined.

SPECIAL PSEUDO-ANOSOV SHADOWING LEMMA 5.2. For every (3>0, there exists
£>0 such that for each e-chain z off, ifz never jumps across a singularity off, then
there exists an orbit!? off which ^-shadows z; if(S is sufficiently small, then & is unique.

Proof. The proof follows very closely the proof of the standard Shadowing Lemma,
which we take from p. 109 of Shub's book [Sh]. The set-up for the standard proof
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is as follows. If R is an &u-9S rectangle, then there is a product map RxR-> R
defined as follows: given x, yeR, the point [x,y] is defined as the intersection of
the stable leaf through x in R, and the unstable leaf through y in R. Also, given a
regular point x and a number r>0, let ^ ( x ) and ^"(x) denote the stable and
unstable leaf segments of radius r around x; in the pseudo-Anosov setting, this is
defined as long as x does not lie on a stable or unstable separatrix of a singularity
x', within distance r of x'.

Consider first the problem of shadowing a finite e-chain (z0 , . . . , zn) by a finite
orbit segment (Sf0,..., Sfn). Set yo = z0, and define yk recursively by the condition

In order for this to work, zk and/(>*_,) must be in some rectangle of small diameter
so that the product map is uniquely defined; we shall check this condition momen-
tarily. Now define %=f~"{yn), and &>k =fk{Sf0) for 1 < fc< n; then (S ô, ...,&„)
is our candidate for a finite segment of an orbit which shadows (z0 , . . . , zn).

The proof given in Shub shows, even in the pseudo-Anosov case, that for every
/3 > 0 there exists S > 0 and e > 0 such that for any finite e-chain (z0 , . . . , zn) of f,
if <£«(/( z*,,)) is defined and [zk,y] is defined for all ye <£«(/( z*-,)) and all
k= 1 , . . . , n, then the product in condition (*) is defined, and the orbit segment
(5^o, • • •, yn) /3-shadows (z 0 , . . . , zn). From this it follows that if z is a bi-infinite
e-chain such that ^«(/(zt_,)) is defined and [zk, y] is defined for all y e ^(/(z/c-i))
and all k e Z, then every finite segment of z is /3-shadowed by a finite orbit segment;
by taking limits we see that z is p -shadowed by a true orbit.

Now let z be a bi-infinite e-chain which never jumps across a singularity. The
leaf segment <££(/( Z/t_i)) may not always be defined, or the product [zk, y] may not
be defined for all ye *#«(/( zk_,)), but this problem can be overcome by making
small corrections whenever z visits a singularity. Suppose that z visits a singularity
x in the interval (I', I+); we consider first the case where / " ^ -oo and / + # +oo,
so let C, C" be the stable and unstable corridors of x such that z,- e Cs and z;+ e C".
By hypothesis, Cs and C" are adjacent; let Ks and X" be the stable and unstable
sectors corresponding to Cs and C", and let Q = Ks n K" be the quadrant associated
with the adjacent pair of corridors Cs and C . If i e (/", /+) and z, £ int ((?), replace
z, as follows: if z, e Ks - Q, replace z, by a point in int ((?), very close to <9(KJ - Q),
on the unstable leaf segment in Ks containing z,; if z,eKu-Q, replace z, by a
point in int (Q), very close to 3(X" - Q), on the stable leaf segment in K" containing
Zj; and if z, e Vx - (Ks u X"), replace z, by a point in int (Q) very close to x.

This process replaces the e-chain z by a new e,-chain which stays in int (Q) in
the interval (7~, 7+), where e! is small whenever e is small. Moreover, it is clear
that the old chain is d(e)-shadowed by the new chain. Thus, if the new chain is
(j0-d(e))-shadowed by some orbit 5̂  of f, then the old chain is /?-shadowed by
y. Thus, we can assume that zt e int (Q) for i e (/", J+). A similar replacement works
when (I~, I+) is a half-infinite interval, say, / + = +oo: in this case, z,- is in some
stable corridor Cs at x with associated stable sector Ks, and it is easy to see that
we can assume that z, e int (Ks) for all i > /~ (of course, when / " = -co and / + = +oo,
then z is shadowed by the fixed point x). Clearly these replacements can be done
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simultaneously over all intervals (/", / + ) in which z visits a singularity. With these
additional assumptions on z, it easily follows that for all sufficiently small 8>0,
"#«(/(Zk-i)) is denned, and [zk,y] is denned for all ye <£«(/( z*-,)) and all fceZ.
This proves the existence part of the lemma.

Uniqueness is a direct consequence of the fact that a pseudo-Anosov map is
expansive.

In order to get a general shadowing lemma, we must say what it means for an
e-chain z = (z,|ieZ) of / to be shadowed by a quasi-orbit 5f = (5^| ieZJe^).
Suppose that Z is partitioned into intervals I(j), one for each 7 e^ , in such a way
that if j<f, iel(j), and i'el(j'), then i<i'; if j = mm{J), then I(j) is negative
semi-infinite, and if./= max ( / ) , then I(j) is positive semi-infinite; of course, if
I/I = 1, then I(j) = Z; otherwise, I(j) is finite. Suppose also that we are given maps

(j)^^ such that each k{j) is a homomorphism, meaning that k(j)(i + l) =
O +1 whenever i,i + le I(j). Finally, suppose that for each j e $ and i e I(j),

we have D(z,, y'kuw)) < /3. Then we say that S ĵS-shadows z. Similarly, if z = (Zj)ieZ/I

is an e- cycle and Sf is a quasi-orbit with / = Z/J, then shadowing can be defined
by letting (I(j)\jeZ/J) be a circularly ordered partition of Z/7 into circular
intervals; the rest of the definition of shadowing then goes through unchanged.

Also, uniqueness of shadowing must be formulated carefully. Given a quasi-orbit
y = {y\ 11 € Z, j € / ) and j € $, notice that as i -* +00, <f\ approaches the singularity
sJ along some stable separatrix c€s\ and as j->-oo, S^{+1 approaches sj along an
unstable separatrix c€". %s and <£" are said to be adjacent if they bound some
quadrant at s'\ otherwise, they are non-adjacent. If %* and "#" are adjacent, then
we say that the quasi-orbit 5̂  has slack at j ; and when 5̂  does not have slack at j
for any j e $, then 5̂  is taut Note that when Z£ has slack at j , then we can insert
an e-jump into 5̂  near sj for some arbitrarily small e. Doing this wherever &" has
slack, we replace disjoint parts of & of the form &!> u ?J+l u • • • u ¥i+k by e-chains,
and then we can apply the Special Pseudo-Anosov Shadowing Lemma to these chains.
This shows that an arbitrary quasi-orbit can be shadowed by a taut quasi-orbit, and
this can be done so that the shadowing constant is arbitrarily small.

GENERAL PSEUDO-ANOSOV SHADOWING LEMMA 5.3. For each fi > 0, there exists
e > 0 such that for every e-chain z off, there exists a quasi-orbit!? off which ^-shadows
z. Moreover, $£ can be taken to be taut, and if fi is sufficiently small, then a taut
quasi-orbit which ^-shadows z is unique.

Proof. Given ;8 > 0, choose e' as in the Special Pseudo-Anosov Shadowing Lemma.
Let z be an e-chain with e < e'; we will impose extra conditions on e momentarily.
Choose an interval / <= Z and numbers A' <B J ' eZu {±00} for./ € / , so that BJ < AJ+l

for j , 7 + 1 e / , y visits a singularity sJ in the interval (BJ,Ai+1), Zf jumps across sJ

in this interval, and 5̂  jumps across no other singularities. Since z is an e-chain,
then for j,j +1 e / there must exist some i(j) e (Bj, Ai+1) such that/(zl0)) and zl0)+1

are close to Sj; more specifically, by choosing e sufficiently small, clearly we can
guarantee that D(f(zi(j)),s

i)<e' and D(sJ, zj( j )+1)<e'. Now define e'-chains zJ

for each j e $, by breaking z between i(j) and i(j) +1 whenever j , j + le£, adding
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infinitely many copies of sj after i(j), and adding infinitely many copies of sJ before
/(_/) +1. The Special Pseudo-Anosov Shadowing Lemma now applies, and z' is
/3-shadowed by some orbit &j off. Moreover, when./, j +1 e / , evidently 5^, &'_? -* sj

as i-»+oo. Thus, 5̂  = (5^J |y e ̂ ) is a quasi-orbit which /3-shadows z, and evidently
¥ is taut.

To prove uniqueness, suppose #" = (9"J \j e $') is another taut quasi-orbit which
/3-shadows z. Thus, there is an order preserving partition I'(j), je#', such that
(Zi)i£ru) is /3-shadowed by a segment of £f'J for }&$'. Given j,j + l e / since z
jumps across a singularity in the interval (Bj, AJ+l), then there must exist some
/ € / ' such that sup(/ '( /)) , inf (I'(j'+1)) e(Bj,Aj+1). Also, given j e / , since z
jumps across no singularity in any sub-interval of (Aj, Bj), and since 3" is taut, then
there cannot exist any j'ej' such that sup (/'(./))e (Aj, B}) or inf (/ '(/)) € (Aj, Bj).
From this it follows that there exists an order preserving bijection between $, $'
such that w h e n / / correspond under the bijection, then SfJ, &"J both /3-shadow zJ,
so SfJ = SfJ by the uniqueness clause of the Special Pseudo-Anosov Shadowing Lemma.
Therefore, ? = 9". •

COROLLARY 5.4. Given fi > 0 there exists e > 0 SMC/J //iar et;erv e-cycle z of f can be
/3-shadowed by a cyclic quasi-orbit !?.

Proof. Let z be the periodic e-cycle of / covering z. If e is as in the General
Pseudo-Anosov Shadowing Lemma, then z is /3-shadowed by some quasi-orbit
$t = (Sf1

i\ie2.,je£). We say that a quasi-orbit is periodic if, under the dictionary
ordering on $ x Z, there exists an order preserving bijection of/ x Z which preserves
points in the quasi-orbit. Clearly this is possible in a non-trivial way only if $ = Z
or | / | = 1. By the uniqueness part of the General Pseudo-Anosov Shadowing Lemma,
periodicity of z implies periodicity of &, so if covers a cyclic quasi-orbit ff of /
which )3- shadows z. •

In order to relate the pseduo-Anosov shadowing theory to the study of the chain
kernel R(a), we next show how R(a) is related to its intersection with the preferred
section S of the flow <l>.

LEMMA 5.5. Relating chains of / and chains of <f>. Given x e S, the following are
equivalent:
(i) xeR(a);
(ii) for every e>0, there exists an e-cycle x = (x,)jeZ// off, with x = x0, such that

(a, Susp (x)> = 0.

Proof. Suppose xe R(a). Given e > 0 and T> 3, let X = (x,; t,)ieZ/l be a periodic
e, T cycle of <f> such that x = x0, and (a, X) = 0. If x, £ S for some J, let x\ be the
first point in x, • [0, oo) n 5, and suppose x| = x, • f J; thus, 0 < t\ < 1. Now alter X by
replacing x, with xj, and /, with <,--*;+*;+,, for all ieZ/7. This replaces X by an
e', T chain X', where e' differs from e by at most a bounded factor, and T differs
from T by an additive constant of at most 2; moreover, clearly (a, X') = (a, X) = 0.

Thus, we can assume that each x, e S. Under these conditions, if e is sufficiently
small, then clearly each tt is very close to a positive integer, so we can assume that

https://doi.org/10.1017/S0143385700005009 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005009


Equivariant spectral decomposition for flows with a Z action 359

each t,eZ+. Now build an e-chain of /as follows: start with the circular sequence
x = (Xi).ez//, and if f,>l, replace x, with the sequence x,,/(x,),.. ./ ' '" '(x,). This
results in an e-chain x" of/ where x'£ = x0 = x, and clearly (a, Susp (x")) = (a, AT) = 0.
This proves that property (i) implies property (ii).

Now assume that x satisfies property (ii). Fix e > 0 and T>0. Let TV be the
smallest integer >2T. By uniform continuity of / there exist positive numbers
e(n) < e defined for 0 s n < TV, and a number e'>0, such that if 0< n < N,x,y, z e S,
D(x, y) < e(n), and D(f(y), z) < e\ then D(/(x), z) < e(n + 1). Choose an e'-cycle
x = (Xi)iez// for / with x = x0 and (a, Susp (x)) = 0. If x is a periodic point and if
a vanishes on the corresponding periodic orbit of <j>, there is nothing to prove;
otherwise, by choosing e' sufficiently small, we can assume that / is large, say,
I>T. This implies that there is a sub-sequence 0 = i(0), i ( l ) , . . . , i(K -1), i(K) = I
such that for each 1 =s A;< K, setting M(K) = i(K)- i(K -1 ) , we have T<M(K) <
IT. Also, it is clear that D(fAi(K\xi(K_l)),xi(K))<e(M(K))<e for each K. This
shows that X = (x,(0), x,(1), xl (2 ) , . . . , x,(K); Ai(l), Ai(2),..., M(K)) is an e, T cycle
of <f> through x. Moreover, if e and e' are sufficiently small it is clear that (a, X) =
(a, Susp(x)) = 0. Thus, xeR(a). D

The next proposition is the key to showing that if x satisfies property (ii) of the
previous proposition, then x is approximated by periodic orbits or quasi-orbits in
V(a):

LEMMA 5.6. a-Null Chains are Shadowed by a-Null Orbits. Suppose that e and fl
are small. Let x be an e-cycle off which is ̂ -shadowed by a cyclic quasi-orbit !f off,
and suppose that (a, Susp (x)> = 0. Then (a, Susp (50) = 0.

Before proving this lemma, we shall apply it to the

Proof of Theorem 3.8: Characterization of the Chain Kernel of a. We want to show
that R(a) and Lq(a) = L(a)vjcl (Ui^l^1 is a periodic quasi-orbit of <f> with
(a, 50 = 0}) are the same sets. Since R(a) and Lq(a) are both closed invariant sets
of the flow (j>, and since S is a section of <f>, it suffices to show that R(a)nS =
Lq(a)nS. We have already shown that L"(a)<= R(a), so L"(a)nSc R(a)n5.
It remains to show that R(a)nS<- Lq(a)nS.

Given xeR(a)nS, the lemma Relating chains of f and chains of <j> shows that
for any e, there is an e-cycle x of/ with x = x0 and (a, Susp (x)) = 0. By the corollary
to the General Pseudo-Anosov Shadowing Lemma, given /J > 0 we can find such an
x which is /J-shadowed by some cyclic orbit or quasi-orbit 5/ of / If e and fi are
small, then the lemma a-Null Chains are Shadowed by a-Null Orbits shows that
(a, Susp (50) = 0, and it follows that Susp (5/) <= Lq(a); thus, 5/<= Lq(a) n S. Also,
if /3 is small, then 5/ comes within j8 of x. Since Lq(a) n S is closed and )3 can be
arbitrarily small, it follows that xeLq(a)nS. •

Proof. a-Null Chains are Shadowed by a-Null Orbits. Suppose x is an e-cycle (small
e) with (a, Susp(x)) = 0. Define a closed curve C(Susp(x)) by interpolating the
jumps in Susp (x) with short curves. If x never jumps across a singularity, and if z
is a cyclic orbit of/ which 0-shadows x, then it is easy to see that C(Susp (x)) and
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Susp (z) are homotopic curves, so (a, Susp (z)) = (a, C(Susp (x))> = (by definition)
<a,Susp(x)> = 0.

The difficulty arises when x jumps across some seSing(/) , in which case any
cyclic quasi-orbit z /3-shadowing x will pass over s. Let 9 = Susp (z), where if =
(9'\jeZ/J), and recall how (a, 9) is denned. Build a closed curve Z by choosing,
for each j e Z/J, a very short curve c' which jumps from if' to 9' and then from
9' to S^+I; if (a, 9') = 0 for each 7", then (a,Z) is independent of the choices made,
and we define (a, if) = (a, Z). Otherwise, one defines (a, if) = +00; and note that
(a, Z) -» +00 as the length of the curves c' goes to zero.

Now notice that if e is sufficiently small, then the closed curve Z can be chosen
so that Z is homotopic to Susp (x). The point is that if z = (zJ\je2E/J) shadows
x = (Xj 11 € Z/7), with (I(j) \j e Z/J) and k(j): I{j) -> Z as in the definition of shadow-
ing, then Z can be constructed as follows: for each j , let m(j) = min (I(j)), M{j) =
max (I(j)), and let 9?(j) be the oriented flow segment of <j> connecting z'k(jHmU))

to zJk(j)(M(j))+u then choose a short connecting path from the head of %!(j) to the
tail of ^O + l), which can be chosen short as long as e is small. The homotopy
from Susp (x) to Z can be chosen to take %!(j) to the path connecting xmij) to
XMU)+I,

 a n d the connection between %>(j) and c€(j +1) goes to the connecting path
between f(xMU)) to xmU+l).

Thus, if we can show that (a, if') = 0 for each j € Z/J, then it will follow that
(a, if) = 0, because (a, if) = (a, Z) = (a, Susp (x)) = 0, where the last equation follows
by homotopy of Z and Susp (x).

It remains to show that (a, 9>) = 0 for each j e Z/J. Let Z be any closed curve
constructed from if using a short path cJ going from if' to ^ to S^+1. We shall
show that for every R > 0 there exists a number 0 > 0 independent of if, such that
if length (cJ) < 6 for each j , and if there exists j with {a, ^ J ) ^ 0, then (a, Z) > R.
But if Z satisfies the conditions of the previous paragraph, then (a, Z) = 0, so by
taking e sufficiently small the jumps c' can be made smaller than 0, and it follows
that (a, 9s) = 0 for each j .

Recall that / fixes all singular separatrices. Let M*^M be the collection of all
symbols m such that m n Sing (/) = {s} for some s with (a, Susp (s)) # 0; note that
the unit length symbolic loop m = (m) satisfies the equation O(m) = Susp (s). Let
S* denote the collection of all finite simple symbolic sequences y with Head(y),
Tail (?)€./#*, where Head (y)nTail (y)n Sing (f) = {s(y)} for some singularity
s(y) (recall that Head (y), Tail (y) are Markov boxes on the surface 5). For each
ye S*, choose a closed curve c(y) in M consisting of a flow line passing through
each Markov box of y in sequence, closed off by some curve in S which stays in
Head (y)uTail (y), passing through s(y). Let L* = sup{(a, c(y))\y€ S*}.

Take a cyclic quasi-orbit z = (zJ \j e Z/J) of/ let if = Susp (z), and let m be the
symbolic quasi-loop such that O{m) = if. Let ^ ( a ) = OeZ/ / |<a ,0(^)>^0}. For
each jej!(a), choose m'aij) in the positive tail of m', and mi*]) in the negative tail
of mJ+1. If the positive tail of m' is truncated after m'aU), and the negative tail of
mijj) is truncated before mftjy, and if this is done for eachy 'e^a) , then the sum
of ua over the remainder of m is finite. Moreover, since (a, 9') is positive, then by
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choosing a(j) sufficiently large, the sum of ua over the remainder of m will be
greater than R. Assuming that a(j) is so chosen, choose mJ

c(J) beyond mJ
aiJ) in the

positive tail of mJ so that ua(m
J
a(J), mJ

a(j)+l,..., mi(j)) > L*; we say that the func-
tions a, b, c:^(a)-»Z determine an (R, L*)-truncation of m.

We claim that there exists 6>0, independent of z, such that if b, c: / ( a ) -> Z are
chosen so that D(zJ

b(J), z{£/))< 0 for each je£(a), then there exists a:^(a)-»Z so
that a, b, c determine an (R, L*)-truncation of m. The reason is that in order for
D(zJ

biJ), zijj')) to be very small, both z | 0 ) and z{|/) must be very close to some
s € Sing (/), where (a, Susp (s)) # 0; but there is a positive lower bound on the
distance from s to any Markov box in M not containing s, so any orbit approaching
very close to s must spend a lot of time in the Markov boxes containing s; since
(a, Susp (s))^0, then during the time the orbit spends near s, the ua sum of the
Markov boxes visited by the orbit will build up very large. A precise formula for 6
in terms of R and L* would therefore involve the lengths of the sides of Markov
boxes in M, and the expansion factor A, which determines how fast an orbit can
move in a neighborhood of a singularity; we leave the curious reader to develop
such a formula.

Now let a, b, c be as in the previous paragraph; we must show that if Z is the
closed curve defined from z by jumping from m i ^ to mJ^ for j e^(a), (with an
arbitrary tiny jump for j££{a)), then (a, Z)> R. Let n be a cyclic quasi-loop
obtained from m as follows: for each je J(a), truncate mj after zJ

bU), truncate
mJ+i before zJ

ciJ), and splice in some yJ € S* going from zJ
biJ) to z^y By an argument

similar to the proof of the splice equation, we clearly have the following equation:

(a,Z)+ I (a, c(yJ)) = (a, Susp (n))=ua(n).

But since a, b, c form an (R, L*)-truncation of m, it follows that ua(n)>
R + \#(a)\ • L*. And by definition of L*, we have (a, c(yj))<L* for each je#(a).
Thus, {a, Z)> R. O

6. Lifting the chain kernel
Now we must show that each chain component of R(a) lifts to M. If R(a) were
a locally path connected space, then we could apply the standard lifting lemma:
since M-> M is a Z-cover defined by a e H\M; Z), we would only have to show
that the image of H,(K(a);Z) in H,(M; Z) is contained in Ker(a). As R(a) is
not a locally path connected space, this does not work. To correct the situation, we
shall find a neighborhood N = N(R(a)) of R(a) with the property that
image(//,(./V;Z)->HI(M;Z))<=Ker(a). Since N is locally path connected, it
follows that JV lifts to M, and R(a) goes along for the ride.

The neighborhood N that we describe will be an isolating block for R(a). This
is a concept due originally to Conley and Easton [CE], and is important in studying
stability of closed invariant sets under perturbation of the flow. Recall the definition:
given a flow on a manifold, a codimension 0 submanifold N is called an isolating
block if:
(i) dN = S+uS_, where S+, 5_ are codimension 0 submanifolds of dN;
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(ii) int (5+) n int (5_) = 0 , and BS+ = dS_ = T, where T is a codimension 1 submani-
fold of dN;

(iii) the flow enters N in int (S+), leaves N in int (5_), and is externally tangent
to N along T, i.e. for each xer, there exists e>0 such that x• [-e, + e ] n N =
{x}.

Letting / be the largest closed invariant set contained in int (N), then N is said to
be an isolating block for /.

First we shall state and prove the relevant proposition in the case that R(a)
contains no singular orbit of <f>. Once this is done, we shall indicate the changes
necessary to deal with the other case.

PROPOSITION 6.1. An Isolating Block for the Chain Kernel (non-singular case).
Suppose that R(a) does not contain a singular orbit of<f>. then there exists an isolating
block N(a) for R(a) with the following property: the digraph F(a) can be embedded
as a deformation retract of N(a), in such a way that for each symbolic loop m of
A(a), ifO(m) is the corresponding periodic orbit inR(a) and ify(m) is the correspond-
ing directed loop in F(a), then O(m) and y(m) are homotopic.

Before giving the proof, we use it to prove:

COROLLARY 6.2. The chain kernel lifts to M. Given a chain component C of R(a),
xeC, and xeM lying over x, there exists a unique lifting of C to M containing x.
Proof. By the above proposition, it suffices to show that image (H,(7V(a); Z)-»
Ht(M;Z)) is contained in Ker(a). Since F(a)<=int(N) is a deformation retract
of N, it suffices to show that image (//,(F(a); Z)-»//,(M; Z)) is contained in
Ker(a). By Lemma 3.1 Directed Loops Span Homology in Strongly Connected
Digraphs, we need only show that for each directed loop -ycF(a), O]eKer(a) .
Clearly there exists a symbolic loop m of A(a) such that y = y(m). By definition
of R(a), it follows that [O(m)]eKer(a). Using the Proposition 6.1, y and O(m)
are homotopic, so it follows that [y] = [0(m)]e Ker (a), and we are done. •
Proof of An Isolating Block for the Chain Kernel (non-singular version). Recall the

standard notation; S is the distinguished section of <t>, with pseudo-Anosov first
return map / stable and unstable foliations !FS, 5FU, and expansion factor A > 1.
Also, we assume that <f> is parameterized so that the first return time to S is everywhere
equal to 1.

Since R(a) contains no singular orbits, then A(a) = A'(a), and R(a) = L(a) is
the closure of the periodic orbits on which a vanishes, Let M(a)<= M consist of all
symbols occurring among the transitions in A(a). Consider a Markov rectangle
B e J , s o B i s an 9,, &u rectangle in 5. Given x,yeB, let Ds(x,y) denote the
measure of a path from x to y transverse to 9>u; for example, if x, y lie on a segment
of Sfj, Ds(x, y) is the length of that segment measured with respect to 9U. Let
Du(x, y) be defined similarly. Let D be the metric D(x, y) = sup {Du(x, y), Ds(x, y)}
on B. Let dsB denote the union of the two sides of B consisting of leaf segments
of 9,; similarly for 8UB. Let B+ = B • [0,1] be the flow box of </> corresponding to B.

Given B&M, note that B e M(a) if and only if R(a)n B*0. Since R(a)n S is
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a closed invariant set of/ containing no singularities, it follows that R(a)nS is
disjoint from the stable and unstable separatrices of / Since dB is a union of
segments of stable and unstable separatrices, if BeJt(a) it follows that R(a)n
B<=int(B). In particular, there exists e > 0 such that D(dB, R(a)nB)> e. Since
M(a) is finite, e can be chosen independent of B.

The idea of the construction of N is as follows. Given BeM(a), imagine
embedding a box D = D(B) inside B+, so that the top and bottom faces of D are
contained in the top and bottom faces of B+, the vertical faces are parallel to the
vertical faces of B+, and B+ - D consists of points whose horizontal distance to the
vertical boundary of B+ is less that e. Thus, int (D) contains B+ n R(a). Consider
the two vertical faces of D which are parallel to the 'unstable' faces of B+, i.e. the
faces of B+ of the form a- [0,1], where <re vo(du(B)); the union of these two faces
will be denoted d+D. 3-D is similarly defined with respect to the 'stable' faces of
B+. Now perturb D so as to skew the vertical faces, so that d+D slants outwards
and d-D slants inwards. Thus, ignoring the top and bottom, the flow enters D in
int (d+D), leaves D in int (d-D), and is externally tangent to D along each vertical
edge of D. D is called a skewed box embedded in B+. This is illustrated in diagram
5, which includes a perspective view and a bird's eye view of D; in this diagram,
unstable boundary components of B are indicated with a dotted bold line, and
stable boundary components of B are indicated with a solid bold line. In the bird's
eye view, the flow should be pictured as coming straight out of the page.

DIAGRAM 5. A skewed box inside a flow box.

The isolating block N will be constructed as a union of such skewed boxes D(B),
one inside B+ for each BeM(a). However, the description given so far for the
boxes D(B) is not precise enough to avoid certain problems. For instance, if there
exist B,B'eM(a), creiro(duB) and er'e TTO(3UB') such that (B, B')eA(a) and
/(<r)=>cr', then we would want the corresponding top edge of D(B) to contain
the corresponding bottom edge of D(B'). In order to arrange for this to happen,
we shall have to choose the boxes D(B) more carefully.

Define iro(dsM(a)) to be the disjoint union of the sets iro(dsB) for BeM(a);
define vo(duM(a)) similarly. We shall refer to these two sets more succintly as TTods

and iTodu, though the reader is cautioned that we are considering only edges of
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rectangles in M(a) as opposed to all of M. Define a directed graph with vertex set
irodj and with a directed edge a-* a-' whenever <re iro(dsB)<z 7roas, a-'e iro(dsB')cz
nods, (B\ B)eA(a), and cr'<^f~x{a); this directed graph is also denoted irads.
Similarly, define a directed graph with vertex set ir^u and directed edges a-* a'
whenever are vo(duB)<= vodu, a'e iro(duB')a wodu, (B,B')eA(a), and a-'af(a-).

LEMMA 6.3. There exists a number v>\ and numbers 0<e(cr)< v'1 • e, defined for
ere 77-odsu iTodu, such that if a^xr' is a directed edge in irods or 7rodu, then
v A- e(or') = e(o-)-

Pfoo/ This follows easily if it is true that each component of the directed graph
TTodj or 77-odu is a tree. Since each node of either digraph has at most one incoming
directed edge, we need only show that there are no directed cycles. If there were a
directed cycle of length n in, say, TT^S, this would correspond to a symbolic loop
(Bo, Blt..., Bn = Bo) of A(a), and stable boundary components a-, of Bf, such that
/(CTJ)<= or1+1 for each ieZ/n, and <T0=<rn. Thus,/"(or0)c a0, resulting in a periodic
point xecr0; x corresponds to the symbolic loop (B,),eZ/n of A(a), implying that
xe R(a). However, each stable boundary component of a Markov box in M is a
leaf segment of a stable separatrix based at a singularity. It follows that x is a
singularity of/ This contradicts the hypothesis that R(a) contains no singular orbits
o f <f>. •

Now we can give precise definitions of the skewed boxes D(B) and the isolating
block JV. Given B e M{a), define D(B) c B+ to be the set of all points of the form
x • t, where x e int (B) and t e [0,1] satisfying the following conditions:
(i) for each <r e iro(duB), D(x, a) > e(o-) • [(1 -1) +1 • v'1];

(ii) for each ae no(dsB), D(x, o-)>e(o-) • [>• (1 -t) + t].
Let Bottom (D(B)) be the rectangle consisting of all points x = x • 0 of the above

form, and let Top (D(B)) be the rectangle of all such points x- 1. Let

dh
+D(B) = cl [Bottom (D(B)) -\J {Top (B')| B'eM(a)}],

and let
d*D(B) = cl [Top ( D ( £ ) ) - U {Bottom (D(fi')) I B 'e^(a)}] ;

these sets are the portions of the horizontal boundary of D(B) not covered by
horizontal boundaries of other boxes D(B'). Notice that because of the above
lemma, d+D(B) is a union of sub-rectangles of Bottom (D(B)) each having stable
boundary contained in the stable boundary of Bottom (D(B)), and d*LD(B) consists
of sub-rectangles of Top (D(B)) each having unstable boundary contained in the
unstable boundary of Top (D(B)). Also, let dlD(B) be the union of the two outward
slanting vertical faces, obtained by taking either of the two inequalities in condition
(i) to be an equality; let dlD(B) be the inward slanting vertical faces, using equalities
in condition (ii). Thus, the number v is the slope of the faces dlD(B) and dlD(B),
measured with respect to the parameterization of B+ as B x [0,1].

Now define N = {J{D(B)\BeM(a)}, and define S+cdN to be the closure of
theset\J{dv

+D(B)vdh
+D{B)\BeM(a)}, and S^^dN to be the closure of the set

\J{d'LD(B)ud'LD(B)\BeM(a)}. It is evident that S+ and S_ are codimension 0
submanifolds ofdN, N = S+u S_, the flow enters N in int (S+), leaves N in int (5_),
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and T = S+ n 5_ is a codimension 1 submanifold. T can be described as the union,
over each B e M{a), of the vertical edges of D(B), plus the stable sides of d+(D(B)),
plus the unstable sides of d*(D(B)). From this description, it is evident that the
flow is externally tangent to T. Thus, N is an isolating block.

This construction is illustrated in diagram 6, which shows how N is constructed
in a case where A(a) is a full shift on two symbols. In this example, M(a) consists
of two symbols Bo and Bt, and A(a): M(a) x M(a)^{0,1} takes constant value 1.
In the diagram, the four horizontal sub-rectangles of Top (Bo)uTop (Bj") labelled
R,, R2, R3, /?4 are identified with the four vertical sub-rectangles of Bottom (Bo)u
Bottom (B^) labelled R[, R'2, R'3, R'4. Since each such identification map is an
orientation preserving affine homeomorphism, the map is completely specified by
saying whether or not it preserves orientation of stable or unstable leaf segments.
There are two possible choices for each of the four rectangle pairs Rit R'j, making
a total of 24= 16 possible choices in all. Note: each of the 16 choices defines a
Z/2-valued cocycle on the digraph rA(a), and two cocycles define the 'same' isolating
block when they are in the same cohomology class; thus, since H1(TA(a);Z/2) =
(Z/2)3, the 16 possible choices only define 8 different isolating blocks.

t B*
DIAGRAM 6. An isolating block for the suspension of a full shift on two symbols.

One of the 16 examples is illustrated in diagram 6, where the choices are indicated
by the orientation of the labels R't, i = 1,2,3,4. The curve T along which the flow
is externally tangent is also indicated in the diagram by the bold-faced segments.

Now we prove the remaining contentions about N. It is evident that
/?(a)c int (N). To see that R(a) is the largest invariant set in int(N), consider
an orbit O(m) of <j> not contained in R(a). Then for some symbol mt in m,
m, = B£M(a). Thus, O(m) must intersect the flow box B+ = B- [0,1] for some
BeM-M(a); in fact, O(m) must intersect B-(0,1). Since B-(0, l ) n N = 0 , it
follows that O(m)£N.

Now we describe how to embed F(a) in int(N). F(a) has one node n(B) for
each BeM(a), and one directed edge e(B, B') for each transition (B, B')eA(a).
Map n(B) to an interior point of D{B); map e(B, B') to a path which connects
«(B)€ int (D(B)) to «(B')eint (D(B')), passing through the rectangle
Top (D(B))n Bottom (D(B')). From this description, it is evident that T(a) is a
deformation retract of N, and that for any symbolic loop m of A(a), O(m) and
y(m) are homotopic. •
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The proof of the above proposition yields a topological description of the isolating
block N. The components of N are in 1-1 correspondence with the components of
F(a). If C e TTO(N) corresponds to Ge 7ro(r(a)), then C is a handlebody, whose
genus is given by the equation genus (C) = 1 -\(G). r is a family of simple closed
curves on dN. For the example in the above diagram, it is an interesting exercise
to draw what T looks like on the boundary of a standard genus 3 handlebody in
R3. Notice that the quadruple (N, S+, S_, T) forms a sutured manifold in the ter-
minology of Gabai [G]. This description in terms of sutured manifolds may be
useful in obtaining relations between the flows we are considering here and the
foliations studied by Gabai.

Now we shall indicate some of the changes necessary to prove that R(a) lifts
when it contains singular orbits and quasi-orbits. It would be nice if we could
replace the Markov partition M with a new Markov partition so that R(a) intersects
a Markov rectangle Be S only in int (B). With the old notion of a Markov partition
this is impossible, since int (B) consists solely of regular points of/ To alleviate
this problem, we alter our notion of a Markov rectangle, allowing a 'Markov 2n-gon'
containing an n- pronged singularity in its interior.

Recall that the construction of a Markov partition for / given in [FLP], started
by choosing short stable separatrices for every singularity of 2FS. Instead, start with
short stable separatrices only for those singularities of 2FS in S — R(a). Continuing
with the construction in [FLP], we obtain a partition of S into ordinary Markov
rectangles, plus, for each n-pronged singularity 5 of &, in SnR(a), a Markov
2n-gon Bs with .yeint (B). This means that dBs consists of n stable leaf segments
and n unstable leaf segments, alternating around the boundary. The collection of
Markov rectangles and 2n-gons so obtained is called a pseudo-Markov partition,
and denoted M p, with superscript p for 'pseudo'. For each B, B'eM p, if /(int (B)) n
int (B') T* 0 , the intersection f(B) n B' can be described as follows. If B = Bs and
B' = BS, for n-pronged singularities s, s' with s'=f(s), then F(B)nB' is a 2n-gon
whose stable boundary is contained in the stable boundary of B', and whose
unstable boundary is contained in the unstable boundary off(B). In all remaining
cases, /(B)nJB' is an ordinary rectangle, with the appropriate conditions on its
stable and unstable boundaries. In diagram 7, we illustrate a Markov 2w-gon BseMp

for n = 4; the diagram shows the two partitions of Bs whose elements are of the
form Bsnf(B), and Bsnf~\B) respectively, where B ranges over the elements
of^p.

Just as with the ordinary Markov partition M, we define a transition matrix
A": M"xJlp->{0,1} so that A"{B,B') = \ if and only if /(int (B))nint (B')*0.
Notice that a symbolic loop m of A" does not necessarily correspond to a periodic
orbit of the suspension flow <j>. To see why, suppose m contains a sequence of the
form Bo, Bs, B,; thus, /(Bo) interesects Bs in some stable sector of s and /"'(B,)
intersects Bs in some unstable sector, and it may happen that these two sectors are
not adjacent. However, it is evident in this case that m does correspond to a periodic
quasi-orbit, denoted O(m). Moreover, since the non-rectangular elements of Mp

are in 1-1 correspondence with the elements of the set Sing (/) n R0(a), it follows

https://doi.org/10.1017/S0143385700005009 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005009


Equivariant spectral decomposition for flows with a Z action 367

DIAGRAM 7. A Markov octagon in a pseudo-Markov partition for a pseudo-Anosov homeomorphism.

that the periodic quasi-orbits of the form O{m), where m ranges over the symbolic
loops of Ap, consist precisely of those periodic quasi-orbits O such that {a, O) is
finite.

Now we can carry through the analysis of R (a), using the pseudo- Markov partition
Mp and transition matrix Ap. Define the sub-matrix Ap(a)ci Ap to be the union
of all symbolic loops m such that (a, O(m)) = 0. Just as in § 5, one now proves that
R(a) consists of all orbits and quasi-orbits of the form O{m) where m is a symbolic
sequence of Ap{a). Let Mp{a) denote those elements of Mp occurring among
transitions in Ap(a). Just as in the non-singular case, R(a)<=U{B+\BeMp(a)}.
Utilizing this fact, we can construct an isolating block N for R(a) as a union of
skewed 'boxes' D(B) c B+ for each BeM"(a); when B is a 2«-gon for n > 2, then
D(B) is a 2«-gon crossed with an interval, with vertical faces slanting alternately
inward and outward.

Now define the digraph Tp to be the topological realization of Ap, and show that
there is a non-negative cohomology class U" e H\rp;Z) with the property that for
each symbolic loop m of Ap, Up(y(m)) = (a, O{m)). As before, one proves that
the topological realization Yp(a) of Ap(a) is precisely the sub-digraph of V
consisting of the union of all directed loops y such that Up(y) = 0. Now one proves,
as before, that Tp(a) embeds as a deformation retract of N.

So in order to prove that R(a) can be lifted, it remains to show that (a, y(m)) = 0
for each symbolic loop m of Ap(a). Again, the proof is to find some kind of
homotopy relation between O(m) and y(m), but it is not immediately evident how
to formulate such a relation, since O(m) might not even be a closed curve, e.g.
O(m) might be a quasi-orbit. However, there is a canonical way to define a closed
curve O'(m) well-defined up to homotopy, as follows. If O(m) = (5^)ieZ/ /, then for
each i, there exists s(i) e R(a) nsing (/) such that &, = Susp (s(i)). Let 9^ be the
non-compact component of ifi n B^(l) representing the positive end of 5 ,̂, and let
5T+! be the non-compact component of 5^,+, n Bs(i) representing the negative end
of Ŝ j+i. Then &\ u Pt u 5̂ 7+i can be replaced by a path staying completely in B^U)
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and having intersection number with Bs(i) equal to the number of consecutive
occurences of the symbol Bs(i) in the appropriate interval of m. Doing this replace-
ment for each ieZ/1 results in a closed curve O'(m) well-defined up to homotopy,
such that (a, O'(m)) = {a, O(m)} = 0. Moreover, the construction shows that O'(m)
and y{m) are homotopic in M.

7. Transient behavior of <j>

Now define R to be p~l(R(a)). It is evident that R<= R(<f>). In order to show the
reverse inequality, it suffices to show that the remaining orbits of <f> are transient.
The following proposition does this and more:

PROPOSITION 7.1. Transient Behaviour of <£. Given ye M, ifL±(y) <£ R, then 4>{y, t) -*
±oo as t-*±oo. Thus, R(<f>) = R = p~l(R(a)).

From this proposition, together with the results of the previous sections, properties
(A), (B), (C), and (D) of the Z-Spectral Decomposition Theorem follow.

Proof of Proposition. We give two different arguments, both adapted from arguments
of Fried.

The first argument uses a little shadowing theory, together with bits of the proof
of Theorem D of [F2, pp. 357-358]. Suppose that L+(y)<£ R and <f>(y, t) does not
approach +oo as t-*+oo. Then either 4>(y, <)-»—oo as f-»+oo, or there is a point
z € L+(y) such that z& R.

First consider the case where z&R. Then for each e, T, there exists an e, T cycle
X = (x, x; t) such that d(x, z) < e; this can be done by choosing x = $(y, s) for some
appropriately chosen s. Adapting our earlier shadowing arguments to the flow <£,
it follows that X can be shadowed by a periodic orbit or quasi-orbit X, and clearly
the distance from z to X is less than K • e, for some K which is independent of e.
Thus, z is in the closure of the collection of periodic orbits and quasi-orbits of 4>,
from which it follows that z e R, a contradiction.

Now consider the case where <fr(y, t) -» —oo as t -» +oo. We can choose time (,- -» +oo
such that p{4>{y,',)) has a limit point ze M. Thus, for each e, T we can find an e,
T chain (z0, zx; t) where z-,ep~x(z), and where zx is significantly closer to -oo that
z0. Thus, (p(z0) = z, /»(z,) = z; t) is an e, T chain downstairs having negative intersec-
tion number with a. Again we employ a shadowing argument, deducing the existence
of either a periodic orbit or a quasi-orbit of tf> having negative intersection number
with a. This is a contradiction.

The first argument used shadowing, which depends on the pseudo-Anosov struc-
ture of the flow. For the second argument, we use the pseudo-Anosov structure of
the flow in a different way, by employing the Markov partition; this proof also uses
elements of the proof of Theorem H of [F2, p. 360]. Set x = p(y), and choose a
closed 1-form representing a, which we also write as a. Define AX:R-»R by
Ax(t) = a(d/dt(<f>(x, t))). Then it suffices to show that:

•T

Ax(t)dt^ +oo asT-»+oo. (*)J:
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We shall show this by estimating the integral by a sum of intersection numbers of
a with closed curves which approximate long stretches of the flow line from x to
(j>(x, T). From the fact that L+(y)<£ R(<f>), it will follow that these closed curves
have larger and larger intersection numbers with a.

First of all, it suffices to assume that x lies in our preferred section S of <}>. Let
wJ = (m1)j20 be an allowable sequence of symbols visited successively by the flow
line x[0, <x>). Since L+(x)<£ R(a), and since R(a) is covered by a particular
subgraph T of the symbolic dynamics graph of </>, it follows that the symbolic path
m is not eventually contained in I\ That is, for each /, there exists integers i, i' with
/ < i < i' such that m, = mr, and the symbolic loop (m,, mi+l mr = m,) has
positive intersection number with a.

Let Tk = T(k) be an increasing sequence of numbers such that the flow segment
x- [Tk_j, Tk] goes through a flow box from mfc_, to mk. Given T>0 , choose k so
that Tfc< T< Tk+1. Clearly the integral

•T

Ax(t) dt
'T(k)

is bounded independent of T. Thus, to prove (*) we need only prove that:
•T(k)

Ax(t)dt-> +00 asfc-»+oo. (**)

i;
\:

Fix K > 0 . Choose 0<k(0)< K as large as possible so that mo=mkiO); choose
k(l) with k(O)<k(l)<K as large as possible so that mk(o)+i = mkW; etc. This
generates a sub-sequence fc(O), k{\),..., k(J) = K, where / is bounded by the
number of symbols. Thus, the following quantity is bounded independent of K:

Therefore, it suffices to prove that:

Ax(t)dt-\ Ax(t)dt-l Ax(t)dt .
I Jo Jo j=i Jnnj-D+D

it suffices to prove that:
(•TWO)) j rnk(j»

Ax(t)dt+t Ax(t)dt^ +00 asK^+ao. (***)
Jo j=i Jr(*o-i)+i)

Now choose a base point p{m) e m for each symbol m; for each 1 <_/ < J, choose
a path Pj from <£(*, THj)) to p(mk{j)); and for each pair of symbols m, m', choose
a path fimm' in M connecting />(m) to p(m'); let A be a constant bounding the
integral of a over each of these paths. By concatenating these paths and their
inverses appropriately with the flow segments x- [T(k(j — l) + l), T(k(j))], we see
that summation in (***) can be approximated to within 2A(J+1) by

I (a, Oim^)), (****)

where mK0 is the symbolic loop (m0,..., mk(0)), and for j = 1 , . . . ,J, mKJ is
the symbolic loop O(mfc(j_I)+1, mfc0_1)+2,.. . , mkij)). Thus, we need only show
that the quantity (****) approaches +oo as K^+oo. Let MK be the indexed
collection of simple symbolic loops obtained by desplicing all the loops in the
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list (m1^ \j = 0 , . . . , J), so we have

i(a,O(mKJ))= I (a,O(m)).
7=0 meM

Now the hypothesis that L+(x)<£ R(a) implies that as K-»+oo, the number of
symbolic loops in the indexed collection MK whose orbits are not contained in
R(a) goes to +oo as K^+<x>; each such loop has an intersection number with a
which is bounded below, and the proof is completed.

Using similar arguments for T -* —oo, we are done. •

8. End behavior of tf>
The last part of the Z-Spectral Decomposition Theorem that needs verification is
restated here for reference:

Property (E). Given x e M, if L+(x) # {+00}, then there exists a neighborhood U of
+oo such that for any chain component C of R{<j>), if C<= (J then C<= R+(x).

We can think of 'E' as standing for 'End', and what this property says is that the
flow 4> behaves well near the ends of M.

We shall first recast property E as a purely combinatorial statement about the
'Liapounov graph' f = Ya of the flow <£. f is a digraph whose node set consists of
the collection <£ of chain components of R(<f>)- To define the directed edges of f,
first we define a partial order on <€ by saying that for C,C'e% C<C if there
exists a sequence C = Co, Cx,..., Cn = C" in <£ and points x , , . . . , xn in M -R((j>)
such that L_(x,) c C,_, and £+(*,) <= C,, for i = 1,...,«. Notice that the partial order
on ^ is non-reflexive, i.e. there does not exist any C e ^ such that C<C; for
otherwise, letting C = C" as above, since each C, is chain connected there would
exist an e, T chain from a point in L+(x,) to a point in L_(x,+1) for each ieZ/n,
and piecing these together with the orbits of the x, would give an e, T cycle through
each Xj, contradicting the hypothesis that x, e M - R. Now define a directed edge
C^C in F whenever C<C and there does not exist any C"e <# such that
C <C"<C. Notice that f is acyclic, i.e. there are no directed loops in f, for
otherwise non-reflexivity of "# would be contradicted.
PROPOSITION 8.1. To prove property (E), it suffices to prove:

Property (E'). For every C ec€ = Nodes (f), there exists a neighborhood V of +°o
in f such that for every C'e Vn Nodes (f), there is a directed path from C to C"
inf.
Proof. Assuming (E'), pick xe M such that L+(x) ^ {+<»}. We have already proven
that L+(x)<= C for some Ce Nodes (f). Since the flow <f>\C is chain recurrent, it
follows that R+(x) = R+(C). Clearly R+(C)nR($) = \J{C'e Nodes (f)|there
exists a directed path in f from C to C}. Also, for any sequence C, € Nodes (f),
C, -»+oo in f if and only C, -»+oo in the Hausdorff topology of closed sets in
M u {±°o}. Thus, for each neighborhood V of +oo in f, there exists a neighborhood
W of +oo in M such that for C € Nodes (f), if C" <= U then C'eV. D

The next step is to convert property (E') into a finitistic combinatorial statement.
To accomplish this, notice that the action of Z on M induces an action on Y by
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digraph isomorphisms, which is evidently free; we shall use T to denote a generator
of this group. Note that, as a topological space, F can be compactified by adding
ends {-oo, +00}, in such a way that for each node C of f, T'(C)-* ±00 as «-» ±00.
The quotient digraph F = Ta = f/Z has only finitely many nodes; this is a con-
sequence property (B) of the Z-Spectral Decomposition Theorem, which has already
been proven. The digraph F comes equipped with a cohomology class V = Va e
/ / ' (F; Z), which is naturally associated with the Z-covering map F-»F.

PROPOSITION 8.2. In order to prove property E', it suffices to prove the following:

Property (E").
(i) F is strongly connected;

(ii) let L = gcA{V{y)\y is a closed, non-directed path in F}. There exists 7VeZ+
such that for each n > N and for any c e Nodes (F), there is a directed loop y
through c with V(y) = n • L.

Proof. Assuming property E", choose Ce Nodes (F). Choose a cocycle veV, and
let v = q*(v), where q:Y->F is the projection map of the Z-cover. We can write
v = dX, where X: Nodes (f) -* Z satisfies X( C) = 0. Note that X is a proper function
in the sense that for a sequence Ct e Nodes (f), C, -> ±00 if and only if X(Ct) -* ±00;
this follows from connectivity of F, which follows from strong connectivity. So to
prove property E', we need only prove that there exists some M e Z+ such that for
each C'e Nodes (f), if X(C') > M then there is a directed path from C to C" in f.

Let c = q(C). For each c'e Nodes (F), choose a directed path y(c, c') from c to
c', using strong connectivity of F. Let M = N- L+sup {v(y(c, c'))\c'e Nodes (F)};
the sup exists because Nodes (F) is finite. Suppose that X(C')>M for C'e
Nodes (f); we must construct a directed path in f from C to C". Let c' = q(C).
Lift y(c, c') to a path y{CA, C") ending at C", and starting at some C, e Nodes (f).
Note that

Notice also that qiC^) = q(C) = c, so any (non-directed) path from C to Q projects
down to a closed loop; such paths exist by connectivity of F, and it follows that
X(Ci) = n- L for some ns:N. By hypothesis, there is a closed directed loop y
through c such that v(y) = V(y) = n • L; let y be a lift of -y starting at C. Clearly
Head (-y) = Tail (r(C,, C')) = C!, so y*y(C1,C) is the desired directed path
from C to C". •

We next show that property E" is a formal consequence of strong connectivity of
F and positivity of V, which will be proven later.

PROPOSITION 8.3. Given a finite strongly connected digraph F and a positive cohomology
class VeH\T;Z), F and V satisfy property E".

Proof. As we have seen in the Lemma 3.1 Directed Loops Span Homology in a Strongly
Connected Digraph, if H <= H^F; Z) denotes the semi-group consisting of all positive
linear combinations of homology classes of closed directed loops, then H generates
all of //,(F;Z). Thus, the set V(H), the image of H under the homomorphism
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V-.H^Y; Z)-»Z, which is a semi-group of positive integers, generates all of
image (V) = L • Z. By dividing through by L, we can assume L = 1, and it remains
to show that V(H) contains all sufficiently large integers. This can be accomplished
by techniques similar to but simpler than those used in the proof of Minkowski's
theorem (see [HW], p. 31):

LEMMA 8.4. Let S<= Z+ be a semi-group which generates all of Z. Then S contains all
sufficiently large integers.

Proof. By hypothesis, we can write
j

1 = 1 rij- Sj

for some n, e Z and s, e 5. Consider the linear map F: UJ -» U given by
j

F(x)= X V Xj.

Note that the restriction F: ZJ -> Z is onto, since 1 is in the image. We shall show
that for all sufficiently large n, F~1(n)nZJ

+760, from which the lemma follows.
Let A = Ker (F) n ZJ. Since F is defined over Z, A is a lattice in Ker (F) = UJ~\

so the quotient torus Ker (F)/A is compact, and in particular has finite diameter.
Therefore there exists a constant A> 0 such that any ball in Ker (F) of radius> A
contains a point of A. Also, for any integer n, translating Ker (F) by some particular
element of F ~' ( H ) n ZJ is an isometry from Ker (F) to F~' (") taking A to the lattice
F~'(n)nZJ. It follows that any ball in F~'(n) of radius > A contains a point of ZJ.

Consider the simplex cr = F" ' ( l )nU+. Choose a ball Bcint(o-), and let r =
radius (B). Note that for every n> A/r, the simplex F~\n)nUJ+ contains the ball
n • B of radius n • r> A, which therefore contains a point xeZJ. Thus, xeF~ ' (n )nJ J l J •

So to finish the proof of property (E) and of the Z- Spectral Decomposition Theorem,
it remains to prove that the digraph T is strongly connected and the cohomology
class Ve H^F; Z) is positive. For the remainder of the proof, we shall revert to the
more specific notation Ta for T and Va for V.

As in the construction of an isolating neighborhood for the chain kernel R(a),
the proof depends on whether or not R(a) contains a singular orbit of <$>. When
no such singular orbit exists, we shall show how to construct Ya and Va from the
symbolic dynamics digraph FA and the non-negative cohomology class Ua e
H\Ta: Z), defined in § 3; from the construction, the desired properties of Fa and
Va will follow. When R(a) does contain a singular orbit of <f>, we shall outline a
similar procedure which allows one to construct Fa and Va from the directed graph
rp and cohomology class Up e H\Y"; Z) defined in § 5.

Here is the construction for Ya, assuming that R(a) contains no singular orbits
of 0, so R(a) = L(a). As was proven in § 5, the chain components of R(a) are in
1-1 correspondence with the topological components of the sub-digraph r/ t (a)C YA.
Let u be a non-negative cocycle representing Ua e // '(r, ,; Z), which exists because
Ua is non-negative. Recall that u takes value zero on each edge in YMa).
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Consider a directed path y in FA whose Head and Tail are in rA(a). y is said to
be a-indecomposable if y contains no edge of TMa), and y passes through no node
of TMa) other than at Head (y) and Tail (y). y is a-minimal if, given any path y'
such that dy = dy' and u{y) = u(y'), y' is a-indecomposable. Thus, an a-minimal
path is a-indecomposable, but the converse is not necessarily true. Define an
equivalence relation on a-minimal paths by saying that y ~ y ' if Tail (y), Tail (y')
are in the same component of TMa), Head (y) and Head(y') are in the same
component of YMa), and w(y) = «(y'). Define a directed graph Y'a with one node
[C] for each component C of TMa), and one directed edge [y] for each equivalence
class of a-minimal paths y; thus, Head [y] = [C] if and only if Head (y) is a node
of C, and similarly for Tails.

Note, incidentally, that the definition of a-minimal and the equivalence relation
on a-minimal paths depends only on the positive cohomology class Ua, not on the
non-negative cocycle u representing Ua. Also, note that the graph Y'a comes naturally
equipped with a non-negative cohomology class V'a e H\r'(a); Z), defined by the
equation ^ ( [ y j * • • • * [yK]) = Y.k£Z/K u(yk); it is easily checked that this is well-
defined, and depends only on the cohomology class Ua e H1(TA; Z). More-
over, V'a is positive. For suppose there is a directed loop [yx] * • • • * [yK] with
^a([yi]* ' • • *[y/c]) = 0- There are directed paths (/8fc)lsfc==K in rA(a) such that
Head (yk) =Tail (/?*) and Head (pk) = Tail (yfc+1). Thus, y, * /3, * • • • * yK * /3K is
a directed loop in TA whose value under Ua equals zero; as proven earlier, this
loop is contained in TMa), which contradicts a-minimality of the yk.

Strong connectivity of T'a follows from strong connectivity of TA as follows. Given
two directed edges [ya], [yb] of T'a, choose a directed path in TA of the form
ya * P * fb- Note that /? can be written as a concatenation of directed paths of the
form y2 * • • • * yK-i, where each yk either is contained in YA(a), or is a-indecompos-
able. If some a-indecomposable yk is not a-minimal, then we can replace yk with
a directed path y'k such tht dy'k = dyk, and where y'k is a concatenation of a-minimal
paths and paths in TA(a). Thus, we can assume that each a-indecomposable yk is
actually a-minimal. Now alter the notation, setting yx = ya and yK = yb. Let
(yk(,))i=\,...,i be the subsequence of all a-minimal paths in the sequence (yk)k=i,...,K',
note that fc(l) = l and k(I) = K. Note also that Head(yfc(l)) and Tail (yfc(l+1)) are
in the same component of FMa), for each i ' e l , . . . , / . Thus,
[y/c(i)] * [Tit(2)] * • • • * [y*:(/)] is a directed path in F'(a) starting with [ya] and ending
with [yb].

So to prove that Fa is strongly connected and Va is positive, it suffices to prove:

LEMMA 8.6. Construction of Fa and Va. There is an isomorphism from Ta to T'a such
that V'a € H\r'a; Z) pulls back to Va e H\ra ; Z).

Proof. Consider the directed graph f̂  obtained as the Z-cover of T'a with respect
to the class V'a. Then the lemma will be proved if we can exhibit a Z-equivariant
isomorphism between fa and f"a.

Let 5 denote the inverse image under the projection M -» M of the distinguished
section 5 of <£, and let f:S->S be the first return map of <j>. Let .A" denote the
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collection of components of inverse images of elements of M. Thus, Jf is a Markov
partition for / Let A: M x jV-> {0,1} be the transition matrix. If Jf+ = {B+ \ B e JV},
then N+ is just the collection of lifts of all Markov flow boxes for the flow <£.

Notice that there is a shift map p on the shift space SA, and a semi-conjugacy q
from the suspension flow of p to <j>. Notice also that the Z-action on M induces
natural Z -actions on all of this data.

Let FA be the topological realization of A. Define a directed graph ^ whose nodes
are the non-trivial strong components of F^, with a directed edge from a node G
to a node G' if: there exists a directed path in F^ from G to G', and no such path
passes through a strong component of TA distinct from G and G'. Notice that there
is a Z-covering map TA -> TA corresponding to the cohomology class Ua e H1(TA; Z).
It is evident that F^-^F^ induces a Z-covering map <&-*¥'„ corresponding to the
cohomology class V'ae Hl{T'a;l.). Thus, it suffices to exhibit a Z-equivariant
isomorphism between the digraphs Ta and 'S.

As is evident from the definition, the digraph structure on f „ is completely
determined by the induced partial order on its nodes. The same is evidently true of
& Thus, it suffices to exhibit a Z-equivariant order isomorphism between c€ =
Nodes ( f j and Nodes (»).

Consider Ge Nodes (^), i.e. G is a strong component of F^. Let C(G) denote
the closed invariant set of the flow $ consisting of all orbits of the form O(m) for
m e SA, where m corresponds to a bi-infinite directed path in G. Since G is strongly
connected, evidently C(G) is a chain connected invariant set of 4>, so C(G) is
contained in some chain component of R($). We want to show moreover that C(G)
is a chain component of R($), i.e. an element of <€. Under the projection map
p:M-+M and the corresponding projection p:Tji-*TA, note that p(G) is a com-
ponent of TMa), and p(C(G)) is the corresponding invariant set of 4>. From Theorem
3.8 Characterization of the Chain Kernel of a, together with Proposition 3.6 Charac-
terization of A(a) and the special assumption that R(a) = L(a), it follows that
p(C(G)) is a chain component of R(a). From Proposition 7.1 Transient Behaviour
of 4>, it follows that C(G) is a chain component of R(<f>).

We have defined a map G-*C(G) from Nodes C@) to *$, which is evidently
Z-equivariant, and from the propositions mentioned in the previous paragraph,
together with the definition of % it easy to see that this map is a bijection. To see
that it preserves partial order, suppose G < G' in Nodes (&). Thus, there is a directed
path g from G to G' in F^. Extend g to a bi-infinite path y, adding on a backwards
half infinite path in G to the left, and a forwards half infinite path in G' to the
right, y corresponds to a symbolic sequence m€SA, and O{m) is an orbit whose
L_ limit set is in C(G), and whose L+ limit set is in C(G'). Evidently O(m) is not
contained in R(<j>), since C(G) and C(G') are distinct chain components of R($).
Thus, C{G)<C{G') in <g. •

This finishes the proof that Ta is strongly connected and Va is positive in the
case when R(a) contains no singular orbits of </>. We shall say a few words about
what happens in the other case. Again, the idea is to use the symbolic dynamics to
construct a particular digraph for which strong connectivity is obvious, and then to
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build an isomorphism with Ta. To do this, we again employ the notion of a
pseudo-Markov partition M p for/, with a Markov 2«-gon around any s e Sing (f,n)
such that the a vanishes on the periodic orbit of 4> passing through 5. Let Ap: Mp x
Jlp^{0,1} be the transition matrix, with topological realization Tp, and let We
Hl{Yp;2.) be the cohomology class such that for each symbolic loop m of Ap,
U"(y(m)) = (a, O(m)). Now construct a digraph T'p and class V'p from Tp and
Up, just as in the non-singular case T'a and V'a was constructed from FA and U.
Again from the construction and strong connectivity of V, it is evident that T'p is
strongly connected and V'p is positive. The same proof as before shows that T'p is
isomorphic to r a , and the isomorphism pulls Va back to V'p. •

9. Z -Spectral decomposition for basic sets of axiom A flows
We shall indicate briefly to what extent our results can be extended to basic sets of
axiom A flows, which includes the case of transitive Anosov flows.

Let M be a compact manifold, <f> an Axiom A no cycles flow on M. According
to the Spectral Decomposition Theorem of Smale [SM], R(<f>) has finitely many chain
components, called basic sets off. According to Bowen [B2], each basic set / is the
image, under a finite-to-one semi-conjugacy, of the suspension flow of a sub-shift
of finite type; in fact, / has a Markov family of local sections (Theorem 2.5 of [B2]).
Thus, there is a directed graph T, encoding the symbolic dynamics of (j> \ I.

Consider a basic set /, and a primitive cohomology class aeHl{M;Z). Let
M -* M be the associated Z-cover, 4> the lifted flow on M and I the total lift of I.
Let M° = M u {+oo, -oo} be the end compactification, <f>c the extended flow. We say
that / has a Z-spectral decomposition if the following conditions hold:
(A) Each chain component of R = R(<f> \ I) is compact;
(B) There are finitely many orbits of chain components of R under the action of Z;
(C) For any xel-R, either L+(x) = {+oo} or L+(x) is contained in some chain

component of R;
(D) Similarly, for any xe I-R, either L_(x) = {-oo} or L_(x) is contained in some

chain component of R;
(E) If L+(x) i* {+oo}, then there exists a neighborhood U of +oo such that for any

chain component C of R, if C <= U then C c R+(x); a similar statement holds
when L_(X)T*{-OO}.

As mentioned in the introduction, the results of the companion paper [M] show
that a necessary condition for / to have a Z-spectral decomposition is that -oo and
+oo be in distinct components of the chain recurrent set of <j>c. This has consequences
for the sign of a on homology directions:
PROPOSITION 9.1. If -oo and +oo are in distinct components of the chain recurrent
set of <t>c\l, then a is either non-negative or non-positive on D^il).

Proof. We shall prove this for I = M; the general case is no different. Let M be
equipped with an equivariant metric d; let MC = M u{-oo, +00} be equipped with
any metric dc. Let rn:M^M denote the Z-action.

Suppose that a assumes both positive and negative values on D^. Using positivity,
we shall show that +00 e R+(-oo); a similar argument using negativity shows that
-00 E R+(+oo). It follows that -00 and +00 are in the same chain component of R(<j>).

https://doi.org/10.1017/S0143385700005009 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005009


376 L. Mosher

Let e, T be given. Using the metric dc, we must construct an e, T chain from
-oo to +00. Let t/_ = {x€ M|dc(x, -oo)< e}, and U+ = {xe M\dc(x, +oo)<e}.
Clearly C/_ and U+ are open sets in M and their common complement M -
(C/_ut/+) is compact. Thus, there exists a number e' such that any d, e'-ball
centered on a point in M - (t/_ u [/+) is contained in the dc, e ball centered on the
same point. Using the metric d, we need only exhibit an e', T chain from a point
in t/_ to a point in U+. Henceforth, we shall drop the prime symbol from e', and
we shall assume that all distances and balls are measured with the metric d.

Choose a number t\ > 0 so that the diameter of M - (l/_ u U+) is less than 77.
Choose a positive integer N such that TN(M - f/_) c [/+. We can assume that e is
small enough so that £/_ and U+ are disjoint; so if y e L/+ and d{y, z) < 77, it follows
that Tjv(z)e [/+.

Let X, = (Xj, /,) be a closing sequence in M such that the projective homology
classes p{Xt) approach some class d e H,(M; R)/R+ for which a(d) > 0.

Suppose first that <*(X,) is unbounded; in this case, we actually construct a flow
segment x- [0, t~\ with r> T from xe t/_ to x- teU+. Choose i so that *,-> T,
a(X() = X > 2 • AT +1, and d(Xj, x, • f,-) < r\. Choose x to be a lifting of x, so that
xeU-, and Tn(x)£ [/_ for all n>0. To show that x- [0, /,] is the required flow
segment, we need only show that x- ^e U+. Since Ti(x)e M—U-, and K — N>
N + l, then TK_N(X) e [/+. Clearly d{r2K{x), x • /,) < 77, so C?(TK_N(X), T_JV(X • *,-)) <
77, and it follows that x- /, = TN(T_N(X- /,-))€ U+.

On the other hand, suppose that a(Xj) is bounded; since a(d)>0, then the
sequence of integers a(X,) is eventually positive. Choose x as in the previous
paragraph. Choose i so that t=tt> T, a(Xt) = K>0, and d(xt, xt • t) < r, where r
is chosen to satisfy the following: defining xo = x and xn = TK(xn-i) for n > l , then
for every n = 1 , . . . , N, d{xn, x • Kt) < 17. From this, an argument similar to that in
the previous paragraph shows that, for any integer L> (2- N+l)/K,
(x0, t;xi,t;...; xL, t) is an e, T chain with xLe U+. D

When / has a Z-spectral decomposition, it is evident that there exist points x e M
such that L+{x) = +00. From this it is easy to see that a cannot be identically zero
of D^il). Together with Proposition 9.1, it follows that a necessary condition for
/ to have a Z-spectral decomposition is that a be non-negative but not strictly zero
on D<f>(I).

We are interested in knowing whether these conditions are also sufficient: if a is
non-negative but not strictly zero on D^(/), does / have a Z-spectral decomposition?
Some of the techniques of §§ 3-8 extend to the more general setting of basic sets
of Axiom A flows, as long as the definitions are suitably restated. The chain kernel
of a restricted to /, R(a; I), is defined as the set of points xe I such that for all
e, T there exists an e, T cycle X through JC such that (a, X) = 0. The techniques of
§§ 3-5 apply to the analysis of R(a; I) without the difficulties that occur in the
pseudo-Anosov case: the standard shadowing arguments work perfectly well in this
case. Thus, there exists a sub-digraph F/a<=r such that R(a; I) consists of the
union of orbits represented by a symbol sequence from the digraph F ; a .

https://doi.org/10.1017/S0143385700005009 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005009


Equivariant spectral decomposition for flows with a Z action 377

The main difficulty incurred is in attempting to generalize the results of § 6, in
which it is shown that the chain kernel always lifts to M. The main technique used
there was to construct a neighborhood of the chain kernel to which the standard
lifting lemma applies. We abstract the required property for such a neighborhood
with the following definition: given a compact isolated invariant set K of a flow <j>,
K is said to be homologically taut if there exists an isolating block N for K such
that the image of the inclusion induced map H,(7V; IR)-» HX(M; U) is generated by
Cone (D^(K)); the isolating block N is said to be a homologically taut neighborhood.
The main question that needs to be addressed in order to solve the lifting problem
is:

Question. If K is a hyperbolic invariant set, is K homologically taut?

The proof given in § 6 in the pseudo-Anosov case for K = R(a) does not always
work in the Axiom A case for K = R(a; I). In the proof of § 6, we constructed a
homologically taut neighborhood from a Markov family of local sections M' for
R{a); the Markov rectangles in M' were obtained by shrinking the rectangles
corresponding to vertices of the digraph r / a , and N was then obtained by erecting
a 'skewed box' D(B) based at each element B e M'. What made this neighborhood
homologically taut was the fact that there were no identifications among the sides
of flow boxes B+ over elements BeJt', so the skewed boxes D(B) could be
constructed with no side identifications; Thus, Hi(N;R) had no extraneous
homology classes.

A general hyperbolic invariant set K will not possess a Markov family of local
sections with the required properties. However, there is one special case which
works: Bowen has proven that if K is a 1-dimensional hyperbolic invariant set, then
K is not just semi-conjugate, but actually conjugate to a subshift of finite type. In
the course of the proof, Bowen constructs a Markov family of local sections M for
K to which the above construction applies (see [Bl]). Thus, we have:

PROPOSITION 9.2. A l-dimensional hyperbolic invariant set is homologically taut.

It seems difficult to tell in general whether a hyperbolic invariant set is homologi-
cally taut. Perhaps one can apply the techniques of § 5 of [B2], in which the boundary
identifications among flow boxes are analyzed by building a hierarchy of subshifts.

Returning to the main course of the discussion, if one can prove that R(a; I) is
homologically taut, then the lifting problem of § 6 can be solved.

Once the lifting problem is solved, the techniques of §§ 7 and 8 apply exactly as
stated; so it follows that / has a Z-spectral decomposition. Coupled with Proposition
9.2, we therefore have the following generalization of the Z-Spectral Decomposition
Theorem:

THEOREM 9.3. IfR(a; I) is homologically taut, then I has a Z-spectral decomposition.
Thus, ifR(a; I) is l-dimensional, then I has a Z-spectral decomposition. In particular,
if I is l-dimensional, then for any ae H\M;Z) which is non-negative but not
identically zero on Df(I), I has a Z-spectral decomposition.
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