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Abstract
We have previously shown that higher intake of cruciferous vegetables is inversely associated with carotid artery intima-media thickness.
To further test the hypothesis that an increased consumption of cruciferous vegetables is associatedwith reduced indicators of structural vascular
disease in other areas of the vascular tree, we aimed to investigate the cross-sectional association between cruciferous vegetable intake
and extensive calcification in the abdominal aorta. Dietary intake was assessed, using a FFQ, in 684 older women from the Calcium
Intake Fracture Outcome Study. Cruciferous vegetables included cabbage, Brussels sprouts, cauliflower and broccoli. Abdominal aortic
calcification (AAC) was scored using the Kauppila AAC24 scale on dual-energy X-ray absorptiometry lateral spine images and was categorised
as ‘not extensive’ (0–5) or ‘extensive’ (≥6). Mean age was 74·9 (SD 2·6) years, median cruciferous vegetable intake was 28·2 (interquartile range
15·0–44·7) g/d and 128/684 (18·7 %) women had extensive AAC scores. Those with higher intakes of cruciferous vegetables (>44·6 g/d) were
associatedwith a 46 % lower odds of having extensive AAC in comparisonwith thosewith lower intakes (<15·0 g/d) after adjustment for lifestyle,
dietary and CVD risk factors (ORQ4 v. Q1 0·54, 95 %CI 0·30, 0·97, P= 0·036). Total vegetable intake and each of the other vegetable types were not
related to extensive AAC (P> 0·05 for all). This study strengthens the hypothesis that higher intake of cruciferous vegetables may protect
against vascular calcification.
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CVD continues as the leading cause of death globally(1,2).
The major underlying cause of CVD is atherosclerosis, the
progressive accumulation of fatty deposits, inflammatory cells,
Ca and other substances within the intimal layer of the arterial
walls(3). Calcification of the arteries involves Ca accumulation
within the intimal or medial layers of the arterial walls.
Intimal calcification is considered as an indicator for advanced
atherosclerotic plaques(4). However, it is now understood that

calcification of the vasculature is a highly regulated process that
can precede or occur independently of atherosclerotic lesions(4).

Abdominal aortic calcification (AAC) can be classified
as a marker of subclinical atherosclerosis and has been shown
to predict CVD outcomes(5,6). Calcification of the abdominal
aortic and iliac artery walls is visible when imaging the thoracic
and lumbar spine to assess the presence of vertebral fractures.
The assessment of calcification can easily be incorporated at
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the time of routine bone density screening in older adults(6).
The extent of calcification can be scored using the Kauppila
AAC 24 scale (AAC24)(7). This scoring system has been
shown to have good-to-very good agreement using standard
radiographs(8,9). We have also previously shown that extensive
AAC using the cut point of AAC24≥ 6 is associated with an
80 % higher risk of having an atherosclerotic-related death com-
pared with individuals with lower scores(6).

An unhealthy diet can substantially increase an individual’s
risk for developing CVD(10). Improving one’s diet is a simple
and cost-effective strategy that can substantially reduce the
individual and societal burden of CVD. A high intake of
vegetables is one of the cornerstones for a healthy diet and is
consistently associated with a reduced risk of CVD(11).
However, different vegetables contain different proportions of
bioactive phytochemicals(12). Thus, it is likely that not all
vegetables are the same in terms of their protective effects
and pathways involved(11).

We have previously shown that a higher intake of cruciferous
vegetables is associated with lower carotid artery intima-media
thickness(13), a marker of atherosclerosis, and a lower risk
of atherosclerotic vascular disease mortality(14). To further test
the hypothesis that an increased consumption of cruciferous
vegetables protects against CVD, we aimed to investigate the
cross-sectional association between cruciferous vegetable
intake and extensive calcification in the abdominal aorta. We
hypothesised that higher intake of cruciferous vegetables will
be associated with a lower odds of having extensive AAC.

Materials and methods

Ethical statement

Written informed consentwas obtained from all participants, and
the Human Research Ethics Committee at the University of
Western Australia approved the study.

Study population

Participants included were originally recruited to a randomised
controlled trial of Ca supplementation to prevent osteoporotic
fractures in older women. This randomised controlled trial, the
Calcium Intake Fracture Outcome Study, has been described
elsewhere(15). Briefly, 1500 women were randomly assigned
to receive either daily 1·2 g/d calcium carbonate or a matching
placebo. In a sub-study, thirty-nine participants received
1·2 g/d calcium carbonate plus 1000 IU (25 μg) of vitamin D2

daily(16).
The participants were recruited in 1998 from the Western

Australian general population by using the electoral roll and ran-
domly selecting women aged 70 years and above to receive
mailed invitations. Registration on the electoral roll is a require-
ment of citizenship in Australia. Of the 5586 who responded to
the invitation, 1500womenwere eligible andwere recruited into
the study. All women were ambulant and expected to survive
beyond 5 years. Receiving medication known to affect bone
metabolism, including hormone replacement therapy, was an
exclusion criterion. The women randomised into the Calcium

Intake Fracture Outcome Study were more likely to come from
higher socio-economic groups compared with the general pop-
ulation of the same age.

Of the 1500 participants, we excluded those with missing
AAC data (n 417), missing dietary data (n 5), implausible energy
intakes (<2100 kJ (500 kcal) or >14 700 kJ (3500 kcal))(17,18)

(n 9), those with previous clinical diagnosis of atherosclerotic-
related disease (IHD; heart failure; cerebrovascular disease,
excluding haemorrhage; and peripheral arterial disease) (n
117) and diabetes mellitus (n 48) and those with missing data
on covariates (n 220). Previous clinical diagnosis of athero-
sclerotic-related disease and diabetes mellitus was
a priori exclusion criteria for the current analyses, as clinical
diagnosis may have resulted in dietary changes thereby attenu-
ating the outcomes of interest. Methodology of the assessment of
prevalent atherosclerotic-related disease and diabetes mellitus
has been described elsewhere(19).

Abdominal aortic calcification assessment

All study participants had a digitally enhanced single-energy
image of the thoracolumbar spine captured using a Hologic
4500A densitometer (Hologic). Images were collected in 1998
and 1999. An experienced investigator (J. T. S.) scored each
image for AAC using an established technique(5,8,20). Both intra-
and inter-rater agreements by J. T. S. have been reported as very
good(7,20). The anterior and posterior aortic walls were divided
into four segments. Each segment corresponded to an area in
front of the lumbar vertebrae (L1–L4). Aortic calcification was
scored: 0 (no calcification of the aortic wall), 1 (≤1/3 calcification
of the aortic wall), 2 (>1/3 to≤2/3 calcification of the aortic wall)
and 3 (>2/3 calcification of the aortic wall). Scores ranged
from 0 to 6 for each segment, and therefore total scores ranged
from 0 to 24(5,7). More than 99·5 %of the imageswere of sufficient
quality to assess AAC(6). AAC scores were then re-categorised
as not extensive (AAC scores 0–5) and extensive (AAC scores
6–24), as previously used investigating the aetiology of
AAC(6,21,22).

Dietary intake assessment

Dietary intake was assessed in 1998 using a self-administered
semi-quantitative FFQ(23–25). The FFQ measures usual frequency
of food intake for the previous 12 months and comprises a list of
seventy-four foods with ten frequency response options ranging
from ‘never’ to ‘three or more times per d’. It was complemented
by another twenty-seven food and alcoholic beverage items that
ask various questions, such as ‘What type of milk do you usually
use?’. Portion size was calculated using three photographs of
scaled portions for four different food types. Energy and nutrient
intakes were estimated by the Cancer Council of Victoria using
the NUTTAB95 food nutrient database(26) and were supple-
mented by other data where necessary. Food items (including
twenty-five vegetable items) were individually calculated by
the Cancer Council of Victoria in g/d. Although total vegetable
intake has not been specifically validated for the FFQ used in this
study, particular nutrients that can be classified as markers of
vegetable intake have been shown to have reasonably good
agreement in a previous validation study(24). For example, the
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energy-adjusted log values for Pearson correlation coefficients
for β-carotene, fibre and vitamin C all had reasonably good
agreement between weighed food records and the FFQ used
in our study (r 0·43, 0·66 and 0·52, respectively). Furthermore,
as the frequency component of FFQ tends to overestimate
vegetable intakes, the Cancer Council of Victoria designed the
FFQ to include an adjustment(24). This adjustment included an
additional question of how many different vegetables
participants consumed on a given day to scale up/down intake
of vegetables from the frequency data obtained. In addition to
this, an image was used specifically for vegetables to estimate
portion size. Therefore, we have confidence that the FFQ data
give a good estimate of total vegetables and the classified types
of vegetables, as previously published(13,14,27,28).

Total vegetable intake was calculated per serving (75 g/d)
according to the Australian Dietary Guidelines(29). ‘Potatoes,
roasted or fried, including hot chips’were not included in the total
amount of vegetables as hot chips are not recommended as part of
a healthy diet(29). ‘Potatoes cooked without fat’ were included.
Vegetables were grouped based on the 2013 Australian
Dietary Guidelines(29) and were modified slightly according to
specific bioactive compounds of interest. Vegetable types were:
cruciferous vegetables (cabbage, Brussels sprouts, cauliflower
and broccoli) – sources of organosulphur and polyphenolic
compounds, such as isothiocyanates(30) and flavonols(12); allium
vegetables (onion, leek and garlic) – sources of organosulphur
compounds, such as cysteine sulphoxides and gamma-
glutamylcysteines(30); yellow/orange/red vegetables (tomato,
capsicum, carrot and pumpkin) – sources of carotenoids, such
as lycopene and β-carotene(31); leafy green vegetables (lettuce
and other salad greens, celery, silverbeet and spinach) – source
of nitrate(32); and legumes (peas, green beans, bean sprouts and
alfalfa sprouts, baked beans, soya beans, soya bean curd and tofu
and other beans) – sources of polyphenolic compounds, such as
isoflavonoids and saponins(12,33).

Covariates

Age at baseline was calculated in years from date of birth until
date of baseline visit. Smoking status and physical activity were
obtained from a standard questionnaire. Smoking status was
coded as never smoker or former/current smoker. Former/
current smoker was defined as smoking >1 cigarette/d for
>3 months at any time during the participants’ life. Physical
activity (kJ/d) was estimated using a validated method taking
into account the type of activity, time engaged in the activity
and the participants’ weight(34–36). The 2013 Australian Dietary
Guidelines(29) adherence score was used as a measure of diet
quality and was calculated based on Thorpe et al.(37). The score
did not incorporate adherence to vegetable recommendations as
vegetables were our exposures of interest. The components and
scoring methods used to estimate the adherence score are
shown in online Supplementary Table S1. Body weight (kg)
and height (m) were measured using digital scales and a wall-
mounted stadiometer, respectively. Participants were instructed
to wear light clothing with no socks and shoes. BMI (kg/m2) was
calculated using weight and height values. Participants provided
a detailed medical history and list of prescribed medications at

baseline (1998). Use of medications was verified by participants’
general practitioner, where possible. Use of antihypertensive
and statin medications was used in multivariable-adjusted
models to adjust for hypertension and hypercholesterolaemia,
respectively. Creatinine and cystatin C were measured in
baseline serum(38). Creatinine was measured using an isotope
dilution MS-traceable Jaffe kinetic assay for creatinine on a
Hitachi 917 analyser (Roche Diagnostics GmbH). Cystatin C
was measured using a fully automated particle-enhanced
immunoturbidimetric assay with Sentinel Diagnostics reagents
(Sentinel CH) on the Architect ci 16200 System (Abbott
Laboratories) according to the manufacturer’s instructions. The
estimated glomerular filtration rate was calculated using the
Chronic Kidney Disease Epidemiology Collaboration creatinine
and cystatin C equation(39). The combined creatinine–cystatin
C equation was used as this has been shown to be superior in
predicting measured glomerular filtration rate compared with
equations based on creatinine alone(39). Due to an unhealthy
lifestyle being associated with chronic kidney disease(40), and
individuals with chronic kidney disease demonstrating acceler-
ated vascular calcification(41), we included estimated glomerular
filtration rate in our multivariable-adjusted models.

Statistics

All data were analysed using STATA software, version 15.1
(StataCorp LP). Descriptive statistics are presented as either
mean values and standard deviations, medians and interquartile
ranges, or as numbers and percentages. Binary logistic regres-
sion was used to examine associations between exposures of
interest and primary (extensive AAC) and secondary (presence
of AAC) outcomes of interest. Primary (cruciferous vegetables)
and secondary (total vegetables, leafy green vegetables, allium
vegetables, yellow/orange/red vegetables and legumes) expo-
sures of interest were entered into models as continuous varia-
bles andwere also categorised into quartiles to allow for possible
non-linear relationships. Linear trends across quartiles were
tested using the median value within each quartile group as a
continuous variable. Three models of adjustment were used:
model 1 included the unadjusted model; model 2 included
age, the Calcium Intake Fracture Outcome Study treatment code,
smoking status, physical activity, diet quality, total energy intake
and other vegetables (i.e. non-cruciferous vegetables when cru-
ciferous vegetables were the exposure of interest) and model 3
included all variables in model 2 plus BMI, use of antihyperten-
sivemedication, use of statinmedication and estimated glomeru-
lar filtration rate. Statistical significance was set at a two-sided
type 1 error rate of P< 0·05.

Additional analyses. We conducted Spearman’s rho correla-
tions between intakes of cruciferous vegetables and total vegeta-
bles, leafy green vegetables, allium vegetables, yellow/orange/
red vegetables and legumes. We have previously shown that
higher apple intake is associated with a lower odds of having
extensive AAC(21). Therefore, we used Spearman’s rho correla-
tions to further investigate the relationship between intake of
apples and cruciferous vegetables. In addition, we further
adjusted our findings for apple intake using model 3.
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Similar to those with a clinical diagnosis of diabetes,
participants with hypertension and/or hypercholesterolaemia
may have been advised to change their diet as a result of their
clinical diagnosis and confound the results of our study. Given
the age of the participants, a large proportion were prescribed

antihypertensive medications (n 257/684; 37·6 %) or statin
medications (n 99/684; 14·5 %). Excluding these participants
would have resulted in an even smaller sample size (n 384/
684; 56 %). Therefore, it was not feasible to exclude these partic-
ipants. As an alternative, we explored our findings among
participants prescribedmedications v. those not prescribedmed-
ications using stratification analysis including all covariates in
model 3.

Results

Characteristics of the study sample

After pre-specified exclusions, there were 684/1500 (45·6%) par-
ticipants of the original cohort left for analysis (Fig. 1). Complete
AAC data were not available for 417/1500 (27·8%) participants as
scans were unavailable or unreadable(42). Nonetheless, partici-
pants without complete AAC data were similar in baseline charac-
teristics to those included in our study (online Supplementary
Table S2). Baseline characteristics for all participants and by
AAC score categories are presented in Table 1. There were
128/684 (18·7%) who had extensive AAC and 495/684 (72·4%)
participants who had the presence of AAC.

Assessed for eligibility
(n 1500)

Excluded (n 816)
• Missing AAC data (n 417)
• Missing dietary data (n 5)
• Implausible energy intakes (n 9)
• Prevalent ASVD (n 117)
• Prevalent diabetes (n 48)
• Missing covariates (n 220)

Eligible for AAC analysis
(n 684)

Fig. 1. Participant flow chart. AAC, abdominal aortic calcification; ASVD,
atherosclerotic vascular disease.

Table 1. Baseline characteristics of all participants and by abdominal aortic calcification (AAC) score categories
(Median values and interquartile ranges (IQR); numbers and percentages; mean values and standard deviations)

All participants (n 684)

AAC score categories

AAC24 0–5 (n 556) AAC24≥ 6 (n 128)

Median IQR Median IQR Median IQR

Age (years)
Mean 74·9 74·8 75·5
SD 2·6 2·6 2·7

Ca treatment group
n 350 287 63
% 51·2 51·6 49·2

Smoked ever
n 230 173 57
% 33·6 31·1 44·5

Physical activity (kJ/d) 495·4 191·9–861·7 508·0 206·1–870·3 427·1 0·0–843·6
Dietary intakes
ADG adherence score (0–60)

Mean 29·4 29·6 28·4
SD 8·2 8·1 8·6

Total energy (kJ/d)
Mean 7076·1 7107·9 6937·9
SD 2055·6 1986·0 2337·6

Total vegetables (g/d) 189·1 141·6–238·9 192·2 143·6–240·1 177·9 135·3–228·2
Cruciferous vegetables (g/d) 28·2 15·0–44·7 28·4 15·7–45·3 25·9 10·8–40·7
Leafy green vegetables (g/d) 17·3 10·1–25·9 17·3 9·9–25·9 16·8 10·4–26·6
Allium vegetables (g/d) 6·0 2·9–10·2 6·0 3·1–10·1 6·1 2·3–10·6
Yellow/orange/red vegetables (g/d) 49·4 33·6–68·2 50·3 33·8–68·4 45·7 32·3–67·3
Legumes (g/d) 22·4 13·7–34·1 23·0 13·7–34·3 20·6 13·7–32·5

BMI (kg/m2)
Mean 26·9 27·0 26·2
SD 4·3 4·4 3·8

Anti-hypertensive medication
n 257 201 56
% 37·6 36·2 43·8

Statin medication
n 99 69 30
% 14·5 12·4 23·4

eGFR (ml/min per 1·73m2)
Mean 67·0 67·1 66·6
SD 12·4 12·3 12·8

ADG, Australian Dietary Guidelines; eGFR, estimated glomerular filtration rate.
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Associations of vegetable intakes with abdominal aortic
calcification

Higher intake of cruciferous vegetables was associated with a
lower odds of having extensive AAC (AAC24≥ 6) (Table 2).
Every 20 g/d higher intake of cruciferous vegetables was
associated with a 19 % lower odds of having extensive AAC after
adjusting for lifestyle, dietary and cardiovascular risk factors
(OR 0·81, 95 % CI 0·66, 0·99, P= 0·042). In quartile analyses,
women in the highest quartile of cruciferous vegetable intake
(>44·6 g/d) had a 46 % lower odds of having extensive AAC in
comparison with women in the lowest quartile of cruciferous
vegetable intake (<15·0 g/d; ORQ4 v. Q1 0·54, 95 % CI 0·30,
0·97, P= 0·036). However, trivial evidence existed of a linear
trend (Ptrend= 0·072). No association was observed for total
vegetables, leafy green vegetables, allium vegetables, yellow/
orange/red vegetables and legumes with extensive AAC
(P> 0·05 for all). Intake of total vegetables and individual types
of vegetables was not related to the presence of AAC (AAC24
scores ≥1) (online Supplementary Table S3).

Additional analyses

There was a moderate positive correlation between intake
of cruciferous vegetables and total vegetables (ρ= 0·52,

P< 0·001). Negligible correlations existed between intake
of cruciferous vegetables and leafy green vegetables (ρ= 0·15,
P< 0·001), allium vegetables (ρ= 0·14, P< 0·001), yellow/
orange/red vegetables (ρ= 0·17, P< 0·001) and legumes
(ρ= 0·24, P< 0·001). Apple intake had a negligible positive cor-
relation with cruciferous vegetable intake (ρ= 0·13, P< 0·001).
Using model 3 with the additional adjustment for apple intake,
those with high intakes of cruciferous vegetables (>44·6 g/d)
had a 45 % lower odds of having extensive AAC (ORQ4 v. Q1 0·55,
95 % CI 0·30, 0·99, P= 0·045) in comparison with those with low
intakes (<15·0 g/d).

The association between cruciferous vegetables and exten-
sive AAC was attenuated when we performed our stratification
analysis bymedication use. Therewere 56/257 (21·8 %)who had
extensive AAC in those prescribed antihypertensive medications
and 72/427 (16·9 %) in those not prescribed antihypertensive
medications. For those with high intakes of cruciferous
vegetables (>44·6 g/d) in comparison to those with low intakes
(<15·0 g/d), the associations were attenuated in those pre-
scribed antihypertensive medications (ORQ4 v. Q1= 0·71, 95 % CI
0·28, 1·80, P= 0·467) and in those not prescribed antihyper-
tensive medications (ORQ4 v. Q1= 0·50, 95 % CI 0·23, 1·11,
P= 0·087). However, the point estimates were trending similar.
In those prescribed statinmedications, therewere 30/99 (30·3 %)

Table 2. Extensive abdominal aortic calcification 24 scores (AAC24 ≥ 6) by energy-adjusted intakes of total vegetables and vegetable types
(Odds ratios and 95% confidence intervals)

OR (n 684) 95% CI P

Quartiles of vegetable types*

Q1

Q2 Q3 Q4

Pfor trend†OR 95% CI OR 95% CI OR 95% CI

Total vegetables (75 g/d)
Model 1 0·95 0·79, 1·14 0·576 Reference 0·67 0·40, 1·44 0·65 0·38, 1·10 0·62 0·36, 1·06 0·091
Model 2 1·01 0·82, 1·25 0·897 Reference 0·64 0·37, 1·10 0·64 0·37, 1·11 0·68 0·37, 1·23 0·218
Model 3 0·99 0·80, 1·22 0·916 Reference 0·62 0·36, 1·08 0·62 0·36, 1·09 0·66 0·36, 1·20 0·191

Cruciferous vegetables (20 g/d)
Model 1 0·83 0·68, 1·00 0·055 Reference 0·61 0·36, 1·04 0·69 0·41, 1·17 0·55 0·32, 0·95 0·055
Model 2 0·82 0·67, 1·00 0·054 Reference 0·60 0·35, 1·04 0·74 0·43, 1·27 0·54 0·30, 0·96 0·072
Model 3 0·81 0·66, 0·99 0·042 Reference 0·60 0·34, 1·04 0·71 0·41, 1·23 0·54 0·30, 0·97 0·072

Leafy green vegetables (20 g/d)
Model 1 1·13 0·80, 1·57 0·491 Reference 1·25 0·73, 2·15 0·95 0·54, 1·67 1·13 0·65, 1·96 0·893
Model 2 1·13 0·80, 1·57 0·491 Reference 1·33 0·77, 2·32 0·99 0·56, 1·77 1·25 0·71, 2·21 0·658
Model 3 1·14 0·81, 1·61 0·439 Reference 1·34 0·76, 2·35 1·05 0·59, 1·88 1·25 0·70, 2·22 0·654

Allium vegetables (20 g/d)
Model 1 1·03 0·58, 1·84 0·919 Reference 0·68 0·39, 1·18 0·82 0·48, 1·40 0·87 0·52, 1·48 0·912
Model 2 1·10 0·58, 2·09 0·768 Reference 0·75 0·43, 1·31 0·83 0·48, 1·45 0·93 0·52, 1·67 0·996
Model 3 0·98 0·51, 1·87 0·955 Reference 0·74 0·42, 1·30 0·88 0·50, 1·54 0·89 0·49, 1·61 0·890

Yellow/orange/red vegetables (20 g/d)
Model 1 0·99 0·86, 1·14 0·883 Reference 1·21 0·72, 2·03 0·70 0·39, 1·22 0·86 0·50, 1·49 0·312
Model 2 1·05 0·89, 1·23 0·555 Reference 1·34 0·78, 2·31 0·75 0·41, 1·36 1·00 0·54, 1·84 0·600
Model 3 1·03 0·88, 1·21 0·729 Reference 1·40 0·81, 2·42 0·72 0·39, 1·33 0·98 0·53, 1·83 0·535

Legumes (20 g/d)
Model 1 1·03 0·84, 1·27 0·755 Reference 1·29 0·77, 2·16 0·76 0·43, 1·34 0·86 0·50, 1·49 0·309
Model 2 1·07 0·87, 1·33 0·528 Reference 1·31 0·77, 2·23 0·82 0·46, 1·46 0·94 0·53, 1·67 0·536
Model 3 1·06 0·85, 1·32 0·593 Reference 1·30 0·76, 2·24 0·82 0·46, 1·47 0·96 0·54, 1·73 0·604

eGFR, estimated glomerular filtration rate.
* Quartiles for total vegetables were Q1 (n 171; <141·5 g/d), Q2 (n 171; 141·5–188·9 g/d), Q3 (n 171; 189·0–238·9 g/d) and Q4 (n 171; >238·9 g/d); cruciferous vegetables were
Q1 (n 171; <15·0 g/d), Q2 (n 174; 15·0–28·2 g/d), Q3 (n 168; 28·3–44·6 g/d) and Q4 (n 171; >44·6 g/d); leafy green vegetables were Q1 (n 171; <10·1 g/d), Q2 (n 171; 10·1–17·2 g/d),
Q3 (n 172; 17·3–25·9 g/d) and Q4 (n 170; >25·9 g/d); allium vegetables were Q1 (n 172; <3·0 g/d), Q2 (n 172; 3·0–6·0 g/d), Q3 (n 169; 6·1–10·1 g/d) and Q4 (n 171; >10·1 g/d); yellow/
orange/red vegetables were Q1 (n 172; <33·7 g/d), Q2 (n 170; 33·7–49·3 g/d), Q3 (n 171; 49·4–68·1 g/d) and Q4 (n 171; >68·1 g/d); and legumes were Q1 (n 172; <13·7 g/d),
Q2 (n 171; 13·7–22·4 g/d), Q3 (n 170; 22·5–34·0 g/d) and Q4 (n 171; >34·0 g/d).

Model 1: unadjusted.Model 2: age, theCalcium Intake FractureOutcomeStudy treatment code, smoking status, physical activity, diet quality, energy intake and other vegetables (i.e. non-
cruciferous vegetables when cruciferous vegetables were the exposure of interest). Model 3: model 2 plus BMI, use of antihypertensivemedication, use of statin medication, and eGFR.

† Pfor trend was obtained using the median value within each quartile group as a continuous variable.
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who had extensive AAC and in those not prescribed statin
medications, there were 98/487 (16·8 %). In those prescribed
statin medications, the association and point estimate were
substantially attenuated (ORQ4 v. Q1= 1·57, 95 % CI 0·36, 6·84,
P= 547). However, in those not prescribed statin medica-
tions, the association remained with a similar point estimate
(ORQ4 v. Q1= 0·45, 95 % CI 0·23, 0·88, P= 0·020). The aforemen-
tioned findings should be interpreted with caution as there may
be insufficient power for performing subgroup analysis. A larger
cohort would be required to adequately test such hypotheses.

Discussion

We have demonstrated an association between cruciferous
vegetable intakes and extensive AAC in older women. This is
the first study to demonstrate a higher intake of cruciferous veg-
etables to be associated with lower odds for extensive AAC after
adjustment for lifestyle, dietary and CVD risk factors. Since
extensive AAC is strongly associated with a higher long-term risk
of CVD hospitalisations and deaths(5,43), our findings highlight
the potential mechanisms by which cruciferous vegetables
may play a role in reducing CVD risk. The stronger association
observed in those not taking statin medication highlights the
potential importance of diet especially among those not identi-
fied as requiring lipid-lowering medications.

Interestingly, when previously investigating the association
of cruciferous vegetable intake with carotid artery disease(13),
we did not identify any association between intake of cruciferous
vegetables and presence or severity of carotid atherosclerotic
plaques. Rather, we observed that intake of cruciferous vegeta-
bles was inversely associated with common carotid artery
intima-media thickness, a measure of thickening of the intima-
media complex reflecting generalised atherosclerosis(44). In this
study, we found higher intake of cruciferous vegetables was
associated with a lower odds of having extensive calcification
of the abdominal aorta, an indicator of extensive blood vessel
disease, suggesting that constituents of cruciferous vegetables
may either affect the progression of atherosclerotic lesions or
attenuate the pro-calcific processes often seen in older
individuals.

Investigation into the dietary determinants of AAC is an
emerging area of research. To date, most studies have evaluated
relationships between dietary patterns and aortic calcification.
While the significance of dietary patterns cannot be understated,
investigation into the importance of specific dietary components
is fundamental. Recently, Shang et al. examined the relationship
between diet quality, assessed using the Alternative Healthy
Eating Index-2010, and AAC in community-dwelling older adults
(n 262)(45). The authors reported that baseline, but not changes
in Alternative Healthy Eating Index-2010, was inversely associ-
ated with extensive AAC. Higher Alternative Healthy Eating
Index-2010 scores are reflective of a diet high in plant-based
foods, such as vegetables, fruits, whole grains, nuts and legumes.
These foods are also components of a Mediterranean-type diet,
which has been linked with a lower degree and slower progres-
sion of coronary artery calcification(46). An integral component of
a healthy diet is a higher intake of vegetables and fruits, of which

have been shown to be associated with a 26 % lower odds (95 %
CI 0·56, 0·99) of having coronary artery calcification in a young
adult population after 20 years of follow-up(47).

Collectively, these findings may be explained by the
numerous bioactive compounds found in vegetables and fruits.
Vegetables and fruits provide a diverse range of bioactive com-
pounds(12,48). Specifically, these components may be involved in
a number of protective mechanisms, such as the reduction of
oxidative stress and inflammation, which are known to contrib-
ute to vascular calcification(49,50). Previously, we reported a 24 %
lower odds (95 % CI 0·62, 0·93) of having extensive AAC for
every 50 g/d higher apple intake in the present cohort(21). As
we have now demonstrated that both cruciferous vegetables
and apples are inversely associated with extensive AAC, it is
possible that flavonols(51), found abundantly in both of the afore-
mentioned foods, may play a role. Furthermore, carbohydrate
compounds, such as pectin found in both apples and cruciferous
vegetables, may also contribute to the prevention of vascular cal-
cification(52). For example, supplementation of dietary pectin
(15 g/d) over a 4 week period induced changes in plasma fibrin
network characteristics(53). These changes indicated network
structures were more permeable with lower tensile strength,
which are believed to be less atherogenic(53). Other authors have
also reported the possible role of Mg, which can be found in
fruits and vegetables, on AAC(54).

Phylloquinone, also known as vitamin K1, is another
bioactive compound found abundantly in cruciferous vegetables
that could partially explain the inverse association we have
observed with AAC. Phylloquinone is the most common form
of vitamin K compounds and is mainly found in leafy green
vegetables, broccoli and Brussels sprouts(55). The other major
vitamin K compounds are a group of bacterial menaquinones
(or vitamin K2). Menaquinones regulate vitamin K-dependent
proteins, such as matrix Gla protein, of which inhibit vascular
calcification(56). Although menaquinones occur primarily in ani-
mal-based foods, there is evidence that phylloquinone can break
down to menadione, an intermediate which is then converted to
menoquinone-4(57); therefore, potentially inhibiting vascular
calcification.

Limitations must be considered when interpreting the
findings from this study. Due to the observational nature and
cross-sectional design of this study, causality cannot be
established. We cannot rule out residual confounding, other
factors associated with a healthy lifestyle, or the possibility of
reverse causality bias. However, reverse causality bias is unlikely
due to the asymptomatic nature of aortic calcification.
Furthermore, we cannot rule out the possibility of selection bias
affecting our results as the entire cohort was recruited on the
basis of being ambulant and the likelihood of surviving beyond
5 years and we did not have complete AAC data as some scans
were unavailable or unreadable(42). Nonetheless, participants
without complete AAC data were similar in baseline characteris-
tics to those included in our study. In addition to the above lim-
itations, we cannot rule out the possibility of measurement error,
provided that it was non-differential, in the assessment of our
dietary data. However, measurement error would likely lead
to an underestimation of an association and a reduction in power
for detecting an association(58). Hence, our finding that
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cruciferous vegetable intake is inversely associated with exten-
sive AAC is robust to this limitation. We also have confidence the
FFQ used in our study gives a robust estimate for total vegetables
and the classified types of vegetables due to the reasonably
good agreement for β-carotene, fibre and vitamin C (r 0·43,
0·66 and 0·52, respectively) between weighed food records
and the FFQ used in our study(24). Lastly, these findings cannot
be extended to men, younger women or ethnicities that are not
Caucasian. Further studies are needed to confirm these findings
in these populations.

There were several strengths to our study. We had detailed
information of lifestyle and CVD risk factors, medications and
disease history. Second, glomerular filtration rate was estimated
using the combined creatinine–cystatin C equation, which per-
forms better than equations based on creatinine alone(39). This
is an important consideration as poor renal function is linked
to higher calcification of the vasculature(59). Lastly, AAC was
assessed by a single highly experienced investigator (J. T. S.)
blinded to the clinical data from the study with both intra- and
inter-rater agreements by J. T. S. being reported as very
good(7,20).

Overall, this study adds strength to the conceptual framework
that cruciferous vegetables may be protective against particular
aspects of structural vascular disease affecting vessel wall prop-
erties as we have now demonstrated an inverse association with
these measures at two different locations in the arterial tree
(common carotid artery(13) and abdominal aorta) as well as a
lower risk of atherosclerotic vascular disease and all-cause mor-
tality(14). Although these findings are only hypothesis generating
and cannot imply causality, they suggest new avenues to explore
the cardiovascular health benefits of bioactive constituents of
cruciferous vegetables. Further studies of similar design are
needed to confirm these findings in male and younger female
cohorts and non-Caucasian populations. Large, long-term rand-
omised controlled trials are also needed to support causality as
well as investigations to determine the biochemical pathways
involved.
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