THE DUALITY THEOREM FOR CURVES OF ORDER *n* IN *n*-SPACE

DOUGLAS DERRY

LET C_n be a curve in real projective *n*-space which is a continuous 1-1 image of either the projective line or one of its closed segments. Consequently its points depend continuously on a real variable *s* for which $0 \le s \le 1$, with the understanding that s = 0 and s = 1 represent the same curve point in the case that C_n is the image of the complete projective line. The points of C_n will be described by their corresponding real numbers *s*.

We assume

(1) No (n - 1)-dimensional hyperplane H cuts C_n in more than n points. An immediate consequence of the above is that any k + 1 distinct curve points generate a linear k-subspace.

We assume

(2) The linear k-subspace L generated by k+1 curve points always converges to a linear k-subspace designated by (k, s) as the k + 1 points all converge to $s, 0 \leq k < n$.

The subspaces (k, s) enable us to count multiple intersection points of a linear subspace L with C_n . A point s is said to be within L k-fold if $(k - 1, s) \subset L$, $(k, s) \not\subset L$. We now assume that (1) and (2) are both true when the multiple intersection points of both H and L are counted by the above convention.

In 1936 Scherk¹ gave the first proof that the dual of C_n has properties (1) and (2). His proof first derives the result for the case where C_n is the map of the whole projective line and then derives the general result by showing that every C_n is part of such a curve. In the following an alternative proof is given which applies directly to any C_n . The methods are elementary. Use is made of the easily established fact that the projection of a C_n from one of its points s' is a C_{n-1} and each (k, s) of C_n projects either into a (k, s), $0 \le k \le n-2$, or into a (k-1, s), $1 \le k \le n-1$, for the projected curve according as either s' \neq s or s' = s.

THEOREM 1. Where \bar{s} is an interior point of C_n let s^{μ_1} , s^{μ_2} be two sequences of real numbers which approach \bar{s} and for which $s^{\mu_1} \neq s^{\mu_2}$. If P^{μ} be a convergent sequence of space points selected from the intersection of $(n - 1, s^{\mu_1})$ and $(n - 1, s^{\mu_2})$ then it converges to a point P of $(n - 2, \bar{s})$.

For the proof of this result we shall use

Received February 13, 1950.

¹P. Scherk. Über differenzierbare Kurven und Bögen II. Casopis pro pestování, matematiky a fysiky 66 (1937), 172-191.

DOUGLAS DERRY

LEMMA 1. If \bar{s} is an interior point of C_n and $P \in (n-1, \bar{s})$ but P non $\in (n-2, \bar{s})$ then for every sufficiently small curve neighborhood $I(\bar{s})$ a curve neighborhood $J(\bar{s})$, $J(\bar{s}) \subset I(\bar{s})$, together with a space neighborhood N(P) of P exists with the following properties:

(1) Curve points $s, s_1, s_2, \ldots, s_{n-2}$ from $J(\bar{s})$ and a point P' of N(P) build a hyperplane which cuts $I(\bar{s})$ in exactly one additional point q(s). (Some or all of $s_1, s_2, \ldots, s_{n-2}$ may coincide.)

(2) As s moves continuously in one direction in $J(\bar{s})$, q(s) moves continuously in the opposite direction so that $q(s') \neq q(s'')$ if $s' \neq s''$.

Proof of Lemma. As the lemma deals with local properties of C_n it is sufficient to prove it within an affine *n*-subspace of the projective space which contains P and \bar{s} . By hypothesis the linear n-2-subspace generated by any n-1 curve points will approach $(n-2, \bar{s})$ as these points all approach \bar{s} . Therefore and because P non $\in (n-2, \bar{s})$ a curve neighborhood $I(\bar{s})$, i.e. a set of points s containing \bar{s} for which $s_a < s < s_b$, together with a point P' sufficiently close to P will always generate a hyperplane H. H converges to $(n-1, \bar{s})$ as $P' \to P$ and $s, s_1, s_2, \ldots, s_{n-2}$ converge to \bar{s} . The endpoints s_a, s_b of $I(\bar{s})$ will be on the same or opposite sides of H according as they are on the same or opposite sides of $(n-1, \bar{s})$ provided $s, s_1, s_2, \ldots, s_{n-2}$ are in a sufficiently small neighborhood $I'(\bar{s})$ and P' in a sufficiently small neighborhood N' of P. In this event the number of intersection points of H and $I(\bar{s})$ will be odd or even according as n is odd or even. Therefore H cuts $I(\bar{s})$ in a point q(s) in addition to the points s, s_1, \ldots, s_{n-2} and in no further points because of the order of C_n by (1). For fixed $s_1, s_2, \ldots, s_{n-2}$, q(s) moves continuously with s because H moves continuously with s. As $q(s), s_1, \ldots, s_{n-2}$ and P' define H completely, two different positions of s cannot define the same q(s) because the order of the curve would exceed n in this case. For the same reason q(s)cannot experience a reversal as s moves continuously in a fixed direction. As $H \to (n - 1, \bar{s}), q(s) \to \bar{s}$. Hence neighborhoods $J(\bar{s}), N(P)$ with $J(\bar{s}) \subset I'(\bar{s}), J(\bar{s})$ $N(P) \subset N'$ exist so that if $s, s_1, s_2, \ldots, s_{n-2} \in J(\bar{s}), P' \in N(P)$ then $q(s) \in I'(\bar{s})$ Consequently q(q(s)) is defined and must be equal to s as $q(s), s_1, s_2, \ldots, s_{n-2}$ and P' define a unique hyperplane. If we project from $s_1, s_2, \ldots, s_{n-2}, P'$ then C_n will be projected into a curve of order two on the affine line. Points for which s = q(s) will be projected into the reversal points of such a curve and as there are at most two such points we conclude $q(s) \neq s$ with at most two possible exceptions. Let $s' \in J(\bar{s})$, $q(s') \neq s'$. Then $q(s') \in I'(\bar{s})$. Let s move continuously in a fixed direction in $I'(\bar{s})$ from s' to q(s'). q(s) will move from q(s') to s' in a fixed direction and remain in $I(\bar{s})$. As $I(\bar{s})$ is not the whole curve C_n this can only happen if q(s) moves in the direction opposite to that of s. The lemma is now completely proved.

We write q(s) as $q(s, s_1, s_2, \ldots, s_{n-2})$ because it is a function of the n-1 variables $s, s_1, s_2, \ldots, s_{n-2}$. If any one of these variables moves in a fixed direction in $J(\bar{s})$ while all the others remain fixed, $q(s, s_1, \ldots, s_{n-2})$ will move

in the opposite direction. To prove the theorem we note that, as P is the limit of P^{μ} , $P \in (n - 1, \bar{s})$. We assume P non $\in (n - 2, \bar{s})$, construct neighborhoods $I(\bar{s})$, $J(\bar{s})$, N(P), satisfying the conditions of the lemma and select $s^{\mu}_1, s^{\mu}_2 \in J(\bar{s}), P^{\mu} \in N(P)$. Because $P^{\mu} \in (n - 1, s^{\mu}_1), q(s^{\mu}_1, s^{\mu}_1, \ldots, s^{\mu}_1) = s^{\mu}_1$. Now if we move each of the variables successively from s^{μ}_1 to s^{μ}_2 the point q will move in the opposite direction and remain on $I(\bar{s})$ in accordance with the lemma. But as $I(\bar{s})$ is not the whole curve C_n and $q(s^{\mu}_2, s^{\mu}_2, \ldots, s^{\mu}_2) = s^{\mu}_2$, this is impossible. Hence $P \in (n - 2, \bar{s})$ and the theorem is proved.

THEOREM 2. If s belongs to an arc $s_1 < s < s_2$ then not all of (n - 1, s) can pass through a single point.

Proof. The result is true for a C_1 as by definition two different values of s define different curve points (0, s). We assume the result true for C_{n-1} and proceed by induction. Should an arc $s_1 < s < s_2$ of C_n exist together with a point P so that all (n - 1, s), $s_1 < s < s_2$, pass through P then by Theorem 1 all (n - 2, s), $s_1 < s < s_2$, must pass through the same point. If we project the curve C_n from one of its points the resulting curve is a C_{n-1} for which all (n - 2, s), $s_1 < s < s_2$ pass through the projection of P. This contradicts the induction assumption and thus the theorem is proved.

DEFINITION. A system of linear subspaces S^{μ}_{r} is defined to converge to a subspace S_{r} if a basis $\mathbf{a}^{\mu}_{1}, \mathbf{a}^{\mu}_{2}, \ldots, \mathbf{a}^{\mu}_{r+1}$ exists for each S^{μ}_{r} , with $\mu \ge \mu_{0}$, such that $\mathbf{a}^{\mu}_{k}, 1 \le k \le r+1$, converges to \mathbf{a}_{k} where $\mathbf{a}_{1}, \mathbf{a}_{2_{k}}, \ldots, \mathbf{a}_{r+1}$ is a basis of S_{r} .

LEMMA 2. $S^{\mu}r$ is a set of linear subspaces of dimension $\geq r$, $0 \leq r < n$, defined for positive integers μ . The limit points of any point set P^{μ} , $P^{\mu} \in S^{\mu}r$, are all within a linear r-subspace S_r . Then $S^{\mu}r$ converges to S_r as μ approaches infinity.

Proof. Let T_{n-r-1} be any linear (n - r - 1)-subspace such that the projective *n*-space is the direct sum of T_{n-r-1} and S_r . We choose μ_0 so large that S^{μ}_r contains no elements of T_{n-r-1} for $\mu \ge \mu_0$. This is possible as T_{n-r-1} is a closed compact set which contains no elements of S_r . If vectors $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_{r+1}$ form a basis of S_r each $S^{\mu}_r, \mu \ge \mu_0$ will have a basis $\mathbf{a}_1 + \mathbf{p}_1, \mathbf{a}_2 + \mathbf{p}_2, \ldots, \mathbf{a}_{r+1} + \mathbf{p}_{r+1}$ where the vectors $\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_{r+1}$ define points of T_{n-r-1} . Hence all these S^{μ}_r will have dimension r. All the vectors $\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_{r+1}$ must approach the null vector as μ approaches infinity otherwise we could construct a subsequence which would contradict the hypothesis. Thus the lemma is proved.

We introduce the following multiplicity convention:

A point P is said to be within the space (n - 1, s) exactly k-fold if $P \in (n - k, s)$, P non $\in (n - k - 1, s)$, 0 < k < n, and n-fold if P = s.

LEMMA 3. For n > 1, k > 1 an arc A of C_n contains points s_1, s_2, \ldots, s_k with $s_1 \leq s_2 \leq \ldots \leq s_k$ and all different from one of its endpoints s_a . P is a space

point for which $P \neq s_a$ and $P \in (n-1, s_i), 1 \leq i \leq k$. Then the projection of P from s_a will be included within at least k - 1 spaces (n - 2, s) of the projection C_{n-1} of C_n for which $s_1 \leq s \leq s_k$. Multiple inclusions are to be interpreted in accordance with the multiplicity convention.

Proof. For s on the given arc A of C_n let Q(s) be the intersection of (n - 1, s)and the line $s_a P$; Q(s) is uniquely defined except possibly for $s = s_a$. It is continuous as (n - 1, s) is continuous by (2). It cannot cover the full projective line $s_a P$ as $Q(s) \neq s_a$, $s \neq s_a$, for all s in A including the second endpoint. For i < k let $s_i < s_{i+1}$; $Q(s_i) = Q(s_{i+1}) = P$ but Q(s) cannot be equal to P for all s with $s_i < s < s_{i+1}$ by Theorem 2. Hence Q(s) must attain an extremum at a point s'_i for which $s_i < s'_i < s_{i+1}$. Within every curve neighborhood of s'_i two points separated by s'_i must exist for which Q(s)attains the same value. Then by Theorem 1 and the continuity of Q(s), $Q(s) \in (n - 2, s'_i)$.

Let *m* be the number of different values of s_i and let s_j run through each of these different values exactly once. Let n_j be the number of s_i which assume the value s_j . By hypothesis $\sum_j n_j = k$. Let \overline{P} be the projection of *P* from s_a and C_{n-1} that of C_n . As the space $(n-2, s'_i)$ of C_n projects into the space $(n-2, s'_i)$ of C_{n-1} , $\overline{P} \in (n-1-1, s'_i)$. Similarly, if $P \in (n-n_j, s_j)$ of C_n then $\overline{P} \in (n-1-(n_j-1), s_j)$ of C_{n-1} . Hence \overline{P} is contained in at least $m-1+\sum_j (n_j-1)=k-1$ spaces (n-2, s) of C_{n-1} for which $s_1 \leq s \leq s_k$. Thus the lemma is proved.

THEOREM 3. No space point P is within more than n spaces (n-1, s) of C_n .

Proof. This theorem is the statement that the dual of C_n has property (1). As C_1 is self-dual it is true for C_1 . We assume the result for curves C_{n-1} and proceed by induction. If the result is false for a curve C_n then an arc of this curve exists with distinct endpoints s_a , s_b together with n + 1 points s_1 , s_2 , \ldots, s_{n+1} with $s_a \leq s_1 \leq s_2 \leq \ldots \leq s_{n+1} \leq s_b$ so that $P \in (n-1, s_i)$, $1 \leq i \leq n + 1$. Multiple inclusions are interpreted in accordance with the multiplicity convention. P cannot be the point s_a for in this case P would be included in $(n - 1, s_a)$ n-fold and by (1) (with the added multiplicity convention) in no other spaces (n-1, s). Let P be included in $(n-1, s_a)$ k-fold, $0 \leq k < n$ where k = 0 is to be interpreted as P non $\in (n - 1, s_n)$. Then P is contained in n - k + 1 spaces (n - 1, s) with $s \neq s_a$. If we project from s_a then the projection \overline{P} of P will, by Lemma 3, be contained in at least n - k spaces (n - 2, s) of the projected curve C_{n-1} in addition to being contained in $(n-2, s_a)$ k-fold. In all, \overline{P} is contained in at least n spaces (n-2, s) of C_{n-1} in contradiction to the induction assumption. Hence P can be contained in at most n spaces (n - 1, s) and the theorem is proved.

THEOREM 4. Points $s^{\mu}_1, s^{\mu}_2, \ldots, s^{\mu}_{k+1}$ are defined for $\mu = 0, 1, 2, 3, \ldots$, and all converge to \bar{s} as μ approaches infinity. Then the intersection S^{μ} of the spaces $(n - 1, s^{\mu_1})$, $(n - 1, s^{\mu_2})$, ..., $(n - 1, s^{\mu_{k+1}})$, $0 \leq k < n$, converges to $(n - k - 1, \bar{s})$. The points of S^{μ} are to be included h-fold within any hyperplane which occurs h times in this set.

Proof. The theorem is the statement that the dual of (2) is true for C_n . For k = 0 the result is a statement of the continuity of (n - 1, s) which we assume by (2). In particular the result is true for C_1 . Therefore let k > 0. We assume the result for C_{n-1} and proceed by induction. We select a point P^{μ} from each S^{μ} . As the dimension of $S^{\mu} \ge n - k - 1$ the truth of the theorem will result from Lemma 2 if we prove that every convergent subsequence P^r of P^{μ} has its limit P within $(n - k - 1, \bar{s})$. We may assume $s^{\mu} \leq s^{\mu} \leq$ $\ldots \leq s^{\mu}_{k+1}$. With the help of Theorem 2 we select an arc A containing \bar{s} for one of the endpoints s_a of which $\bar{s} \neq s_a$ and P non $\in (n-1, s_a)$. If we choose P^r sufficiently close to P, we may assume P^r non $\in (n-1, s_a)$ and also, if $s_{1}, s_{2}, \ldots, s_{k+1}$ are sufficiently close to \bar{s} , that these points will be within A and different from s_a . Let \overline{P} be the projection of P from s_a , C_{n-1} that of C_n and \overline{P}^r that of P^r . By Lemma 3, \overline{P} will be contained in k spaces (n-2, s)of C_{n-1} with $s'_1 \leq s \leq s'_{k+1}$. \overline{P}^r will converge to \overline{P} and, by the induction assumption applied to C_{n-1} , $\overline{P} \in (n-1-k, \overline{s})$. Therefore P is contained in the space generated by s_a and $(n - k - 1, \bar{s})$ of C_n . If P non $\in (n - k - 1, \bar{s})$. then s_a will be in the space generated by P and $(n - k - 1, \bar{s})$. As s_a may be chosen in infinitely many ways this would contradict the assumption (1). Hence $P \in (n - k - 1, \bar{s})$. The theorem is then completely proved.

I should like to take the opportunity to thank Dr. O. Haupt and Dr. P. Scherk for the improvements they suggested in my original manuscript.

University of British Columbia