THE DUALITY THEOREM FOR GURVES OF ORDER n IN \boldsymbol{n}-SPACE

DOUGLAS DERRY
Let C_{n} be a curve in real projective n-space which is a continuous $1-1$ image of either the projective line or one of its closed segments. Consequently its points depend continuously on a real variable s for which $0 \leqslant s \leqslant 1$, with the understanding that $s=0$ and $s=1$ represent the same curve point in the case that C_{n} is the image of the complete projective line. The points of C_{n} will be described by their corresponding real numbers s.

We assume
(1) No ($n-1$)-dimensional hyperplane H cuts C_{n} in more than n points. An immediate consequence of the above is that any $k+1$ distinct curve points generate a linear k-subspace.

We assume
(2) The linear k-subspace L generated by $k+1$ curve points always converges to a linear k-subspace designated by (k, s) as the $k+1$ points all con verge to $s, 0 \leqslant k<n$.

The subspaces (k, s) enable us to count multiple intersection points of a linear subspace L with C_{n}. A point s is said to be within $L k$-fold if ($k-1, s$) $\subset L,(k, s) \not \subset L$. We now assume that (1) and (2) are both true when the multiple intersection points of both H and L are counted by the above convention.

In 1936 Scherk 1 gave the first proof that the dual of C_{n} has properties (1) and (2). His proof first derives the result for the case where C_{n} is the map of the whole projective line and then derives the general result by showing that every C_{n} is part of such a curve. In the following an alternative proof is given which applies directly to any C_{n}. The methods are elementary. Use is made of the easily established fact that the projection of a C_{n} from one of its points s^{\prime} is a C_{n-1} and each (k, s) of C_{n} projects either into a $(k, s), 0 \leqslant k \leqslant n-2$, or into a ($k-1, s$), $1 \leqslant k \leqslant n-1$, for the projected curve according as either $s^{\prime} \neq s$ or $s^{\prime}=s$.

Theorem 1. Where \bar{s} is an interior point of C_{n} let $s^{\mu}{ }_{1}, s^{\mu}{ }_{2}$ be two sequences of real numbers which approach \bar{s} and for which $s^{\mu}{ }_{1} \neq s^{\mu}{ }_{2}$. If P^{μ} be a convergent sequence of space points selected from the intersection of $\left(n-1, s^{\mu}\right)$ and ($n-1, s^{\mu_{2}}$) then it converges to a point P of $(n-2, \bar{s})$.

For the proof of this result we shall use
Received February 13, 1950.
${ }^{1} \mathrm{P}$. Scherk. Über differenzierbare Kurven und Bögen II. Casopis pro ptstování, matematiky a fysiky 66 (1937), 172-191.

Lemma 1. If \bar{s} is an interior point of C_{n} and $P \in(n-1, \bar{s})$ but P non \in ($n-2, \bar{s}$) then for every sufficiently small curve neighborhood $I(\bar{s})$ a curve neighborhood $J(\bar{s}), J(\bar{s}) \subset I(\bar{s})$, together with a space neighborhood $N(P)$ of P exists with the following properties:
(1) Curve points $s, s_{1}, s_{2}, \ldots, s_{n-2}$ from $J(\bar{s})$ and a point P^{\prime} of $N(P)$ build a hyperplane which cuts $I(\bar{s})$ in exactly one additional point $q(s)$. (Some or all of $s_{1}, s_{2}, \ldots, s_{n-2}$ may coincide.)
(2) As s moves continuously in one direction in $J(\bar{s}), q(s)$ moves continuously in the opposite direction so that $q\left(s^{\prime}\right) \neq q\left(s^{\prime \prime}\right)$ if $s^{\prime} \neq s^{\prime \prime}$.

Proof of Lemma. As the lemma deals with local properties of C_{n} it is sufficient to prove it within an affine n-subspace of the projective space which contains P and \bar{s}. By hypothesis the linear $n-2$-subspace generated by any $n-1$ curve points will approach $(n-2, \bar{s})$ as these points all approach \bar{s}. Therefore and because P non $\in(n-2, \bar{s})$ a curve neighborhood $I(\bar{s})$, i.e. a set of points s containing \bar{s} for which $s_{a}<s<s_{b}$, together with a point P^{\prime} sufficiently close to P will always generate a hyperplane H. H converges to ($n-1, \bar{s}$) as $P^{\prime} \rightarrow P$ and $s, s_{1}, s_{2}, \ldots, s_{n-2}$ converge to \bar{s}. The endpoints s_{a}, s_{b} of $I(\bar{s})$ will be on the same or opposite sides of H according as they are on the same or opposite sides of ($n-1, \bar{s}$) provided $s, s_{1}, s_{2}, \ldots, s_{n-2}$ are in a sufficiently small neighborhood $I^{\prime}(\bar{s})$ and P^{\prime} in a sufficiently small neighborhood N^{\prime} of P. In this event the number of intersection points of H and $I(\bar{s})$ will be odd or even according as n is odd or even. Therefore H cuts $I(\bar{s})$ in a point $q(s)$ in addition to the points $s, s_{1}, \ldots, s_{n-2}$ and in no further points because of the order of C_{n} by (1). For fixed $s_{1}, s_{2}, \ldots, s_{n-2}, q(s)$ moves continuously with s because H moves continuously with s. As $q(s), s_{1}, \ldots, s_{n-2}$ and P^{\prime} define H completely, two different positions of s cannot define the same $q(s)$ because the order of the curve would exceed n in this case. For the same reason $q(s)$ cannot experience a reversal as s moves continuously in a fixed direction. As $H \rightarrow(n-1, \bar{s}), q(s) \rightarrow \bar{s}$. Hence neighborhoods $J(\bar{s}), N(P)$ with $J(\bar{s}) \subset I^{\prime}(\bar{s})$, $N(P) \subset N^{\prime}$ exist so that if $s, s_{1}, s_{2}, \ldots, s_{n-2} \in J(\bar{s}), P^{\prime} \in N(P)$ then $q(s) \in I^{\prime}(\bar{s})$ Consequently $q(q(s))$ is defined and must be equal to s as $q(s), s_{1}, s_{2}, \ldots, s_{n-2}$ and P^{\prime} define a unique hyperplane. If we project from $s_{1}, s_{2}, \ldots, s_{n-2}, P^{\prime}$ then C_{n} will be projected into a curve of order two on the affine line. Points for which $s=q(s)$ will be projected into the reversal points of such a curve and as there are at most two such points we conclude $q(s) \neq s$ with at most two possible exceptions. Let $s^{\prime} \in J(\bar{s}), q\left(s^{\prime}\right) \neq s^{\prime}$. Then $q\left(s^{\prime}\right) \in I^{\prime}(\bar{s})$. Let s move continuously in a fixed direction in $I^{\prime}(\bar{s})$ from s^{\prime} to $q\left(s^{\prime}\right)$. $q(s)$ will move from $q\left(s^{\prime}\right)$ to s^{\prime} in a fixed direction and remain in $I(\bar{s})$. As $I(\bar{s})$ is not the whole curve C_{n} this can only happen if $q(s)$ moves in the direction opposite to that of s. The lemma is now completely proved.

We write $q(s)$ as $q\left(s, s_{1}, s_{2}, \ldots, s_{n-2}\right)$ because it is a function of the $n-1$ variables $s, s_{1}, s_{2}, \ldots, s_{n-2}$. If any one of these variables moves in a fixed direction in $J(\bar{s})$ while all the others remain fixed, $q\left(s, s_{1}, \ldots, s_{n-2}\right)$ will move
in the opposite direction. To prove the theorem we note that, as P is the limit of $P^{\mu}, P \in(n-1, \bar{s})$. We assume P non $\in(n-2, \bar{s})$, construct neighborhoods $I(\bar{s}), J(\bar{s}), N(P)$, satisfying the conditions of the lemma and select $s^{\mu}{ }_{1}, s^{\mu}{ }_{2} \in J(\bar{s}), P^{\mu} \in N(P)$. Because $P^{\mu} \in\left(n-1, s^{\mu}\right), q\left(s^{\mu}{ }_{1}, s^{\mu}{ }_{1}, \ldots, s^{\mu_{1}}\right)$ $=s^{\mu}{ }_{1}$. Now if we move each of the variables successively from $s^{\mu}{ }_{1}$ to $s^{\mu_{2}}$ the point q will move in the opposite direction and remain on $I(\bar{s})$ in accordance with the lemma. But as $I(\bar{s})$ is not the whole curve C_{n} and $q\left(s^{\mu}, s^{\mu}, \ldots, s^{\mu}\right)$ $=s^{\mu}{ }_{2}$, this is impossible. Hence $P \in(n-2, \bar{s})$ and the theorem is proved.

Theorem 2. If s belongs to an arc $s_{1}<s<s_{2}$ then not all of ($n-1, s$) can pass through a single point.

Proof. The result is true for a C_{1} as by definition two different values of s define different curve points $(0, s)$. We assume the result true for C_{n-1} and proceed by induction. Should an $\operatorname{arc} s_{1}<s<s_{2}$ of C_{n} exist together with a point P so that all $(n-1, s), s_{1}<s<s_{2}$, pass through P then by Theorem 1 all ($n-2, s$), $s_{1}<s<s_{2}$, must pass through the same point. If we project the curve C_{n} from one of its points the resulting curve is a C_{n-1} for which all ($n-2, s$), $s_{1}<s<s_{2}$ pass through the projection of P. This contradicts the induction assumption and thus the theorem is proved.

Definition. A system of linear subspaces $S^{\mu}{ }_{r}$ is defined to converge to a subspace S_{r} if a basis $\mathbf{a}^{\mu_{1}}, \mathbf{a}^{\mu}{ }_{2}, \ldots, \mathbf{a}^{\mu}{ }_{r+1}$ exists for each $S^{\mu}{ }_{r}$, with $\mu \geqslant \mu_{0}$, such that $\mathbf{a}^{\mu}{ }_{k}, 1 \leqslant k \leqslant r+1$, converges to \mathbf{a}_{k} where $\mathbf{a}_{1}, \mathbf{a}_{2_{k}} \ldots, \mathbf{a}_{r+1}$ is a basis of S_{r}.

Lemma 2. $S^{\mu}{ }_{r}$ is a set of linear subspaces of dimension $\geqslant r, 0 \leqslant r<n$, defined for positive integers μ. The limit points of any point set $P^{\mu}, P^{\mu} \in S_{r}^{\mu}$, are all within a linear r-subspace S_{r}. Then $S^{\mu}{ }_{r}$ converges to S_{r} as μ approaches infinity.

Proof. Let T_{n-r-1} be any linear ($n-r-1$)-subspace such that the projective n-space is the direct sum of T_{n-r-1} and S_{r}. We choose μ_{0} so large that $S^{\mu}{ }_{r}$ contains no elements of T_{n-r-1} for $\mu \geqslant \mu_{0}$. This is possible as T_{n-r-1} is a closed compact set which contains no elements of S_{r}. If vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{r+1}$ form a basis of S_{r} each $S^{\mu}, \mu \geqslant \mu_{0}$ will have a basis $\mathbf{a}_{1}+\mathbf{p}_{1}, \mathbf{a}_{2}+\mathbf{p}_{2}, \ldots$, $\mathbf{a}_{r+1}+\mathbf{p}_{r+1}$ where the vectors $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{r+1}$ define points of T_{n-r-1}. Hence all these $S^{\mu}{ }_{r}$ will have dimension r. All the vectors $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{r+1}$ must approach the null vector as μ approaches infinity otherwise we could construct a subsequence which would contradict the hypothesis. Thus the lemma is proved.

We introduce the following multiplicity convention:
A point P is said to be within the space ($n-1, s$) exactly k-fold if $P \in$ ($n-k, s$), P non $\in(n-k-1, s), 0<k<n$, and n-fold if $P=s$.

Lemma 3. For $n>1, k>1$ an arc A of C_{n} contains points $s_{1}, s_{\mathbf{2}}, \ldots, s_{k}$ with $s_{1} \leqslant s_{2} \leqslant \ldots \leqslant s_{k}$ and all different from one of its endpoints $s_{a} . \quad P$ is a space
point for which $P \neq s_{a}$ and $P \in\left(n-1, s_{i}\right), 1 \leqslant i \leqslant k$. Then the projection of P from s_{a} will be included within at least $k-1$ spaces $(n-2, s)$ of the projection C_{n-1} of C_{n} for which $s_{1} \leqslant s \leqslant s_{k}$. Multiple inclusions are to be interpreted in accordance with the multiplicity convention.

Proof. For s on the given $\operatorname{arc} A$ of C_{n} let $Q(s)$ be the intersection of $(n-1, s)$ and the line $s_{a} P ; \quad Q(s)$ is uniquely defined except possibly for $s=s_{a}$. It is continuous as ($n-1, s$) is continuous by (2). It cannot cover the full projective line $s_{a} P$ as $Q(s) \neq s_{a}, s \neq s_{a}$, for all s in A including the second endpoint. For $i<k$ let $s_{i}<s_{i+1} ; \quad Q\left(s_{i}\right)=Q\left(s_{i+1}\right)=P$ but $Q(s)$ cannot be equal to P for all s with $s_{i}<s<s_{i+1}$ by Theorem 2 . Hence $Q(s)$ must attain an extremum at a point s^{\prime} for which $s_{i}<s_{i}^{\prime}<s_{i+1}$. Within every curve neighborhood of $s^{\prime}{ }_{i}$ two points separated by $s^{\prime}{ }_{i}$ must exist for which $Q(s)$ attains the same value. Then by Theorem 1 and the continuity of $Q(s)$, $Q(s) \in\left(n-2, s_{i}^{\prime}\right)$.

Let m be the number of different values of s_{i} and let s_{j} run through each of these different values exactly once. Let n_{j} be the number of s_{i} which assume the value s_{j}. By hypothesis $\sum_{j} n_{j}=k$. Let \bar{P} be the projection of P from s_{a} and C_{n-1} that of C_{n}. As the space ($n-2, s_{i}^{\prime}$) of C_{n} projects into the space $\left(n-2, s_{i}^{\prime}\right)$ of $C_{n-1}, \bar{P} \in\left(n-1-1, s_{i}^{\prime}\right)$. Similarly, if $P \in\left(n-n_{j}, s_{j}\right)$ of C_{n} then $\bar{P} \in\left(n-1-\left(n_{j}-1\right), s_{j}\right)$ of C_{n-1}. Hence \bar{P} is contained in at least $m-1+\sum_{j}\left(n_{j}-1\right)=k-1$ spaces $(n-2, s)$ of C_{n-1} for which $s_{1} \leqslant s \leqslant s_{k}$. Thus the lemma is proved.

Theorem 3. No space point P is within more than n spaces $(n-1, s)$ of C_{n}.
Proof. This theorem is the statement that the dual of C_{n} has property (1). As C_{1} is self-dual it is true for C_{1}. We assume the result for curves C_{n-1} and proceed by induction. If the result is false for a curve C_{n} then an arc of this curve exists with distinct endpoints s_{a}, s_{b} together with $n+1$ points s_{1}, s_{2}, \ldots, s_{n+1} with $s_{a} \leqslant s_{1} \leqslant s_{2} \leqslant \ldots \leqslant s_{n+1} \leqslant s_{b}$ so that $P \in\left(n-1, s_{i}\right)$, $1 \leqslant i \leqslant n+1$. Multiple inclusions are interpreted in accordance with the multiplicity convention. $\quad P$ cannot be the point s_{a} for in this case P would be included in ($n-1, s_{a}$) n-fold and by (1) (with the added multiplicity convention) in no other spaces ($n-1, s$). Let P be included in ($n-1, s_{a}$) k-fold, $0 \leqslant k<n$ where $k=0$ is to be interpreted as P non $\in\left(n-1, s_{a}\right)$. Then P is contained in $n-k+1$ spaces ($n-1, s$) with $s \neq s_{a}$. If we project from s_{a} then the projection \bar{P} of P will, by Lemma 3 , be contained in at least $n-k$ spaces ($n-2, s$) of the projected curve C_{n-1} in addition to being contained in $\left(n-2, s_{a}\right) k$-fold. In all, \bar{P} is contained in at least n spaces ($n-2, s$) of C_{n-1} in contradiction to the induction assumption. Hence P can be contained in at most n spaces ($n-1, s$) and the theorem is proved.

Theorem 4. Points $s^{\mu}{ }_{1}, s^{\mu}{ }_{2}, \ldots, s^{\mu}{ }_{k+1}$ are defined for $\mu=0,1,2,3, \ldots$, and all converge to \bar{s} as μ approaches infinity. Then the intersection S^{μ} of the
spaces $\left.\left(n-1, s^{\mu}\right),\left(n-1, s^{\mu}\right)_{2}\right), \ldots,\left(n-1, s^{\mu}{ }_{k+1}\right), 0 \leqslant k<n$, converges to ($n-k-1, \bar{s}$). The points of S^{μ} are to be included h-fold within any hyperplane which occurs h times in this set.

Proof. The theorem is the statement that the dual of (2) is true for C_{n}. For $k=0$ the result is a statement of the continuity of $(n-1, s)$ which we assume by (2). In particular the result is true for C_{1}. Therefore let $k>0$. We assume the result for C_{n-1} and proceed by induction. We select a point P^{μ} from each S^{μ}. As the dimension of $S^{\mu} \geqslant n-k-1$ the truth of the theorem will result from Lemma 2 if we prove that every convergent subsequence P^{\prime} of P^{μ} has its limit P within ($n-k-1, \bar{s}$). We may assume $s^{\mu}{ }_{1} \leqslant s^{\mu}{ }_{2} \leqslant$ $\ldots \leqslant s^{\mu}{ }_{k+1}$. With the help of Theorem 2 we select an $\operatorname{arc} A$ containing \bar{s} for one of the endpoints s_{a} of which $\bar{s} \neq s_{a}$ and P non $\in\left(n-1, s_{a}\right)$. If we choose P^{v} sufficiently close to P, we may assume P^{v} non $\in\left(n-1, s_{a}\right)$ and also, if $s^{v_{1}}, s^{\nu}{ }_{2}, \ldots, s^{v}{ }_{k+1}$ are sufficiently close to \bar{s}, that these points will be within A and different from s_{a}. Let \bar{P} be the projection of P from s_{a}, C_{n-1} that of C_{n} and \bar{P}^{v} that of P^{v}. By Lemma $3, \bar{P}$ will be contained in k spaces $(n-2, s)$ of C_{n-1} with $s_{1} \leqslant s \leqslant s^{\nu}{ }_{k+1}$. \bar{P}^{ν} will converge to \bar{P} and, by the induction assumption applied to $C_{n-1}, \bar{P} \in(n-1-k, \bar{s})$. Therefore P is contained in the space generated by s_{a} and $(n-k-1, \bar{s})$ of C_{n}. If P non $\in(n-k-1, \bar{s})$. then s_{a} will be in the space generated by P and $(n-k-1, \bar{s})$. As s_{a} may be chosen in infinitely many ways this would contradict the assumption (1). Hence $P \in(n-k-1, \bar{s})$. The theorem is then completely proved.

I should like to take the opportunity to thank Dr. O. Haupt and Dr. P. Scherk for the improvements they suggested in my original manuscript.

University of British Columbia

