INTERSTELLAR SULFUR CHEMISTRY

Sheo S. Prasad and Wesley T. Huntress, Jr. Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Drive, Pasadena, CA 91103, USA

<u>ABSTRACT</u>: This paper summarizes results of a chemical model of SO, CS, and OCS chemistry in dense clouds.

The following results were obtained from a theoretical study of sulfur chemistry in dense interstellar clouds using a large-scale time dependent model¹ of gas-phase chemistry. In the results which follow, $f_x = n(x)/n(H_2) \approx N(X)/N(H_2)$ where $N(X) \equiv$ column abundance of X. Also, q(x) and L(x) will denote net production and loss rates of X.

(a) For the large values $f_{0,2}\approx 5 \ x \ 10^{-5}$ predicted by contemporary models^{2,3}, the reaction⁴ S + $0_2 \rightarrow 50$ + 0 leads to a large² value f_{S0} = 2 x 10^{-6} . Observations⁵ indicate $f_{S0}\approx (2\text{--}10) \ x \ 10^{-8}$ in L134 and TMC-1. Consequently, f_{02} in dense clouds may be much smaller than predicted.

(b) The large value $f_{SO} \sim 10^{-6}$ for dense clouds predicted by Mitchell, Ginsburg and Kuntz³ results from the reaction $S + H_3^+ \rightarrow H_2S^+ + H$ (1) in their model. Large H_2S^+ production via reaction (1) leads to correspondingly large HS concentration and large q(SO) through the fast reaction HS + 0 \rightarrow SO + H. Reaction (1) probably does not occur, which is consistent with the lower observed f_{SO} .

(c) Due to activation energy⁶, the reaction of CS with 0 atoms is efficient as a loss mechanism of CS during the early phases of cloud evolution (high temperature), or in hot and oxygen rich sources such as the KL nebula. Reactions of H₃⁺, HCO⁺, H⁺ and C⁺ serve merely to recycle CS. Consequently, L(CS) ~ 4 x 10⁻¹⁵ s⁻¹ in dense clouds (n(H₂) = 2 x 10⁵ cm⁻³, T \leq 40K). On this basis, observed⁷ 2 x 10⁻¹⁰ \leq f_{cs} \leq 2 x 10⁻⁵ for 5 x 10⁴ \leq n(H₂) \leq 2 x 10⁵ cm⁻³ implies q(CS) = 1.6 x 10⁻¹⁸ cm⁻³ s⁻¹ in clouds with n(H₂) = 2 x 10⁵ cm⁻³ and low temperature.

(d) If sulfur is not abnormally depleted in dense clouds, then the observed abundances of SO, SO₂, H₂S, CS, OCS, H₂CS and SiS suggest that sulfur is mostly atomic in dense clouds, i.e., $f_s \sim 10^{-5}$. This

297

B. H. Andrew (ed.), Interstellar Molecules, 297–298. Copyright © 1980 by the IAU. value for $f_{\rm S}$ and the low value for $q(\rm CS)$ deduced above jointly imply that the reaction CH + S \rightarrow CS + H has an activation energy and that $f_{\rm S+} \leq 5 \ge 10^{-11}$ in order that contributions to $q(\rm CS)$ via reactions of S⁺ with CH_n do not lead to CS in excess of observations. $q(\rm CS)$ could, however, be substantially higher if condensations onto grains constitute an effective loss mechanism for CS.

(e) In a gas-phase scheme, the reaction chain SO $\underline{C^+}_{CS^+} \underline{CS^+}_{LS^+}$ HCS⁺ $\underline{e^-}_{CS}$ CS is the dominant source of CS in dark clouds. L(CS) \approx 4 x 10⁻¹⁵ s⁻¹ then implies that n(SO)/n(CS) \simeq 1.6 x 10⁻⁵/n(C⁺). Using n(C⁺) from our models², we obtain n(SO)/n(CS) = 3.4, which agrees well with observed value of 4 in L134 or TMC-1. Although it is tempting to interpret this agreement as evidence in favor of gas-phase chemistry, laboratory measurements of the activation energy in the reaction CH + S \Rightarrow CS + H and deduction of upper bounds on f_S+ from observations are needed to confirm this inference.

(f) OCS is also stable against reactions with neutral atoms and radicals in dense clouds. Most ionic reactions serve merely to recycle OCS. Consequently, we assume $L(OCS) \approx 4 \times 10^{-15} \text{ s}^{-1}$. The observations of CS in the absence of OCS in a warm cloud, such as Orion A, implies that q(OCS) < q(CS) in this cloud. This is consistent with low f_e in dense clouds⁸ and the reaction $S^- + CO \rightarrow OCS + e^-$ as the major source⁹ of OCS. In relatively colder clouds ($T \le 20K$), such as Sgr B2, $N(OCS) \gtrsim N(CS)$ has been reported. This implies that additional sources of OCS become important at very low temperatures. The reaction $CO + S \rightarrow OCS + h\nu$, if it occurs, might provide this additional source.

REFERENCES

- 1. Prasad, S. S., and Huntress, W. T., Jr.: A Model for Gas Phase Chemistry in Interstellar Clouds: I., to appear in Ap. J. Suppl.
- 2. Prasad, S. S., and Huntress, W. T., Jr.: A Model for Gas Phase Chemistry in Interstellar Clouds: II., to appear in Ap. J.
- 3. Mitchell, G. F., Ginsburg, J. L., and Kuntz, P. L.: 1978, Ap. J. Suppl. 38, p. 39.
- 4. Davis, D. D., Klemm, R. B., and Pilling, M. J.: 1972, Int. J. Chem. Kinet. 4, p. 367.
- 5. Rydbeck, O. E. H., Irvine, W. H., Hjalmarson, A., Rydbeck, G., Ellder, J., and Kollberg, E.: Observations of SO in Dark and Molecular Clouds, preprint.
- Lilenfeld, H. V., and Richardson, R. J.: 1977, J. Chem. Phys. 67, p. 3991.
- 7. Liszt, H., and Leung, C. M.: 1977, Ap. J. 218, p. 396.
- Guélin, M., Langer, W. D., Snell, R. L., Wootten, H. A.: 1977, Ap. J. (Letters) 217, p. L165.
- 9. Oppenheimer, M., and Dalgarno, A.: 1974, Ap. J. 187, p. 231.