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Abstract

Various item selection algorithms have been proposed for Cognitive Diagnostic Computerized
Adaptive Testing (CD-CAT), with the goal of efficiently diagnosing examinees' strengths and
weaknesses. However, these algorithms often come with significant computational costs, which
can hinder their practical implementation. A Likelihood-Based Profile Shrinkage (LBPS)
Algorithm is proposed to simplify the item selection process and reduce the computational costs
in CD-CAT. Our simulation results indicate that incorporating LBPS into existing item selection
methods yields substantial computational efficiency gains, with greater reductions in
computation time as the number of attributes and test length increase. Additionally, LBPS
maintains estimation accuracy at both the attribute and pattern levels. These findings suggest that
LBPS is a scalable and effective solution for the item selection of CD-CAT in complex

scenarios.
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1. Introduction

There has been an increasing emphasis in educational assessment on formative evaluation
and diagnostic feedback (Black & Wiliam, 2009; Morris et al., 2021). Cognitive diagnostic
assessment (CDA) addresses this need by providing detailed information about examinees'
mastery of specific skills or attributes (Leighton & Gierl, 2007; Rupp et al., 2010). To improve
the efficiency of CDA administration, cognitive diagnostic computerized adaptive testing (CD-
CAT) has emerged as a powerful approach that combines the benefits of cognitive diagnosis with
the efficiency of adaptive testing (Cheng, 2009).

A critical component in CD-CAT is the item selection algorithm, which determines the
items and the sequence in which they are administered to each examinee. Various item selection
methods have been proposed, most of which fundamentally connected through information
theory principles as demonstrated by Cheng (2009) and Wang et al. (2020). These methods
include the original Kullback-Leibler (KL) index (Xu et al., 2003), likelihood-weighted KL and
posterior-weighted KL (PWKL) index (Cheng, 2009), modified PWKL (MPWKL) index
(Kaplan et al., 2015), the Shannon entropy (SHE) procedure (Tatsuoka, 2002) and mutual
information methods (Wang, 2013). While these approaches may appear distinct, they all derive
from related information-theoretic concepts, with KL divergence, Shannon entropy, and mutual
information sharing deep mathematical connections in quantifying information gain and
uncertainty reduction (Cover & Thomas, 1991). More recently, the generalized deterministic
inputs, noisy ‘‘and’’ gate (G-DINA) model discrimination index (GDI) was introduced as an
efficient alternative (Kaplan et al., 2015). GDI quantifies the weighted variance in item success

probabilities given a specific attribute distribution.

While these methods have demonstrated effectiveness in attribute-level classification
accuracy, they face a significant computational challenge: as the number of attributes (K)
increases, the computational burden grows exponentially. This occurs because most existing
methods require evaluating all possible attribute patterns (2X) for each item in the bank before
selecting the most suitable one as the next item to administer. For instance, with K = 10
attributes, algorithms must evaluate 1,024 possible patterns for each candidate item. This
computational intensity can make real-time implementation challenging, particularly in settings

requiring rapid item selection decisions.
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The only existing method that attempts to reduce the computational burden is the GDI
method, which partially addresses this issue by working with reduced attribute patterns.
Although GDI is more computationally efficient than the PWKL method (Kaplan et al., 2015),
which is known to be the most computationally intensive, its efficiency relative to KL and
SHE—two other widely discussed methods in CD-CAT—remains unclear. This study aims to
address this gap by evaluating GDI’s computational efficiency relative to KL and SHE.
Moreover, the primary objective is to propose a novel and flexible approach that not only
substantially reduces computational demands but also maintains the theoretical foundations and

measurement precision of existing methods.

This paper introduces the Likelihood-Based Profile Shrinkage (LBPS) algorithm as a
solution to this challenge. The key insight of LBPS is that as testing proceeds, the set of plausible
attribute patterns for an examinee rapidly shrinks based on their response patterns. By focusing
on only the most likely attribute patterns, LBPS achieves substantial efficiency gains while
preserving measurement accuracy. Importantly, LBPS can be integrated with any existing item
selection method, making it a flexible enhancement to current CD-CAT implementations. In
addition, LBPS can be implemented without requiring changes to existing item banks or
cognitive diagnostic models. Through simulation studies, we demonstrate that LBPS achieves
comparable attribute classification accuracy to traditional methods while greatly reducing
computation time, particularly for long tests measuring larger numbers of attributes. The
remainder of this paper is organized as follows. Section 2 reviews the theoretical framework of
cognitive diagnostic models and existing item selection methods. Section 3 introduces the LBPS
algorithm and establishes its theoretical properties. Section 4 presents simulation studies
comparing LBPS with existing methods across various conditions. Section 5 discusses practical

implications and future research directions.

2. Background
2.1 CDM Framework
2.1.1 Basic Setup

Cognitive diagnostic models (CDMs) aim to provide detailed information about
examinees' mastery of specific skills or attributes underlying test performance. In CDA, the goal
IS to measure examinees' mastery of K discrete attributes or skills. Each examinee's mastery
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profile is represented by an attribute pattern &« = (a;,..., ax) where a;, = 1 indicates mastery of
attribute k and a;, = 0 indicates non-mastery for k=1, 2, ..., K attributes. Note that the terms
‘pattern’ and ‘profile’ are used interchangeably in the paper to refer to a. For K attributes, there
are 2K possible attribute patterns, representing all possible combinations of mastery and non-
mastery across the measured attributes (de la Torre, 2011). The relationship between items and
attributes is specified through a J x K Q-matrix (Tatsuoka, 1995), where entry g, = 1 if item j
requires attribute k and g, = 0 otherwise. The Q-matrix represents the cognitive specifications

of the test by mapping each item to its required attributes.
2.1.2 Types of CDMs

CDM s can be categorized based on how they model the relationship between attributes
and item responses (Ravand & Baghaei, 2020). In conjunctive models, examinees must master
all required attributes to have a high probability of correctly answering an item. The DINA
model (Junker & Sijtsma, 2001) and the Noisy Inputs, Deterministic "And" Gate (NIDA) model
(Maris, 1999) are prominent examples of conjunctive models. These models are particularly
appropriate when skills build upon each other in a non-compensatory way. Disjunctive models
assume that mastery of any one of the required attributes is sufficient for a high probability of
success. The Deterministic Input, Noisy "Or" Gate (DINO) model (Templin & Henson, 2006)
exemplifies this approach. Such models are suitable when multiple solution strategies can lead to

correct answers and mastery of one attribute can compensate for non-mastery of others.

Additive models, such as the Additive CDM (ACDM; de la Torre, 2011) and the Linear
Logistic Model (LLM; Maris, 1999), take a different approach where each mastered attribute
contributes independently to the probability of a correct response. These models are appropriate

when attributes have cumulative but independent effects on performance.

More recently, general diagnostic models have been developed that can accommodate
multiple types of attribute relationships within the same assessment. The Generalized DINA
model (G-DINA; de la Torre, 2011), the Log-linear CDM (LCDM; Henson et al., 2009), and the
General Diagnostic Model (GDM; von Davier, 2005) allow different items to exhibit different
attribute relationships. These general models provide greater flexibility but typically require

larger sample sizes for stable parameter estimation.
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2.1.3 The DINA Model

While the methods developed in this paper apply to any CDM, we use the DINA model
for illustration due to its parsimony and wide use in diagnostic testing applications (de la Torre,
2009; Junker & Sijtsma, 2001). Under the DINA model, an examinee must master all required
attributes to have a high probability of answering an item correctly, making it a conjunctive

model. For an examinee i with attribute pattern a responding to item j, the ideal response is:

K
n;j(a) = H“ikqjk, (1)
k=1

where 7;;(a) = 1 indicates mastery of all required attributes and 7;;(a) = 0 indicates lack of at

least one required attribute (de la Torre, 2009).

The probability of a correct response of examinee i on item j is given by:
P(X;=1la)= (1 - Sj)nij(fl)gj1—nij(a)’ @)

where s; is the slipping parameter (probability of incorrect response despite mastery) and g; is
the guessing parameter (probability of correct response despite non-mastery). These item
parameters account for the probabilistic nature of the response process, where examinees who
have mastered all required attributes may still make mistakes (slips) and those who lack required
attributes may still answer correctly through guessing (de la Torre & Douglas, 2004). The DINA
model's simple form makes it particularly useful for understanding the fundamental principles of
cognitive diagnosis while still capturing essential features of the response process. Its parsimony
in parameter estimation and clear interpretation of results has made it a popular choice in

diagnostic testing applications.
2.2 Item Selection Methods in CD-CAT

Item selection methods in CD-CAT can be broadly categorized into parametric and
nonparametric approaches (Chang et al., 2019). While nonparametric methods have emerged
recently to address certain limitations of parametric approaches (Chiu & Chang, 2021),
parametric methods remain fundamental to CD-CAT implementation. These parametric methods
can be further classified as single-purpose or dual-purpose (Wang et al., 2012). Single-purpose

methods focus solely on optimizing the measurement of attribute profiles, while dual-purpose
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methods simultaneously measure both attribute profiles and general ability (Dai et al., 2016;
Kang et al., 2017; Wang et al., 2014). This paper proposes a new algorithm within the
framework of parametric single-purpose item selection methods. Therefore, we focus our review
on existing methods in this category, which form the foundation for CD-CAT item selection and

remain the most widely used in practice.
2.2.1 Basic Framework

In CD-CAT, parametric single-purpose item selection methods aim to optimize the
measurement of examinees' attribute mastery profiles. These methods utilize item parameters and
probability models within a cognitive diagnostic framework to select items that maximize
information about attribute patterns. After J items have been administered to an examinee, let
x; = (x4, ..., x;) denote the vector of observed responses, where x; € {0,1}. Following Bayes'

theorem, the posterior probability of attribute pattern is:
n(alx;) < mo(a)L(x;|a), €©)

where y (@) is the prior probability and L(x;|a) = H;zlP(Xj = x;|a) is the likelihood
function under the specified CDM. Define the item h as a candidate item in the pool of available
items, from which the (J+1)-th item is to be selected based on a specified item selection method.

2.2.2 Information-Theoretic Methods
Kullback-Leibler Based Approaches

The Kullback-Leibler (KL) information (Cover & Thomas, 1991; Kullback & Leibler,
1951) provides a foundation for measuring the distance between probability distributions under
different attribute patterns. For item j and two attribute patterns a, a’ € {0,1}¥, the KL

information is defined as:

1

D;(alla’) = Z P(X; = x|at) log l

x=0

P(X; = x|a)
P(X; = x|a’)]’ @)
where P(Xj = x|a) denotes the probability of response x given attribute pattern e under the

specified CDM. Building on this framework, the KL index was proposed by Xu et al. (2003) to

select the next item maximizing:
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ZK

KLn@ = ) Du(@llao), ©)
c=1

where h represents the candidate item in the pool of available items, @ is the current estimate of
the examinee's attribute pattern, and ¢ indexes attribute patterns (c = 1, 2, ..., 2X). This index
measures the total divergence between the response distributions under the estimated pattern and
all other possible patterns. Cheng (2009) enhanced this approach by incorporating posterior
probabilities through the posterior-weighted KL (PWKL) index:

oK

PWKL, (&) = 2 Dy(@lla)m(a|x;), (6)

c=1

where (a.|x;) is the posterior probability after J items have been answered, and x; is the

response vector.

Other KL information-based item selection methods include the modified PWKL
(MPWKL) method (Kaplan et al., 2015), and posterior-weighted CDM discrimination index
(PWCDI) method (Zheng & Chang, 2016). This study employs only PWKL for comparison, as
MPWAKL, while achieving comparable performance to GDI, incurs substantial computational
costs (Kaplan et al., 2015). Additionally, PWCDI demonstrates inferior performance to PWKL
with small calibration samples (Chang et al., 2019), making PWKL the most suitable KL-based
comparator for this investigation.

Shannon Entropy Based Approaches

Shannon entropy (Cover & Thomas, 1991; Shannon, 1948) provides an alternative
framework for quantifying uncertainty in the posterior distribution of attribute patterns. In the
context of CD-CAT, after J items have been selected, the entropy of a distribution 7 is defined
as:

2K

H(n) = —Z n(a.|x)) log [r(a.|x))]. (7)

c=1
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Lower entropy values indicate greater certainty about the true attribute pattern. Building on
information theory principles (Cover & Thomas, 1991), Tatsuoka (2002) proposed selecting

items by minimizing the expected posterior entropy:

1
SHE, = Z H(m|Xy, = x,%,)P(Xn = x|,), ®)

x=0
where | X, = x, x; denotes the posterior distribution after observing response x to the candidate
item h in the pool of available items, P(X), = x|x;) denotes the predicted probability of
observing response x conditional on the response vector x;, and:

2K

P(Xp =x|x)) = Z P(Xy = x|a)m(a.|x)). 9)
c=1

Recent methodological advances have extended this framework through the expected
mutual information index (Wang, 2013) and the Jensen—Shannon divergence (JSD) index
(Minchen & de la Torre, 2016; Yigit et al., 2019). Theoretical investigations have established
that JSD is mathematically equivalent to mutual information in quantifying the information gain
about an examinee's attribute pattern (Yigit et al., 2019). Furthermore, a linear relationship was
found between SHE and JSD (Wang et al., 2020), indicating that these methods yield equivalent
item selection decisions in CD-CAT applications. Given these theoretical equivalences, the
present study employs the SHE method (Tatsuoka, 2002) as the representative entropy-based

approach in our comparative analyses.
2.2.3 GDI Approach

Building on the generalized DINA framework (de la Torre, 2011), Kaplan et al. (2015)
introduced the G-DINA discrimination index (GDI). This index offers computational advantages
by working with reduced attribute patterns, which are made up by K, attributes required by item
h. For example, if a g-vector is defined as (1, 0, 1, 0, 1), K, = 3 attributes since this item only
requires the first, third, and fifth attributes. Consequently, there are 8 reduced attribute patterns

based on the three required attributes. The GDI for item h is defined as
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2Kh
6Dl = ) m@)[PC, = 1] aiy) = BT, (10)
c=1
where a;, represents the c-th reduced attribute pattern for item h (¢ = 1,2, ..., 25), m(ay,) is

the posterior probability of the reduced attribute pattern after J items have been selected, and

P, = 35’1‘ n(eal,)P (X, = 1|ayy) is the mean success probability. The GDI measures an item's
ability to differentiate between reduced attribute vectors, emphasizing those with higher success
probabilities. The item with the highest GDI in the pool is selected.

2.2.4 Comparative Properties

These methods offer distinct advantages for single-purpose CD-CAT. The KL-based
methods directly measure discrimination between attribute patterns, with PWKL improving upon
the original KL index by incorporating posterior information (Cheng, 2009). The entropy-based
methods approach item selection through uncertainty reduction in the posterior distribution.
While SHE directly minimizes expected uncertainty, the mutual information method provides a
theoretically equivalent formulation through information gain (Wang, 2013). The GDI achieves
computational efficiency through dimension reduction while maintaining measurement
precision, particularly advantageous for assessments with many attributes (Kaplan et al., 2015).
Despite their demonstrated effectiveness, opportunities remain for improving attribute pattern
estimation efficiency in CD-CAT. The following section introduces a likelihood-based profile
shrinkage (LBPS) algorithm that builds upon these theoretical foundations while addressing

certain limitations in existing approaches.
2.3 Computational Considerations in CD-CAT

The practical implementation of CD-CAT item selection methods faces significant
computational challenges, primarily arising from the need to evaluate large numbers of attribute
patterns during the item selection process. For KL-based methods, item selection entails
computing and summing up the KL information between the current attribute pattern estimate
and all 2K possible patterns, and this is done for all eligible items in the bank. When using
PWKL, additional computational burden comes from calculating posterior probabilities for each

pattern combination.
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Consider a test measuring K = 5 attributes with an item bank of 300 items as an example.
Even in this relatively simple case, 32 possible attribute patterns must be evaluated for each item
selection decision. The PWKL method requires computing and summing KL divergence values
across all 32 patterns for each item under consideration. This computation must be performed for
all eligible items in the bank to select the next item. The Shannon entropy method involves
similar computational intensity, requiring the calculation of expected entropy by evaluating
posterior distributions for possible responses across all attribute patterns, again repeated for each
item in the bank.

The GDI method introduced by Kaplan et al. (2015) offers some computational
advantages by working only with the attributes required for each item. This reduces the pattern
space from 2K to 2¥#, where Kj, is typically much smaller than K, and requires fewer posterior
probability calculations. However, even with these improvements, significant computational
challenges remain. These computational demands become particularly acute when tests measure

many attributes and as item bank expands.

The practical implications of these computational demands are substantial. They can
affect response time between items, overall test administration efficiency, and the system
resources required to implement CD-CAT. When multiple examinees are tested simultaneously,
as is common in educational settings, these computational requirements become even more
demanding. While the GDI method has made progress in reducing computational burden through
reduced attribute patterns, there remains a clear need for more efficient approaches that can
maintain measurement precision while reducing computation time and scaling effectively with

the number of attributes.
3. The Likelihood-Based Profile Shrinkage Algorithm
3.1 Key Ideas

The computational burden of traditional CD-CAT item selection methods grows
exponentially with the number of attributes K, as each method evaluates all 2% possible attribute
patterns for each eligible item in the bank at every item selection decision. However, as testing
proceeds, the set of plausible, or most likely, attribute patterns for an examinee typically shrinks
based on their response pattern. This observation motivates the key insight of LBPS: by focusing
on the most likely attribute patterns for item selection while maintaining full pattern space for
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estimation, substantial computational savings can be achieved without sacrificing measurement

precision.

The likelihood function provides a natural mechanism for identifying these plausible
patterns. After each response, patterns with maximum likelihood represent the most probable
true states given the observed data. Figure 1 illustrates changes in attribute profiles’ likelihoods
using LBPS with KL when K = 5. Early on, multiple profiles may have similar likelihoods, but
as the test proceeds, the number of likely profiles shrinks (see Figure 1). By restricting item
selection calculations to these patterns while using all patterns for estimation, LBPS balances

computational efficiency with measurement accuracy.
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Figure 1. An illustration of changes in attribute profiles’ likelihoods using LBPS with KL when K=5

Note: An iteration refers to a single cycle of the adaptive testing process: selecting the next item,
collecting the examinee’s response, and updating the likelihoods of all attribute profiles and the
examinee’s estimated attribute profile based on the accumulated responses.
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3.2 Theoretical Framework

Let x; = (xy, ..., x;) denote the response vector after t items have been administered. For

any attribute pattern & € A = {0,1}¥, the likelihood under a cognitive diagnostic model is:
L(alx) = [15-, P(X; = x;|a). (11)

Define the set of attribute patterns with the largest likelihood after t items have been answered

as:
M(x,) = argmax L(al|x.). (12)

For response pattern x, and a new item j that is answered with response x;, L(a|xt, xj) =
L(alx)P(X; = xj|a).
Theorem 1 (Pattern Set Size After First Item).
Under the DINA model with s;, g; < 0.5, for an item requiring k attributes:

i Ifx; =1:|M(xy)| = 2Kk

i, Ifx; =0:|M(x;)| = 2K — 2K~k

where |[M| represents the size of the set M, that is, the number of unique attributes patterns in the
set M.

Proof:

a) Under the DINA model, for item 1, L(a|x;) = P(x;|a) = (1 — 5;) M@ g, 1= Mm@,

where 7, (@) = TT5_, @ 71+

b) Forx, =1, L(alx, = 1) is maximized when n,(a) = 1 since (1 — s;) > g;. This
requires all k attributes specified by item 1 to be mastered. The remaining K — k

attributes can be 0 or 1. Therefore, |[M(x,)| = 2Kk,

c) Forx; =0, L(a]x; = 0) is maximized when n, (a) = 0 since (1 — g;) > s;. This

occurs when any required attribute is 0. So in this case |M(x;)|= 2K — 2K=k,
Theorem 2 (Pattern Set Change)

After t items have been answered (t = 1), response pattern x, and any new response x; from

item j, the set of attribute patterns with the largest likelihood is
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M(x,,x;) = arg max L(a|x,, xj) = arg max(L (alx,) P(X; = xj|a)].

Let M, = {a € M(x,):n;(a) = 1} (i.e., patterns within M (x,) that mastered all attributes
required item j), and My, = {a € M(x,): n;(a) = 0} (patterns within M (x,) that miss one or
more attributes required by item j). The updated pattern set M (xt, xj) follows one of the three

Cases:

Case 1 (Shrinkage): If My, # @, and My, # @ (which implies [M(x,)| = 2), then |M (x,, x;)| <
M (x,)|. This occurs because item j separates patterns within M(x;), with at least one pattern
mastering all required attributes while others miss at least one attribute. If x; = 1, M(xt, xj) =
M,,; if x; = 0,M(x,,x;) = My,. This is the most common case when |M (x,)| is large, which

tends to be the case at the beginning of the test, especially when K is large.
Case 2 (Stability): If either (a) My, # @, My, = @ and x; = 1, or (b) My = @, My, # @ and x; =

0, then | M (x,, x;)| = |M(x,)|. This occurs when all patterns within M (x;) lead to the same n;

and the observed response x; matches 7;.
Case 3: If (1) My, = @and x; = 1, or (2) My, = @ and x; = 0:

a) Growth occurs when external patterns, i.e., patterns outside of M(x,), have precisely the
threshold likelihood: L(a’|x,) = L* -l‘f—ijfor xj=1,0r L(e'|x,) = L' -1f—fgjfor x; = 0.
Here, L* = L(a|x;) for any @ € M(x;). This exact equality is mathematically possible
but rare in practice.

b) Replacement occurs when there exists at least one external pattern ' leading to
L(a'|x;) that exceeds the threshold likelihood ratio. This can result in |M(xt, xj)| being

larger, smaller, or equal to |[M (x,)| depending on the number of qualifying external
patterns.

c) Stability occurs when no external patterns meets the threshold.

Proof:

Define A;; = {a € A\M(x,): n;(a) = 1} (i.e., patterns outside of M (x,) that should lead to a

correct answer to item j), and Ay, = {a € A\M(x,): n;(a) = 0} (i.e., patterns outside of M (x;)
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that should lead to an incorrect answer to item j). Let L* = L(a|x;) forany &« € M(x,), and
L' = L(a'|x,) forany a’ € M(x,). Note that L* > L*' by the definition of M(x,).

(1) When response x; = 1:

Under DINA, if n;(a) = 1,P(X; = 1|a) = 1 —s;; if nj(a) = 0,P(X; = 1|a) = g;. Since
sj,g; < 0.5, we have (1 —s;) > g;. After observing x; = 1:

-Fora € My,: L(a|x,xj) =L (1 —s;)

- For a € My.: L(a|x,,x)) = L" - g;

-Fora’ € Ay L(a'|x, %) =L - (1 —s;)

-Fora’ € Ag: L(a'|xy, xj) =L"-g;

Case 1: If M;; # @ and M, # @, then the maximum likelihood after observing x; is L* -

(1 —s;),since (1 —s;) > g; and L* > L. This only happens for attribute patterns in M.
Therefore, M (x,, x;) shrinks to My, when M, # @.

Case 2: If M;; # @ and My, = O (i.e., M(x;) = My,), all patterns in M(x,) achieve L* - (1 — sj).
Therefore, M(x,,x;) = M(x,) (Stability).

Case 3: If My, = @ and My, # @ (i.e., M(x,) = My,), all patterns in M (x,) achieve L* - g;.

-Fora’ € Ay, L(a'|x,,x;) = L - g; < L* - g;, so those patterns do not enter M(x,, x;).
Therefore, we can focus on a’ € Ay;.
-Fora’ € Ay;:

o ifL"- (1 — sj) =L"-g;, thatis, LL_ = 1“1—; , then pattern a’ ties with patterns in M,; and

becomes a part of M (x,, x;) (growth);

o ifL"-(1—s;)>L" g thatis, LL— > 2L then pattern &' achieves higher likelihood

1
1—S]'

than all patterns in M, so M(x,,x;) = {a’ € A;: L(a'|x,) > L -19—’;} (replacement),
=sj

and the size of M (x,, x;) may increase, decrease, or remain unchanged relative to the

size of M(x,);
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o ifL"-(1—s;) <L g thatis, LL— < 1’%, then pattern a’ doesn’t become a member of
=Sj
M(xy,x;), 50 M(x,, x;) = My, = M(x,) (stability).

Therefore, when x; = 1, for M(x,, x;) to expand beyond M (x,), LL— must be at least as large as

1“1—;. If equality holds for some patterns a’ € A;;, growth occurs; if inequality holds for some
patterns a’ € A,;, replacement occurs; if no external patterns meets threshold, stability occurs.

(2) When response x; = 0, the same logic applies. Whether the size of M (xt, xj) increases or

shrinks compared to M (x,) depends on LL— and 15—’ If they are equal for some patterns a’ €
J

. .. LY S . .
Ay, the size increases; if o> ﬁ holds for some patterns a’ € A, the size may increase,
—9j

remain stable, or decrease.

A Special Case: When [M(x,)| =1

A critical scenario arises when the pattern set contains only a single pattern: M(x,) =
{a’}. This situation may arise at the late stage of a test. With only one pattern, Case 1 (i.e.,
mixed mastery) in Theorem 2 is impossible. The single pattern either meets item j's requirements
(M = {a’}, My, = @) or doesn't (M, = @, My, = {a*}). This is a special case of either Case 2
or Case 3 discussed in Theorem 2. According to Theorem 2, |[M(x,)| either stays at 1 or possibly

expands. There is no chance of further shrinkage in terms of the size of the set.

Conditions Driving Shrinkage in LBPS. The probability of shrinkage (Case 1) in
Theorem 2 depends critically on heterogeneity within M (x,) — that is, whether some patterns
meet all requirements of item j, while others do not. This heterogeneity is likely to occur when K
is large and testing is in early stages, due to the combinatorial structure of the pattern space.
After t items which have tested m < K attributes, M (x,) must contain all 2X~™ variants on
untested attributes for each viable tested configuration. This ensures a diverse set of attribute

patterns that item j can potentially differentiate.

While early stages benefit from guaranteed shrinkage, repeated shrinkage often drives
|IM(x,)| to a small number of patterns at the later stage of testing. This results in a computational

advantage: with LBPS, item selection methods like KL, PWKL, or SHE need to evaluate items
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against only a handful of patterns remaining in M (x,); while without LBPS, they must evaluate
all 2K patterns at every stage. Thus, LBPS effectively leverages the structure of high-
dimensional attribute spaces to mitigate the computational burden of exhaustive pattern
evaluation. Its advantage is pronounced when K is large, offering the greatest benefit precisely

when traditional methods become computationally prohibitive.

Theorem 3 (Pattern Set Size Reduction).

General reduction: When Case 1 (shrinkage) occurs, the reduction in pattern set size of
M(xq,x;) is :

_ |My.l, ifx;=1
M) = e o

Myl
if x; =1
o M(xx; U
The reduction ratio is p; = | 1\(4xt )| “‘rﬂflxt)”
MG ol =0
[M (x¢) J

This ratio depends on the proportion of patterns in M (x,) that would ideally yield each response.

As a special case, when item j measures only untested attributes:

1

2knew

i Ifx =10 M (% 25)| = IM(x0)] -

i If x5 = 0: [M(xe )| = IM(xo)] - (1 — )

2knew

Here, k,,.,, refers to the number of newly introduced attributes—that is, attributes required by
item j but not yet assessed by any of the first t items. When k., > 1, the reduction of the most

likely pattern space is sharper for a correct response (x; = 1), and less sharp but still substantial
for an incorrect response (x; = 0). When k,,.,, = 1, the reduction is by half for a correct

response or an incorrect response.

Proof: This follows directly from Case 1 of Theorem 2, where we showed that M(xt, xj) = My,

when x; = 1 and M (x,, x;) = My, when x; = 0.

For the special case:
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a) When x; = 1, L(a|x,,x;) is maximized when n; (&) = 1. This means that each new

1

2knew

required attribute must be mastered. Only of all patterns in M (x,) can have 1’s on

IM(x¢)|
2knew ’

all the new attributes. Therefore, |M(x,, x;)| =

b) When x; = 0, L(a|x,,x;) is maximized when n;(a) = 0. This means that at least one of

the new required attributes is not mastered, and the proportion of such patterns in

1

2knew’

M(x,)is1—

Therefore, | M (x,, x;)| = [M(x,)] - (1 - )

2knew

When k,.,, = 1, following a) and b), the size of the set of attribute patterns that maximize the
likelihood is reduced by half.

The aforementioned theorems suggest that the efficiency of LBPS is influenced by the g-
vectors of the selected items. The sequential selection of items that assess new attributes leads to
a reduced pattern space for item selection in LBPS. This insight coincides with Xu et al.'s (2016)
optimal initial item selection theory for CD-CAT. Specifically, Xu et al. (2016) demonstrated
that to achieve minimum test length, the first administered item must assess exactly one attribute,
followed by items that sequentially introduce single, previously unmeasured attributes. If this
condition is not met, identifying all attribute profiles within K items becomes infeasible,
resulting in test lengths exceeding K. If the condition is met, following Theorem 2 and 3, LBPS
should help shrink the search space by half at each step during the early stage of the test when K

is large, thereby achieving substantial computational gains.

Note that the above theorems are built on the DINA model, but they can be extended to
other CDMs with ideal response functions. For example, for the DINO model with w;(a) = 1 —
[1%_,(1 — @, Ux), the theorems hold with w; replacing n;. For CDMs without ideal response
functions (e.g., general CDMs such as LCDM and G-DINA), LBPS can still be implemented as
it operates directly on likelihood values and relies on likelihood updating. Shrinkage of M (x;)
may occur when patterns within M (x;) yield different response probabilities, because likelihood
updating favors patterns whose predicted probabilities better align with the observed outcome.
Such behavior is more likely when |M (x;)| is large, as characterized under the DINA model.
That said, the specific theoretical properties established in this paper (e.g., the characterization of
shrinkage via M,; and M,,) do not directly apply, and further investigation of LBPS performance

under these models is needed.
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While the above theorems demonstrate how the set of potential likely attribute patterns
changes with each item response, practical implementation requires a concrete algorithm. The

following section outlines the step-by-step LBPS procedure.
3.3 Algorithm Description

The LBPS algorithm maintains two key sets: (1) M (x,): most likely patterns or patterns
that lead to the maximum likelihood, and (2) M*(x,): working pattern set used for item
selection. Note that the estimation of each examinee’s attribute profile uses the full pattern space
(all possible 2X attribute profiles); the working pattern set is only used for item selection. In
terms of the working set size, at any stage t, 2 < |[M*(x,)| < 2X. This ensures minimally two

distinct patterns for item selection decisions. The algorithm proceeds as follows:
Step 1: First Item Selection

a) Use full pattern space A

b) Select an item using traditional method (or randomization)

c) Obtain response x;

d) Calculate L(a|x,) forall a € A

e) Define initial M (x,) and M*(x1): M (x4) is the set of attribute patterns with the
largest likelihood after the first item has been answered. M*(x,) is the working

pattern set used for item selection defined as follows:

Ca) = {aly aly),  if MG =1

where 0‘%1) has maximum likelihood and a%z) has the second-highest likelihood at

stage 1 (t = 1).

f) Estimate the examinee’s attribute profile (using full pattern space A) based on

response x, using the maximum likelihood estimation (MLE).
Step 2: Subsequent Items (t > 1)
For each eligible item in the pool:

a) Pattern Space Update
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- Calculate L(a|x;) forall @ € A

- ldentify M(x;) = {a: L(x;) = L}, L is the current maximum likelihood

value among all profiles’ likelihoods
- Define working set:

M(x¢), if [M(x¢)| = 2

M*(x;) = X
(xe) {{“21)'“22)}' if IM(x,)| = 1

where a,, has maximum likelihood and af,, has the second-highest

likelihood at stage t.
b) Item Selection

- Couple an existing item selection method with M*(x,) instead of A to
select the next item. For example, when KL is used for item selection, the
summation in (5) is not over all 2¥ patterns in A, but only over the

patterns in M*(x,).
c) Response Processing
- Obtain response x;,, and iterate steps a) and b)

Repeat the whole process of step 2 until the desired number of items have been

administered or a prefixed termination criterion has been reached.

Logically, the key efficiency gain of LBPS comes from restricting the item selection
computations to within the working set, which shrinks quickly over time, while maintaining
estimation accuracy through full pattern space calculations. Practically, the extent to which
LBPS helps improve computational efficiency and maintains classification accuracy needs to be
evaluated in light of many factors, such as the number of attributes K, the test length, and the
underlying CDM model. Therefore, a simulation study was conducted manipulating these factors

to evaluate the practical impact of the LBPS.
4. Simulation Design

A simulation study was conducted to evaluate the measurement efficiency of the

proposed LBPS algorithm in selecting items for CD-CAT. Specifically, LBPS was coupled with
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the well-known KL, PWKL, SHE, and GDI methods and compared to the performance of these

methods in their original forms.

(1) CDM: DINA was used in the study to model item parameters and simulate examinees’
responses to items. To assess the generalizability of LBPS, we also conducted a
simulation using the DINO model under conditions described below. Due to space

limitations, results from the DINO-based simulation are presented in the Appendix.
(2) Item bank:
(&) Number of assessed attributes (K): K= 3,5, and 7.

(b) Item bank size (J) and item quality: For each K, two sizes of item banks were
generated: 300 and 500. For each of the two bank sizes, two levels of item quality
banks were generated: one item bank consisted of high-quality items, with
guessing and slipping parameters randomly drawn from U(0.05, 0.25); the other
item bank contained lower-quality items, with guessing and slipping parameters
randomly drawn from U(0.25, 0.50). In total, 12 item banks were generated for

the simulation.

(c) Q-matrix: Corresponding to the combinations of J and K, 6 different Q-matrices
were generated. The Q-matrix used in this study was generated item by item and
attribute by attribute. Each item has a 30% chance of measuring each attribute.
This mechanism was employed to ensure that every attribute is adequately and
equally represented in the item pool. Details of the Q-matrices are summarized in
Tables Al and A2 in the Appendix.

(3) Test length: T =5, 10, 15, 20, 25, and 30 items

(4) Examinees: the attribute profiles of 1,000 examinees were randomly generated from the
set of all possible attribute profiles for each condition. Examinees’ responses to each item

was generated from the DINA model.

(5) Item selection methods: a) traditional approaches: KL, PWKL, and SHE; b) GDI,
selected for its known computational advantage; and ¢) LBPS-enhanced variants: LBPS-
KL, LBPS-PWKL, LBPS-SHE, and LBPS-GDI. The uniform prior was used for each
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method when applicable to select items, that is, each attribute profile was assumed to

have equal prior probability, ZiK before the start of the test.

(6) Estimation: The initial attribute profile estimate, &(0), was randomly drawn from all
possible attribute profiles (2% profiles). Then the maximum likelihood estimation (MLE)

method was used to update @(t). The final estimates were @(T), where T is the test length.
(7) Evaluation criteria:

(a) profile estimation accuracy: average attribute-wise agreement rate (AAR),

pattern-wise agreement rate (PAR)

Iax=a;
AAR = ¥, 3, owsud, (13)
PAR = gL, FHzed, (14)

where I[-] is an indicator function, N is the number of examinees, &; and «;
denotes the estimated and true attribute profile estimate for examinee i, and @

and a;;, denotes the estimated and true attribute k for examinee i.

(b) computation efficiency: average computation time (seconds) per examinee on the

test

(c) test security: mean of test overlap rates (tor;;) between all possible pairs of
examinees (Chen et al., 2003; Choe et al., 2018):

-1
— _ (2 n—-1ymn __n m 2 1
for = (2) " BRI TPy tory = ;o I erf — (15)

Here, m denotes the size of the item pool, and T is the fixed test length. The index
tor;;» represents the proportion of common items between a pair of examinees,
calculated as the number of shared items divided by T. The observed exposure
rate for item j, denoted er;, is computed as the number of times item j was

administered divided by the total number of examinees n.

The simulation study was conducted using R, and run on a computer system with 48 Cores for

computing.
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4. Results

Below are the results for the 300-item banks using DINA, including profile estimation
accuracy (AAR and PAR), computational efficiency, and mean test-overlap rates. Due to page
limitations and their similarity to the 300-item bank results, the corresponding results for the
500-item banks using DINA are presented in the Appendix. As noted in the Methods section,

DINO-based results are also included in the Appendix.
4.1 Attribute-wise Agreement Rate (AAR)

Table 1 and Figure 2 present the AARs of various methods across item banks with
different characteristics, including the number of assessed attributes and item bank quality. In
Table 1, D denotes the difference in AAR (LBPS — Original), where positive values indicate that
LBPS increased AARs, and negative values indicate decreases. Overall, the AARs of methods
incorporating the proposed LBPS algorithm are largely comparable to those of their original
counterparts, indicating that LBPS does not compromise estimation accuracy at the attribute

level.

For PWKL, SHE, and GDlI, the differences between the LBPS-integrated and original
versions are minimal, with AAR differences typically below 0.02. In contrast, LBPS-KL
demonstrates modest improvements, particularly with high-quality item banks and larger
attribute spaces. Under these conditions, LBPS-KL consistently yields higher AARs at shorter
test lengths, with improvements reaching up to 0.14 (e.g., when K =7 and T = 10 with a high-
quality item bank, D = 0.14). For low-quality item banks, the differences between LBPS-KL and
KL remain small, ranging from 0.01 to 0.07. These findings suggest that integrating LBPS into
traditional item selection methods maintains attribute-level estimation accuracy across a wide

range of testing scenarios.
4.2 Pattern-wise Agreement Rate (PAR)

Table 2 and Figure 3 display the PARs for the same set of methods and testing
conditions. In Table 2, D denotes the difference in PAR (LBPS — Original), where positive
values indicate that LBPS increased PARs and negative values indicate decreases. The results
show that LBPS-based methods maintain classification accuracy at the pattern level comparable
to that of their original versions. For PWKL, SHE, and GDI, the PAR differences are
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consistently small—typically below 0.06—regardless of item bank quality, number of attributes,
or test length. In contrast, the KL method benefits more substantially from the inclusion of
LBPS. The improvements in PAR become more pronounced as the number of attributes
increases. Consistent with the AAR findings, the largest gains in PAR are observed when LBPS
is combined with KL under high-quality item banks. For example, when T = 15, K =7, and the
item bank is of high quality, LBPS-KL achieves a PAR approximately 0.6 higher than that of KL
(D = 0.59). However, under low-quality item banks, the performance gains of LBPS-KL are

more modest.

Overall, the AAR and PAR results suggest that incorporating LBPS into traditional item
selection methods generally maintains comparable classification accuracy, with a couple of
exceptions when K is large or test length is short. For PWKL, SHE, and GDI, the LBPS-
integrated versions closely match the performance of their original forms. For KL, LBPS offers
modest but consistent improvements, particularly in scenarios involving high item quality, a

larger number of attributes, and shorter test lengths.

Table 1. Attribute-Wise Agreement Rates (AAR) under DINA (J = 300)

KL PWKL SHE GDI

B K T Original LBPS D Original LBPS D Original LBPS D Original LBPS D
H 3 5 0.89 0.94 0.05 0.94 0.94 0.00 0.94 0.94 0.00 0.95 0.95 0.00
10 0.94 0.99 0.05 0.99 0.99 0.00 0.99 0.98 0.00 0.99 1.00 0.00

15 099 1.00 0.01 1.00 1.00 0.00 0.99 1.00 0.01 1.00 1.00 0.00

20 099 1.00 0.01 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

25 1.00 1.00 0.01 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

30 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

5 5 0.74 0.87 0.13 0.88 0.88 0.00 0.92 091 -0.01 0.91 091 0.00
10 0.84 0.97 0.2 0.96 0.97 0.00 0.96 095 -0.01 0.97 0.97 0.00

15 0.90 0.99 0.09 0.99 0.99 0.00 0.99 0.98 -0.01 0.99 0.99 0.00

20 0.94 1.00 0.05 1.00 1.00 0.00 0.99 0.99 0.00 1.00 1.00 0.00

25 097 1.00 0.03 1.00 1.00 0.00 1.00 0.99 0.00 1.00 1.00 0.00

30 0098 1.00 0.02 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
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7 5 0.69 0.77  0.08 0.78 0.77 -0.01 0.78 0.78 -0.01 0.78 0.78 -0.01
10 0.78 092 014 0.92 091 -0.01 0.93 091 -0.02 0.93 092 -0.01
15 0.83 096 0.13 0.97 096 -0.02 0.97 095 -0.02 0.98 097 -0.01
20 0.87 099 012 0.99 0.98 0.00 0.98 097 -0.01 0.99 099 -0.01
25 0.89 099 011 1.00 0.99 0.00 0.99 098 -0.01 0.99 0.99 0.00
30 0.91 1.00 0.09 1.00 1.00 0.00 0.99 0.99 0.00 1.00 1.00 0.00

L 3 5 0.73 0.75 0.01 0.75 0.74 -0.01 0.75 0.75 -0.01 0.75 0.75  0.00
10 0.80 0.84 0.04 0.82 0.83 0.00 0.82 0.82 0.00 0.83 0.84 0.01
15 0.85 0.89 0.04 0.89 0.87 -0.01 0.86 0.85 -0.01 0.89 0.88 -0.01
20 0.89 091 0.02 0.91 093 0.02 0.89 0.87 -0.02 0.91 092 0.00
25 0.90 095 0.05 0.94 094 0.00 0.90 091 0.01 0.94 094 0.00
30 0.92 0.95 0.03 0.95 095 0.00 0.91 091 -0.01 0.96 0.95 0.00

5 5 0.64 0.70  0.06 0.68 0.70  0.02 0.69 0.71  0.02 0.70 0.71  0.02
10 0.70 0.75 0.06 0.76 0.75 -0.01 0.75 0.74 -0.01 0.77 0.76  0.00
15 0.73 0.80 0.07 0.80 0.80 0.00 0.80 079 -0.01 0.81 0.80 0.00
20 0.78 0.83 0.05 0.83 0.83 0.00 0.82 081 -0.01 0.85 0.84 -0.01
25 0.82 0.88 0.06 0.87 0.86 -0.01 0.85 0.83 -0.02 0.88 0.86 -0.02
30 0.84 0.88 0.04 0.89 0.89 0.00 0.86 0.85 -0.02 0.90 0.89 -0.01

7 5 0.63 0.67 0.04 0.66 0.66  0.00 0.65 0.67 0.02 0.65 0.67 0.02
10 0.69 0.72  0.03 0.72 0.72  0.00 0.74 0.73  0.00 0.72 0.73 0.01
15 0.73 0.77 0.04 0.77 0.76 -0.01 0.76 0.75 -0.01 0.76 0.77  0.00
20 0.76 0.79 0.04 0.79 0.79  0.00 0.78 0.78  0.00 0.80 0.79  0.00
25 0.78 0.80 0.02 0.82 081 -0.01 0.80 0.78 -0.02 0.81 0.81 0.00
30 0.80 0.83 0.03 0.84 082 -0.01 0.81 0.80 -0.01 0.84 0.83 -0.02

Note. B = bank quality; K = number of attributes measured by the test; T = test length; KL = Kullback—Leibler

Index method; PWKL = posterior weighted Kullback—Leibler information method; SHE = Shannon entropy method,;

GDI = the generalized deterministic inputs, noisy ‘‘and’’ gate (G-DINA) discrimination index; original = original
methods (KL, PWKL, SHE, GDI); LBPS = methods adding LBPS (LBPS-KL, LBPS-PWKL, LBPS-SHE, LBPS-
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GDI); D = the AAR difference between LBPS-incorporated methods and the original methods (LBPS — Original);

positive D values indicate that LBPS increased AARs; negative D values indicate decreases.

Table 2. Pattern-Wise Agreement Rates (PAR) under DINA (J = 300)

KL PWKL SHE GDlI

B K T Original LBPS D Original LBPS D Original LBPS D Original LBPS D

H 3 5 0.71 085 014 0.85 0.84 -0.01 0.85 0.82 -0.03 0.86 0.87 0.01

10 0.83 098 0.15 0.99 098 -0.01 0.96 096 -0.01 0.99 0.99 0.00

15 0.96 1.00 0.04 1.00 1.00 0.00 0.98 099 0.01 1.00 1.00 0.00

20 0.98 1.00 0.02 1.00 1.00 0.00 0.99 0.99 0.00 1.00 1.00 0.00

25 0.99 1.00 0.01 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

30 0.99 1.00 0.01 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

5 5 0.18 055 037 0.54 0.57 0.04 0.69 0.68 -0.01 0.70 069 -0.01

10 0.40 0.86 0.46 0.87 0.85 -0.02 0.83 0.82 -0.02 0.89 0.88 -0.01

15 0.60 097 037 0.96 097 0.02 0.94 091 -0.03 0.97 097 0.01

20 0.74 099 025 0.99 099 0.01 0.96 096 0.01 1.00 0.99 0.00

25 0.84 1.00 0.16 1.00 1.00 0.00 0.98 097 -0.01 1.00 1.00 0.00

30 0.89 1.00 011 1.00 1.00 0.00 0.98 0.98 0.00 1.00 1.00 0.00

7 5 0.06 0.18 011 0.15 0.17 0.02 0.14 0.17 0.02 0.16 0.15 -0.01

10 0.14 0.63 049 0.61 0.62 0.00 0.62 061 -0.01 0.66 0.66 0.00

15 0.23 082 059 0.85 0.79 -0.06 0.81 0.75 -0.06 0.88 0.85 -0.03

20 0.31 092 0.62 0.94 092 -0.02 0.89 0.85 -0.04 0.95 092 -0.03

25 0.39 097 058 0.97 096 -0.01 0.94 0.90 -0.03 0.97 0.97 0.00

30 0.47 099 052 0.99 098 -0.01 0.96 095 -0.01 0.99 0.99 0.00

L 3 5 0.41 045 0.04 0.44 044 0.00 0.45 046  0.02 0.44 047 0.03

10 0.54 0.63 0.09 0.58 059 0.01 0.58 059 0.01 0.60 0.61 0.01

15 0.64 0.74 0.10 0.72 0.69 -0.03 0.67 0.64 -0.02 0.71 0.70  0.00

20 0.71 0.76  0.06 0.78 0.82 0.04 0.71 0.68 -0.03 0.78 0.78 0.00
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Note. B = bank quality; K = number of attributes measured by the test; T = test length; KL = Kullback—Leibler

Index method; PWKL = posterior weighted Kullback—Leibler information method; SHE = Shannon entropy method,;

GDI = the generalized deterministic inputs, noisy ‘‘and’’ gate (G-DINA) discrimination index; original = original
methods (KL, PWKL, SHE, GDI); LBPS = methods adding LBPS (LBPS-KL, LBPS-PWKL, LBPS-SHE, LBPS-
GDI); D = the PAR difference between LBPS-incorporated methods and the original methods (LBPS — Original);

positive D values indicate that LBPS increased PARSs; negative D values indicate decreases.
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Figure 3. PARs under DINA when J = 300 items
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4.3 Computation Efficiency

Table 3 and Figure 4 present the average computation time (in seconds) per person for
the compared methods under varying conditions. The results show that while integrating LBPS
into GDI yields modest to moderate efficiency gains, its integration into KL, PWKL, and SHE

consistently leads to substantially lower computation times.

For KL, PWKL, and SHE, the efficiency improvements from LBPS integration are
consistent, ranging from 45% in the simplest scenario (K =3 and T = 5) to nearly 90% in the
most demanding case (K =7, T = 30). These gains become more pronounced as Kand T
increase. Moreover, LBPS-integrated versions achieves computation times comparable to or
lower than GDI, a method known for its relatively higher efficiency than PWKL (Kaplan et al.,
2015).

LBPS was also incorporated into GDI to further improve computational efficiency. While
gains are modest for small K, they become more substantial as K and T increase. For instance,
integrating LBPS into GDI reduced computation time by 37% for T = 30 and K = 7. This
demonstrates that LBPS is a highly flexible algorithm that can be integrated with item selection
methods beyond information-theoretic approaches like SHE, KL or PWKL.

In sum, these findings show that LBPS not only maintains measurement accuracy but
also provides substantial computational efficiency gains, especially for assessments involving

many attributes or requiring rapid item selection in longer tests.
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Table 3. Average Computation Time Per Person under DINA (J = 300)

KL PWKL SHE GDI

B K T Original LBPS PR Original LBPS PR Original LBPS PR Original LBPS PR
H 3 5 0.04 0.02 47%  0.04 0.02 45%  0.04 0.02  54% 0.03 0.03 1%
10 0.08 0.04 56%  0.09 0.04 56%  0.08 0.03  63% 0.06 0.05 3%

15 0.12 0.05 59%  0.13 0.05 59%  0.11 0.04 67% 0.09 0.08 5%

20 0.16 0.06 61%  0.18 0.07 61%  0.15 0.05  68% 0.11 011 4%

25 020 0.08 62% 0.22 0.08 62%  0.19 0.06  69% 0.14 014 5%

30 024 0.09 62% 0.27 0.10 63%  0.23 0.07  69% 0.17 017 2%

5 5 0.18 0.09 53% 0.19 0.09 51% 0.18 0.07  60% 0.04 0.04 5%
10 0.36 011 70%  0.38 011 72%  0.36 0.09  76% 0.08 0.07 8%

15 055 012 77% 057 013 78%  0.55 010 82% 0.12 011 9%

20 0.72 014 80%  0.76 015 80%  0.73 011 84% 0.16 014 11%

25 0.89 016 82%  0.95 0.17 82%  0.93 0.13  86% 0.21 0.18 13%

30 107 018 83%  1.15 019 84% 1.11 015 87% 0.26 0.22 15%

7 5 1.18 054 55%  0.85 041 51%  0.87 034 61% 0.06 0.05 12%
10 2.08 062 70% 171 045 74%  1.73 037  79% 0.13 0.10 21%

15 3.10 057 81% 258 049 81% 262 039  85% 0.21 0.15 26%

20 4.09 062 85%  3.40 053 85%  3.49 043  88% 0.31 0.21  30%

25 5.06 074 85%  4.27 056 87%  4.37 0.46  89% 0.42 0.28 34%

30 581 082 86% 511 0.60 88%  5.26 050  90% 0.54 034 37%

L 3 5 0.04 0.02 46%  0.04 0.02 45%  0.04 0.02  53% 0.03 0.03 0%
10 0.08 0.04 56%  0.08 0.04 56%  0.08 0.03  63% 0.06 0.06 4%

15 012 0.05 59%  0.12 0.05 60% 0.12 0.04  68% 0.09 0.08 2%

20 0.16 0.06 60%  0.16 0.06 61%  0.15 0.05  68% 0.11 011 3%

25 020 0.08 62% 0.21 0.08 61%  0.19 0.06  69% 0.14 014 4%

30 024 009 62% 025 0.10 60%  0.23 0.07  70% 0.17 016 3%
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89%

0.18

0.37

0.54

0.72

0.92

1.12

0.84

1.66

2.52

3.36

4.22

5.07

0.08

0.09

0.10

0.11

0.13

0.15

0.33

0.35

0.38

0.42

0.45

0.50

57%

T71%

81%

84%
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87%
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79%
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88%
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0.04

0.08

0.12

0.17

0.22

0.26

0.06

0.13

0.21

0.31

0.44

0.55

0.04

0.07

0.11

0.15

0.18

0.22

0.05

0.10

0.16

0.22

0.28

0.35

5%

8%

9%

12%

15%

15%

8%

21%

27%

31%

35%

37%

Note. B = bank quality; K = number of attributes measured by the test; T = test length; KL = Kullback-Leibler

Index method; PWKL = posterior weighted Kullback—Leibler information method; SHE = Shannon entropy method;

GDI = the generalized deterministic inputs, noisy ‘‘and’’ gate (G-DINA) discrimination index; original = original
methods (KL, PWKL, SHE, GDI); LBPS = methods adding LBPS (LBPS-KL, LBPS-PWKL, LBPS-SHE, LBPS-

GDI); PR = the percentage of reduction in computation time after adding LBPS.
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Figure 4. Average computation time per person under DINA when J = 300 items
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4.4 Mean Test-Overlap Rates

Table 4 and Figure 5 summarize the test-overlap rates for LBPS-integrated and original
methods. In Table 4, D represents the difference in overlap rates (Original — LBPS), where
positive values indicate that LBPS reduced overlap and negative values indicate increases. Under
high-quality item banks, LBPS increased overlap rates when attribute dimensionality was low (K
= 3), particularly for GDI (e.g., D =—-0.24 at T = 30) and to a lesser extent for KL and PWKL at
longer test lengths (e.g., D = —0.13 to —0.14). SHE remained largely unaffected. At K =5,
differences were mixed but small (mostly within £0.05). At K = 7, LBPS reduced overlap at
shorter test lengths (e.g., D = 0.15-0.17 at T = 5 for KL, PWKL, and SHE), with diminishing
effects as test length increased. Under low-quality item banks, LBPS generally reduced overlap
for K =5 and 7 across all methods. The largest differences appeared for KL (e.g.,D=0.18 at T =
15 and 20 for K = 5), with modest and consistent reductions for PWKL, SHE, and GDI. AtK =
3, differences were smaller and mixed, but slightly favored LBPS (e.g., D =0.09 at T =5 for
KL).

Overall, LBPS affected test-overlap rates differently across conditions: Overlap increased
for high-quality banks with small K (particularly for GDI), but decreased under more challenging
conditions—low-quality banks or large K. Even though the benefit of LBPS in reducing test
overlap rate does not universally apply to all conditions, it is clearly effective when LBPS is
needed the most: i.e., when K is large. Moreover, given the goal of cognitive diagnosis
assessments is to support formative assessment and immediate feedback (Leighton & Gierl,
2007; Rupp et al., 2010), CD-CAT is typically considered in a low-stakes context, with
classification accuracy and computational efficiency being the primary concerns rather than

exposure control.
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Table 4. Mean Test Overlap Rate Differences under DINA (J = 300)

KL PWKL SHE GDI

B K T Original LBPS D Original LBPS D Original LBPS D Original LBPS D
H 3 5 0.55 056 -0.01 0.62 0.56  0.06 0.57 059 -0.02 0.7 0.70 -0.03
10 049 056 -0.07 0.53 056 -0.03 044 046 -0.02 0.60 0.75 -0.15

15 048 061 -013 050 061 -011 047 049 -0.02 057 0.76  -0.19

20 0.50 0.62 -0.12 0.49 062 -013 049 051 -0.02 055 0.77 -0.22

25  0.50 0.63 -0.13 049 0.63 -0.14 052 053 -0.01 055 0.77 -0.22

30 0.52 0.64 -0.12 0.50 0.64 -014 053 054 -0.01 054 0.78 -0.24

5 5 0.56 0.46  0.10 0.59 046 0.13 0.61 059 0.02 0.60 059 0.01
10 0.52 049 0.03 0.51 048 0.03 0.39 0.39 0.00 0.53 0.59 -0.06

15 051 050 0.01 0.48 050 -0.02 0.36 038 -0.02 050 0.60 -0.10

20 051 052 -0.01 048 052 -0.04 040 041 -0.01 049 0.61 -0.12

25  0.50 053 -0.03 047 053 -0.06 045 047 -0.02 048 0.63 -0.15

30 0.50 054 -0.04 048 055 -0.07 049 051 -0.02 048 0.63 -0.15

7 5 0.47 032 015 0.50 033 0.17 0.68 053 0.15 0.53 0.53  0.00
10 046 0.38 0.08 0.48 038 0.11 0.45 0.37 0.08 0.45 044 0.01

15 044 042 0.02 0.45 042 0.03 0.37 032 0.05 0.45 046 -0.01

20 043 044 -001 044 044 0.01 0.36 034 0.01 0.44 048 -0.04

25 044 045 -0.02 0.44 045 -0.01 0.39 0.39 0.00 0.44 0.50 -0.06

30 044 046 -0.02 0.44 046 -0.02 044 045 -0.01 044 051 -0.08

L 3 5 0.68 059 0.09 0.59 0.59 0.00 0.70 055 0.15 0.68 0.66  0.02
10 0.66 0.63 0.03 0.61 0.63 -0.02 046 0.40 0.06 0.65 0.63 0.02

15  0.66 0.63 0.03 0.60 0.63 -0.03 0.39 0.34 0.05 0.62 0.63 -0.01

20 0.68 0.65 0.03 0.59 064 -0.05 0.35 0.32 0.03 0.61 0.65 -0.04

25 0.70 0.66 0.04 0.60 065 -0.05 0.33 0.30 0.03 0.60 0.66 -0.06

30 072 0.67 0.05 0.61 066 -0.05 0.33 0.30 0.03 0.61 0.66 -0.05
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Note. B = bank quality; K = number of attributes measured by the test; T = test length; KL = Kullback-Leibler

Index method; PWKL = posterior weighted Kullback—Leibler information method; SHE = Shannon entropy method;

GDI = the generalized deterministic inputs, noisy ‘‘and’’ gate (G-DINA) discrimination index; original = original
methods (KL, PWKL, SHE, GDI); LBPS = methods adding LBPS (LBPS-KL, LBPS-PWKL, LBPS-SHE, LBPS-

GDI); D = Original — LBPS; positive D values indicate LBPS reduced overlap rates; negative D values indicate

increases.
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Figure 5. Mean test overlap rate results under DINA when J = 300 items

Additional simulations with DINA (500-item banks) and DINO (both 300-item and 500-
item banks) (see Appendix) also found substantial computational gains in conditions with large
K and/or T, without compromising classification accuracy or test security, lending further
support of the general applicability of LBPS. That said, there are some nuanced differences. For

example, under the DINA model, there is a substantial gain in classification accuracy when
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LBPS is coupled with KL, compared to the original KL. The improvement in PAR is not nearly
substantial under the DINO model.

In summary, results demonstrate that LBPS, when combined with a variety of item
selection methods, successfully accelerates CD-CAT in the most computationally demanding
scenarios (large K and T), without compromising classification accuracy or test overlap rates,

making it particularly well-suited for complex diagnostic assessments.
5. Discussion

This study introduced the Likelihood-Based Profile Shrinkage (LBPS) algorithm to
improve computational efficiency in CD-CAT. LBPS works by focusing item selection on the
most probable attribute profiles at each test stage. As more items are administered, the posterior
distribution over profiles becomes concentrated, allowing LBPS to exclude highly improbable
profiles from consideration. While traditional methods evaluate every possible profile, LBPS
uses a reduced working set, leading to faster computations with minimal trade-offs in accuracy.
Simulations confirmed that LBPS maintains comparable AAR and PAR values while
substantially reducing computational time, particularly as the number of attributes or test length
increases. LBPS had mixed effects on test-overlap rates, but generally maintained test security

when K is large.

Note that although LBPS begins after the first item response, it does not constrain
attribute estimation. The full set of profiles is always used to compute likelihoods and update
mastery estimates. LBPS simply filters out low-likelihood profiles during item selection, without
narrowing the estimation space. This preserves diagnostic accuracy, even in early stages when

estimation is less stable.

Moreover, the algorithm is highly flexible and can be effectively integrated with existing
CD-CAT item selection methods (e.g., KL, PWKL, SHE, GDI). This extends prior work on CD-
CAT efficiency (Kaplan et al., 2015) by offering a generalizable framework applicable across
selection strategies. However, our simulations reveal differential benefits across methods:
computation speed gains are more pronounced for SHE, KL, and PWKL than for GDI. This is
mainly because GDI already includes procedures that reduce computational burden by operating

on a reduced set of attribute patterns, thereby diminishing the marginal benefit of LBPS.
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Although developed under the DINA model, LBPS is model-agnostic. Because it ranks
attribute patterns based on likelihoods, it can be extended to any CDM by modifying the
response probability function. While different CDMs create different partition structures—for
example, DINA's conjunctive rule (requiring all attributes) versus DINQO's disjunctive rule

(requiring at least one attribute)—the core logic of LBPS remains applicable.

Adapting LBPS to other CDMs involves substituting the response model in the likelihood
calculation and pairing the reduced pattern set with an item selection index. Preliminary results
under DINO demonstrate substantial computation time reductions with negligible loss in
accuracy (see Appendix), comparable to those achieved under DINA. Thus, LBPS provides a

robust and scalable strategy for accelerating CD-CAT across different CDMs.

On the other hand, this study has limitations. While we demonstrated LBPS under DINA
and DINO, future work should test its performance under other models and item types. Our
simulations assumed uniform priors and did not explore correlated attributes or alternative Q-
matrix structures. In educational contexts, hierarchical attributes—where one skill is a
prerequisite for another—are common. Incorporating such hierarchies may further improve
efficiency. Future work should also examine higher-dimensional scenarios (e.g., K > 7) to assess

scalability.

For operational implementation, research should examine three practical aspects: (1)
exposure control mechanisms to prevent item overuse, (2) attribute balancing strategies when
using reduced profile sets, and (3) variable-length termination criteria for adaptive test length.
For example, test developers can implement LBPS as a first-stage filter to identify promising
items, then apply exposure and content control constraints as subsequent selection criteria
(Cheng, 2010; Li et al., 2021; Lin & Chang, 2019; Wang et al., 2011). Validation using real item

banks will further assess robustness.

Moreover, because the shrinkage of the maximum likelihood pattern set (Case 1 of
Theorem 2) occurs predominantly in the early stages of an assessment, a hybrid approach may be
advantageous: apply LBPS during the initial phase to reduce |M(x;)| from exponentially large to
a manageable size, then maintain this reduced pattern set for all subsequent item selections. Once
|M (x;)| becomes sufficiently small (e.g., 20 patterns), the computational overhead of updating

likelihoods and maintaining M (x,) after each response may outweigh the benefits of further
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reduction. By switching to a fixed pattern set at this point, we eliminate update costs while
preserving the efficiency gained from evaluating items against only a small subset of patterns
rather than the full 2¥ space. The optimal switching point—when to transition from dynamic
LBPS to a static pattern set—likely depends on multiple factors including the number of
attributes K, the computational cost of likelihood calculations, and the specific item selection

method employed, warranting future investigation.

Computational efficiency in CD-CAT can also be improved through programming
optimizations. For instance, PWKL and SHE require updating likelihood functions and posterior
probabilities after each item response. Caching likelihood values from previous steps, rather than
recalculating them entirely, can reduce redundant computations. Notably, LBPS and
programming optimizations operate at different levels: programming optimizations reduce
redundant calculations within a fixed computational framework, whereas LBPS reduces the
search space itself from 2X patterns to a smaller working set. These approaches are
complementary, and practitioners can combine LBPS with strategies such as likelihood caching

to achieve additional efficiency gains.

In sum, LBPS provides a computationally efficient enhancement to CD-CAT that
maintains diagnostic precision. Its flexibility, scalability, and compatibility with existing
methods make it well suited for modern adaptive assessments. We recommend using LBPS in
CD-CAT when K is large, as this is when computational efficiency becomes a primary concern

and its benefits are most pronounced.
Code Availability

The example materials and code implementing the LBPS algorithm under the DINA

model can be found at https://osf.io/pnavk/files.
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