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Abstract 

Various item selection algorithms have been proposed for Cognitive Diagnostic Computerized 

Adaptive Testing (CD-CAT), with the goal of efficiently diagnosing examinees' strengths and 

weaknesses. However, these algorithms often come with significant computational costs, which 

can hinder their practical implementation. A Likelihood-Based Profile Shrinkage (LBPS) 

Algorithm is proposed to simplify the item selection process and reduce the computational costs 

in CD-CAT. Our simulation results indicate that incorporating LBPS into existing item selection 

methods yields substantial computational efficiency gains, with greater reductions in 

computation time as the number of attributes and test length increase. Additionally, LBPS 

maintains estimation accuracy at both the attribute and pattern levels. These findings suggest that 

LBPS is a scalable and effective solution for the item selection of CD-CAT in complex 

scenarios.  
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1. Introduction 

There has been an increasing emphasis in educational assessment on formative evaluation 

and diagnostic feedback (Black & Wiliam, 2009; Morris et al., 2021). Cognitive diagnostic 

assessment (CDA) addresses this need by providing detailed information about examinees' 

mastery of specific skills or attributes (Leighton & Gierl, 2007; Rupp et al., 2010). To improve 

the efficiency of CDA administration, cognitive diagnostic computerized adaptive testing (CD-

CAT) has emerged as a powerful approach that combines the benefits of cognitive diagnosis with 

the efficiency of adaptive testing (Cheng, 2009). 

A critical component in CD-CAT is the item selection algorithm, which determines the 

items and the sequence in which they are administered to each examinee. Various item selection 

methods have been proposed, most of which fundamentally connected through information 

theory principles as demonstrated by Cheng (2009) and Wang et al. (2020). These methods 

include the original Kullback-Leibler (KL) index (Xu et al., 2003), likelihood-weighted KL and 

posterior-weighted KL (PWKL) index (Cheng, 2009), modified PWKL (MPWKL) index 

(Kaplan et al., 2015), the Shannon entropy (SHE) procedure (Tatsuoka, 2002) and mutual 

information methods (Wang, 2013). While these approaches may appear distinct, they all derive 

from related information-theoretic concepts, with KL divergence, Shannon entropy, and mutual 

information sharing deep mathematical connections in quantifying information gain and 

uncertainty reduction (Cover & Thomas, 1991). More recently, the generalized deterministic 

inputs, noisy ‘‘and’’ gate (G-DINA) model discrimination index (GDI) was introduced as an 

efficient alternative (Kaplan et al., 2015). GDI quantifies the weighted variance in item success 

probabilities given a specific attribute distribution. 

While these methods have demonstrated effectiveness in attribute-level classification 

accuracy, they face a significant computational challenge: as the number of attributes (K) 

increases, the computational burden grows exponentially. This occurs because most existing 

methods require evaluating all possible attribute patterns (2𝐾) for each item in the bank before 

selecting the most suitable one as the next item to administer. For instance, with K = 10 

attributes, algorithms must evaluate 1,024 possible patterns for each candidate item. This 

computational intensity can make real-time implementation challenging, particularly in settings 

requiring rapid item selection decisions. 
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The only existing method that attempts to reduce the computational burden is the GDI 

method, which partially addresses this issue by working with reduced attribute patterns. 

Although GDI is more computationally efficient than the PWKL method (Kaplan et al., 2015), 

which is known to be the most computationally intensive, its efficiency relative to KL and 

SHE—two other widely discussed methods in CD-CAT—remains unclear. This study aims to 

address this gap by evaluating GDI’s computational efficiency relative to KL and SHE. 

Moreover, the primary objective is to propose a novel and flexible approach that not only 

substantially reduces computational demands but also maintains the theoretical foundations and 

measurement precision of existing methods. 

This paper introduces the Likelihood-Based Profile Shrinkage (LBPS) algorithm as a 

solution to this challenge. The key insight of LBPS is that as testing proceeds, the set of plausible 

attribute patterns for an examinee rapidly shrinks based on their response patterns. By focusing  

on only the most likely attribute patterns, LBPS achieves substantial efficiency gains while 

preserving measurement accuracy. Importantly, LBPS can be integrated with any existing item 

selection method, making it a flexible enhancement to current CD-CAT implementations. In 

addition, LBPS can be implemented without requiring changes to existing item banks or 

cognitive diagnostic models. Through simulation studies, we demonstrate that LBPS achieves 

comparable attribute classification accuracy to traditional methods while greatly reducing 

computation time, particularly for long tests measuring larger numbers of attributes. The 

remainder of this paper is organized as follows. Section 2 reviews the theoretical framework of 

cognitive diagnostic models and existing item selection methods. Section 3 introduces the LBPS 

algorithm and establishes its theoretical properties. Section 4 presents simulation studies 

comparing LBPS with existing methods across various conditions. Section 5 discusses practical 

implications and future research directions. 

2. Background 

2.1 CDM Framework 

2.1.1 Basic Setup 

Cognitive diagnostic models (CDMs) aim to provide detailed information about 

examinees' mastery of specific skills or attributes underlying test performance. In CDA, the goal 

is to measure examinees' mastery of K discrete attributes or skills. Each examinee's mastery 
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profile is represented by an attribute pattern 𝜶 = (𝛼1, . . . , 𝛼𝐾) where 𝛼𝑘 = 1 indicates mastery of 

attribute k and 𝛼𝑘 = 0 indicates non-mastery for k = 1, 2, …, K attributes. Note that the terms 

‘pattern’ and ‘profile’ are used interchangeably in the paper to refer to α. For K attributes, there 

are 2𝐾 possible attribute patterns, representing all possible combinations of mastery and non-

mastery across the measured attributes (de la Torre, 2011). The relationship between items and 

attributes is specified through a J × K Q-matrix (Tatsuoka, 1995), where entry 𝑞𝑗𝑘 = 1 if item j 

requires attribute k and 𝑞𝑗𝑘 = 0 otherwise. The Q-matrix represents the cognitive specifications 

of the test by mapping each item to its required attributes.  

2.1.2 Types of CDMs 

CDMs can be categorized based on how they model the relationship between attributes 

and item responses (Ravand & Baghaei, 2020). In conjunctive models, examinees must master 

all required attributes to have a high probability of correctly answering an item. The DINA 

model (Junker & Sijtsma, 2001) and the Noisy Inputs, Deterministic "And" Gate (NIDA) model 

(Maris, 1999) are prominent examples of conjunctive models. These models are particularly 

appropriate when skills build upon each other in a non-compensatory way. Disjunctive models 

assume that mastery of any one of the required attributes is sufficient for a high probability of 

success. The Deterministic Input, Noisy "Or" Gate (DINO) model (Templin & Henson, 2006) 

exemplifies this approach. Such models are suitable when multiple solution strategies can lead to 

correct answers and mastery of one attribute can compensate for non-mastery of others. 

Additive models, such as the Additive CDM (ACDM; de la Torre, 2011) and the Linear 

Logistic Model (LLM; Maris, 1999), take a different approach where each mastered attribute 

contributes independently to the probability of a correct response. These models are appropriate 

when attributes have cumulative but independent effects on performance. 

More recently, general diagnostic models have been developed that can accommodate 

multiple types of attribute relationships within the same assessment. The Generalized DINA 

model (G-DINA; de la Torre, 2011), the Log-linear CDM (LCDM; Henson et al., 2009), and the 

General Diagnostic Model (GDM; von Davier, 2005) allow different items to exhibit different 

attribute relationships. These general models provide greater flexibility but typically require 

larger sample sizes for stable parameter estimation. 
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2.1.3 The DINA Model 

While the methods developed in this paper apply to any CDM, we use the DINA model 

for illustration due to its parsimony and wide use in diagnostic testing applications (de la Torre, 

2009; Junker & Sijtsma, 2001). Under the DINA model, an examinee must master all required 

attributes to have a high probability of answering an item correctly, making it a conjunctive 

model. For an examinee i with attribute pattern α responding to item j, the ideal response is: 

 

𝜂𝑖𝑗(𝜶) = ∏ 𝛼𝑖𝑘
𝑞𝑗𝑘

𝐾

𝑘=1

 , (1) 

where 𝜂𝑖𝑗(𝜶) = 1 indicates mastery of all required attributes and 𝜂𝑖𝑗(𝜶) = 0 indicates lack of at 

least one required attribute (de la Torre, 2009). 

The probability of a correct response of examinee i on item j is given by: 

 𝑃(𝑋𝑖𝑗 = 1|𝜶) =  (1 −  𝑠𝑗)
𝜂𝑖𝑗(𝜶)

𝑔𝑗
1−𝜂𝑖𝑗(𝜶), (2) 

where 𝑠𝑗 is the slipping parameter (probability of incorrect response despite mastery) and 𝑔𝑗 is 

the guessing parameter (probability of correct response despite non-mastery). These item 

parameters account for the probabilistic nature of the response process, where examinees who 

have mastered all required attributes may still make mistakes (slips) and those who lack required 

attributes may still answer correctly through guessing (de la Torre & Douglas, 2004). The DINA 

model's simple form makes it particularly useful for understanding the fundamental principles of 

cognitive diagnosis while still capturing essential features of the response process. Its parsimony 

in parameter estimation and clear interpretation of results has made it a popular choice in 

diagnostic testing applications. 

2.2 Item Selection Methods in CD-CAT 

Item selection methods in CD-CAT can be broadly categorized into parametric and 

nonparametric approaches (Chang et al., 2019). While nonparametric methods have emerged 

recently to address certain limitations of parametric approaches (Chiu & Chang, 2021), 

parametric methods remain fundamental to CD-CAT implementation. These parametric methods 

can be further classified as single-purpose or dual-purpose (Wang et al., 2012). Single-purpose 

methods focus solely on optimizing the measurement of attribute profiles, while dual-purpose 
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methods simultaneously measure both attribute profiles and general ability (Dai et al., 2016; 

Kang et al., 2017; Wang et al., 2014). This paper proposes a new algorithm within the 

framework of parametric single-purpose item selection methods. Therefore, we focus our review 

on existing methods in this category, which form the foundation for CD-CAT item selection and 

remain the most widely used in practice. 

2.2.1 Basic Framework 

In CD-CAT, parametric single-purpose item selection methods aim to optimize the 

measurement of examinees' attribute mastery profiles. These methods utilize item parameters and 

probability models within a cognitive diagnostic framework to select items that maximize 

information about attribute patterns. After J items have been administered to an examinee, let 

𝒙𝑱 = (𝑥1, … , 𝑥𝐽) denote the vector of observed responses, where xj ∈ {0,1}. Following Bayes' 

theorem, the posterior probability of attribute pattern is: 

 𝜋(𝜶|𝒙𝑱) ∝ 𝜋0(𝜶)𝐿(𝒙𝑱|𝜶) , (3) 

where 𝜋0(𝜶) is the prior probability and 𝐿(𝒙𝑱|𝜶) = ∏ 𝑃(𝑋𝑗 = 𝑥𝑗|𝜶)
𝐽
𝑗=1  is the likelihood 

function under the specified CDM. Define the item h as a candidate item in the pool of available 

items, from which the (J+1)-th item is to be selected based on a specified item selection method.  

2.2.2 Information-Theoretic Methods 

Kullback-Leibler Based Approaches 

The Kullback-Leibler (KL) information (Cover & Thomas, 1991; Kullback & Leibler, 

1951) provides a foundation for measuring the distance between probability distributions under 

different attribute patterns. For item j and two attribute patterns 𝜶, 𝜶′ ∈ {0,1}𝐾, the KL 

information is defined as: 

 

𝐷𝑗(𝜶||𝜶′) = ∑ 𝑃(𝑋𝑗 = 𝑥|𝜶) 𝑙𝑜𝑔 [
𝑃(𝑋𝑗 = 𝑥|𝜶)

𝑃(𝑋𝑗 = 𝑥|𝜶′)
] ,

1

𝑥=0

 
(4) 

where 𝑃(𝑋𝑗 = 𝑥|𝜶) denotes the probability of response x given attribute pattern 𝜶 under the 

specified CDM. Building on this framework, the KL index was proposed by Xu et al. (2003) to 

select the next item maximizing: 
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𝐾𝐿ℎ(𝜶̂) = ∑ 𝐷ℎ(𝜶̂||𝜶𝑐)

2𝐾

𝑐=1

 , (5) 

where h represents the candidate item in the pool of available items, 𝜶̂ is the current estimate of 

the examinee's attribute pattern, and c indexes attribute patterns (c = 1, 2, …, 2𝐾). This index 

measures the total divergence between the response distributions under the estimated pattern and 

all other possible patterns. Cheng (2009) enhanced this approach by incorporating posterior 

probabilities through the posterior-weighted KL (PWKL) index: 

 

𝑃𝑊𝐾𝐿ℎ(𝜶̂) = ∑ 𝐷ℎ(𝜶̂||𝜶𝑐)𝜋(𝜶𝑐|𝒙𝐽)

2𝐾

𝑐=1

 , (6) 

where 𝜋(𝜶𝑐|𝒙𝐽) is the posterior probability after J items have been answered, and 𝒙𝐽 is the 

response vector. 

 Other KL information-based item selection methods include the modified PWKL 

(MPWKL) method (Kaplan et al., 2015), and posterior-weighted CDM discrimination index 

(PWCDI) method (Zheng & Chang, 2016). This study employs only PWKL for comparison, as 

MPWKL, while achieving comparable performance to GDI, incurs substantial computational 

costs (Kaplan et al., 2015). Additionally, PWCDI demonstrates inferior performance to PWKL 

with small calibration samples (Chang et al., 2019), making PWKL the most suitable KL-based 

comparator for this investigation. 

Shannon Entropy Based Approaches 

Shannon entropy (Cover & Thomas, 1991; Shannon, 1948) provides an alternative 

framework for quantifying uncertainty in the posterior distribution of attribute patterns. In the 

context of CD-CAT, after J items have been selected, the entropy of a distribution 𝜋 is defined 

as: 

 

𝐻(𝜋) = − ∑ 𝜋(𝜶𝑐|𝒙𝐽) 𝑙𝑜𝑔 [𝜋(𝜶𝑐|𝒙𝐽)].

2𝐾

𝑐=1

 (7) 
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Lower entropy values indicate greater certainty about the true attribute pattern. Building on 

information theory principles (Cover & Thomas, 1991), Tatsuoka (2002) proposed selecting 

items by minimizing the expected posterior entropy: 

 

𝑆𝐻𝐸ℎ = ∑ 𝐻(𝜋|𝑋ℎ = 𝑥, 𝒙𝐽)𝑃(𝑋ℎ = 𝑥|𝒙𝐽),

1

𝑥=0

 (8) 

where 𝜋|𝑋ℎ = 𝑥, 𝒙𝑱 denotes the posterior distribution after observing response x to the candidate 

item h in the pool of available items, 𝑃(𝑋ℎ = 𝑥|𝒙𝑱) denotes the predicted probability of 

observing response x conditional on the response vector 𝒙𝐽, and: 

 

𝑃(𝑋ℎ = 𝑥|𝒙𝐽) = ∑ 𝑃(𝑋ℎ = 𝑥|𝜶𝑐)𝜋(𝜶𝑐|𝒙𝐽)

2𝐾

𝑐=1

. (9) 

Recent methodological advances have extended this framework through the expected 

mutual information index (Wang, 2013) and the Jensen–Shannon divergence (JSD) index 

(Minchen & de la Torre, 2016; Yigit et al., 2019). Theoretical investigations have established 

that JSD is mathematically equivalent to mutual information in quantifying the information gain 

about an examinee's attribute pattern (Yigit et al., 2019). Furthermore, a linear relationship was 

found between SHE and JSD (Wang et al., 2020), indicating that these methods yield equivalent 

item selection decisions in CD-CAT applications. Given these theoretical equivalences, the 

present study employs the SHE method (Tatsuoka, 2002) as the representative entropy-based 

approach in our comparative analyses. 

2.2.3 GDI Approach 

Building on the generalized DINA framework (de la Torre, 2011), Kaplan et al. (2015) 

introduced the G-DINA discrimination index (GDI). This index offers computational advantages 

by working with reduced attribute patterns, which are made up by 𝐾ℎ
∗ attributes required by item 

h. For example, if a q-vector is defined as (1, 0, 1, 0, 1), 𝐾ℎ
∗ = 3 attributes since this item only 

requires the first, third, and fifth attributes. Consequently, there are 8 reduced attribute patterns 

based on the three required attributes. The GDI for item h is defined as 
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𝐺𝐷𝐼ℎ = ∑ 𝜋(𝜶𝑐ℎ
∗ )[𝑃(𝑋ℎ = 1| 𝜶𝑐ℎ

∗ ) −  𝑃̅ℎ]2

2𝐾ℎ
∗

𝑐=1

 , (10) 

where 𝜶𝑐ℎ
∗  represents the c-th reduced attribute pattern for item h (𝑐 = 1, 2, … , 2𝐾ℎ

∗
), 𝜋(𝜶𝑐ℎ

∗ ) is 

the posterior probability of the reduced attribute pattern after J items have been selected, and  

𝑃̅ℎ = ∑ 𝜋(𝜶𝑐ℎ
∗ )𝑃(𝑋ℎ = 1|𝜶𝑐ℎ

∗ )2𝐾ℎ
∗

𝑐=1  is the mean success probability. The GDI measures an item's 

ability to differentiate between reduced attribute vectors, emphasizing those with higher success 

probabilities. The item with the highest GDI in the pool is selected. 

2.2.4 Comparative Properties 

These methods offer distinct advantages for single-purpose CD-CAT. The KL-based 

methods directly measure discrimination between attribute patterns, with PWKL improving upon 

the original KL index by incorporating posterior information (Cheng, 2009). The entropy-based 

methods approach item selection through uncertainty reduction in the posterior distribution. 

While SHE directly minimizes expected uncertainty, the mutual information method provides a 

theoretically equivalent formulation through information gain (Wang, 2013). The GDI achieves 

computational efficiency through dimension reduction while maintaining measurement 

precision, particularly advantageous for assessments with many attributes (Kaplan et al., 2015). 

Despite their demonstrated effectiveness, opportunities remain for improving attribute pattern 

estimation efficiency in CD-CAT. The following section introduces a likelihood-based profile 

shrinkage (LBPS) algorithm that builds upon these theoretical foundations while addressing 

certain limitations in existing approaches. 

2.3 Computational Considerations in CD-CAT 

The practical implementation of CD-CAT item selection methods faces significant 

computational challenges, primarily arising from the need to evaluate large numbers of attribute 

patterns during the item selection process. For KL-based methods, item selection entails 

computing and summing up the KL information between the current attribute pattern estimate 

and all 2𝐾 possible patterns, and this is done for all eligible items in the bank. When using 

PWKL, additional computational burden comes from calculating posterior probabilities for each 

pattern combination. 
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Consider a test measuring K = 5 attributes with an item bank of 300 items as an example. 

Even in this relatively simple case, 32 possible attribute patterns must be evaluated for each item 

selection decision. The PWKL method requires computing and summing KL divergence values 

across all 32 patterns for each item under consideration. This computation must be performed for 

all eligible items in the bank to select the next item. The Shannon entropy method involves 

similar computational intensity, requiring the calculation of expected entropy by evaluating 

posterior distributions for possible responses across all attribute patterns, again repeated for each 

item in the bank. 

The GDI method introduced by Kaplan et al. (2015) offers some computational 

advantages by working only with the attributes required for each item. This reduces the pattern 

space from 2𝐾 to 2𝐾ℎ
∗
, where 𝐾ℎ

∗ is typically much smaller than K, and requires fewer posterior 

probability calculations. However, even with these improvements, significant computational 

challenges remain. These computational demands become particularly acute when tests measure 

many attributes and as item bank expands.  

The practical implications of these computational demands are substantial. They can 

affect response time between items, overall test administration efficiency, and the system 

resources required to implement CD-CAT. When multiple examinees are tested simultaneously, 

as is common in educational settings, these computational requirements become even more 

demanding. While the GDI method has made progress in reducing computational burden through 

reduced attribute patterns, there remains a clear need for more efficient approaches that can 

maintain measurement precision while reducing computation time and scaling effectively with 

the number of attributes. 

3. The Likelihood-Based Profile Shrinkage Algorithm 

3.1 Key Ideas 

The computational burden of traditional CD-CAT item selection methods grows 

exponentially with the number of attributes K, as each method evaluates all 2𝐾 possible attribute 

patterns for each eligible item in the bank at every item selection decision. However, as testing 

proceeds, the set of plausible, or most likely, attribute patterns for an examinee typically shrinks 

based on their response pattern. This observation motivates the key insight of LBPS: by focusing 

on the most likely attribute patterns for item selection while maintaining full pattern space for 
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estimation, substantial computational savings can be achieved without sacrificing measurement 

precision. 

The likelihood function provides a natural mechanism for identifying these plausible 

patterns. After each response, patterns with maximum likelihood represent the most probable 

true states given the observed data. Figure 1 illustrates changes in attribute profiles’ likelihoods 

using LBPS with KL when K = 5. Early on, multiple profiles may have similar likelihoods, but 

as the test proceeds, the number of likely profiles shrinks (see Figure 1). By restricting item 

selection calculations to these patterns while using all patterns for estimation, LBPS balances 

computational efficiency with measurement accuracy. 

 

  

Figure 1. An illustration of changes in attribute profiles’ likelihoods using LBPS with KL when K=5 

Note: An iteration refers to a single cycle of the adaptive testing process: selecting the next item, 

collecting the examinee’s response, and updating the likelihoods of all attribute profiles and the 

examinee’s estimated attribute profile based on the accumulated responses. 
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3.2 Theoretical Framework 

Let 𝒙𝑡 = (𝑥1, … , 𝑥𝑡) denote the response vector after t items have been administered. For 

any attribute pattern 𝜶 ∈ 𝐴 = {0,1}𝐾, the likelihood under a cognitive diagnostic model is: 

 𝐿(𝜶|𝒙𝑡) = ∏ 𝑃(𝑋𝑗 = 𝑥𝑗|𝜶)𝑡
𝑗=1 .  (11) 

Define the set of attribute patterns with the largest likelihood after t items have been answered 

as: 

 𝑀(𝒙𝑡) = arg max
𝜶∈𝐴

𝐿(𝜶|𝒙𝑡).    (12) 

For response pattern 𝒙𝑡 and a new item j that is answered with response 𝑥𝑗, 𝐿(𝜶|𝒙𝒕, 𝑥𝑗) =

𝐿(𝜶|𝒙𝒕)𝑃(𝑋𝑗 = 𝑥𝑗|𝜶).  

Theorem 1 (Pattern Set Size After First Item). 

Under the DINA model with 𝑠𝑗 , 𝑔𝑗 < 0.5, for an item requiring k attributes: 

i. 𝐼𝑓 𝑥1 = 1: |𝑀(𝑥1)| =  2𝐾−𝑘 

ii. 𝐼𝑓 𝑥1 = 0: |𝑀(𝑥1)| = 2𝐾 − 2𝐾−𝑘 

where |M| represents the size of the set M, that is, the number of unique attributes patterns in the 

set M.  

Proof: 

a) Under the DINA model, for item 1, 𝐿(𝜶|𝑥1) = 𝑃(𝑥1|𝜶) = (1 − 𝑠1) 𝜂1(𝜶)𝑔1
1− 𝜂1(𝜶),  

where 𝜂1(𝜶) = ∏ 𝛼𝑘
𝑞1𝑘𝐾

𝑘=1 . 

b) For 𝑥1 = 1, 𝐿(𝜶|𝑥1 = 1) is maximized when 𝜂1(𝜶) = 1 since (1 − 𝑠1) > 𝑔1. This 

requires all k attributes specified by item 1 to be mastered. The remaining 𝐾 − 𝑘 

attributes can be 0 or 1. Therefore, |𝑀(𝑥1)|  =  2𝐾−𝑘. 

c) For 𝑥1 = 0, 𝐿(𝜶|𝑥1 = 0) is maximized when 𝜂1(𝜶) = 0 since (1 − 𝑔1) > 𝑠1. This 

occurs when any required attribute is 0. So in this case |𝑀(𝑥1)|= 2𝐾 − 2𝐾−𝑘. 

Theorem 2 (Pattern Set Change) 

After t items have been answered (𝑡 ≥ 1), response pattern 𝒙𝑡 and any new response 𝑥𝑗 from 

item j, the set of attribute patterns with the largest likelihood is  
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𝑀(𝒙𝒕, 𝑥𝑗) = arg max
𝜶∈𝐴

𝐿(𝜶|𝒙𝑡, 𝑥𝑗) = arg max
𝜶∈𝐴

[𝐿(𝜶|𝒙𝑡) 𝑃(𝑋𝑗 = 𝑥𝑗|𝜶)].  

Let 𝑀1𝑡 = {𝜶 ∈ 𝑀(𝒙𝑡): 𝜂𝑗(𝜶) = 1} (i.e., patterns within 𝑀(𝒙𝑡) that mastered all attributes 

required item j), and 𝑀0𝑡 = {𝜶 ∈ 𝑀(𝒙𝑡): 𝜂𝑗(𝜶) = 0} (patterns within 𝑀(𝒙𝑡) that miss one or 

more attributes required by item j). The updated pattern set 𝑀(𝒙𝒕, 𝑥𝑗) follows one of the three 

cases:  

Case 1 (Shrinkage): If 𝑀1𝑡 ≠ ∅, and 𝑀0𝑡 ≠ ∅ (which implies |𝑀(𝒙𝒕)| ≥ 2), then |𝑀(𝒙𝒕, 𝑥𝑗)| <

 |𝑀(𝒙𝒕)|. This occurs because item j separates patterns within 𝑀(𝒙𝑡), with at least one pattern 

mastering all required attributes while others miss at least one attribute. If 𝑥𝑗 = 1, 𝑀(𝒙𝒕, 𝑥𝑗) =

𝑀1𝑡; if 𝑥𝑗 = 0, 𝑀(𝒙𝒕, 𝑥𝑗) = 𝑀0𝑡. This is the most common case when |𝑀(𝒙𝒕)| is large, which 

tends to be the case at the beginning of the test, especially when K is large. 

Case 2 (Stability): If either (a) 𝑀1𝑡 ≠ ∅, 𝑀0𝑡 = ∅ and 𝑥𝑗 = 1, or (b) 𝑀1𝑡 = ∅, 𝑀0𝑡 ≠ ∅ and 𝑥𝑗 =

0, then |𝑀(𝒙𝒕, 𝑥𝑗)| = |𝑀(𝒙𝒕)|. This occurs when all patterns within 𝑀(𝒙𝑡) lead to the same 𝜂𝑗 

and the observed response 𝑥𝑗 matches 𝜂𝑗.  

Case 3: If (1) 𝑀1𝑡 = ∅ and 𝑥𝑗 = 1, or (2) 𝑀0𝑡 = ∅ and 𝑥𝑗 = 0: 

a) Growth occurs when external patterns, i.e., patterns outside of 𝑀(𝒙𝑡), have precisely the 

threshold likelihood: 𝐿(𝜶′|𝒙𝑡) = 𝐿∗ ∙
𝑔𝑗

1−𝑠𝑗
 for 𝑥𝑗 = 1, or 𝐿(𝜶′|𝒙𝑡) = 𝐿∗ ∙

𝑠𝑗

1−𝑔𝑗
 for 𝑥𝑗 = 0. 

Here, 𝐿∗ = 𝐿(𝜶|𝒙𝑡) for any 𝜶 ∈ 𝑀(𝒙𝑡). This exact equality is mathematically possible 

but rare in practice.  

b) Replacement occurs when there exists at least one external pattern 𝜶′ leading to 

𝐿(𝜶′|𝒙𝑡) that exceeds the threshold likelihood ratio. This can result in |𝑀(𝒙𝒕, 𝑥𝑗)| being 

larger, smaller, or equal to |𝑀(𝒙𝒕)| depending on the number of qualifying external 

patterns. 

c) Stability occurs when no external patterns meets the threshold. 

Proof:  

Define 𝐴1𝑡 = {𝜶 ∈ 𝑨\𝑀(𝒙𝑡): 𝜂𝑗(𝜶) = 1} (i.e., patterns outside of 𝑀(𝒙𝑡) that should lead to a 

correct answer to item j), and 𝐴0𝑡 = {𝜶 ∈ 𝑨\𝑀(𝒙𝑡): 𝜂𝑗(𝜶) = 0} (i.e., patterns outside of 𝑀(𝒙𝑡) 
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that should lead to an incorrect answer to item j). Let 𝐿∗ = 𝐿(𝜶|𝒙𝑡) for any 𝜶 ∈ 𝑀(𝒙𝑡), and 

𝐿∗′ = 𝐿(𝜶′|𝒙𝑡) for any 𝜶′ ∉ 𝑀(𝒙𝑡). Note that 𝐿∗ > 𝐿∗′ by the definition of 𝑀(𝒙𝑡). 

(1) When response 𝑥𝑗 = 1: 

Under DINA, if 𝜂𝑗(𝜶) = 1, 𝑃(𝑋𝑗 = 1|𝜶) = 1 − 𝑠𝑗; if 𝜂𝑗(𝜶) = 0, 𝑃(𝑋𝑗 = 1|𝜶) = 𝑔𝑗. Since 

𝑠𝑗 , 𝑔𝑗 < 0.5, we have (1 − 𝑠𝑗) >  𝑔𝑗. After observing 𝑥𝑗 = 1: 

- For 𝜶 ∈ 𝑀1𝑡: 𝐿(𝜶|𝒙𝑡, 𝑥𝑗) = 𝐿∗ ∙ (1 − 𝑠𝑗) 

- For 𝜶 ∈ 𝑀0𝑡: 𝐿(𝜶|𝒙𝑡, 𝑥𝑗) = 𝐿∗ ∙ 𝑔𝑗 

- For 𝜶′ ∈ 𝐴1𝑡: 𝐿(𝜶′|𝒙𝑡, 𝑥𝑗) = 𝐿∗′ ∙ (1 − 𝑠𝑗) 

- For 𝜶′ ∈ 𝐴0𝑡: 𝐿(𝜶′|𝒙𝑡, 𝑥𝑗) = 𝐿∗′ ∙ 𝑔𝑗 

Case 1: If 𝑀1𝑡 ≠ ∅ and 𝑀0𝑡 ≠ ∅, then the maximum likelihood after observing 𝑥𝑗 is  𝐿∗ ∙

(1 − 𝑠𝑗), since (1 − 𝑠𝑗) > 𝑔𝑗 and 𝐿∗ > 𝐿∗′. This only happens for attribute patterns in 𝑀1𝑡. 

Therefore, 𝑀(𝒙𝒕, 𝑥𝑗) shrinks to 𝑀1𝑡 when 𝑀0𝑡 ≠ ∅. 

Case 2: If 𝑀1𝑡 ≠ ∅ and 𝑀0𝑡 = ∅ (i.e., 𝑀(𝒙𝒕) = 𝑀1𝑡), all patterns in 𝑀(𝒙𝒕) achieve 𝐿∗ ∙ (1 − 𝑠𝑗). 

Therefore, 𝑀(𝒙𝒕, 𝑥𝑗) = 𝑀(𝒙𝒕) (Stability). 

Case 3: If 𝑀1𝑡 = ∅ and 𝑀0𝑡 ≠ ∅ (i.e., 𝑀(𝒙𝒕) = 𝑀0𝑡), all patterns in 𝑀(𝒙𝒕) achieve 𝐿∗ ∙ 𝑔𝑗.  

- For 𝜶′ ∈ 𝐴0, 𝐿(𝜶′|𝒙𝑡, 𝑥𝑗) = 𝐿∗′ ∙ 𝑔𝑗 < 𝐿∗ ∙ 𝑔𝑗, so those patterns do not enter 𝑀(𝒙𝒕, 𝑥𝑗). 

Therefore, we can focus on 𝜶′ ∈ 𝐴1𝑡. 

- For 𝜶′ ∈ 𝐴1𝑡:  

 if 𝐿∗′ ∙ (1 − 𝑠𝑗) = 𝐿∗ ∙ 𝑔𝑗, that is,  
𝐿∗′

𝐿∗
=

𝑔𝑗

1−𝑠𝑗
 , then pattern 𝜶′ ties with patterns in 𝑀0𝑡 and 

becomes a part of 𝑀(𝒙𝒕, 𝑥𝑗) (growth);  

 if 𝐿∗′ ∙ (1 − 𝑠𝑗) > 𝐿∗ ∙ 𝑔𝑗, that is, 
𝐿∗′

𝐿∗ >
𝑔𝑗

1−𝑠𝑗
 , then pattern 𝜶′ achieves higher likelihood 

than all patterns in 𝑀0𝑡, so 𝑀(𝒙𝒕, 𝑥𝑗) = {𝜶′ ∈ 𝐴1𝑡: 𝐿(𝜶′|𝒙𝑡) > 𝐿∗ ∙
𝑔𝑗

1−𝑠𝑗
} (replacement), 

and the size of 𝑀(𝒙𝒕, 𝑥𝑗) may increase, decrease, or remain unchanged relative to the 

size of 𝑀(𝒙𝒕); 
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 if 𝐿∗′ ∙ (1 − 𝑠𝑗) < 𝐿∗ ∙ 𝑔𝑗, that is, 
𝐿∗′

𝐿∗
<

𝑔𝑗

1−𝑠𝑗
, then pattern 𝜶′ doesn’t become a member of 

𝑀(𝒙𝒕, 𝑥𝑗), so 𝑀(𝒙𝒕, 𝑥𝑗) = 𝑀0𝑡 = 𝑀(𝒙𝒕) (stability).  

Therefore, when 𝑥𝑗 = 1, for 𝑀(𝒙𝒕, 𝑥𝑗) to expand beyond 𝑀(𝒙𝒕),  
𝐿∗′

𝐿∗  must be at least as large as  

𝑔𝑗

1−𝑠𝑗
. If equality holds for some patterns 𝜶′ ∈ 𝐴1𝑡, growth occurs; if inequality holds for some 

patterns 𝜶′ ∈ 𝐴1𝑡, replacement occurs; if no external patterns meets threshold, stability occurs.  

(2) When response 𝑥𝑗 = 0, the same logic applies. Whether the size of 𝑀(𝒙𝒕, 𝑥𝑗) increases or 

shrinks compared to 𝑀(𝒙𝒕) depends on 
𝐿∗′

𝐿∗  and  
𝑠𝑗

1−𝑔𝑗
. If they are equal for some patterns 𝜶′ ∈

𝐴0𝑡, the size increases; if  
𝐿∗′

𝐿∗ >
𝑠𝑗

1−𝑔𝑗
 holds for some patterns 𝜶′ ∈ 𝐴0𝑡, the size may increase, 

remain stable, or decrease.  

A Special Case: When |𝑴(𝒙𝒕)| = 1 

A critical scenario arises when the pattern set contains only a single pattern: 𝑀(𝒙𝒕) =

{𝜶∗}. This situation may arise at the late stage of a test. With only one pattern, Case 1 (i.e., 

mixed mastery) in Theorem 2 is impossible. The single pattern either meets item j's requirements 

(𝑀1𝑡 = {𝜶∗}, 𝑀0𝑡 = ∅) or doesn't (𝑀1𝑡 = ∅, 𝑀0𝑡 = {𝜶∗}). This is a special case of either Case 2 

or Case 3 discussed in Theorem 2. According to Theorem 2, |𝑀(𝒙𝒕)| either stays at 1 or possibly 

expands. There is no chance of further shrinkage in terms of the size of the set. 

Conditions Driving Shrinkage in LBPS. The probability of shrinkage (Case 1) in 

Theorem 2 depends critically on heterogeneity within 𝑀(𝒙𝒕) — that is, whether some patterns  

meet all requirements of item j, while others do not. This heterogeneity is likely to occur when K 

is large and testing is in early stages, due to the combinatorial structure of the pattern space. 

After t items which have tested m < K attributes, 𝑀(𝒙𝒕) must contain all 2𝐾−𝑚 variants on 

untested attributes for each viable tested configuration. This ensures a diverse set of attribute 

patterns that item j can potentially differentiate.  

While early stages benefit from guaranteed shrinkage, repeated shrinkage often drives 

|𝑀(𝒙𝒕)| to a small number of patterns at the later stage of testing. This results in a computational 

advantage: with LBPS, item selection methods like KL, PWKL, or SHE need to evaluate items 
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against only a handful of patterns remaining in 𝑀(𝒙𝒕); while without LBPS, they must evaluate 

all 2𝐾 patterns at every stage. Thus, LBPS effectively leverages the structure of high-

dimensional attribute spaces to mitigate the computational burden of exhaustive pattern 

evaluation. Its advantage is pronounced when K is large, offering the greatest benefit precisely 

when traditional methods become computationally prohibitive. 

Theorem 3 (Pattern Set Size Reduction). 

General reduction: When Case 1 (shrinkage) occurs, the reduction in pattern set size of 

𝑀(𝒙𝒕, 𝑥𝑗) is : 

|𝑀(𝒙𝒕, 𝑥𝑗)| = {
|𝑀1𝑡|, 𝑖𝑓 𝑥𝑗 = 1 

|𝑀0𝑡|, 𝑖𝑓 𝑥𝑗 = 0
 

The reduction ratio is 𝑝𝑗 =
|𝑀(𝒙𝒕,𝑥𝑗)|

|𝑀(𝒙𝒕)|
= {

|𝑀1𝑡|

|𝑀(𝒙𝒕)|
,   𝑖𝑓 𝑥𝑗 = 1 

|𝑀0𝑡|

|𝑀(𝒙𝒕)|
,   𝑖𝑓 𝑥𝑗 = 0

 

This ratio depends on the proportion of patterns in 𝑀(𝒙𝒕) that would ideally yield each response. 

As a special case, when item j measures only untested attributes: 

i. 𝐼𝑓 𝑥𝑗 = 1: |𝑀(𝒙𝒕, 𝑥𝑗)| = |𝑀(𝒙𝒕)| ∙
1

2𝑘𝑛𝑒𝑤
  

ii. 𝐼𝑓 𝑥𝑗 = 0: |𝑀(𝒙𝒕, 𝑥𝑗)| = |𝑀(𝒙𝒕)| ∙ (1 −
1

2𝑘𝑛𝑒𝑤
) 

Here, 𝑘𝑛𝑒𝑤 refers to the number of newly introduced attributes—that is, attributes required by 

item j but not yet assessed by any of the first t items. When 𝑘𝑛𝑒𝑤 > 1, the reduction of the most 

likely pattern space is sharper for a correct response (𝑥𝑗 = 1), and less sharp but still substantial 

for an incorrect response (𝑥𝑗 = 0). When 𝑘𝑛𝑒𝑤 = 1, the reduction is by half for a correct 

response or an incorrect response. 

Proof: This follows directly from Case 1 of Theorem 2, where we showed that 𝑀(𝒙𝒕, 𝑥𝑗) = 𝑀1𝑡 

when 𝑥𝑗 = 1 and 𝑀(𝒙𝒕, 𝑥𝑗) = 𝑀0𝑡 when 𝑥𝑗 = 0.  

For the special case: 
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a) When 𝑥𝑗 = 1, 𝐿(𝜶|𝒙𝒕, 𝑥𝑗) is maximized when 𝜂𝑗(𝜶) = 1. This means that each new 

required attribute must be mastered. Only 
1

2𝑘𝑛𝑒𝑤
 of all patterns in 𝑀(𝒙𝒕) can have 1’s on 

all the new attributes. Therefore, |𝑀(𝒙𝒕, 𝑥𝑗)| =
|𝑀(𝒙𝒕)|

2𝑘𝑛𝑒𝑤
.  

b) When 𝑥𝑗 = 0, 𝐿(𝜶|𝒙𝒕, 𝑥𝑗) is maximized when 𝜂𝑗(𝜶) = 0. This means that at least one of 

the new required attributes is not mastered, and the proportion of such patterns in 

𝑀(𝒙𝒕) is 1 −
1

2𝑘𝑛𝑒𝑤
. Therefore, |𝑀(𝒙𝒕, 𝑥𝑗)| = |𝑀(𝒙𝒕)| ∙ (1 −

1

2𝑘𝑛𝑒𝑤
). 

When 𝑘𝑛𝑒𝑤 = 1, following a) and b), the size of the set of attribute patterns that maximize the 

likelihood is reduced by half. 

The aforementioned theorems suggest that the efficiency of LBPS is influenced by the q-

vectors of the selected items. The sequential selection of items that assess new attributes leads to 

a reduced pattern space for item selection in LBPS. This insight coincides with Xu et al.'s (2016) 

optimal initial item selection theory for CD-CAT. Specifically, Xu et al. (2016) demonstrated 

that to achieve minimum test length, the first administered item must assess exactly one attribute, 

followed by items that sequentially introduce single, previously unmeasured attributes. If this 

condition is not met, identifying all attribute profiles within K items becomes infeasible, 

resulting in test lengths exceeding K. If the condition is met, following Theorem 2 and 3, LBPS 

should help shrink the search space by half at each step during the early stage of the test when K 

is large, thereby achieving substantial computational gains. 

Note that the above theorems are built on the DINA model, but they can be extended to 

other CDMs with ideal response functions. For example, for the DINO model with 𝜔𝑗(𝜶) = 1 −

∏ (1 − 𝛼𝑘
𝑞𝑗𝑘𝐾

𝑘=1 ), the theorems hold with 𝜔𝑗 replacing 𝜂𝑗. For CDMs without ideal response 

functions (e.g., general CDMs such as LCDM and G-DINA), LBPS can still be implemented as 

it operates directly on likelihood values and relies on likelihood updating. Shrinkage of 𝑀(𝒙𝑡) 

may occur when patterns within 𝑀(𝒙𝑡) yield different response probabilities, because likelihood 

updating favors patterns whose predicted probabilities better align with the observed outcome. 

Such behavior is more likely when |𝑀(𝑥𝑡)| is large, as characterized under the DINA model. 

That said, the specific theoretical properties established in this paper (e.g., the characterization of 

shrinkage via 𝑀1𝑡 and 𝑀0𝑡) do not directly apply, and further investigation of LBPS performance 

under these models is needed.  
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While the above theorems demonstrate how the set of potential likely attribute patterns 

changes with each item response, practical implementation requires a concrete algorithm. The 

following section outlines the step-by-step LBPS procedure. 

3.3 Algorithm Description 

The LBPS algorithm maintains two key sets: (1) 𝑀(𝒙𝑡): most likely patterns or patterns 

that lead to the maximum likelihood, and (2) 𝑀∗(𝒙𝑡): working pattern set used for item 

selection. Note that the estimation of each examinee’s attribute profile uses the full pattern space 

(all possible 2𝐾 attribute profiles); the working pattern set is only used for item selection. In 

terms of the working set size, at any stage t, 2 ≤ |𝑀∗(𝒙𝑡)| ≤ 2𝐾. This ensures minimally two 

distinct patterns for item selection decisions. The algorithm proceeds as follows: 

Step 1: First Item Selection 

a) Use full pattern space A 

b) Select an item using traditional method (or randomization) 

c) Obtain response 𝑥1 

d) Calculate 𝐿(𝜶|𝑥₁) for all α ∈ A 

e) Define initial 𝑀(𝑥₁) and 𝑀∗(𝑥₁): 𝑀(𝑥₁) is the set of attribute patterns with the 

largest likelihood after the first item has been answered. 𝑀∗(𝑥₁) is the working 

pattern set used for item selection defined as follows: 

𝑀∗(𝑥1)  = {
M(𝑥1),           if |M(𝑥1)| ≥  2

{𝛂(1)
1 , 𝛂(2)

1 }, if |M(𝑥1)| =  1
   

where 𝛂(1)
1  has maximum likelihood and 𝛂(2)

1  has the second-highest likelihood at 

stage 1 (t = 1). 

f) Estimate the examinee’s attribute profile (using full pattern space A) based on 

response 𝑥₁ using the maximum likelihood estimation (MLE). 

Step 2: Subsequent Items (t > 1) 

For each eligible item in the pool: 

a) Pattern Space Update 
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- Calculate 𝐿(𝜶|𝒙𝑡) for all α ∈ A  

- Identify 𝑀(𝒙𝑡) = {𝜶: 𝐿(𝒙𝑡) = 𝐿∗}, 𝐿∗ is the current maximum likelihood 

value among all profiles’ likelihoods 

- Define working set: 

𝑀∗(𝒙𝑡)  = {
M(𝒙𝑡),           if |M(𝒙𝑡)|  ≥  2

{𝛂(1)
𝑡 , 𝛂(2)

𝑡 }, if |M(𝒙𝑡)|  =  1
   

where 𝛂(1)
𝑡  has maximum likelihood and 𝛂(2)

𝑡  has the second-highest 

likelihood at stage t. 

b) Item Selection  

- Couple an existing item selection method with  𝑀∗(𝒙𝑡) instead of A to 

select the next item. For example, when KL is used for item selection, the 

summation in (5) is not over all 2𝐾 patterns in A, but only over the 

patterns in 𝑀∗(𝒙𝑡).  

c) Response Processing 

- Obtain response 𝑥𝑡+1 and iterate steps a) and b) 

Repeat the whole process of step 2 until the desired number of items have been 

administered or a prefixed termination criterion has been reached.  

Logically, the key efficiency gain of LBPS comes from restricting the item selection 

computations to within the working set, which shrinks quickly over time,  while maintaining 

estimation accuracy through full pattern space calculations. Practically, the extent to which 

LBPS helps improve computational efficiency and maintains classification accuracy needs to be 

evaluated in light of many factors, such as the number of attributes K, the test length, and the 

underlying CDM model. Therefore, a simulation study was conducted manipulating these factors 

to evaluate the practical impact of the LBPS.  

4. Simulation Design 

 A simulation study was conducted to evaluate the measurement efficiency of the 

proposed LBPS algorithm in selecting items for CD-CAT. Specifically, LBPS was coupled with 

https://doi.org/10.1017/psy.2026.10086 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2026.10086


the well-known KL, PWKL, SHE, and GDI methods and compared to the performance of these 

methods in their original forms. 

(1) CDM: DINA was used in the study to model item parameters and simulate examinees’ 

responses to items. To assess the generalizability of LBPS, we also conducted a 

simulation using the DINO model under conditions described below. Due to space 

limitations, results from the DINO-based simulation are presented in the Appendix.  

(2) Item bank:  

(a) Number of assessed attributes (K): K = 3, 5, and 7. 

(b) Item bank size (J) and item quality: For each K, two sizes of item banks were 

generated: 300 and 500. For each of the two bank sizes, two levels of item quality 

banks were generated: one item bank consisted of high-quality items, with 

guessing and slipping parameters randomly drawn from U(0.05, 0.25); the other 

item bank contained lower-quality items, with guessing and slipping parameters 

randomly drawn from U(0.25, 0.50). In total, 12 item banks were generated for 

the simulation.  

(c) Q-matrix: Corresponding to the combinations of J and K, 6 different Q-matrices 

were generated. The Q-matrix used in this study was generated item by item and 

attribute by attribute. Each item has a 30% chance of measuring each attribute. 

This mechanism was employed to ensure that every attribute is adequately and 

equally represented in the item pool. Details of the Q-matrices are summarized in 

Tables A1 and A2 in the Appendix. 

(3) Test length: T = 5, 10, 15, 20, 25, and 30 items 

(4) Examinees: the attribute profiles of 1,000 examinees were randomly generated from the 

set of all possible attribute profiles for each condition. Examinees’ responses to each item 

was generated from the DINA model. 

(5) Item selection methods: a) traditional approaches: KL, PWKL, and SHE; b) GDI,  

selected for its known computational advantage; and c) LBPS-enhanced variants: LBPS-

KL, LBPS-PWKL, LBPS-SHE, and LBPS-GDI. The uniform prior was used for each 
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method when applicable to select items, that is, each attribute profile was assumed to 

have equal prior probability, 
1

2𝐾, before the start of the test. 

(6) Estimation: The initial attribute profile estimate, 𝜶̂(0), was randomly drawn from all 

possible attribute profiles (2𝐾 profiles). Then the maximum likelihood estimation (MLE) 

method was used to update 𝜶̂(t). The final estimates were 𝜶̂(T), where T is the test length.  

(7) Evaluation criteria: 

(a) profile estimation accuracy: average attribute-wise agreement rate (AAR), 

pattern-wise agreement rate (PAR) 

 𝐴𝐴𝑅 = ∑ ∑
𝐼[𝛼̂𝑖𝑘=𝛼𝑖𝑘]

𝑁𝐾

𝐾
𝑘=1

𝑁
𝑖=1 ,  (13) 

 𝑃𝐴𝑅 = ∑
𝐼[𝜶̂𝑖=𝜶𝑖]

𝑁

𝑁
𝑖=1  , (14) 

where 𝐼[] is an indicator function, N is the number of examinees, 𝜶̂𝑖 and 𝜶𝑖 

denotes the estimated and true attribute profile estimate for examinee i, and 𝛼̂𝑖𝑘 

and 𝛼𝑖𝑘 denotes the estimated and true attribute k for examinee i. 

(b) computation efficiency: average computation time (seconds) per examinee on the 

test 

(c) test security: mean of test overlap rates (𝑡𝑜𝑟𝑖𝑖′) between all possible pairs of 

examinees (Chen et al., 2003; Choe et al., 2018): 

 
𝑡𝑜𝑟̅̅ ̅̅ = (

2

𝑛
)

−1
∑ ∑ 𝑡𝑜𝑟𝑖𝑖′  𝑛

𝑖′=𝑖+1
𝑛−1
𝑖=1 =

𝑛

𝑇(𝑛−1)
∑ 𝑒𝑟𝑗

2 −
1

𝑛−1

𝑚
𝑗=1 .  (15) 

Here, m denotes the size of the item pool, and T is the fixed test length. The index 

𝑡𝑜𝑟𝑖𝑖′ represents the proportion of common items between a pair of examinees, 

calculated as the number of shared items divided by T. The observed exposure 

rate for item j, denoted 𝑒𝑟𝑗 , is computed as the number of times item j was 

administered divided by the total number of examinees n. 

The simulation study was conducted using R, and run on a computer system with 48 Cores for 

computing. 
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4. Results 

Below are the results for the 300-item banks using DINA, including profile estimation 

accuracy (AAR and PAR), computational efficiency, and mean test-overlap rates. Due to page 

limitations and their similarity to the 300-item bank results, the corresponding results for the 

500-item banks using DINA are presented in the Appendix. As noted in the Methods section, 

DINO-based results are also included in the Appendix. 

4.1 Attribute-wise Agreement Rate (AAR) 

Table 1 and Figure 2 present the AARs of various methods across item banks with 

different characteristics, including the number of assessed attributes and item bank quality. In 

Table 1, D denotes the difference in AAR (LBPS − Original), where positive values indicate that 

LBPS increased AARs, and negative values indicate decreases. Overall, the AARs of methods 

incorporating the proposed LBPS algorithm are largely comparable to those of their original 

counterparts, indicating that LBPS does not compromise estimation accuracy at the attribute 

level.  

For PWKL, SHE, and GDI, the differences between the LBPS-integrated and original 

versions are minimal, with AAR differences typically below 0.02. In contrast, LBPS-KL 

demonstrates modest improvements, particularly with high-quality item banks and larger 

attribute spaces. Under these conditions, LBPS-KL consistently yields higher AARs at shorter 

test lengths, with improvements reaching up to 0.14 (e.g., when K = 7 and T = 10 with a high-

quality item bank, D = 0.14). For low-quality item banks, the differences between LBPS-KL and 

KL remain small, ranging from 0.01 to 0.07. These findings suggest that integrating LBPS into 

traditional item selection methods maintains attribute-level estimation accuracy across a wide 

range of testing scenarios. 

4.2 Pattern-wise Agreement Rate (PAR) 

Table 2 and Figure 3 display the PARs for the same set of methods and testing 

conditions. In Table 2, D denotes the difference in PAR (LBPS − Original), where positive 

values indicate that LBPS increased PARs and negative values indicate decreases. The results 

show that LBPS-based methods maintain classification accuracy at the pattern level comparable 

to that of their original versions. For PWKL, SHE, and GDI, the PAR differences are 
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consistently small—typically below 0.06—regardless of item bank quality, number of attributes, 

or test length. In contrast, the KL method benefits more substantially from the inclusion of 

LBPS. The improvements in PAR become more pronounced as the number of attributes 

increases. Consistent with the AAR findings, the largest gains in PAR are observed when LBPS 

is combined with KL under high-quality item banks. For example, when T = 15, K = 7, and the 

item bank is of high quality, LBPS-KL achieves a PAR approximately 0.6 higher than that of KL 

(D = 0.59). However, under low-quality item banks, the performance gains of LBPS-KL are 

more modest. 

Overall, the AAR and PAR results suggest that incorporating LBPS into traditional item 

selection methods generally maintains comparable classification accuracy, with a couple of 

exceptions when K is large or test length is short. For PWKL, SHE, and GDI, the LBPS-

integrated versions closely match the performance of their original forms. For KL, LBPS offers 

modest but consistent improvements, particularly in scenarios involving high item quality, a 

larger number of attributes, and shorter test lengths. 

Table 1. Attribute-Wise Agreement Rates (AAR) under DINA (J = 300) 

   KL PWKL SHE GDI 

B K T Original LBPS D Original LBPS D Original LBPS D Original LBPS D 

H 3 5 0.89 0.94 0.05 0.94 0.94 0.00 0.94 0.94 0.00 0.95 0.95 0.00 

  10 0.94 0.99 0.05 0.99 0.99 0.00 0.99 0.98 0.00 0.99 1.00 0.00 

  15 0.99 1.00 0.01 1.00 1.00 0.00 0.99 1.00 0.01 1.00 1.00 0.00 

  20 0.99 1.00 0.01 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 

  25 1.00 1.00 0.01 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 

  30 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 

 5 5 0.74 0.87 0.13 0.88 0.88 0.00 0.92 0.91 -0.01 0.91 0.91 0.00 

  10 0.84 0.97 0.12 0.96 0.97 0.00 0.96 0.95 -0.01 0.97 0.97 0.00 

  15 0.90 0.99 0.09 0.99 0.99 0.00 0.99 0.98 -0.01 0.99 0.99 0.00 

  20 0.94 1.00 0.05 1.00 1.00 0.00 0.99 0.99 0.00 1.00 1.00 0.00 

  25 0.97 1.00 0.03 1.00 1.00 0.00 1.00 0.99 0.00 1.00 1.00 0.00 

  30 0.98 1.00 0.02 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
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 7 5 0.69 0.77 0.08 0.78 0.77 -0.01 0.78 0.78 -0.01 0.78 0.78 -0.01 

  10 0.78 0.92 0.14 0.92 0.91 -0.01 0.93 0.91 -0.02 0.93 0.92 -0.01 

  15 0.83 0.96 0.13 0.97 0.96 -0.02 0.97 0.95 -0.02 0.98 0.97 -0.01 

  20 0.87 0.99 0.12 0.99 0.98 0.00 0.98 0.97 -0.01 0.99 0.99 -0.01 

  25 0.89 0.99 0.11 1.00 0.99 0.00 0.99 0.98 -0.01 0.99 0.99 0.00 

  30 0.91 1.00 0.09 1.00 1.00 0.00 0.99 0.99 0.00 1.00 1.00 0.00 

L 3 5 0.73 0.75 0.01 0.75 0.74 -0.01 0.75 0.75 -0.01 0.75 0.75 0.00 

  10 0.80 0.84 0.04 0.82 0.83 0.00 0.82 0.82 0.00 0.83 0.84 0.01 

  15 0.85 0.89 0.04 0.89 0.87 -0.01 0.86 0.85 -0.01 0.89 0.88 -0.01 

  20 0.89 0.91 0.02 0.91 0.93 0.02 0.89 0.87 -0.02 0.91 0.92 0.00 

  25 0.90 0.95 0.05 0.94 0.94 0.00 0.90 0.91 0.01 0.94 0.94 0.00 

  30 0.92 0.95 0.03 0.95 0.95 0.00 0.91 0.91 -0.01 0.96 0.95 0.00 

 5 5 0.64 0.70 0.06 0.68 0.70 0.02 0.69 0.71 0.02 0.70 0.71 0.02 

  10 0.70 0.75 0.06 0.76 0.75 -0.01 0.75 0.74 -0.01 0.77 0.76 0.00 

  15 0.73 0.80 0.07 0.80 0.80 0.00 0.80 0.79 -0.01 0.81 0.80 0.00 

  20 0.78 0.83 0.05 0.83 0.83 0.00 0.82 0.81 -0.01 0.85 0.84 -0.01 

  25 0.82 0.88 0.06 0.87 0.86 -0.01 0.85 0.83 -0.02 0.88 0.86 -0.02 

  30 0.84 0.88 0.04 0.89 0.89 0.00 0.86 0.85 -0.02 0.90 0.89 -0.01 

 7 5 0.63 0.67 0.04 0.66 0.66 0.00 0.65 0.67 0.02 0.65 0.67 0.02 

  10 0.69 0.72 0.03 0.72 0.72 0.00 0.74 0.73 0.00 0.72 0.73 0.01 

  15 0.73 0.77 0.04 0.77 0.76 -0.01 0.76 0.75 -0.01 0.76 0.77 0.00 

  20 0.76 0.79 0.04 0.79 0.79 0.00 0.78 0.78 0.00 0.80 0.79 0.00 

  25 0.78 0.80 0.02 0.82 0.81 -0.01 0.80 0.78 -0.02 0.81 0.81 0.00 

  30 0.80 0.83 0.03 0.84 0.82 -0.01 0.81 0.80 -0.01 0.84 0.83 -0.02 

Note. B = bank quality; K = number of attributes measured by the test; T = test length; KL = Kullback–Leibler 

Index method; PWKL = posterior weighted Kullback–Leibler information method; SHE = Shannon entropy method; 

GDI = the generalized deterministic inputs, noisy ‘‘and’’ gate (G-DINA) discrimination index; original = original 

methods (KL, PWKL, SHE, GDI); LBPS = methods adding LBPS (LBPS-KL, LBPS-PWKL, LBPS-SHE, LBPS-
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GDI); D = the AAR difference between LBPS-incorporated methods and the original methods (LBPS – Original); 

positive D values indicate that LBPS increased AARs; negative D values indicate decreases. 

 

Table 2. Pattern-Wise Agreement Rates (PAR) under DINA (J = 300) 

   KL PWKL SHE GDI 

B K T Original LBPS D Original LBPS D Original LBPS D Original LBPS D 

H 3 5 0.71 0.85 0.14 0.85 0.84 -0.01 0.85 0.82 -0.03 0.86 0.87 0.01 

  10 0.83 0.98 0.15 0.99 0.98 -0.01 0.96 0.96 -0.01 0.99 0.99 0.00 

  15 0.96 1.00 0.04 1.00 1.00 0.00 0.98 0.99 0.01 1.00 1.00 0.00 

  20 0.98 1.00 0.02 1.00 1.00 0.00 0.99 0.99 0.00 1.00 1.00 0.00 

  25 0.99 1.00 0.01 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 

  30 0.99 1.00 0.01 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 

 5 5 0.18 0.55 0.37 0.54 0.57 0.04 0.69 0.68 -0.01 0.70 0.69 -0.01 

  10 0.40 0.86 0.46 0.87 0.85 -0.02 0.83 0.82 -0.02 0.89 0.88 -0.01 

  15 0.60 0.97 0.37 0.96 0.97 0.02 0.94 0.91 -0.03 0.97 0.97 0.01 

  20 0.74 0.99 0.25 0.99 0.99 0.01 0.96 0.96 0.01 1.00 0.99 0.00 

  25 0.84 1.00 0.16 1.00 1.00 0.00 0.98 0.97 -0.01 1.00 1.00 0.00 

  30 0.89 1.00 0.11 1.00 1.00 0.00 0.98 0.98 0.00 1.00 1.00 0.00 

 7 5 0.06 0.18 0.11 0.15 0.17 0.02 0.14 0.17 0.02 0.16 0.15 -0.01 

  10 0.14 0.63 0.49 0.61 0.62 0.00 0.62 0.61 -0.01 0.66 0.66 0.00 

  15 0.23 0.82 0.59 0.85 0.79 -0.06 0.81 0.75 -0.06 0.88 0.85 -0.03 

  20 0.31 0.92 0.62 0.94 0.92 -0.02 0.89 0.85 -0.04 0.95 0.92 -0.03 

  25 0.39 0.97 0.58 0.97 0.96 -0.01 0.94 0.90 -0.03 0.97 0.97 0.00 

  30 0.47 0.99 0.52 0.99 0.98 -0.01 0.96 0.95 -0.01 0.99 0.99 0.00 

L 3 5 0.41 0.45 0.04 0.44 0.44 0.00 0.45 0.46 0.02 0.44 0.47 0.03 

  10 0.54 0.63 0.09 0.58 0.59 0.01 0.58 0.59 0.01 0.60 0.61 0.01 

  15 0.64 0.74 0.10 0.72 0.69 -0.03 0.67 0.64 -0.02 0.71 0.70 0.00 

  20 0.71 0.76 0.06 0.78 0.82 0.04 0.71 0.68 -0.03 0.78 0.78 0.00 
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  25 0.75 0.86 0.11 0.84 0.83 -0.01 0.76 0.76 0.00 0.84 0.84 0.01 

  30 0.79 0.88 0.09 0.87 0.88 0.00 0.77 0.76 -0.01 0.88 0.88 0.00 

 5 5 0.09 0.19 0.09 0.16 0.18 0.02 0.15 0.20 0.05 0.18 0.23 0.05 

  10 0.16 0.30 0.15 0.31 0.30 -0.01 0.28 0.29 0.01 0.30 0.31 0.01 

  15 0.20 0.39 0.20 0.38 0.39 0.01 0.36 0.36 0.00 0.38 0.38 0.00 

  20 0.29 0.44 0.15 0.45 0.47 0.01 0.41 0.42 0.01 0.50 0.49 0.00 

  25 0.37 0.57 0.20 0.52 0.55 0.03 0.48 0.46 -0.02 0.60 0.54 -0.05 

  30 0.42 0.61 0.19 0.61 0.61 0.00 0.51 0.48 -0.03 0.62 0.59 -0.03 

 7 5 0.04 0.06 0.02 0.05 0.07 0.02 0.05 0.05 0.00 0.05 0.05 0.00 

  10 0.08 0.13 0.06 0.11 0.13 0.01 0.13 0.14 0.01 0.12 0.14 0.02 

  15 0.12 0.20 0.08 0.19 0.19 -0.01 0.17 0.15 -0.02 0.17 0.19 0.02 

  20 0.15 0.27 0.12 0.24 0.27 0.03 0.21 0.22 0.01 0.27 0.28 0.01 

  25 0.18 0.29 0.11 0.33 0.30 -0.03 0.26 0.24 -0.03 0.30 0.32 0.02 

  30 0.24 0.39 0.15 0.36 0.34 -0.02 0.28 0.28 0.00 0.38 0.35 -0.02 

Note. B = bank quality; K = number of attributes measured by the test; T = test length; KL = Kullback–Leibler 

Index method; PWKL = posterior weighted Kullback–Leibler information method; SHE = Shannon entropy method; 

GDI = the generalized deterministic inputs, noisy ‘‘and’’ gate (G-DINA) discrimination index; original = original 

methods (KL, PWKL, SHE, GDI); LBPS = methods adding LBPS (LBPS-KL, LBPS-PWKL, LBPS-SHE, LBPS-

GDI); D = the PAR difference between LBPS-incorporated methods and the original methods (LBPS – Original); 

positive D values indicate that LBPS increased PARs; negative D values indicate decreases. 
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Figure 2. AARs under DINA when J = 300 items 
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Figure 3. PARs under DINA when J = 300 items 
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4.3 Computation Efficiency 

 Table 3 and Figure 4 present the average computation time (in seconds) per person for 

the compared methods under varying conditions. The results show that while integrating LBPS 

into GDI yields modest to moderate efficiency gains, its integration into KL, PWKL, and SHE 

consistently leads to substantially lower computation times.  

For KL, PWKL, and SHE, the efficiency improvements from LBPS integration are 

consistent, ranging from 45% in the simplest scenario (K = 3 and T = 5) to nearly 90% in the 

most demanding case (K = 7, T = 30). These gains become more pronounced as K and T 

increase. Moreover, LBPS-integrated versions achieves computation times comparable to or 

lower than GDI, a method known for its relatively higher efficiency than PWKL (Kaplan et al., 

2015).  

LBPS was also incorporated into GDI to further improve computational efficiency. While 

gains are modest for small K, they become more substantial as K and T increase. For instance, 

integrating LBPS into GDI reduced computation time by 37% for T = 30 and K = 7. This 

demonstrates that LBPS is a highly flexible algorithm that can be integrated with item selection 

methods beyond information-theoretic approaches like SHE, KL or PWKL. 

In sum, these findings show that LBPS not only maintains measurement accuracy but 

also provides substantial computational efficiency gains, especially for assessments involving 

many attributes or requiring rapid item selection in longer tests. 
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Table 3. Average Computation Time Per Person under DINA (J = 300) 

   KL PWKL SHE GDI 

B K T Original LBPS PR Original LBPS PR Original LBPS PR Original LBPS PR 

H 3 5 0.04 0.02 47% 0.04 0.02 45% 0.04 0.02 54% 0.03 0.03 1% 

  10 0.08 0.04 56% 0.09 0.04 56% 0.08 0.03 63% 0.06 0.05 3% 

  15 0.12 0.05 59% 0.13 0.05 59% 0.11 0.04 67% 0.09 0.08 5% 

  20 0.16 0.06 61% 0.18 0.07 61% 0.15 0.05 68% 0.11 0.11 4% 

  25 0.20 0.08 62% 0.22 0.08 62% 0.19 0.06 69% 0.14 0.14 5% 

  30 0.24 0.09 62% 0.27 0.10 63% 0.23 0.07 69% 0.17 0.17 2% 

 5 5 0.18 0.09 53% 0.19 0.09 51% 0.18 0.07 60% 0.04 0.04 5% 

  10 0.36 0.11 70% 0.38 0.11 72% 0.36 0.09 76% 0.08 0.07 8% 

  15 0.55 0.12 77% 0.57 0.13 78% 0.55 0.10 82% 0.12 0.11 9% 

  20 0.72 0.14 80% 0.76 0.15 80% 0.73 0.11 84% 0.16 0.14 11% 

  25 0.89 0.16 82% 0.95 0.17 82% 0.93 0.13 86% 0.21 0.18 13% 

  30 1.07 0.18 83% 1.15 0.19 84% 1.11 0.15 87% 0.26 0.22 15% 

 7 5 1.18 0.54 55% 0.85 0.41 51% 0.87 0.34 61% 0.06 0.05 12% 

  10 2.08 0.62 70% 1.71 0.45 74% 1.73 0.37 79% 0.13 0.10 21% 

  15 3.10 0.57 81% 2.58 0.49 81% 2.62 0.39 85% 0.21 0.15 26% 

  20 4.09 0.62 85% 3.40 0.53 85% 3.49 0.43 88% 0.31 0.21 30% 

  25 5.06 0.74 85% 4.27 0.56 87% 4.37 0.46 89% 0.42 0.28 34% 

  30 5.81 0.82 86% 5.11 0.60 88% 5.26 0.50 90% 0.54 0.34 37% 

L 3 5 0.04 0.02 46% 0.04 0.02 45% 0.04 0.02 53% 0.03 0.03 0% 

  10 0.08 0.04 56% 0.08 0.04 56% 0.08 0.03 63% 0.06 0.06 4% 

  15 0.12 0.05 59% 0.12 0.05 60% 0.12 0.04 68% 0.09 0.08 2% 

  20 0.16 0.06 60% 0.16 0.06 61% 0.15 0.05 68% 0.11 0.11 3% 

  25 0.20 0.08 62% 0.21 0.08 61% 0.19 0.06 69% 0.14 0.14 4% 

  30 0.24 0.09 62% 0.25 0.10 60% 0.23 0.07 70% 0.17 0.16 3% 

https://doi.org/10.1017/psy.2026.10086 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2026.10086


 5 5 0.19 0.08 56% 0.18 0.09 54% 0.18 0.08 57% 0.04 0.04 5% 

  10 0.36 0.10 73% 0.38 0.10 73% 0.37 0.09 77% 0.08 0.07 8% 

  15 0.54 0.12 78% 0.56 0.12 78% 0.54 0.10 81% 0.12 0.11 9% 

  20 0.72 0.14 81% 0.75 0.14 81% 0.72 0.11 84% 0.17 0.15 12% 

  25 0.91 0.15 83% 0.94 0.16 83% 0.92 0.13 86% 0.22 0.18 15% 

  30 1.05 0.18 83% 1.13 0.19 83% 1.12 0.15 87% 0.26 0.22 15% 

 7 5 0.81 0.38 53% 0.85 0.39 54% 0.84 0.33 61% 0.06 0.05 8% 

  10 1.71 0.40 76% 1.71 0.41 76% 1.66 0.35 79% 0.13 0.10 21% 

  15 2.43 0.44 82% 2.55 0.45 83% 2.52 0.38 85% 0.21 0.16 27% 

  20 3.24 0.47 85% 3.43 0.49 86% 3.36 0.42 88% 0.31 0.22 31% 

  25 4.00 0.50 87% 4.29 0.54 88% 4.22 0.45 89% 0.44 0.28 35% 

  30 4.73 0.57 88% 5.11 0.57 89% 5.07 0.50 90% 0.55 0.35 37% 

Note. B = bank quality; K = number of attributes measured by the test; T = test length; KL = Kullback–Leibler 

Index method; PWKL = posterior weighted Kullback–Leibler information method; SHE = Shannon entropy method; 

GDI = the generalized deterministic inputs, noisy ‘‘and’’ gate (G-DINA) discrimination index; original = original 

methods (KL, PWKL, SHE, GDI); LBPS = methods adding LBPS (LBPS-KL, LBPS-PWKL, LBPS-SHE, LBPS-

GDI); PR = the percentage of reduction in computation time after adding LBPS.  
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Figure 4. Average computation time per person under DINA when J = 300 items 
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4.4 Mean Test-Overlap Rates 

Table 4 and Figure 5 summarize the test-overlap rates for LBPS-integrated and original 

methods. In Table 4, D represents the difference in overlap rates (Original − LBPS), where 

positive values indicate that LBPS reduced overlap and negative values indicate increases. Under 

high-quality item banks, LBPS increased overlap rates when attribute dimensionality was low (K 

= 3), particularly for GDI (e.g., D = −0.24 at T = 30) and to a lesser extent for KL and PWKL at 

longer test lengths (e.g., D = −0.13 to −0.14). SHE remained largely unaffected. At K = 5, 

differences were mixed but small (mostly within ±0.05). At K = 7, LBPS reduced overlap at 

shorter test lengths (e.g., D = 0.15–0.17 at T = 5 for KL, PWKL, and SHE), with diminishing 

effects as test length increased. Under low-quality item banks, LBPS generally reduced overlap 

for K = 5 and 7 across all methods. The largest differences appeared for KL (e.g., D = 0.18 at T = 

15 and 20 for K = 5), with modest and consistent reductions for PWKL, SHE, and GDI. At K = 

3, differences were smaller and mixed, but slightly favored LBPS (e.g., D = 0.09 at T = 5 for 

KL). 

Overall, LBPS affected test-overlap rates differently across conditions: Overlap increased 

for high-quality banks with small K (particularly for GDI), but decreased under more challenging 

conditions—low-quality banks or large K. Even though the benefit of LBPS in reducing test 

overlap rate does not universally apply to all conditions, it is clearly effective when LBPS is 

needed the most: i.e., when K is large. Moreover, given the goal of cognitive diagnosis 

assessments is to support formative assessment and immediate feedback (Leighton & Gierl, 

2007; Rupp et al., 2010), CD-CAT is typically considered in a low-stakes context, with 

classification accuracy and computational efficiency being the primary concerns rather than 

exposure control.  
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Table 4. Mean Test Overlap Rate Differences under DINA (J = 300) 

   KL PWKL SHE GDI 

B K T Original LBPS D Original LBPS D Original LBPS D Original LBPS D 

H 3 5 0.55 0.56 -0.01 0.62 0.56 0.06 0.57 0.59 -0.02 0.67 0.70 -0.03 

  10 0.49 0.56 -0.07 0.53 0.56 -0.03 0.44 0.46 -0.02 0.60 0.75 -0.15 

  15 0.48 0.61 -0.13 0.50 0.61 -0.11 0.47 0.49 -0.02 0.57 0.76 -0.19 

  20 0.50 0.62 -0.12 0.49 0.62 -0.13 0.49 0.51 -0.02 0.55 0.77 -0.22 

  25 0.50 0.63 -0.13 0.49 0.63 -0.14 0.52 0.53 -0.01 0.55 0.77 -0.22 

  30 0.52 0.64 -0.12 0.50 0.64 -0.14 0.53 0.54 -0.01 0.54 0.78 -0.24 

 5 5 0.56 0.46 0.10 0.59 0.46 0.13 0.61 0.59 0.02 0.60 0.59 0.01 

  10 0.52 0.49 0.03 0.51 0.48 0.03 0.39 0.39 0.00 0.53 0.59 -0.06 

  15 0.51 0.50 0.01 0.48 0.50 -0.02 0.36 0.38 -0.02 0.50 0.60 -0.10 

  20 0.51 0.52 -0.01 0.48 0.52 -0.04 0.40 0.41 -0.01 0.49 0.61 -0.12 

  25 0.50 0.53 -0.03 0.47 0.53 -0.06 0.45 0.47 -0.02 0.48 0.63 -0.15 

  30 0.50 0.54 -0.04 0.48 0.55 -0.07 0.49 0.51 -0.02 0.48 0.63 -0.15 

 7 5 0.47 0.32 0.15 0.50 0.33 0.17 0.68 0.53 0.15 0.53 0.53 0.00 

  10 0.46 0.38 0.08 0.48 0.38 0.11 0.45 0.37 0.08 0.45 0.44 0.01 

  15 0.44 0.42 0.02 0.45 0.42 0.03 0.37 0.32 0.05 0.45 0.46 -0.01 

  20 0.43 0.44 -0.01 0.44 0.44 0.01 0.36 0.34 0.01 0.44 0.48 -0.04 

  25 0.44 0.45 -0.02 0.44 0.45 -0.01 0.39 0.39 0.00 0.44 0.50 -0.06 

  30 0.44 0.46 -0.02 0.44 0.46 -0.02 0.44 0.45 -0.01 0.44 0.51 -0.08 

L 3 5 0.68 0.59 0.09 0.59 0.59 0.00 0.70 0.55 0.15 0.68 0.66 0.02 

  10 0.66 0.63 0.03 0.61 0.63 -0.02 0.46 0.40 0.06 0.65 0.63 0.02 

  15 0.66 0.63 0.03 0.60 0.63 -0.03 0.39 0.34 0.05 0.62 0.63 -0.01 

  20 0.68 0.65 0.03 0.59 0.64 -0.05 0.35 0.32 0.03 0.61 0.65 -0.04 

  25 0.70 0.66 0.04 0.60 0.65 -0.05 0.33 0.30 0.03 0.60 0.66 -0.06 

  30 0.72 0.67 0.05 0.61 0.66 -0.05 0.33 0.30 0.03 0.61 0.66 -0.05 
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 5 5 0.67 0.62 0.05 0.65 0.62 0.03 0.72 0.67 0.05 0.76 0.67 0.09 

  10 0.68 0.55 0.13 0.54 0.55 -0.01 0.49 0.43 0.06 0.61 0.54 0.07 

  15 0.71 0.53 0.18 0.53 0.52 0.01 0.41 0.36 0.05 0.57 0.52 0.05 

  20 0.71 0.53 0.18 0.53 0.53 0.00 0.38 0.32 0.06 0.56 0.52 0.04 

  25 0.70 0.53 0.17 0.53 0.53 0.00 0.35 0.30 0.05 0.56 0.53 0.03 

  30 0.71 0.54 0.17 0.54 0.54 0.00 0.33 0.29 0.04 0.56 0.53 0.03 

 7 5 0.69 0.64 0.05 0.67 0.64 0.03 0.89 1.00 -0.11 0.93 1.00 -0.07 

  10 0.64 0.60 0.04 0.63 0.61 0.02 0.68 0.59 0.09 0.69 0.64 0.05 

  15 0.62 0.55 0.07 0.55 0.55 0.01 0.55 0.45 0.10 0.62 0.56 0.06 

  20 0.62 0.52 0.10 0.54 0.53 0.01 0.47 0.38 0.09 0.59 0.52 0.08 

  25 0.62 0.51 0.11 0.52 0.51 0.02 0.42 0.35 0.07 0.58 0.50 0.08 

  30 0.63 0.49 0.14 0.52 0.50 0.03 0.39 0.36 0.03 0.57 0.48 0.08 

Note. B = bank quality; K = number of attributes measured by the test; T = test length; KL = Kullback–Leibler 

Index method; PWKL = posterior weighted Kullback–Leibler information method; SHE = Shannon entropy method; 

GDI = the generalized deterministic inputs, noisy ‘‘and’’ gate (G-DINA) discrimination index; original = original 

methods (KL, PWKL, SHE, GDI); LBPS = methods adding LBPS (LBPS-KL, LBPS-PWKL, LBPS-SHE, LBPS-

GDI); D = Original – LBPS; positive D values indicate LBPS reduced overlap rates; negative D values indicate 

increases. 
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Figure 5. Mean test overlap rate results under DINA when J = 300 items 

 

Additional simulations with DINA (500-item banks) and DINO (both 300-item and 500-

item banks) (see Appendix) also found substantial computational gains in conditions with large 

K and/or T, without compromising classification accuracy or test security, lending further 

support of the general applicability of LBPS. That said, there are some nuanced differences. For 

example, under the DINA model, there is a substantial gain in classification accuracy when 

https://doi.org/10.1017/psy.2026.10086 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2026.10086


LBPS is coupled with KL, compared to the original KL. The improvement in PAR is not nearly 

substantial under the DINO model.  

In summary, results demonstrate that LBPS, when combined with a variety of item 

selection methods, successfully accelerates CD-CAT in the most computationally demanding 

scenarios (large K and T), without compromising classification accuracy or test overlap rates, 

making it particularly well-suited for complex diagnostic assessments.  

5. Discussion 

This study introduced the Likelihood-Based Profile Shrinkage (LBPS) algorithm to 

improve computational efficiency in CD-CAT. LBPS works by focusing item selection on the 

most probable attribute profiles at each test stage. As more items are administered, the posterior 

distribution over profiles becomes concentrated, allowing LBPS to exclude highly improbable 

profiles from consideration. While traditional methods evaluate every possible profile, LBPS 

uses a reduced working set, leading to faster computations with minimal trade-offs in accuracy. 

Simulations confirmed that LBPS maintains comparable AAR and PAR values while 

substantially reducing computational time, particularly as the number of attributes or test length 

increases. LBPS had mixed effects on test-overlap rates, but generally maintained test security 

when K is large. 

Note that although LBPS begins after the first item response, it does not constrain 

attribute estimation. The full set of profiles is always used to compute likelihoods and update 

mastery estimates. LBPS simply filters out low-likelihood profiles during item selection, without 

narrowing the estimation space. This preserves diagnostic accuracy, even in early stages when 

estimation is less stable.  

Moreover, the algorithm is highly flexible and can be effectively integrated with existing 

CD-CAT item selection methods (e.g., KL, PWKL, SHE, GDI). This extends prior work on CD-

CAT efficiency (Kaplan et al., 2015) by offering a generalizable framework applicable across 

selection strategies. However, our simulations reveal differential benefits across methods: 

computation speed gains are more pronounced for SHE, KL, and PWKL than for GDI. This is 

mainly because GDI already includes procedures that reduce computational burden by operating 

on a reduced set of attribute patterns, thereby diminishing the marginal benefit of LBPS. 
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Although developed under the DINA model, LBPS is model-agnostic. Because it ranks 

attribute patterns based on likelihoods, it can be extended to any CDM by modifying the 

response probability function. While different CDMs create different partition structures—for 

example, DINA's conjunctive rule (requiring all attributes) versus DINO's disjunctive rule 

(requiring at least one attribute)—the core logic of LBPS remains applicable. 

Adapting LBPS to other CDMs involves substituting the response model in the likelihood 

calculation and pairing the reduced pattern set with an item selection index. Preliminary results 

under DINO demonstrate substantial computation time reductions with negligible loss in 

accuracy (see Appendix), comparable to those achieved under DINA. Thus, LBPS provides a 

robust and scalable strategy for accelerating CD-CAT across different CDMs. 

On the other hand, this study has limitations. While we demonstrated LBPS under DINA 

and DINO, future work should test its performance under other models and item types. Our 

simulations assumed uniform priors and did not explore correlated attributes or alternative Q-

matrix structures. In educational contexts, hierarchical attributes—where one skill is a 

prerequisite for another—are common. Incorporating such hierarchies may further improve 

efficiency. Future work should also examine higher-dimensional scenarios (e.g., K > 7) to assess 

scalability. 

For operational implementation, research should examine three practical aspects: (1) 

exposure control mechanisms to prevent item overuse, (2) attribute balancing strategies when 

using reduced profile sets, and (3) variable-length termination criteria for adaptive test length. 

For example, test developers can implement LBPS as a first-stage filter to identify promising 

items, then apply exposure and content control constraints as subsequent selection criteria 

(Cheng, 2010; Li et al., 2021; Lin & Chang, 2019; Wang et al., 2011). Validation using real item 

banks will further assess robustness.  

Moreover, because the shrinkage of the maximum likelihood pattern set (Case 1 of 

Theorem 2) occurs predominantly in the early stages of an assessment, a hybrid approach may be 

advantageous: apply LBPS during the initial phase to reduce |𝑀(𝒙𝑡)| from exponentially large to 

a manageable size, then maintain this reduced pattern set for all subsequent item selections. Once 

|𝑀(𝒙𝑡)| becomes sufficiently small (e.g., 20 patterns), the computational overhead of updating 

likelihoods and maintaining 𝑀(𝒙𝑡) after each response may outweigh the benefits of further 
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reduction. By switching to a fixed pattern set at this point, we eliminate update costs while 

preserving the efficiency gained from evaluating items against only a small subset of patterns 

rather than the full 2𝐾 space. The optimal switching point—when to transition from dynamic 

LBPS to a static pattern set—likely depends on multiple factors including the number of 

attributes K, the computational cost of likelihood calculations, and the specific item selection 

method employed, warranting future investigation. 

Computational efficiency in CD-CAT can also be improved through programming 

optimizations. For instance, PWKL and SHE require updating likelihood functions and posterior 

probabilities after each item response. Caching likelihood values from previous steps, rather than 

recalculating them entirely, can reduce redundant computations. Notably, LBPS and 

programming optimizations operate at different levels: programming optimizations reduce 

redundant calculations within a fixed computational framework, whereas LBPS reduces the 

search space itself from 2𝐾 patterns to a smaller working set. These approaches are 

complementary, and practitioners can combine LBPS with strategies such as likelihood caching 

to achieve additional efficiency gains. 

In sum, LBPS provides a computationally efficient enhancement to CD-CAT that 

maintains diagnostic precision. Its flexibility, scalability, and compatibility with existing 

methods make it well suited for modern adaptive assessments. We recommend using LBPS in 

CD-CAT when 𝐾 is large, as this is when computational efficiency becomes a primary concern 

and its benefits are most pronounced. 

Code Availability 

 The example materials and code implementing the LBPS algorithm under the DINA 

model can be found at https://osf.io/pnavk/files. 
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