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Abstract
Dynamic simulations of the cable-driven parallel robots (CDPRs) with cable models closer to reality can predict
the motions of moving platforms more accurately than those with idealisations. Hence, the present work proposes
an efficient and modular computational framework for this purpose. The primary focus is on the developments
required in the context of CDPRs actuated by moving the exit points of cables while the lengths are held constant.
Subsequently, the framework is extended to those cases where simultaneous changes in the lengths of cables are
employed. Also, the effects due to the inertia, stiffness and damping properties of the cables undergoing 3D motions
are included in their dynamic models. The efficient recursive forward dynamics algorithms from the prior works
are utilised to minimise the computational effort. Finally, the efficacy of the proposed framework and the need for
such an inclusive dynamic model are illustrated by applying it to different application scenarios using the spatial
4-4 CDPR as an example.

Nomenclature
CDPR cable-driven parallel robot
MP moving platform
DoF degree(s)-of-freedom
VACTS variable aerial cable towed system (see [1])
FD forward dynamics
ID inverse dynamics
EoM equation of motion
SDE spring and damper element
RSSLM recursive sub-system-level Lagrange multiplier approach (see [2])
MRFE modified rigid finite element (see, e.g., [3])
GIM generalised inertia matrix (see, e.g., [4])
DAE differential-algebraic equation
nk-nr CDPR a CDPR with distinct nk exit and nr anchoring points of cables (see, e.g., [5],

pp. 29-30)
q, q̇, q̈ ∈R

n joint positions, velocities and accelerations, respectively
M ∈ GLn(R) GIM of the robot
C ∈R

n×n centripetal and Coriolis matrix (see Eq. (2))
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G ∈R
n generalised forces due to the gravitational potential

τ s ∈R
n generalised forces due to the SDEs

τ c ∈R
n generalised constraint forces (see Eq. (6))

η ∈R
m constraint functions

λ ∈R
m Lagrange multipliers appearing in the EoM (see Eq. (1))

1. Introduction
A cable-driven parallel robot (CDPR) manipulates the motion of a moving platform (MP) with the help
of multiple cables connected to it. The CDPRs provide large workspaces, low inertias and high load-
carrying capacities compared to their self-weights. Nevertheless, the analyses of these robots’ mechanics
are challenging due to the cables’ unilaterality, that is, the ability to pull but not push, anisotropic
material properties causing deflections to occur in different time scales, sagging due to their own weights
and non-rigidity leading to large degrees-of-freedom (DoF). The actuation schemes employed in CDPRs
also differ significantly from conventional manipulators with rigid links. Following the classification
proposed in ref. [6], the two kinds of actuation schemes commonly used in CDPRs are designated in
this article as Type I and Type II, respectively. In the case of Type I CDPRs, the MP is manipulated by
changing the lengths of the cables hoisting it. The cables themselves are fed and retrieved via stationary
guidance systems (see, e.g., Fig. 2.1 in ref. [5], p. 17). In contrast, in Type II CDPRs, the cables’ lengths
are held constant, whereas their terminal points (i.e., the ones not connected to the MP) are moved.
These terminal points are known in CDPR parlance as the exit points of the cables (see Fig. 2).

The primary focus of the present work is to develop a modular computational framework to simulate
the dynamics of Type II CDPRs with cable models closer to the physical system, given the kinematic or
dynamic actuation inputs. Also, extend the analyses to those scenarios where Type I actuation is applied
simultaneously by employing the existing recursive forward dynamics algorithms for computational
efficiency. The motivation for the above-mentioned directions of research is presented below vis-à-vis
the previous works in this field.

The modularity of the proposed framework helps accommodate diverse architectures and actuators
employed for different applications of Type II CDPRs in the past. For instance, the Wirepuller-Arm-
driven Redundant Parallel manipulator, an 8-3 CDPR proposed in ref. [7] for quick assembly of light
payloads, employs arms driven by motors to manipulate the exit points of the cables. In ref. [8], mobile
robots were employed for cooperative towing of the MPs of planar 2-2 and 3-3 CDPRs with applica-
tions in warehouse operations. Likewise, a spatial 3-3 CDPR actuated by aerial vehicles with potential
applications in rescue operations and heavy payload transfers was demonstrated in ref. [9].

Further, the inclusion of simultaneous utilisation of both kinds of actuation schemes in the scope of
the developed framework accommodates the following application scenarios. The Type II actuation was
used for the active reconfiguration1 of a Type I CDPR in the Large Vessel Interface Lift-on and Lift-off
(LVI Lo/Lo) crane system. It was designed to minimise the relative motions between the containers and
ships while transferring cargo between two ships in the open seas with the help of a Type I actuated 8-8
CDPR attached to the end-effector of a serial crane (see, e.g., ref. [10]). A similar idea for micro-macro
manipulation in ship replenishment was presented in ref. [11], where the winches of a Type I suspended
6-6 CDPR were attached to a helicopter. Further, in ref. [12], a Type I suspended 3-3 CDPR was proposed
to displace its winches via trolleys over rails and attain control of the 6 DoF of the MP for cargo handling.
A Variable Aerial Cable Towed System (VACTS) was introduced in ref. [1] by fastening the winches of a

1As per [36], a reconfiguration of Type I CDPRs can be achieved by modifying the locations from which the cables are fed or
retrieved, that is, moving the exit points, in other words. If such modifications are caused in an automated manner, that is, with
the help of actuators which are parts of the system, then the consequent reconfiguration is termed active. If any other means are
employed, such as manual intervention, it is called passive.
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Type I suspended 6-6 CDPR on four aerial vehicles to transfer loads in cluttered environments. Recently,
the utility of FASTKIT, a Type I 8-8 CDPR mounted on top of two mobile robots, was demonstrated in
ref. [13] as a low-cost solution for logistics in small warehouses.

The existing methodologies to solve the forward kinetostatic2 problems of Type I CDPRs can be
readily applied to those of the Type II CDPRs and vice versa due to the similarities in the inputs to these
problems. In contrast, a clear distinction exists between the input actuator variables and the architecture
parameters of these manipulators while analysing their dynamics due to the variations of the former with
time. Hence, the formulations for forward dynamics (FD) analysis of Type II CDPRs are different from
those of Type I robots (see, e.g., [14]), requiring individual developments to incorporate the distinctions
in cables’ actuation. Nevertheless, a few common features, such as the dynamic models of cables, moving
platforms, and their interactions can be utilised from the formulations developed for Type I CDPRs. The
current work employs one such modular and computationally efficient formulation recently reported in
ref. [15] and focuses on the required additional developments.

The formulations of dynamics of Type II CDPRs wherein manned or unmanned aerial vehicles
imparting motions of the cables’ exit points were extensively studied in the literature. The primary
focus had been on the dynamic models of vehicles, their formations and interactions with the MP for
applications in control. Consequently, the cable models were simplified significantly, that is, the cables
were usually treated as massless and inelastic force transmission elements. The constrained equations of
motion (EoM) were derived using either the Newton-Euler formulation, as in ref. [16] or the Lagrangian
formulation, as in ref. [17], in a coordinate-free form. Such representations are compact and avoid the
effects of singularities arising from the choice of parameters used to denote the rigid bodies’ orientations.
Although these features are preferred to establish theoretical foundations, they are not ideal for per-
forming FD simulations. Hence, it is typical to resort to commercially available software, for example,
SimMechanics (Simscape Multibody) in ref. [14], for FD simulations, even though inverse dynam-
ics (ID) and control are based on custom-built dynamic models. Further, the benchmark dynamic models
used for this purpose should be more accurate than those used to develop the controller. Therefore, mon-
itoring such custom developments in the past is imperative to ensure that the framework developed in
this work meets the necessary requirements.

For instance, in ref. [18], the elastic and damping properties of the cables of a planar 2-1 CDPR
were introduced as massless spring and damper elements (SDEs) to demonstrate the effect of cables’
stretching on aerial vehicles connected to them. A custom framework called AuRoRA platform with
virtual vehicle models was employed to perform the simulations. The cable tensions were first explicitly
obtained from a separate dynamic model and were then provided as disturbances acting on the vehicles.
Such a sequential treatment disregards the coupled dynamics, limiting their framework’s utility and
fidelity of the results it produced. Contrary to the above-mentioned approach, in ref. [19], a commercial
software, MSC ADAMS, was employed to model the cables as flexible aluminium bars, that is, massive
and elastic, and then imported it to MATLAB/Simulink for realising the non-linear coupled dynamics
of a 2-2 CDPR driven by quadrotors. Nevertheless, in specific situations where the MP is subjected
to external disturbances or the vehicles are undergoing agile manoeuvres, the assumption that cables
remain taut at all times is invalid (see, e.g., Section 4). Therefore, efforts towards incorporating the
lateral and transverse flexibilities of cables into the dynamic model can also be seen in the following
works.

An early development in this regard is presented by Goodarzi et al. in ref. [20], wherein the cables
were modelled as serial chains of rigid links connected by universal joints, and quadcopters were used
for moving their exit points. However, the EoM of the CDPR was developed using a coordinate-free form
of the Lagrangian formulation with the intention of its utilisation in developing the controller. Recently,

2In the context of CDPRs, the term kinetostatic refers to a combination of kinematics and statics; since kinematics is not sufficient
to define their configurations, consideration of statics must also be incorporated. These have also been termed as the geometrico-
static problems (see, e.g., [37]).

https://doi.org/10.1017/S026357472400047X Published online by Cambridge University Press

https://doi.org/10.1017/S026357472400047X


4 Teja Krishna Mamidi and Sandipan Bandyopadhyay

in ref. [21], the cables were approximated as multiple lumped masses connected by SDEs to simulate
the dynamics of a spatial 2-1 CDPR driven by quadcopters. Additionally, the effects of air resistance and
contact forces from the ground were included in the model. The developed dynamic model was used to
test the efficacy of the proposed controller.

As is evident from the above survey of the existing literature, the dynamic models of cables con-
sidered in previous works have evolved from a massless inelastic one to a serial chain of point masses
connected by SDEs. Therefore, the current work employs one such detailed cable model in developing
the computational framework to meet the upcoming demands in this field. Furthermore, it addresses the
shortcomings mentioned in the existing formulations of dynamics so that the proposed framework can
perform the FD simulations in an efficient manner.

A few prominent works on the CDPRs that incorporate both Type II and Type I actuation schemes
are mentioned below to re-emphasise that the research gaps addressed in this work are equally rele-
vant in such scenarios. In ref. [11], the Newton-Euler formulation was used to derive the EOM of a 6-6
CDPR with its winches mounted on a helicopter, assuming cables to be massless and inelastic force
transmission elements. The FD simulations of the CDPR and helicopter, along with the proposed con-
trollers, were performed using a framework developed in MATLAB/Simulink. The same approach was
followed in the case of an 8-8 CDPR suspended through a heavy airship in ref. [22] emphasising the
added complexity due to the extra cable winches. In ref. [1], such systems were referred to as VACTS
and an experimental demonstration of their feasibility via a spatial 3-1 CDPR was reported for the
first time. These developments justify the extension of the proposed framework’s scope for analysing
such systems. Moreover, the dynamic models of cables and the associated formulation of dynamics
considered in the past are still in their preliminary stages compared to the proposed work. This limita-
tion is also pertinent to systems other than VACTS, that is, those actuated by means other than aerial
vehicles.

For instance, in refs. [23] and [12], the cables were assumed to be massless and inelastic in deriving
the EoM of a spatial 3-3 CDPR whose winches were moved using trolleys on rails. The incremental
change over a decade is in considering the trolley’s dynamics in [12], while it was ignored in [23]. In the
same category, an 8-8 CDPR with four of its eight pulleys moved over vertical rails with applications in
automated masonry was recently presented in ref. [24]. The cables were modelled as massless springs,
and the EOM were obtained using the Newton-Euler formulation. Despite the existing limitations, a
trend towards detailed cable models can be observed. A similar tendency exists in the cases where
mobile vehicles on the ground were used to move the exit points of CDPRs.

In ref. [25], the cables were treated as massless and inelastic force transmission elements, and the
EoM of a 3-3 CDPR with each cable connected to a mobile crane was established. Recently, in ref. [26],
the dynamic model of a spatial 4-1 CDPR attached to four Turtlebots, termed MoPICK, was developed in
the V-REP environment. The cables were approximated to be serial chains of multiple massive cylindrical
links connected by prismatic joints. In ref. [27], the Rayleigh–Ritz method was employed to model the
non-linear longitudinal vibrations of the cables of a mobile ICaSbot, that is, a 6-6 CDPR mounted on a
mobile base platform.

The significant contributions of this work can be summarised as follows. As is apparent from the
reported survey of the state-of-the-art, many combinations of actuators and CDPRs were investigated
in the past. However, apart from a few recent attempts, little to no effort has been spent in bringing the
forward dynamic models of Type II CDPRs closer to their physical realities. The present work bridges
this gap by proposing a computational framework to comprehensively model and analyse the dynamics
of Type II CDPRs with kinematic and dynamic actuation inputs.

The said framework is detailed and realistic; for example, it takes into consideration the inertia, elas-
ticity and damping of the cables while modelling their dynamics. Also, it is modular by design. In this
context, “modular” implies that the components of the CDPR, such as the cables, the MP and the driving
mechanisms, are treated as independent sub-systems. It does not refer to different models of links and
joints used to represent these sub-systems, as in ref. [28]. For instance, as shown in Figs. 3 and 5, the
spatial 4-4 CDPR was notionally decomposed to four cables, an MP, and four quadcopters to perform
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the analysis. As such, the dynamic model of each can be developed in isolation, and then those can be
integrated to define the dynamics of the CDPR as a whole. Naturally, different combinations can be
created out of the same set of modules to generate multiple CDPRs.

Further, the inputs to the analyses can be either the variations of forces imparted by the actuators or
the changes in the locations of the cables’ exit points with time. The latter class of problems is addressed
for the first time in the present work to the best of the knowledge of the authors.

A recursive sub-system-level Lagrange multiplier (RSSLM) FD algorithm, originally introduced in
ref. [2], is employed to efficiently perform the computations in linear time. This work extends its appli-
cability to include closed-loop rigid-flexible multi-body systems with rheonomic constraints for the first
time. In addition, the generic nature of this framework for analysing CDPRs involving simultaneous
application of both kinds of actuation is also demonstrated for the first time.

A brief overview of the existing dynamic models of CDPRs is presented in Section 2. The modi-
fications necessary to incorporate the Type II actuation are elucidated in Section 3. The effectiveness
of the proposed framework is demonstrated with the help of a spatial 4-4 CDPR in Section 4. In par-
ticular, its capability to incorporate different types of actuation is illustrated with the same example in
Section 4.4. Finally, the discussions and conclusions of the present work are presented in Sections 5
and 6, respectively.

2. Existing dynamic models of cable-Driven parallel robot
The dynamic model of CDPRs employed in the present work is an extension of those developed in refs.
[2, 15]. Therefore, a brief overview of these models is presented first for the sake of completeness.

Figure 1. A typical architecture of a modified rigid finite element, adopted from [29].

The cables are modelled as serial chains of modified rigid finite elements (MRFEs), mentioned in
refs.[3]. As depicted in Fig. 1, each MRFE consists of two rigid links connected by a prismatic (P)
joint, and these elements are connected to one another by a universal (U) joint. The axial deflections,
considering both the axial stiffness and damping of the cables, are lumped together in the form of SDEs
at the P joints. Similarly, those due to the transverse and lateral stiffness and damping properties are
lumped together as the SDEs at the U joints.

The MP was modelled as a rigid body connected in parallel to multiple serial chains of MRFEs.
Effectively, the dynamic model of a CDPR without the inclusion of the effects of actuation was rendered
equivalent to a rigid-flexible multi-body mechanical system with closed loops. The EoM of such systems
are represented as follows:

M jq̈ = f j +
u∑

i=1

J�
ηqi,j
λi, j = 1, . . . , v, (1)
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where v denotes the number of sub-systems, that is, cables and MP, and u represents the number of
independent closed loops. The matrix M j ∈ GLnj (R) is the jth sub-system’s generalised inertia matrix
(GIM) (see, e.g., [4]), with nj being the number of joints in that sub-system. The vector qj ∈R

nj represents
the joint displacements, q̇j ∈R

nj their velocities and q̈j ∈R
nj their accelerations. The first term on the right

side of the equation, f j ∈R
nj , incorporates the contributions of the generalised forces imparted by the

environment (τ j), due to the SDEs (τ s
j ), the centripetal and Coriolis accelerations

(∑u
k=1 Cj,kq̇k

)
and the

gravity load (Gj). It is computed as the following sum:

f j = τ j + τ s
j −

v∑
k=1

Cj,kq̇k − Gj. (2)

The second term in Eq. (1) indicates the generalised constraint forces necessary for maintaining the
connectivity between different sub-systems. The reaction forces at such common points between a pair
of sub-systems are denoted by λi ∈R

mi , with mi being the minimum number of constraints required to
ensure the integrity of ith loop. The distribution of reaction forces at every joint was computed by trans-
forming these via the sub-matrices of constraint Jacobian matrix, Jηqi,j

∈R
mi×nj . These transformations

are computed from the following constraint functions that need to be satisfied at all times to ensure the
intactness of ith closed loop:

ηi(q) = 0, (3)

⇒ η̇i =
v∑

j=1

∂ηi

∂qj

q̇j =
v∑

j=1

Jηqi,j
q̇j = 0, where Jηqi,j

= ∂ηi

∂qj

. (4)

The additional conditions required for the computation of the unknown reaction forces, λi, are
obtained as:

η̈i =
dη̇i

dt
=

v∑
j=1

(
Jηqi,j

q̈j + J̇ηqi,j
q̇j

)= 0. (5)

A computationally efficient RSSLM approach was employed to determine the reaction forces λi and the
joint accelerations q̈j at desired instances of time using Eq. (1) and Eq. (5) for specified joint positions
qj and velocities q̇j.

The incorporation of the Type I actuation through time-varying lengths of the rigid links of MRFEs,
in ref. [15], induced an explicit dependence of every term in Eq. (1) on time, that is:

M j(t)q̈j +
v∑

k=1

Cj,k(t)q̇k + Gj(t) = τ s
j (t) + τ j + τ c

j (t), j = 1, . . . , v. (6)

Also, the matrix C represents generalised forces caused by the changing inertia of cables and those asso-
ciated with centripetal and Coriolis accelerations. The linear time complexity of the RSSLM approach
is retained even after such necessary modifications.

The modifications required to incorporate the Type II actuation in the same framework are presented
in the next section.

3. Extension of the dynamic model to include Type II actuation
A typical scenario of the Type II actuation in CDPRs is illustrated in Fig. 2. Multiple driving mech-
anisms, denoted by Dk, manipulate the positions of the exit points of cables, bk. As mentioned in
Section 1, these mechanisms could be aerial vehicles, mobile robots, or gantry cranes. Moreover, all
the cables could be connected to the same rigid body, as in the case of a crane, or connected to multi-
ple robots for cooperative transportation. This provision is made feasible due to the modular nature of
the proposed framework, which can accommodate any other variation in the components of the system
as well.
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Figure 2. A schematic representation of a typical type II CDPR. The kth cable, labelled as Ck, is
attached to the moving platform at ξr and connected to the driving mechanism Dk at bk. The point bk is
known as the exit point (described in section 1).

The locations of the exit points of the cables are treated as immobile in refs. [2, 15]. However, to anal-
yse the dynamics of Type II CDPRs, the motions of these points must be considered. First, the necessary
modifications to the computational model presented in ref. [2] are elucidated. Next, the formulations of
dynamics are characterised depending on the kinds of inputs supplied to the analyses, that is,

1. Availability of the forces applied on the exit points or the actuator efforts of the driving
mechanisms (attached to these points), and

2. Provision of the trajectories tracked by the exit points of cables.

Finally, the efficacy of the proposed formulations is demonstrated using the incompletely restrained
spatial suspended 4-4 CDPR as an example.

3.1. Forward dynamics formulation
The dynamic model of the cable is modified to accommodate the relative motions of their exit points
with respect to the global frame of reference o-X0Y0Z0. Due to these additional DoF, the configuration
of cable Ck is updated to:

qj =
[
b�

k , q1, . . . , q3ne

]� ∈R
3(ne+1), j = k = 1, . . . , nk. (7)

In Eq. (7), the symbol bk denotes the position of the exit point of cable Ck, whereas qι, ι = 1, . . . , 3ne,
with ne being the number of elements, represent the configuration of the cable. The number of cables is
denoted by nk. Further changes to the formulation of dynamics based on the nature of inputs provided
to the analyses are outlined below.

3.1.1. Inputs in the form of forces applied at the exit points of cables
The first kind of inputs considered in the following is the forces exerted by the driving mechanisms
on the cables. In such cases, assuming no other external forces are acting on the cables, the vector of
external generalised forces of cable Ck has the following structure:

τ k = [
λ�

i , 0, . . . , 0
]� ∈R

3(ne+1), k = 1, . . . , nk, i = nk + k. (8)

The force λnk+k in Eq. (8) acts at the exit point of cable Ck.
Alternatively, the generalised forces internal to the actuators of the driving mechanisms, denoted

by τ i, could be specified as inputs to the analyses when there is no provision for direct measurement
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of λi. In such scenarios, as depicted in Fig. 3, every mechanism Dk, k = 1, . . . , nk, is treated as a separate
sub-system of the CDPR to compute the required restraining forces at the corresponding exit point.

Figure 3. Driving mechanisms, Dk, k = 1, . . . , nk, as separate sub-systems of a Type II CDPR. The
symbol τ i, i = nk + k, denotes the internal actuator forces of the kth driving mechanism and λi represents
the reaction forces at the exit point bk of the cable Ck.

At first, the connectivity between the sub-systems Dk and Ck is ensured by introducing the action-
reaction pair of forces, denoted by λi. Subsequently, λi are computed from the imposition of additional
constraint equations, ηi = 0, where:

ηi = bk − ek, k = 1, . . . , nk, i = nk + k. (9)

In Eq. (9), the location of the leading end of cable Ck is denoted by bk and its attachment point on Dk

by ek.
In summary, the above formulation can handle inputs either in the form of forces directly applied on

the exit points of cables or those that are internal to the actuators of the driving mechanisms. However,
there can be many situations where the inputs are available in the form of motions of the exit points
rather than the forces acting on them. One instance of such a scenario can be where the exit points of
the cables are being carried by individual aerial vehicles, such as quadrotors or helicopters – instead of
incorporating their dynamics into the overall model, one can simply track their motions and use those
as kinematic inputs to the overall system. Analyses of such systems are discussed next.

3.1.2. Inputs in the form of trajectories tracked by the exit points of cables
The second kind of inputs to the analyses are the trajectories of the exit points of cables. As shown
in Fig. 4, the point bk of cable Ck is considered to follow the input trajectory ek(t). Consequently, the
inputs at some of the joints will be kinematic while the rest are dynamic in nature. Therefore, simulation
of the CDPR requires a hybrid approach, that is, both the FD and ID analyses as classified in [30],
pp. 171–172. Such problems of CDPRs are addressed for the first time in the present work, to the best
of the authors’ knowledge.

In the present work, the hybrid dynamic analysis of the robot is circumvented by introducing the
following constraint equations:

ηi(bk, t) := bk − ek(t) = 0, k = 1, . . . , nk, i = nk + k. (10)
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Figure 4. Representative trajectories ek(t) of the exit points bk of cables Ck in Type II CDPRs. The
reaction forces acting at the exit point bk are denoted by λnk+k.

Clearly, Eq. (10) represents rheonomic constraints,3 that is, they depend explicitly on time. Therefore, the
associated Lagrange multipliers, denoted by λi, are also functions of time. Specifically, differentiating
ηi twice results in the following expression:

dηi

dt
= d

dt

(
∂ηi

∂t
+

v∑
j=1

Jηqi,j
q̇j

)

= ∂2ηi

∂t2
+

v∑
j=1

(
∂

∂qj

(
∂ηi

∂t

)
q̇j + Jηqi,j

q̈j +
d
dt

(
Jηqi,j

)
q̇j

)
. (11)

Equation (11) may be simplified significantly by taking into cognisance the following.

1. The variations of ηi w.r.t. time and the configuration variables, qj, are mutually independent,
hence ∂

∂qj

(
∂ηi
∂t

)= 0.
2. The matrix Jηqi,j

is of constant nature, since its entries are either ones or zeros. Therefore,
d
dt

(
Jηqi,j

)= 0.

With these, Eq. (11) reduces to:

d2ηi

dt2
= ∂2ηi

∂t2
+

v∑
j=1

Jηqi,j
q̈j = 0, i = nk + 1, . . . , 2nk. (12)

The key difference between the above form of the loop-closure equation and that associated with the
scleronomic types (as in Eq. (5)) is the additional term ∂2ηi

∂t2
, accounting for the explicit dependence of

ηi on time. Consequently, the expression of the residual constraint accelerations ψ i (see Eq. (15)) is
modified to:

ψ i =
∂2ηi

∂t2
+

v∑
j=1

Jηqi,j
aj, i = nk + 1, . . . , 2nk. (13)

In Eq. (13), the symbol aj ∈R
nj denotes the unconstrained joint accelerations of the jth sub-system and

it is given by:

aj = M j
−1f j, j = 1, . . . , v, (14)

3A detailed description of different forms of constraint equations can be found in ref. [38], pp. 72–82. In particular, a general
form of Eq. (12) is presented as Eq. (3.27) in p. 79 and its inclusion in the equation of motion following the Lagrangian framework
is presented in pp. 131–142.
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where f j is the cumulative effect of the generalised forces devoid of the inertial and constrained forces
acting on the jth sub-system, as in Eq. (2). Finally, the Lagrange multipliers can be computed using the
same expressions reported in ref. [2], that is:

u∑
s=1

Ai,sλs +ψ i = 0, i = 1, . . . , u, and u = 2nk, (15)

where Ai,s ∈R
mi×mi is the sub-matrix of the generalised inertia constraint matrix, mentioned in ref. [31].

Effectively, by virtue of the generalisations mentioned above, the modified RSSLM approach can simu-
late the dynamics of Type II CDPRs even when the trajectories of the driving mechanisms are provided
as inputs.

4. Illustrative examples
The utility of the modified computational model is demonstrated on an incompletely restrained sus-
pended 4-4 CDPR. The details related to the architecture of the robot and the notations used in the
formulation of dynamics are delineated in Section 4.1. Also, a rudimentary model used for detecting the
contact between the MP and the ground so as to prevent the MP from penetrating the ground is described
in Appendix B. In the first case study, the transfer of load from an initial pose to a final one based on
the input trajectories of the exit points of cables is demonstrated. In the second one, four quadcopters
are used to manipulate the motions of these exit points. The response of the CDPR when one of those
quadcopters fails mid-flight is examined. In the final case study, the response of the robot is investigated
when different types of actuation, namely, Types I & II, are simultaneously applied.

4.1. Architecture of a 4-4 cable-driven parallel robot
A 4-4 CDPR consists of four cables C1, . . . , C4 connected to the MP at ξ 1, . . . , ξ 4, and to the driving
mechanisms at b1, . . . , b4. It is decomposed into four cables and an MP, as shown in Fig. 5. The length,
width and height of the MP are represented by lm, wm, hm, respectively. Since the local frame of refer-
ence ξ c-XaYaZa is considered identical to the fixed one o-X0Y0Z0 at the initial configuration, the ZYZ
convention of Euler angles used for representing its orientation in the previous works, for example, [2],

Figure 5. Notional decomposition of the 4-4 cable-driven parallel robot into four cables and a moving
platform.
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will lead to a parametric singularity (see, e.g., [32], pp. 51–52). Therefore, the XYZ convention is used
in this case to circumvent the singularity, and the corresponding DH parameters are listed in Table I.

The action-reaction forces at the disassembled joints are determined via the computation of the
Lagrange multipliers λ1, . . . , λ4 associated with the loop-closure constraint functions in Eq. (3). The
dimension of the configuration space of every cable is given by nk = 3(ne + 1), k = 1, . . . , 4, and hence,
that of the 4-4 CDPR is n = 12ne + 18. The number of constraint functions is m = 24, that is, three per
each end of the cable.

4.2. Pick-and-place operation by the 4-4 cable-driven parallel robot
The numerical values of the architecture and inertia parameters of the robot are listed in Table II. Further,
the values of the various tolerances used in the simulation are the same as the ones reported in Table
C.6 of [2]. The unstrained lengths of the cables are:

lk = 0.75 m, k = 1, . . . , 4. (16)

Since these unstrained lengths are small and do not vary with time, only five MRFEs are used for mod-
elling each cable; thereby, ne = 5. Subsequently, the coefficients of stiffness of the SDEs are determined
using the expressions reported in ref. [2]. Their numerical values are given by:

sa = 1.16 × 107 N/m, st = sl = 11.64 Nm/rad. (17)

In Eq. (17), the subscripts a, t and l denote the values associated with deflections in the axial, trans-
verse and lateral directions, respectively. Likewise, the calculated damping coefficients of cables are as
follows:

da = 2.40 × 105 Ns/m, dt = dl = 0.24 Nms/rad. (18)

The initial pose of the robot is shown in Fig. 6. As mentioned before, the initial configuration of the
MP is selected such that it rests on the ground with its local frame of reference ξ c-XaYaZa oriented in
the same direction as the fixed frame of reference o-X0Y0Z0. Therefore, its position and orientation are
given by:

q5 = [0.70, 1.00, 0.10, 0, 1.57, 0]� . (19)

Figure 6. Initial configuration of the 4-4 cable-driven parallel robot with its moving platform resting
on the ground, that is, the plane X0Y0.
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Figure 7. Specified identical path followed by the exit points of the cables bk, k = 1, . . . , 4. It comprises
four line segments, L1 to L4.

Figure 8. Input trajectory of the exit points of the cables �ek = ek(t) − ek(0), k = 1, . . . , 4. The legends
�ekx, �eky, �ekz represent the vector components of �ek. Due to the symmetry in the chosen path, �ekx

is identical to �eky.

Next, the initial configurations of the cables are chosen to be taut and oriented along the vertical
direction. Accordingly, their numerical values are obtained as follows:

q1 = [0.40, 0.60, 0.95, 0, 3.14, 0, . . . ]� , q2 = [1.00, 0.60, 0.95, 0, 3.14, 0, . . . ]� ,

q3 = [0.40, 1.40, 0.95, 0, 3.14, 0, . . . ]� , q4 = [1.00, 1.40, 0.95, 0, 3.14, 0, . . . ]� . (20)

Finally, the trajectories of the exit points of cables are planned as described below.
At first, the path followed by every point bk, k = 1, . . . , 4, is divided into four line segments. As

depicted in Fig. 7, the first segment, L1, is meant to vertically lift the MP from its initial location; the
second, L2, is meant to spatially ascend it; the third, L3, is meant to spatially descend it; and the last, L4,
is meant to vertically lower it to the desired destination on the ground. Next, the trajectories along each
segment are defined via cubic polynomials of time, assuming that the points bk start and end with zero
velocities.
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(a) (b)

Figure 9. Variation in the configuration of the moving platform of the 4-4 cable-driven parallel robot,
�q5(t) = q5(t) − q5(0), for the inputs given in Eq. (21).

The input trajectories of the exit points are represented using the difference �ek(t) = ek(t) −
ek(0), k = 1, . . . , 4. The components of the vector �ek = [

�ekx, �eky, �ekz
]� are defined as the follow-

ing piece-wise functions:

�ekx = �eky =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ t ≤ 2,

(t − 2)2(7 − 2t)

2
√

2
, 2 < t ≤ 3,

82 + t(t(21 − 2t) − 72)

2
√

2
, 3 < t ≤ 4,

1√
2

, 4 < t ≤ 6.

,

�ekz =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t2(3 − t)

4
, 0 ≤ t ≤ 2,

2 − √
3(t − 2)2(2t − 7)

2
, 2 < t ≤ 3,

2 + √
3 + √

3(t − 3)2(2t − 9)

2
, 3 < t ≤ 4,

(t − 6)2(t − 3)

4
, 4 < t ≤ 6;

k = 1, . . . , 4. (21)

The variations of �ek with time are depicted in Fig. 8. A video file named “motionOf44
cdprN5_ipTrjExPts.mp4” depicts the motion of the robot for the specified input.

The displacements of the MP for the input trajectories of bk are shown in Fig. 9, using the difference
�q5(t) = q5(t) − q5(0). In addition, the variations of its instantaneous velocities and accelerations with
time are depicted in Figs. 10a, 10b and Figs. 10c, 10d, respectively. Apart from the small yaw motion
of the MP initiated at the end of vertical lift, that is, at t = 2 s, there is no significant change in the
orientation of the MP (see Fig. 9b).

Further, the variations of the linear displacements of the MP (shown in Fig. 9a) are similar to
those of the exit points of the cables (see Fig. 8). Ideally, these variations would be the same if the

https://doi.org/10.1017/S026357472400047X Published online by Cambridge University Press

https://doi.org/10.1017/S026357472400047X


14 Teja Krishna Mamidi and Sandipan Bandyopadhyay

(a)

(c) (d)

(b)

Figure 10. Variations in the linear, angular velocities q̇5(t) and accelerations q̈5(t) of the moving
platform of the 4-4 cable-driven parallel robot, corresponding to the inputs given in Eq. (21).

Figure 11. Variations in the error δξ c = �ξ c − �bk(t) with time. The scalar components of δξ c are
denoted by δξx, δξy and δξz.

dynamics of the robot were ignored. Therefore, an error measure δξ c(t) used to quantify such effects is
defined as:

δξ c(t) = �ξ c(t) − �ek(t). (22)
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The changes in δξ c(t) with time are depicted in Fig. 11. As is evident from the results, a kinematic
estimation of the displacements of the MP will be erroneous. In this case, the maximum deviations
are given by ‖δξ c‖∞ = [4.46, 3.30, 0.16]� × 10−2 m, which are approximately [10, 8, 0]� % relative
error in the respective directions. Similarly, the errors in estimating the linear velocities are ‖δξ̇ c‖∞ =
[0.34, 0.32, 0.02]� m/s and the linear accelerations are ‖δξ̈ c‖∞ = [3.37, 4.90, 0.32]� m/s2. Therefore, the
dynamics of the cables and the MP should be included in the analyses for better accuracy.

The magnitudes of the axial extensions of the cables are minimal (O
(
10−6

)
m) throughout the sim-

ulation of the robot. The changes in the constraint forces at the anchoring points of the cables ck are
shown in Fig. 12, and those corresponding to the exit points bk are depicted in Fig. 13. All the cables
pull the MP vertically for the entire duration of the simulation because λiz (t) < 0, ∀i = 1, . . . , 4, and
λiz (t) > 0, ∀i = 5, . . . , 8. The former indicates that the cables counter the weight and vertical inertial
forces of the MP, while the latter implies that the driving mechanisms are being pulled during the opera-
tion. Hence, these reaction forces complement each other, as seen by the change in sign of the respective
plots. Also, the abrupt change in |λiz | in the vicinity of t = 6 s is due to the impact of the MP on the
ground.

(a) (b)

(c) (d)

Figure 12. Variations in the values of components of the reaction forces λi, i = 1, . . . , 4, with time,
corresponding to the simulation of the 4-4 cable-driven parallel robot for the inputs given in Eq. (21).

The computational time4 taken to perform the simulation with the input trajectories ek(t) of the points
bk in Eq. (21) is 2261 s (approximately, 37 minutes). Similar to the results presented in ref. [15], the
solver increases the temporal resolution to accurately determine the robot’s response to the transitions,
as the exit points switch segments in their paths. However, as depicted in Fig. 14, the majority of the

4The reported time is determined using the built-in functions tic() and toc() in MATLAB� software. The computations
required for obtaining the results reported in the article are performed on a single core of a PC with an Intel� CoreTM i7-4790
processor running at 3.60 GHz, unless specified otherwise. These values also include the time taken to store the results for analysing
and performing several checks.
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time is spent in capturing the dynamics of the robot while spatially ascending and descending the MP.
This could be attributed to the initiation and the rapid variations in transverse and lateral deflections of
cables, which is also evident from the MP’s displacements shown in Fig. 9 from t = 2 s to 5 s.

4.2.1. Validation of the simulation results
The satisfaction of the imposed kinematic constraints is verified by employing the error measures e1

and e2 defined in Appendix E. The variations of errors e1, e2 of the constraints responsible for the
connectivity between the cables and the MP are depicted in Fig. 15. Similarly, those responsible for
tracking the input trajectory of the exit points of cables are shown in Fig. 16. In both cases, the residues
are within respective desirable limits for the entire duration of the simulation. Hence, the obtained results
are confirmed to be valid.

(a) (b)

(c) (d)

Figure 13. Variations in the values of components of the reaction forces λi, i = 5, . . . , 8, with time,
corresponding to the simulation of the 4-4 cable-driven parallel robot for the inputs given in Eq. (21).

Figure 14. Variations in the step size �t used by the solver ode15s at every instance of the simulation
of the 4-4 CDPR for the input trajectories of the exit points of the cables bk in Eq. (21). The sustenance
of smaller steps can be seen during the spatial ascend and descend of the MP, that is, segments L2 and
L3 in Fig. 7.
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Figure 15. Variations in the errors e1 and e2 with time, corresponding to the constraint functions asso-
ciated with the connectivity between the cables and the MP. The definitions of e1 and e2 are given in Eqs.
(E1) and (E2), respectively.

Figure 16. Variations in the errors e1 and e2 with time, corresponding to the constraint functions respon-
sible for incorporating the input trajectories of the exit points of cables. The definitions of e1 and e2 are
given in Eqs. (E1) and (E2), respectively.

4.3. Dynamic response of the robot in the event of mid-flight failure in the actuation
In this example, the driving mechanisms connected to the 4-4 CDPR are chosen to be four identical
quadcopters. First, the dynamic model of the quadcopter is described. Next, the temporal changes in
the forces internal to the quadcopters are devised. Finally, the response of the robot starting from the
configuration shown in Fig. 6 is presented.

The architecture of the quadcopter that drives the cable Ck is shown in Fig. 17. A local frame of
reference, ek-Xmk Ymk Zmk , is attached at its centre of mass. The orientation of this frame with respect to the
inertial frame of reference o-X0Y0Z0 is represented using the XYZ convention of Euler angles αk, βk, γk.
Therefore, the configuration of the kth quadcopter is defined by qj =

[
e�

k , αk, βk, γk

]�, j = k + 5. The DH
parameters required for modelling these sub-systems are listed in Table I.

Further, the thrust forces and reactive moments of the rotors are directed along the Zmk -axis at all
times. The magnitudes of the former are denoted by f1k , . . . , f4k , while those of the latter are represented
by m1k , . . . , m4k . Moreover, the ratio of these moments to the forces, denoted by ctm, is constant for
specific propeller designs (see, e.g., [33]). Therefore, only four of these eight magnitudes can be varied
independently. Furthermore, drag forces are neglected5 in the present work.

5A comparison of different models of the unmanned aerial vehicle with multiple rotors was reported in ref. [39]. As per the
reported observations, the drag forces can be neglected for the low velocities of the vehicle, which is the case in this example.
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Figure 17. Schematic of the model of quadcopter. The thrust forces and reactive moments of the kth
quadcopter are denoted by f1k , . . . , f4k and m1k , . . . , m4k , respectively. The reaction forces from the kth
cable is denoted by λnk+k.

Figure 18. Temporal variations of the input thrust forces of the quadcopters, f1k = f2k = f3k = f4k = fk,
k = 1, . . . , 4.

Accordingly, the equations of motion of the quadcopters can be expressed in the form of Eq. (1).
Subsequently, the external forces, τ j, are computed using the expression:

τ j =
[
ftk sin βk, −ftk sin αk cos βk, ftk cos αk cos βk,

(
f2k − f4k

)
rk,
(
f3k − f1k

)
rk, mtk

]�
,

where ftk = f1k + · · · + f4k , mtk = m1k + · · · + m4k , k = 1, . . . , 4, j = k + 5. (23)

In Eq. (23), the symbol rk denotes the offset of the rotors’ axes of rotation from the point ek. Since there
are no SDEs associated with these sub-systems, the vector τ s

j is null. In addition, the sub-matrices of the
constraint Jacobian matrix Jηq associated with the constraint functions in Eq. (9) are constant. Therefore,
there is no need for numerical estimation of these matrices, and their entries are either ones or zeroes.
Furthermore, the sparsity of the GIMs M j, j = 6, . . . , 9, is taken into account while computing their
inverses. The numerical values of the architecture and inertia parameters of the quadcopters used in the
simulation are listed in Table III.

The input actuator forces of the quadcopters are planned as follows. First, the yaw motion of
quadcopters is prevented by imposing the following conditions on the reactive moments of the
rotors:

m1k = −m3k , m2k = −m4k , k = 1, . . . , 4. (24)
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Next, the changes in the thrust forces for the four quadcopters are considered as:

f1k = f2k = f3k = f4k = fk, k = 1, . . . , 4,

fk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5

2
sin
(π

2
t
)

, 0 < t ≤ 1

2
,

5

2
,

1

2
< t ≤ 3,

0, k = 1, t > 3,

5

2
, k �= 1, t > 3.

(25)

(a) (b)

Figure 19. Variation in the configuration of the moving platform of the 4-4 cable-driven parallel robot,
�q5(t) = q5(t) − q5(0), for the inputs given in Eq. (25).

Their variations with time are shown in Fig. 18. Finally, the corresponding val-
ues of the reactive moments are computed using the constant ctf. A video file named
“motionOf44cdprN5_ipForces_vertInitCond.mp4” depicts the motion of the robot for the specified
input when started from the configuration shown in Fig. 6.

The difference �q5 = q5(t) − q5(0) is used for studying the linear and angular displacements of the
MP due to the input forces mentioned above. The variations of �q5 with time are depicted in Fig. 19.
Initially, the collective forces exerted by the quadcopters are not sufficient to lift the MP. However, after
t = 0.48 s, the MP starts to move up vertically, that is, �ξz > 0 (see Fig. 19a). Subsequently, the MP
accelerates in that direction with no significant change in its orientation. Even though the actuators of
the first quadcopter are shut off at t = 3 s to simulate its failure, the MP continues to ascend due to
inertia of motion. However, its orientation no longer remains the same as the initial one (see Fig. 19b).
Eventually, due to insufficient support from the remaining three quadcopters, the MP starts to descend
at t = 4.21 s. The corresponding changes in the velocities and accelerations of the MP are depicted in
Figs. 20a, 20b and Figs. 20c, 20d, respectively.

Further, the variations in the reaction forces at the trailing ends of the cables are shown in Fig. 21.
Similarly, the changes in those at the exit points of the cables are depicted in Fig. 22. As is evident from
the plots, the variations of reaction forces in different cables remain the same until t = 3 s. Moreover, the
cables start to pull the MP vertically, that is, λiz < 0, i = 1, . . . , 4, only after the applied actuator forces
reach a specific limit at t = 0.31 s. Also, due to the inertia of rest of the MP, slightly larger forces are
required to initiate the lift. Hence, an abrupt decrease in the magnitude of reaction forces

∣∣λiz

∣∣ can be

https://doi.org/10.1017/S026357472400047X Published online by Cambridge University Press

https://doi.org/10.1017/S026357472400047X


20 Teja Krishna Mamidi and Sandipan Bandyopadhyay

(a) (b)

(c) (d)

Figure 20. Variations in the linear, angular velocities q̇5(t) and accelerations q̈5(t) of the moving
platform of the 4-4 cable-driven parallel robot, corresponding to the inputs given in Eq. (25).

seen after t = 0.48 s. Furthermore, the first cable becomes non-supportive and acts as additional load on
the remaining quadcopters after t = 3 s.

There is no observable difference in the orientation of the quadcopters. However, the changes in their
linear displacements are as depicted in Fig. 24. Although the actuator inputs of the first quadcopter cease
to exist after t = 3 s, its motion is governed by the reaction forces −λ5, shown in Fig. 22a.

Similar to the results presented in Section 4.2, the deflections in the cables due to their axial compli-
ance are minimal throughout the simulation. The computational time taken to obtain the response of 4-4
CDPR for the inputs given in Eq. (25) is 1.38 × 104 s. It takes only 7.39 s to obtain results for t ∈ [0, 3) s.
Therefore, as seen in Fig. 23, most of the time is spent obtaining the results for t ∈ [3, 6] s, where the
cables undergo transverse and lateral displacements.

Furthermore, even with the same input forces as in the previous one, when the simulation is ini-
tiated using a different configuration of cables, such as the one shown in Fig. 25, it took only 121 s
of computational time. This difference can be attributed to gravity assisting the cables to deflect in
the transverse direction when the quadcopters fail to apply sufficient pulling forces on the cables.
In the former, due to the alignment of cables with the direction of gravity, that is, the vertical axis
bo-Z0 (shown in Fig. 6), both gravity and the quadcopters induce compressive loads. A video file named
“motionOf44cdprN5_ipForces_incInitCond.mp4” depicts the motion of the robot for the specified input
when started from the configuration shown in Fig. 25.
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(a) (b)

(c) (d)

Figure 21. Variations in the values of components of the reaction forces λi, i = 1, . . . , 4, with time,
corresponding to the simulation of the 4-4 cable-driven parallel robot for the inputs given in Eq. (25).

(a) (b)

(c) (d)

Figure 22. Variations in the values of components of the reaction forces λi, i = 5, . . . , 8, with time,
corresponding to the simulation of the 4-4 cable-driven parallel robot for the inputs given in Eq. (25).
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Figure 23. Variations in the time steps �t of the solver ode15s at every instance of the simulation of
the 4-4 CDPR for the changes in the actuator forces of the quadcopters in Eq. (25). The sustenance of
smaller steps can be seen after the failure of the first quadcopter after t = 3 s. Such a failure renders
the cable to be non-supportive and leads to disruptions in the motions of the remaining cables and
quadcopters.

(a) (b)

(c) (d)

Figure 24. Variations in the linear displacements, �bk = bk(t) − bk(0), of the quadcopters, Dk,
k = 1, . . . , 4, for the inputs specified in Eq. (25).

4.3.1. Validation of the simulation results
The values of the errors e1 and e2 defined in Appendix E, are computed for the entire duration of the
simulation. The variations in these errors associated with the constraint functions ηi, i = 1, . . . , 4, are
shown in Fig. 26, and those related to ηi, i = 5, . . . , 8, are depicted in Fig. 27. In both cases, the errors
are within desirable limits. Therefore, the connectivity of the cables with the MP and the quadcopters
is verified to be intact during the simulation of the robot.
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Figure 25. Initial configuration of the 4-4 cable-driven parallel robot with its moving platform resting
on the ground, that is, the plane X0Y0. Also, in contrast to the configuration depicted in Fig. 6, the cables
are not aligned along the direction of gravity, the axis Z0.

Figure 26. Variations in the errors e1 and e2 with time, corresponding to the constraint functions asso-
ciated with the connectivity between the cables and the MP. The definitions of e1 and e2 are given in Eqs.
(E1) and (E2), respectively.

Figure 27. Variations in the errors e1 and e2 with time, corresponding to the constraint functions respon-
sible for incorporating the input trajectories of the forces of the quadcopters. The definitions of e1 and
e2 are given in Eqs. (E1) and (E2), respectively.
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Figure 28. Variations in the input unstrained lengths of cables of the 4-4 CDPR, lk, k = 1, . . . , 4,
associated with the feed rates given in Eq. (26).

(a) (b)

Figure 29. Variations in the configuration of the moving platform of the 4-4 cable-driven parallel robot,
�q5 = q5(t) − q5(0), with time for the inputs given in Eqs. (21) and (26).

4.4. Pick-and-place operation with sinusoidal feed rates of the cables
The simulation is initiated from the configuration of the robot depicted in Fig. 25. In addition to the
input trajectories of the exit points defined in Eq. (21), the input feed rates of the cables are provided
using the following expression:

l̇k = ωc

10
cos

(
ωct + (k − 1)

π

10

)
, k = 1, . . . , 4, ωc = π

5
. (26)

The associated input trajectories of the cables’ lengths are depicted in Fig. 28. Accordingly, the masses,
moments of inertia and locations of the centres-of-mass of rigid links of MRFEs are updated at every
time instance. The stiffness and damping coefficients are recomputed. The necessary changes to the
formulation of dynamics noted in ref. [15] are introduced.

The changes in the position and orientation of the MP are represented using the difference �q5 in Figs.
29a, 29b, respectively. The associated variations in the velocity and acceleration of the MP are shown
in Figs. 30a, 30b and Figs. 30c, 30d, respectively. As opposed to the results presented in Section 4.2,
significant changes in the MP’s angular displacements can be observed in this case due to the time-
varying lengths of cables.

As is the case with the previous case studies, the axial extensions of the cables are minimal for the
entire duration of the simulation. The variations in the forces exerted by the MP on the cables at their
anchoring points are shown in Fig. 32. The forces responsible for the desired motion of the exit points
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(a) (b)

(c) (d)

Figure 30. Variations in the linear, angular velocities q̇5(t) and accelerations q̈5(t) of the moving plat-
form of the 4-4 cable-driven parallel robot, corresponding to the inputs given in Eqs. (21) and (26).

Figure 31. Variations in the errors e1 and e2 with time, corresponding to the constraint functions asso-
ciated with the connectivity between the cables and the MP. The definitions of e1 and e2 are mentioned
in Eq. (E1) and Eq. (E2), respectively.

of cables are depicted in Fig. 34. Evidently, all the cables pull the MP during the operation of the robot.
However, the load is not shared uniformly amongst the cables due to the temporal changes in their
lengths. A depiction of the response of the CDPR to simultaneous application of feeding of cables and
the movement of their exit points is included as a video file named “motionOf44cdprN5_diffMoA.mp4.”
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(a) (b)

(c) (d)

Figure 32. Variations in the values of components of the reaction forces λi, i = 1, . . . , 4, with time,
corresponding to the simulation of the 4-4 cable-driven parallel robot for the inputs given in Eqs. (25)
and (26).

Figure 33. Variations in the errors e1 and e2 with time, corresponding to the constraint functions that
ensure the trajectories of the exit points of the cables to be the same as the inputs. The definitions of e1

and e2 are mentioned in Eq. (E1) and Eq. (E2), respectively.

4.4.1. Validation of the simulation results
The dynamic evolution of the robot is in accordance with the imposed constraints. The residues of
the constraint functions ηi, i = 1, . . . , 4, responsible for the intactness of the connectivity between the
cables and the MP are shown in Fig. 31 and those ηi, i = 5, . . . , 8, indicating the accuracy in tracking
the desired trajectory of the exit points are depicted in Fig. 33.
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(a) (b)

(c) (d)

Figure 34. Variations in the values of components of the reaction forces λi, i = 5, . . . , 8, with time,
corresponding to the simulation of the 4-4 cable-driven parallel robot for the inputs given in Eqs. (25)
and (26).

5. Discussions
A summary of the present work and its key contributions vis-à-vis the existing literature are presented
in the following.

The present work is primarily distinguished from the previous ones in its focus on the modelling and
simulation of the dynamics of the Type II CDPRs, since the control-related aspects seem to dominate the
literature. To that end, a new approach (reported in ref. [2]) with efficient recursive algorithms is utilised.
Also, two different kinds of inputs were considered in the analyses. In cases where the trajectories of
the exit points of cables are specified, the hybrid dynamic analyses of Type II CDPRs are addressed by
incorporating additional rheonomic constraints in the formulation of dynamics.

The hybrid dynamics of serial and tree-type architectures have been extensively studied in the past
(see, e.g., [34]). Such approaches may not be easily extended to parallel architectures due to the addi-
tional constraint forces associated with the combination of different sub-systems. In addition, the ID
analyses of Type II CDPRs are not straightforward due to the associated underactuation in cables and
actuators, as explained in ref. [35]. Therefore, additional rheonomic constraints are used in the present
study to avoid the ID analysis. As mentioned before, such a class of problems is addressed for the first
time, to the best of the authors’ knowledge, in the present work.

The second distinction of the proposed computational framework is in the employed model of the
cables. As mentioned in Section 1, most of the previous studies on the Type II CDPRs assume the cables
to be massless, inelastic and taut. It was justified based on the scale of applications being generally small.
However, such approximations do not hold true in the case of aggressive manoeuvres or when the mass
of the cable is comparable to that of the MP or when there are low tensions in the cables. Therefore, a
few studies have considered slack models of cables, as outlined in Section 1.

Nonetheless, the slack models utilised in the prior works are incomplete, that is, the stiffness and
damping properties of the cables were ignored while treating these as serial chains of rigid bodies con-
nected by U joints in refs. [20, 35]. Recently, lumped masses connected by SDEs were employed to
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closely approximate the physics of cables; see, for example, [21]. Nevertheless, the stiffness and damp-
ing properties in the transverse and lateral directions were not incorporated in these works. Naturally,
these distinctions continue to hold good even when the application domain is extended to include simul-
taneous actuation of Type I and II since no prior work has been found to employ a comprehensive
dynamic model of the cables in such a scenario.

The scope of application of the RSSLM approach is also extended to the FD analyses of rigid-flexible
multi-body autonomous systems with rheonomic constraints, as opposed to those with only scleronomic
constraints in the previous works (see, e.g., [2, 15]). This aspect of the proposed framework, aided by the
modular nature of the associated mathematical formulation, affords a fast expansion of the scope of such
analyses. In this article, the CDPRs with Type I and Type II actuations are discussed. However, since
the internal dynamics of the mechanisms responsible for the motion of the exit points of the cables may
be completely abstracted out in favour of their final kinematic outputs (i.e., their motion trajectories),
the very nature of such mechanisms becomes completely irrelevant to the analyses. Consequently, in
addition to the FD analyses of several variants of Type I and Type II CDPRs, the proposed framework
can also be applied to many situations in different domains, such as air-to-air refuelling of aircrafts,
underway replenishments and the feeding and reeling-in of towed (individual) cables and ropes from a
ship or a submarine.

In summary, the present work brings together a number of theoretical and computational elements,
such as rheonomic constraints; a comprehensive MRFE model including inertia, elasticity and damping;
and the computationally efficient RSSLM approach, in the context of analysing the dynamics of Type
II CDPRs. Furthermore, it demonstrates simultaneous application of both types of actuation for the first
time, to the best of the authors’ knowledge. These developments constitute key enablers for broadening
the scope of analysis for similar complex systems including rigid and flexible elements, without having
to make too many simplifying assumptions.

The proposed framework can be further improved in the following manner. It is assumed that there
are no collisions between the cables or the MP. Such idealisations may not hold true in the case of redun-
dantly restrained CDPRs or cluttered environments. Therefore, suitable collision models are required to
analyse the contact dynamics of the cables and the MP for close proximities among these or with the
surrounding obstacles. As investigated in ref. [8], the contact models become a necessity in analysing
the cooperative towing of a payload using mobile robots, an example of the planar Type II CDPR. In
such scenarios, the payload is always in contact with the ground and slides on it.

6. Conclusions
The computational model presented in the prior works has been updated to include the Type II actua-
tion, wherein the locations of the exit points of cables are varied with time. Hereof, input trajectories
tracked by the exit points or the external forces applied at these points are incorporated into the model.
The former is achieved via the addition of rheonomic constraint equations. In comparison, the latter is
demonstrated to involve minimal changes in the dynamic model when the forces acting at the exit points
are provided. However, if such reaction forces are not available, then the dynamics of the mechanisms
driving these points are analysed along with the cables and the MP. Subsequently, the efficacy of the
improved computational model is exemplified by simulations of the 4-4 CDPR. The modularity and
generality of the proposed work to simulate the dynamics of CDPRs when both types of actuation are
applied simultaneously is demonstrated using the same example. Finally, the results are validated by
checking the connectivity of the cables with the MP and the actuator mechanisms for the entire dura-
tion of the simulations. The codes developed for this purpose are available for download via the link:
https://github.com/TejaKrishnaMamidi/rsslm.
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Appendices
A. Denavit-hartenberg parameters used for modelling the moving platform and the quadcopters
Since the MP and the quadcopters are abstracted to rigid bodies, their kinematic topologies can be
represented using similar DH parameters. A typical rigid body motion is equivalent to that of a Cartesian
robot, that is, three orthogonal prismatic joints, with its end-effector assembled to a spherical joint. In
the present work, the arrangement of the links and joints of such a hypothetical robot is represented
using the modified DH convention.

The DH parameters of a rigid body with its centre of mass located at p = [
px, py, pz

]� and its orien-
tation represented using the XYZ convention of Euler angles θx, θy, θz are listed in Table I. The symbols
αι−1 and aι−1, ι = 1, . . . , 6, denote the angular displacement about the axis Xι−1 and the linear displace-
ment along it, respectively. Similarly, bι and θι represent those associated with the axis Zι of the local
frames of reference.

In the case of the MP, p = ξ c = [
ξx, ξy, ξz

]�, θx = ξα, θy = ξβ , and θz = ξγ . Similarly, for the kth
quadcopter, p = bk = [

bkx , bky , bkz

]�, θx = αk, θy = βk, and θz = γk.
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Table I. Denavit-Hartenberg parameters of a rigid body with its centre of mass located
at p = [px, py, pz]

� and its orientation represented using the XYZ convention of Euler
angles θx, θy, θz.

Position Orientation
αι 0

π

2

π

2
−π

2
−π

2

π

2
aι 0 0 0 0 0 0
bι pz px py 0 0 0

θι

π

2

π

2
0 θx θy + π

2
θz

B. Collision model for a cuboid moving platform
The two case studies of 4-4 CDPR reported in Section 4.2 need restriction of the vertical motion of
a cuboid MP to resemble its contact6 with the ground. Therefore, if and when the bottom side of the
MP touches the ground, that is, ξz = hm

2
, an additional SDE along the Z0-axis is attached to its centre of

mass ξ c = [
ξx, ξy, ξz

]�, where the symbol hm denotes the height of the MP. The associated changes in
modelling the MP with contact (Case A) and without contact (Case B) are depicted in Fig. 35.

Figure 35. Changes in the model of the cuboid MP of 4-4 CDPR based on its state of contact with
the ground. Case A is used when it is in contact with the ground and case B when it is not in contact.
The symbol ξz represents the vertical position of the centre of mass of the MP with respect to the frame
o-X0Y0Z0.

Consequently, the external forces acting on the MP are updated to τ 5 = [
0, 0, Fz, 0, 0, 0

]�, where

Fz =

⎧⎪⎪⎨
⎪⎪⎩

0, ξz >
hm

2

sg

(
ξz − hm

2

)
+ dgξ̇z, ξz ≤ hm

2
.

(B1)

In Eq. (B1), the symbols sg and dg denote the coefficients of stiffness and damping of the additional
SDE. The numerical values7 of these parameters used in the simulations of the 4-4 CDPR are sg = 103

N/m and dg = 102 Ns/m.

6It is assumed that the MP always comes in contact with the ground with the same orientation as the fixed frame of reference
o-X0Y0Z0. If not, one of the edges and corner points of the MP comes in contact, and the Eq. (B1) needs to be updated to account
for the induced moment. Nevertheless, such situations are not encountered in the cases considered in this work.

7The values of sg and dg depend on the stiffness and damping characteristics of the ground. In the present work, they are
determined by trial and error so that the MP does not penetrate the ground when it rests or comes in contact with it.
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C. Numerical data used for the simulation of the 4-4 cable-driven parallel robot
The values of the geometric parameters, inertia properties of the cables and the MP are adopted from
the work of [20]. Since the elastic and damping properties of the cables are not included in their work,
the material properties of the cables are selected from the experimental results presented in ref. [41].
The numerical values of these parameters are listed in Table II. The notations used for representing the
architecture of the robot are as per the outline given in Section 4.1.

Table II. Numerical values of the architecture parameters, inertia properties and material
constants used in the dynamic analysis of the 4-4 cable-driven parallel robot.

Parameter Description Value
rck Radii of the cable’s circular cross-sections 2 × 10−3 m
lm × wm × hm Length, width and height of the MP 0.6 × 0.8 × 0.2m3

ρck Linear mass density of cables 0.03 kg/m
mp Mass of the MP 0.5 kg
E Young’s modulus of material of the cables 1.39 × 1011 Pa
ηn Normal damping material constant 2.87 × 109 Ns/m2

D. Numerical data used for the simulation of quadcopters
The numerical values listed in Table III correspond to the quadcopter built at the Flight Dynamics
and Control Lab, Department of Mechanical and Aerospace Engineering, The George Washington
University. A description of its hardware was reported in [42].

Table III. Numerical values of the architecture parameters and inertia properties of the quadcopters.

Parameter Description Value
rk Offset of the rotors from the location of the

centre of mass
16.90 × 10−2 m

- Mass of the quadcopter 0.76kg
- Moments of inertia of the quadcopter diag(5.57, 5.57, 10.50) × 10−3 kgm2

ctm Ratio of the thrust forces to the reactive
moments of the rotors

10.56 × 10−2 m

E. Indices used for the validation of simulation results
The ODE solver ode15s is only used to guarantee the satisfaction of the index8 1 differential-algebraic
equations (DAEs), that is, Eq. (1) and Eq. (5), to be within desired tolerances. Therefore, the satisfaction
of the constraint equations and their derivatives, given by Eq. (3) and Eq. (4), respectively, are explicitly
verified for all the simulations reported in this work. Further, the agreement of the additional scleronomic
and rheonomic constraint functions in Eq. (9) and Eq. (10), respectively, for accurate incorporation of
the desired Type II actuation is confirmed.

8As per [40], p. 17, a differential index is “the minimum number of times that all or part of the non-linear differential-algebraic
equation f (t, y, ẏ) must be differentiated with respect to t in order to determine ẏ as a continuous function of y and t."
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The evolution of the configuration q(t) is verified to be consistent with the constraint functions
η= [η1, . . . , η8]

� by computing the norm of their residues, denoted by e1:

e1 = ‖η(q, t)‖2, (E1)

where ‖ · ‖2 denotes the L2 norm of a vector. Similarly, the conformance of the combined evolution of
the configuration q(t) and its change q̇(t) are ratified by finding the norm of the residues of derivatives
of the constraint functions, represented by e2:

e2 = ‖η̇(q, q̇, t)‖2. (E2)

The minimal values of the errors e1 and e2 indicate that the dynamic evolution of the robot is consistent
with the fundamental laws of mechanics, that is, index 3 DAE, given by, Eq. (1) or Eq. (6), Eq. (3), and
Eq. (9) or Eq. (10).

Cite this article: T.K. Mamidi and S. Bandyopadhyay, “A modular computational framework for the dynamic analyses of cable-
driven parallel robots with different types of actuation including the effects of inertia, elasticity and damping of cables”, Robotica.
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