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We will give a detailed account of why the simplicial sets model of the univalence axiom due

to Voevodsky also models W-types. In addition, we will discuss W-types in categories of

simplicial presheaves and an application to models of set theory.

1. Introduction

This paper is concerned with the interpretation of W-types in homotopy type theory. W-

types are among the main type constructors in Martin-Löf type theory, and include the

type of natural numbers and many other inductive types (Martin-Löf 1984). Moreover,

they are an essential ingredient of Aczel’s construction of a model of constructive set

theory (Aczel 1978). Recently, Voevodsky has shown that the category of simplicial sets

provides a model of Martin-Löf type theory (Kapulkin et al. 2012; Voevodsky 2011). In

this model, types are interpreted as Kan complexes and type dependencies are interpreted

as Kan fibrations. One of the main new features of this model is that it validates the

univalence axiom, which gives a precise formulation of the intuitive idea that a proof

of an isomorphism between types amounts to the same thing as a proof of an equality

between names of these types. In this paper, we will show how W-types can be interpreted

in Voevodsky’s model.

In what follows we will presuppose familiarity with the simplicial sets model (for a very

readable account, see Kapulkin et al. (2012)) and the classical Quillen model structure on

simplicial sets (for which, see Goerss and Jardine (1999) and Quillen (1967)). But we will

review the categorical notion of a W-type and, in particular, its description in categories

of presheaves in Section 2. In Section 3, we will show that W-types of Kan fibrations

between Kan complexes are again Kan complexes. Besides W-types, we will also discuss

in Section 3 other inductive types (such as general tree types), as well as coinductive

types. In Section 4, we show that the simplicial model also supports a form of quotient

types and discuss the connection to Aczel’s model of constructive set theory in type

theory (Aczel 1978). Finally, Section 5 will contain some remarks about how to extend

these results to other model categories, in particular to certain categories of simplicial

presheaves.

The main results of this paper were briefly announced at the MAP conference in

Leiden (November 2011). Later, we learned that the fact that W-types are Kan (Theorem
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3.4 below) was probably known to Voevodsky; cf. the closing sentence in Voevodsky

(2011). Both authors wish to thank the Netherlands Organization for Scientific Research

for financial support and the first author wishes to thank the Institute for Advanced

Study for giving him the opportunity to finish this paper under such excellent working

conditions. Finally, we are grateful to the referees for a careful reading of the manuscript.

2. W-types

We start by recalling the categorical definition of a W-type from Moerdijk and Palmgren

(2000) (but see also Abbott et al. (2005), Blass (1983) and Paré and Schumacher (1978)).

Definition 2.1. Let E be a category and F: E → E be an endofunctor. Then an algebra

for the endofunctor F consists of an object X together with a map α:FX → X. A

morphism between such algebras (X, α) and (Y , β) is an arrow f:X → Y such that

f ◦ α = β ◦ Ff:FX → Y . If it exists, the initial object in this category of F-algebras is the

initial algebra for the endofunctor F .

Dually, a coalgebra for an endofunctor F consists of an object X together with a map

α:X → FX and a morphism of such coalgebras (X, α) and (Y , β) is a map f:X → Y such

that β ◦ f = Ff ◦ α:X → FY . And, if it exists, the final coalgebra for the endofunctor F

is the terminal object in the category of F-coalgebras.

Definition 2.2. Let E be a locally Cartesian closed category, and let f:B → A be any

map in E . The polynomial functor Pf associated to f is the composite

Pf: E −×B �� E/B
Πf

�� E/A ΣA �� E ,

where Πf is the right adjoint to pulling back along f and ΣA is the left adjoint to taking

the product with A. If it exists, the initial algebra for this endofunctor is called the W-type

associated to f and denoted W (f).

2.1. W-types in sets

The category of sets and functions has all W-types. To see this, let us fix a function

f:B → A and rewrite the polynomial functor in set-theoretic notation:

Pf(X) =
∑

a∈A
XBa ,

where Ba = f−1(a) is the fibre of f above a ∈ A. Then the W-type consists of labelled,

well-founded trees, where we imagine that the edges in the tree are directed, pointing

towards the root of the tree. The idea behind the labelling is that the nodes of the tree

are labelled with elements a ∈ A, while its edges are labelled with elements b ∈ B; and

the labelling should be such that, if there is a node labelled with a ∈ A, then every edge

pointing towards it is labelled with a b ∈ Ba and for every such b ∈ Ba there is exactly
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one edge pointing towards it that has that label. The following picture hopefully conveys

the idea.
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It may not be immediately obvious that the collection of such trees is a set: but this

follows from the fact that every node in the tree is uniquely determined by the finite

sequence of elements in B that label the edges in the path from the root to that node.

The collection W (f) of such trees carries the structure of a Pf-algebra

sup:Pf(W (f))→W (f),

turning it into the W-type associated to f, as follows. If we are given an element a ∈ A
and a function t:Ba → W (f), then we can create a new tree, by taking a node, the root

of the new tree, and labelling it with a; then, for every b ∈ Ba we create an edge pointing

towards this root, label it with b and stick onto this edge the tree t(b). This new tree we

will denote by supa(t). In fact, we will think of the trees in the W-type as the result of

repeatedly applying this sup-operation, possibly a transfinite number of times.

To make this idea more precise, we define by transfinite recursion the notion of rank of

an element w ∈W (f), which is a certain ordinal. In fact, we have a map rk:W (f)→ Ord

by putting

rk(supa(t)) = sup{rk(tb) + 1 : b ∈ Ba}.
In addition, put

W (f)<α = {w ∈W (f) : rk(w) < α}.
Note that W (f)<0 = � and W (f)<α+1

∼= Pf(W (f)<α). In addition, there exist mediating

maps W (f)<α → W (f)<α+1, making W (f)<λ the colimit of the W (f)<α for α < λ, if λ

is a limit ordinal. This transfinite chain of sets converges to W (f), for if κ is a regular

cardinal strictly bigger than all Ba (for example, (sup{|Ba| : a ∈ A})+), then one proves

by transfinite induction on w ∈ W (f) that rk(w) < κ; hence W (f) = W (f)<κ. This

description again makes it clear that W (f) is a set, rather than a proper class.

2.2. W-types in presheaves

Categories of presheaves also have all W-types. We will now give a concrete description,

following Moerdijk and Palmgren (2000).

Fix a category C and a map f:B → A between presheaves over C. We will write

Â= {(C, a) : C ∈ C, a ∈ A(C)}
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and for (C, a) ∈ Â,

B̂(C,a) = {(α:D → C, b ∈ B(D)) : fD(b) = a · α}

and f̂ for the projection ∑

(C,a)∈Â

B̂(C,a) → Â.

As a first approximation to the W-type of f in presheaves, consider the W-type W (f̂)

associated to f̂ in the category of sets. Concretely, this means that W (f̂) consists of

well-founded trees, with nodes labelled by pairs (C, a) ∈ Â and edges into such a node

labelled with elements from B̂(C,a), with every element from B̂(C,a) occurring exactly once

as such a label.

As it happens, we can give W (f̂) the structure of a presheaf over C. To do this, we

will say that an element sup(C,a)(t) lives in the fibre over C and that for any α:D → C its

restriction is given by the formula:
(

sup(C,a) (t)
)
· α = sup(D,a·α) (t · α)

where

(t · α)(β, b) = t(αβ, b).

As before, we can assign a rank to the elements of W (f̂), by transfinite recursion, as

follows:

rk(sup(C,a) (t)) = sup { rk(t(β, b)) + 1 : (β, b) ∈ B̂(C,a) }.

Note that if w ∈W (f̂)(C) and α:D → C , then rk(w · α) � rk(w). Therefore,

W (f̂)<α = {w ∈W (f̂) : rk(w) < α}

defines a subpresheaf of W (f̂).

The W-type associated to f is constructed by selecting those elements from W (f̂) that

are hereditarily natural :

Definition 2.3. A tree sup(C,a)(t) is composable, if for any (α:D → C, b) ∈ B̂(C,a), the tree

t(α, b) lives in the fibre over dom(α). If, in addition, the map t is a natural transformation,

meaning that for any (α:D → C, b) ∈ B̂(C,a) and β:E → D we have

t(αβ, b · β) = t(α, b) · β,

then the tree sup(C,a)(t) will be called natural.

The collection of subtrees of sup(C,a)(t) is defined, recursively, as the collection consisting

of sup(C,a)(t) and all the subtrees of the t(α, b). Finally, a tree will be called hereditarily

natural, if all its subtrees are natural.

Since any restriction of an hereditarily natural tree is again hereditarily natural, the

hereditarily natural trees form a subpresheaf W (f) of W (f̂). This defines the W-type in

presheaves associated to f. In addition, we will put

W (f)<α = {w ∈W (f) : rk(w) < α} = W (f̂)<α ∩W (f) ⊆W (f̂).
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As the intersection of two presheaves, this is again a presheaf. In fact, we again have

that W (f)<0 = 0, that W (f)<α+1 = Pf(W (f)<α), and that W (f)<λ is the colimit of the

W (f)<α where α is an ordinal smaller than the limit ordinal λ. In addition, this chain

again converges to W (f); indeed, by choosing κ large enough (regular and greater than

|B̂(C,a)| for all (C, a) ∈ Â), we get W (f) = W (f)<κ.

2.3. Variations

The ideas from the previous paragraphs allow for numerous variations. For example,

there are the dependent polynomial functors of Gambino and Hyland (see Gambino and

Hyland (2004); this is related to the general tree types of Petersson and Synek (1989)).

Definition 2.4. Suppose we are given a diagram of the form

B

h

��

f
�� A

g

��

C C

in a locally Cartesian closed category E . Then this diagram determines an endofunctor on

E/C , the dependent polynomial functor

Df: E/C h∗ �� E/B
Πf

�� E/A
Σg

�� E/C.

Also functors of the form Df have initial algebras in the category of sets. To see this,

let us first rewrite Df in set-theoretic notation:

Df(X)c =
∑

a∈Ac

∏

b∈Ba

Xh(b).

Then its initial algebra is obtained from the W-type of f by selecting from W (f) those

trees which satisfy the following additional compatibility condition: if an edge is labelled

with some b ∈ B and the source of this edge is a node labelled with a ∈ A, then we

should have g(a) = h(b). As a subset of the W-type, elements in this initial algebra again

have a rank; and the initial algebra can be seen as the result of repeatedly applying the

Df operation, starting from the empty set and possibly applying Df a transfinite number

of times. Similar remarks hold for categories of presheaves: initial algebras for dependent

polynomial also exist; indeed, they are suitable subobjects of the W-type associated to f

and as such also inherit a notion of rank.

Instead of looking at initial algebras, we could also look at final coalgebras.

Definition 2.5. Let E be a locally Cartesian closed category, and let f:B → A be any

map in E . If it exists, the final coalgebra of the polynomial functor associated to f is

called the M-type associated to f and denoted M(f).

M-types also exist both in sets and in presheaves (see van den Berg and De Marchi

(2007b)). The idea here is that we look at trees with the kind of labelling described at the
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beginning of the section: nodes labelled with elements a ∈ A, edges labelled with elements

b ∈ B, in such a way that Ba enumerates the edges into a node labelled with a ∈ A. But

the difference is that the M-type consists of all such trees, including those that are not

well-founded.

Dually, these M-types can be obtained as a limit of a chain:

. . . �� Pf(Pf(Pf(1))) �� Pf(Pf(1)) �� Pf(1) �� 1.

One big difference is that this chain stabilizes already at the ordinal ω; in other words,

M(f) is the limit of the Pn
f (1) with n ∈ N . To see this, write τ for the coalgebra map

τ:M(f)→ Pf(M(f)) and define for every n ∈ N a truncation function trn:M(f)→ Pn
f (1),

by letting tr0 be the unique map M(f)→ 1, and trn+1 be the composite

trn+1:M(f)
τ �� Pf(M(f))

Pf (trn)
�� Pn+1
f (1).

What the nth truncation does is cutting off the tree at level n and replacing the subtrees

that have disappeared with the unique element of 1. To see that the trn:M(f) → Pn
f (1)

form a limiting cone, the key observation is that every tree is completely determined by

its nth truncations. And all of this is equally true in categories of presheaves.

3. Simplicial sets

In this section, we will study W-types in sSets, the category of simplicial sets, in particular,

in connection with the univalent model of type theory. This univalent model uses the

Quillen model structure on simplicial sets (Quillen 1967, 1969); in which:

— weak equivalences are those maps whose geometric realizations are homotopy equi-

valences.

— fibrations are those maps that have the right lifting property with respect to horn

inclusions (that is, the Kan fibrations).

— cofibrations are the monomorphisms.

As simplicial sets form a presheaf category, the previous section gives us a clear picture

of how the W-types look there. The main result of this section will be that if f:B → A

is a Kan fibration, then so is the canonical map W (f) → A. But to prove this we need

to know a few more things beyond the fact that the three classes of maps defined above

give simplicial sets the structure of a Quillen model category.

3.1. Properties of the classical model structure on simplicial sets

For the proof, we need the following properties of the standard model structure on

simplicial sets:

Proposition 3.1. Trivial cofibrations are stable under pullback along Kan fibrations.

Proof. Since the cofibrations are the monomorphisms and hence stable under pullback

along any map, it suffices to show that the weak equivalences are stable under pullback
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along fibrations; i.e. that the model structure is right proper. This is well known: in fact, it

follows from the fact that geometric realization preserves pullbacks, maps Kan fibrations

to Serre fibrations (Quillen 1968), and homotopy equivalences are stable under pullback

along Serre fibrations.

Corollary 3.2. If f:B → A is a Kan fibration, then
∏

f: sSets/B → sSets/A preserves

Kan fibrations.

Proof. A straightforward diagram chase.

Proposition 3.3. If X is the filtered colimit of (Xi : i ∈ I) over A and each Xi → A is a

Kan fibration, then so is the induced map X → A.

Proof. This is immediate from the fact that Kan fibrations are maps which have the

right lifting property with respect to horn inclusions and horns are finite colimits of

representables.

3.2. W-types in simplicial sets

The main result of this section is:

Theorem 3.4. If f:B → A is a Kan fibration, then the canonical map W (f)<α → A is a

Kan fibration as well.

Proof. By transfinite induction on α. The map 0→ A is always a Kan fibration, so the

statement is true for α = 0. If α is a limit ordinal, then W (f)<α is the filtered colimit of

all W (f)<β with β < α, so in this case the statement follows from Proposition 3.3.

This leaves the case of successor ordinals. So let X → Y be a trivial cofibration and

suppose we have a commuting square

X

��

K �� W (f)<α+1

��

Y �� A.

We want to find a map Y →W (f)<α+1 which makes the two resulting triangles commute.

Because W (f)<α+1 is isomorphic to Pf(W (f)<α), K transposes to a map k:B ×A X →
W (f)<α over A fitting into a diagram

B ×A X

��

k �� W (f)<α

��

B ×A Y �� A,

in which the map B ×A X → B ×A Y is a trivial cofibration by Proposition 3.1 and

W (f)<α → A is a Kan fibration by induction hypothesis. So we obtain a map l:B×A Y →
W (f)<α, which transposes back to the desired map L:Y →W (f)<α+1.
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Since W (f) = W (f)<α for sufficiently large α, we have as a special case that W (f)→ A

is a Kan fibration whenever f:B → A is.

3.3. Variations

An easy variation on the previous result would be, for example:

Theorem 3.5. If we have a diagram

B
f

��

h

��

A

g

��

C C

of Kan fibrations in simplicial sets, then the initial Df-algebra is fibrant in sSets/C .

Proof. The general picture is really this: suppose Φ is an endofunctor on the category

of simplicial sets, or any other model category in which fibrant objects are closed under

directed colimits. If this endofunctor sends fibrant objects to fibrant objects and has an

initial algebra which can be built as the colimit of a sufficiently long chain of Φα(0), then

this initial algebra has to be fibrant as well. By considering Df on sSets/C we obtain the

desired result.

Dually we have:

Theorem 3.6. If f:B → A is a Kan fibration between fibrant objects, then M(f) is fibrant

as well.

Proof. Here the general picture is: suppose Φ is an endofunctor on the category of

simplicial sets, or any other model category, which preserves fibrations and for which Φ(1)

is fibrant. If Φ has a final coalgebra and it can be obtained as a limit of a sufficiently

long chain of Φα(1), then this final coalgebra is fibrant. The desired result follows by

specializing to the case Φ = Pf .

4. Quotients in simplicial sets

In this section, we discuss quotients of equivalence relations on simplicial sets. We will

show that the simplicial model of univalent foundations supports a form of quotient

types, sufficient for constructing a model of Aczel’s constructive set theory.

4.1. Quotient types in the univalent model

We first observe:
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Proposition 4.1. If in a commutative triangle

Y
p

��

g




��
��

��
� X

f
��		

		
		

	

A

with p epic, both p and g are Kan fibrations, then so is f.

Proof. Consider a commuting square

Λk[n]

i

��

α �� X

f

��

Δ[n]
β

�� A

(1)

with a horn inclusion i on the left. As 1 = Δ[0] is representable and p is epic, there is a

map γ making the square

Δ[0]

k

��

γ
�� Y

p

��

Λk[n] α
�� X

commute, where k: Δ[0]→ Λk[n] picks the kth vertex. Note that k is a strong deformation

retract and hence a trivial cofibration; in addition, the map p is a fibration by assumption,

so this square has a diagonal filler δ. But then

Λk[n]

i

��

δ �� Y

g

��

Δ[n]
β

�� A

commutes, so has a diagonal filler ε. Now pε is a diagonal filler for (1), as:

pεi = pδ = α and fpε = gε = β.

Corollary 4.2. If f:Y → X is a Kan fibration, then so are the maps in its factorization

as an epic p followed by a mono i.

Proof. For p this is clear and for i this follows from the previous proposition.

Proposition 4.3. If R is an equivalence relation on Y and both projections R → Y are

fibrations, then Y → Y /R is a fibration as well.
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Proof. Consider a commuting square

Λk[n]

i

��

α �� Y

q

����

Δ[n]
β

�� Y /R

(2)

with a horn inclusion i on the left. As Δ[n] is representable and q is epic, there is a map

γ: Δ[n] → Y such that qγ = β. We do not necessarily have γi = α, but we do have that

qγi = qα (because both are equal to βi). So we have a commuting square

Λk[n]

i

��

(α,γi)
�� R

π2

��

Δ[n]
γ

�� Y ,

in which there must exist a diagonal filler δ. Now π1δ is a diagonal filler for (2), as:

π1δi = π1(α, γi) = α and qπ1δ = qπ2δ = qγ = β.

To state the main result of this subsection, we recall from Carboni (1995) and Carboni

and Celia Magno (1982) that (s, t):R → Y × Y is a pseudo-equivalence relation, if:

1. there is a map ρ:Y → R such that (s, t)ρ is the diagonal map ΔY :Y → Y × Y .

2. there is a map σ:R → R such that sσ = t and tσ = s.

3. if P is the pullback

P
p12 ��

p23

��

R

t

��

R s
�� Y ,

then there is a map τ:P → R such that sp12 = sτ and tp23 = tτ.

Corollary 4.4. Suppose R is a pseudo-equivalence relation on an object Y and R → Y ×Y
is a Kan fibration. If Y is fibrant, then so is Y /R and the quotient map Y → Y /R is a

Kan fibration.

Proof. Without loss of generality we may assume that R → Y × Y is monic: for

otherwise we may replace R → Y × Y by its image S ⊆ Y × Y . This inclusion is again a

Kan fibration by Corollary 4.2 and the quotients Y /R and Y /S are isomorphic.

So assume R → Y × Y is monic. Then it is an equivalence relation, and since Y is

fibrant, the projections Y ×Y → Y are Kan fibrations, and so are the projections R → Y .

So Y → Y /R is a Kan fibration by the previous proposition and Y /R is fibrant according

to Proposition 4.1.
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4.2. Application

It follows from the preceding discussion that the univalent model of type theory in

simplicial sets admits a form of quotient types. As an application, we discuss how one

can use this to build a Kan complex modelling Aczel’s constructive set theory.

Voevodsky has shown that if one restricts the Kan fibrations to those that have small

fibres (for example, those whose fibres have a cardinality smaller than some inaccessible

cardinal κ), then there is a generic small Kan fibration π:E → U; that is, there is a Kan

fibration with small fibres π such that any other Kan fibration with small fibres can be

obtained as a pullback of π. In addition, the object U can be chosen to be fibrant (see

Kapulkin et al. (2012) and Voevodsky (2011)).

We can use this generic Kan fibration π to construct a model of constructive set theory:

this is sometimes called the Aczel construction. It was originally discovered by Peter Aczel

in a type-theoretic context (Aczel 1978) and it was reformulated categorically in Moerdijk

and Palmgren (2002). The idea is to take the W-type associated to π and then quotient

by bisimulation.

So take W (π), the W-type associated to π, and define the following endofunctor Φ on

sSets/W (π)×W (π):

Φ(X)supu(t),supu′ (t
′) =

∏

e∈Eu

∑

e′∈Eu′

Xt(e),t′(e′) ×
∏

e′∈Eu′

∑

e∈Eu

Xt(e),t′(e′),

where we have used set-theoretic notation. This defines a dependent polynomial functor

on sSets/W (π) ×W (π), for which we can take its initial algebra B → W (π) ×W (π):

here, we should think of an element in the fibre over a pair (supu(t), supu′ (t
′)) as the

type of proofs of the bisimilarity of supu(t) and supu′ (t
′). This map B → W (π) ×W (π)

is a pseudo-equivalence relation (as one may easily verify) and a Kan fibration by

Theorem 3.5. Since W (π) is fibrant by Theorem 3.4, its quotient must be fibrant as well,

by Corollary 4.4. This means that if we perform the Aczel construction in the univalent

model of type theory, we get a fibrant model of constructive set theory.

One may also dualize and take the M-type on π and then quotient by the largest

bisimulation (as in Lindström (1989) and van den Berg and De Marchi (2007a)).

This should result in a fibrant model of constructive set theory satisfying Aczel’s Anti-

Foundation Axiom (Aczel 1988).

5. Other model categories

As we have seen above, the Quillen model category of simplicial sets provides an

interpretation of Martin-Löf type theory including W-types. The argument relied on

the fact that W-types can be obtained by repeatedly, and possibly transfinitely, applying

the polynomial functor to the initial object, as well as the fact that simplicial sets form a

model category E for which:

1. Trivial cofibrations are stable under pullback along fibrations in E .

2. If X is the filtered colimit of {Xi : i ∈ I} and each Xi → A is a fibration, then so is the

induced map X → A.
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We recall that property (1) is equivalent to (1′), and is a consequence of the combined

properties (1a) and (1b), which also hold in sSets:
1′. If f:B → A is a fibration then the right adjoint Πf: E/B → E/A to the pullback

functor preserves fibrant objects.

1a. The cofibrations in E are exactly the monomorphisms.

1b. E is right proper.

We also notice the following slight strengthening of property (2), true for sSets and stable

under slicing (i.e. the passage from E to E/A):

2′. If {Yi → Xi : i ∈ I} is a filtered diagram of fibrations between fibrant objects, then

lim−→Yi → lim−→Xi is again a fibration.

Unfortunately, when trying to extend the argument to categories of simplicial presheaves,

one discovers that these two conditions (1) and (2) generally seem to have rather

incompatible stability properties. For example, while property (1) evidently transfers

to the injective model structure on a category sSetsCop

of simplicial presheaves, property

(2) rarely does. And while property (2) evidently transfers to the projective model structure

on simplicial presheaves, property (1) generally does not. One of the few exceptions to

this is the case where C is a group:

Example 5.1. (Group actions) Let G be a group, and let sSetsG be the category of

simplicial sets with right G-action. This category carries a (cofibrantly generated) model

structure, with the property that the forgetful functor

U: sSetsG → sSets

preserves and reflects weak equivalences and fibrations. Since this forgetful functor

commutes with Π-functors and filtered colimits, the category sSetsG again has properties

(1) and (2) (and the stronger (2′)). One can also check property (1) directly, since the

cofibrations in sSetsG are the monomorphisms X → Y with the property that G acts

freely on the simplices of Y which are not in (the image of) X.

Example 5.2. (Reedy categories) We recall that a Reedy category is a category R
equipped with two classes of maps R− and R+ which both contain all the identities and

are closed under composition, and a degree function d: Objects(R)→ N for which

i. any non-identity morphism in R+ raises degree, and any non-identity morphism in

R− lowers degree;

ii. every morphism in R factors uniquely as a morphism in R− followed by one in R+.

If E is a model category and R is a Reedy category, the functor category ER carries a

model structure in which the weak equivalences are defined ‘pointwise’; i.e. X → Y is a

weak equivalence iff Xr → Yr is for every r ∈ R. The special virtue of this ‘Reedy model

structure’ is that the fibrations and cofibrations can be described explicitly in terms of

so-called matching and latching objects. If X is an object of ER, the rth matching and

latching objects of X are defined as

Mr(X) = lim←−
r
−−→s

Xs and Lr(X) = lim−→
s

+−→r

Xs,
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where the limit and colimit are taken over the non-identity maps in R− and R+ ,

respectively. A map Y → X is a fibration in ER if, for any object r ∈ R, the map

Yr → Xr ×Mr(X) Mr(Y )

is a fibration in E . And, dually, a map A → B is a cofibration in ER if, for any object

r ∈ R, the map

Ar ∪Lr(A) Lr(B)→ Br

is a cofibration in E .

Typical examples are the simplex category Δ where d([n]) = n, while R− consists of

the surjections and R+ consists of the injections, or the category N itself viewed as a

poset (with N = N+); the opposite categories Δop and Nop are also Reedy categories,

with R+ and R− simply interchanged. In these examples and many others, the limits and

colimits involved in the matching and latching objects are (essentially) finite. Let us say

that a Reedy category R is locally finite if each comma category r/R− contains a finite

cofinal subcategory, so that the matching objects are defined by finite limits. Then clearly,

if R is locally finite and E is a model category satisfying condition (2′), then so does

ER. Condition (1) seems to be less well-behaved with respect to arbitrary Reedy model

structures. However, in many important examples the Reedy cofibrations in ER turn out

to be the pointwise cofibrations. This is trivially the case if the category is ‘inverse’: that

is, if R = R− (and R+ contains identities only) as in Nop (see Shulman (2013b)). We will

discuss this phenomenon in more detail in Remark 5.5 below. For now, let us state the

following:

Proposition 5.3. Let E be a model category satisfying conditions (1a, b) and (2′). If R is a

locally finite Reedy category for which the cofibrations in ER are pointwise (for example,

if R = Δop or R = Nop), then ER again satisfies these conditions.

Example 5.4. (generalized Reedy categories) Although extremely useful in homotopy

theory, the notion of Reedy category has various defects: it is not invariant under equi-

valence of categories, and excludes categories with non-trivial automorphisms. There is,

however, a notion of ‘generalized Reedy category’ which allows for the same construction

of a model structure on ER from one on E , and is more flexible. In particular, it includes

important examples like the category Fin of finite sets, the category Fin∗ of finite pointed

sets (or equivalently, finite sets and partial maps) and its opposite Γ, and the category

Ω of trees. We refer to Berger and Moerdijk (2011) for details. Property (1b) is again

inherited by ER from E , while property (2′) will be inherited whenever R is locally finite.

The following remark shows that if E satisfies property (1a), then in several important

examples ER will satisfy property (1).

Remark 5.5. Let R be a ‘dualisable” generalized Reedy category (cf. Berger and

Moerdijk (2011)) such as Δ,Ω,Fin∗ and Fin. It is perhaps useful to be more explicit

about the property that the Reedy model structure on ERop

has ‘pointwise’ cofibrations.

(We have passed to contravariant functors here because it fits the examples better.) The

following discussion overlaps to some extent with the work on ‘elegant’ Reedy categories

(see Bergner and Rezk (2013) and Shulman (2013a)).
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First of all, recall from Berger and Moerdijk (2011) that in the case of a generalized

Reedy category, the automorphisms of R and the model structure of Example 5.1 enter

into the description of the cofibrations. In particular, a map X → Y is a Reedy cofibration

in ERop

iff for each object r ∈ R, the map

Lr(Y ) ∪Lr(X) Xr → Yr

is a cofibration in EAut(r)op

. Because we have passed to the dual Rop, the latching object is

now described as

Lr(X) = lim−→
r
−−→s

Xs,

the colimit ranging over all non-isomorphic maps r → s in R−; the ‘surjections’ in the

examples. In the examples mentioned above, R− enjoys the following properties, as one

easily verifies:

i. Any map r
−−→ s in R− has a section, i.e. is split epic.

ii. Given two maps s
p
←− r

q
−→ t in R−, there exists a diagram in R−

r
q

��

p

��

t

g

��
s

f
�� p

and compatible sections a: s→ r and b: p→ t, compatible in the sense that qa = bf.

Lemma 5.6. Any such square as in (ii) is an absolute pushout.

Proof. Suppose ϕ: s → x and ψ: t → x are maps with ϕp = ψq. Let χ = ψb: p → x.

We claim that χ is the unique arrow with χg = ψ and χf = ϕ. There can be at most

one such χ because f and g are split epics, so uniqueness is clear. Also, χf = ψbf =

ψqa = ϕpa = ϕ. To see that χg = ψ, it suffices to check that χgq = ψq since q is epic.

But χgq = ψbgq = ψbfp = ψqap = ϕpap = ϕp = ψq. This shows that the square is a

pushout. Since the proof is ‘purely equational’, it is a pushout preserved by any functor;

i.e. an absolute pushout.

Lemma 5.7. Let R be a generalized Reedy category satisfying (i) and (ii). If X → Y is

mono in ERop

, then so is Lr(Y ) ∪Lr(X) Xr → Yr in EAut(r)op

.

Proof. The previous lemma states that if R− enjoys properties (i) and (ii), the map

Lr(X)→ X

is a monomorphism for every r ∈ R. Moreover, for a map X → Y in ERop

, it follows

easily from property (i) alone that if each Xr → Yr is a mono, then for each arrow r → s

in R− the square

Xs
��

��

Ys

��

Xr
�� Yr
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is a pullback, and hence

Lr(Y ) ∪Lr(X) Xr → Yr

is still a mono.

Now suppose that E satisfies (1a), i.e. the cofibrations in E are precisely the mono-

morphisms. The second lemma implies that the same will be true for ERop

if R is an

ordinary Reedy category satisfying (i) and (ii), because for ordinary Reedy categories each

Aut(r) is trivial.

In many cases the map Lr(Y )∪Lr(X)Xr → Yr in EAut(r)op

will not just be a monomorphism

for monos X → Y , but also a cofibration. This happens, for instance, when the cofibrations

in EAut(r)op

are characterized as the monos with ‘free action on the complement’, as in

Example 5.1. Hence, it follows from the above discussion and the properties of sSetsAutop

as indicated in Example 5.1 that:

Proposition 5.8. If R is a generalized Reedy category satisfying (i) and (ii), then sSetsRop

satisfies properties (1) and (2).

In particular, this proposition applies to the category sSetsΩop

of dendroidal spaces

(Cisinski and Moerdijk 2013), sSetsΓop

of Γ-spaces (Segal 1974), and sSetsFinop

of symmetric

simplicial sets. Hence, the models of type theory which derive from the fibrations in these

model categories admit W-types.
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