Canad. Math. Bull. Vol. 52 (2), 2009 pp. 195-199

The Waring Problem with the Ramanujan τ -Function, II

M. Z. Garaev, V. C. Garcia, and S. V. Konyagin

Abstract. Let $\tau(n)$ be the Ramanujan τ -function. We prove that for any integer N with $|N| \ge 2$ the diophantine equation

$$\sum_{i=1}^{148000} \tau(n_i) = N$$

has a solution in positive integers $n_1, n_2, \ldots, n_{148000}$ satisfying the condition

$$\max_{1 \le i \le 148000} n_i \ll |N|^{2/11} e^{-c \log |N|/\log \log |N|},$$

for some absolute constant c > 0.

1 Introduction

The Ramanujan function $\tau(n)$ is defined by the expansion

$$X \prod_{n=1}^{\infty} (1 - X^n)^{24} = \sum_{n=1}^{\infty} \tau(n) X^n.$$

It possesses many remarkable properties of an arithmetical nature. It is known that:

- $\tau(n)$ is an integer-valued multiplicative function, that is, $\tau(nm) = \tau(n)\tau(m)$ if gcd(n,m) = 1;
- for any integer $\alpha \ge 0$ and prime q, $\tau(q^{\alpha+2}) = \tau(q^{\alpha+1})\tau(q) q^{11}\tau(q^{\alpha})$, in particular, $\tau(q^2) = \tau^2(q) q^{11}$, and
- $|\tau(q)| \leq 2q^{11/2}$ for any prime q and $|\tau(n)| \leq d(n)n^{11/2}$ for any integer n > 0, where d(n) is the number of divisors of n. In particular, there exists a positive absolute constant c such that $|\tau(n)| \leq n^{11/2}e^{c\log n/\log\log n}$ for any integer $n \geq 3$. This has been proved by Deligne [3].

There are many formulas that connect $\tau(n)$ with the function $\sigma_s(n) = \sum_{d|n} d^s$ and are useful for numerical computations of $\tau(n)$. It is known, for example, that

$$\tau(n) = \frac{65}{756}\sigma_{11}(n) + \frac{691}{756}\sigma_5(n) - \frac{691}{3}\sum_{k=1}^{n-1}\sigma_5(k)\sigma_5(n-k)$$

Received by the editors July 11, 2006; revised June 8, 2007.

Garaev and Garcia were supported by the Project PAPIIT IN 100307 from UNAM. Konyagin was supported by the INTAS grant 03-51-5070 and by the RFBR grant 05-01-00066

AMS subject classification: Primary: 11B13; secondary: 11F30.

[©]Canadian Mathematical Society 2009.

and that

$$\tau(n) = n^4 \sigma_0(n) - 24 \sum_{k=1}^{n-1} (35k^4 - 52k^3n + 18k^2n^2) \sigma_0(k) \sigma_0(n-k).$$

These properties of $\tau(n)$ can be found in [1,3,6,7,9,10]. Various properties of $\tau(n)$ modulo a prime number *p* can be found in [10].

Based on the deep sum-product estimate of Bourgain, Katz and Tao [2], Shparlinski [11] proved that the values of $\tau(n)$, $n \leq p^4$, form a finite additive basis modulo p, *i.e.*, there exists an absolute integer constant $s \geq 1$ such that any residue class modulo p is representable in the form $\tau(n_1) + \cdots + \tau(n_s) \pmod{p}$ with some positive integers $n_1, \ldots, n_s \leq p^4$.

In [4] we established that the set of values of $\tau(n)$ forms a finite additive basis for the *set of integers*. We proved that for any integer *N* the diophantine equation $\sum_{i=1}^{74000} \tau(n_i) = N$ has a solution in positive integers $n_1, n_2, \ldots, n_{74000}$ satisfying the condition

$$\max_{1 \le i \le 74000} n_i \ll |N|^{2/11} + 1$$

(here and throughout the paper, the implied constants in Vinogradov's symbol " \ll " are absolute). From Deligne's result it follows that the constant 2/11 in the exponent of |N| is the best possible in the sense that it cannot be substituted by a smaller constant. Nevertheless, there still arises a question whether a similar result holds with the variables n_i being of the size $\leq |N|^{2/11}\Delta(N)$, where $\Delta(N) \to 0$ as $|N| \to \infty$. In this paper we give the following answer to this question.

Theorem 1 There exists an absolute constant c > 0 such that for any integer N with $|N| \ge 2$ the diophantine equation $\sum_{i=1}^{148000} \tau(n_i) = N$ has a solution in positive integers $n_1, n_2, \ldots, n_{148000}$ satisfying the condition

$$\max_{1 \le i \le 148000} n_i \ll |N|^{2/11} e^{-c \log |N| / \log \log |N|}.$$

In view of Deligne's result, Theorem 1 reflects the best possible bound for the size of the variables n_i , apart from the value of the constant *c*.

Regarding the number of summands 148000, it can be several times reduced using, in particular, the present state of art concerning the Waring–Goldbach problem. However, we do not consider such a reduction to be essential and we do not pursue this issue in the present paper.

2 Auxiliary Statements

Theorem 1 will be deduced from the following proposition.

Proposition 2 Any integer L with a sufficiently large modulus |L| can be represented in the form

$$L = \sum_{i=1}^{74000} \tau(n_i)$$

196

The Waring Problem with the Ramanujan τ -Function, II

with some positive integers n_1, \ldots, n_{74000} having the property that the interval $(\log \log |L|, \log^2 |L|)$ is free of prime divisors of n_i and

$$\max_{1 \le i \le 74000} n_i \ll |L|^{2/11}$$

Proposition 2 extends [4, Theorem 1]; in that theorem we proved a similar result without any restrictions on prime divisors of n_i .

The proof of Proposition 2 is based on the following consequence of the classical result of Hua [5].

Lemma 3 Let s_0 be a fixed integer \geq 2049 and let J denote the number of solutions of the Waring–Goldbach equation

$$\sum_{i=1}^{s_0} q_i^{11} = N$$

in primes q_1, \ldots, q_{s_0} with $q_i > (\log N)^3$ for all $1 \le i \le s_0$. There exist positive constants $c_1 = c_1(s_0)$ and $c_2 = c_2(s_0)$ such that for any sufficiently large integer N with $N \equiv s_0 \pmod{2}$, the following bounds hold:

$$c_1 rac{N^{s_0/11-1}}{(\log N)^{s_0}} \leq J \leq c_2 rac{N^{s_0/11-1}}{(\log N)^{s_0}}.$$

For the proof of Proposition 2 we refer the reader to [4], since it follows exactly the same lines as the proof of [4, Theorem 1]; the main difference is that in the proof of that theorem instead of Lemma 3 we used its analog where $q_i > (\log N)^3$ was replaced by $q_i > 105$. Consequently, the set Ω that we defined in the proof of that theorem should now be defined as the set of all prime numbers q with $\log^3 M < q \leq M^{1/11}$.

The following lemma, which is a consequence of a more general result of M. Ram Murty [8], forms the main ingredient in the deduction of Theorem 1 from Proposition 2.

Lemma 4 For a positive density of primes p, we have $|\tau(p)| > 1.4p^{11/2}$.

3 Proof of Theorem 1

Observe that it is sufficient to prove Theorem 1 for large values of N, that is for all N with $|N| > N_0$, where N_0 is some absolute positive integer constant. For the values of N with $|N| \le N_0$ Theorem 1 is a consequence of the aforementioned result from our work [4].

Let *N* be an integer with a sufficiently large modulus |N|. According to Lemma 4, there exists an absolute constant C > 100 such that the interval

$$\left[\frac{\log|N|}{C^2}, \frac{\log|N|}{C}\right]$$

contains $\gg \log |N| / \log \log |N|$ primes *p* with $|\tau(p)| > 1.4p^{11/2}$. Define *T* to be the product of all these primes, except maybe one of them (to make $\tau(T)$ positive). Since $\tau(n)$ is multiplicative, we have

(1)
$$\tau(T)/T^{11/2} > e^{c_1 \log |N|/\log \log |N|}$$

https://doi.org/10.4153/CMB-2009-022-2 Published online by Cambridge University Press

for some absolute constant $c_1 > 0$. Therefore, for some large absolute positive constant C_1 , we have

$$\left((\log |N|)/C^2 \right)^{(\log |N|/(C_1 \log \log |N|))} < T < e^{2 \log |N|/C}$$

From this we deduce that

(2)
$$|N|^{c_2} < T < |N|^{0.02}$$

with the additional property that any prime divisor q|T satisfies

$$c_3 \log |N| < q < \log |N|,$$

where c_2 , c_3 are some absolute positive constants.

Having T defined this way, we let L be an integer such that

(3)
$$N = \tau(T)L + u, \quad \tau(T) \le u \le 2\tau(T).$$

Deligne's estimate combined with (1) and (2) yields $|N|^{11c_2/2} \leq \tau(T) \leq |N|^{1/5}$. Clearly, if |N| is large, so are u and |L|. According to Proposition 2, we have a representation of u in the form

(4)
$$u = \sum_{i=1}^{74000} \tau(k_i), \quad \max_i k_i \ll u^{2/11}.$$

Since |L| is large, we can use Proposition 2 again to get $L = \sum_{i=1}^{74000} \tau(n_i)$, where the positive integers n_1, \ldots, n_{74000} are free of prime divisors from the interval (log log |L|, $\log^2 |L|$) and

$$\max_{1 \le i \le 74000} n_i \ll |L|^{2/11}.$$

In particular, since $|N|^{4/5} \ll |L| \leq |N|$, the numbers n_i are free of prime divisors from the interval $(\log \log |N|, \log |N|)$. On the other hand, all the prime divisors of T belong to the interval $c_3 \log |N| < q < \log |N|$. Therefore, by the multiplicative property of $\tau(n)$ we deduce

(5)
$$\tau(T)L = \sum_{i=1}^{74000} \tau(Tn_i)$$

From (1) and (3),

$$T \leq \tau(T)^{2/11} e^{-(2c_1/11)\log|N|/\log\log|N|} \ll \left(\frac{|N|}{|L|}\right)^{2/11} e^{-(2c_1/11)\log|N|/\log\log|N|}.$$

Therefore,

$$Tn_i \ll T|L|^{2/11} \le |N|^{2/11} e^{-c \log |N|/\log \log |N|}$$

for some absolute positive constant *c*. Combining this with (3), (4) and (5), we derive the result.

198

The Waring Problem with the Ramanujan τ -Function, II

4 Remark

Let f be a fixed non-zero cusp form of a given weight k of the modular group such that f is a normalized eigenform for all the Hecke operators. Let the function f(z) have the Fourier expansion

$$f(z) = \sum_{n=1}^{\infty} a(n) e^{2\pi i n z}$$

in the upper-half plane. In the particular case k = 12, the coefficients a(n) coincide with $\tau(n)$. In the general case, the coefficients a(n) satisfy some multiplicative relations similar to those satisfied by $\tau(n)$. A suitable modification of our arguments together with results from [8] imply that if a(n) are integers, then for some positive integer ℓ and some constant c > 0, any integer N with $|N| \ge 2$ is representable in the form $\sum_{i=1}^{\ell} a(n_i) = N$ for some n_1, \ldots, n_{ℓ} with

$$\max_{1 \le i \le \ell} n_i \ll |N|^{2/(k-1)} e^{-c \log |N| / \log \log |N|}$$

References

- T. M. Apostol, Modular functions and Dirichlet series in number theory. Second ed., Graduate Texts in Mathematics 41, Springer-Verlag, New York, 1990.
- [2] J. Bourgain, N. Katz, and T. Tao, A sum-product estimate in finite fields and their applications. Geom. Funct. Anal. 14(2004), no. 1, 27–57.
- [3] P. Deligne, *La conjecture de Weil. I.* Inst. Hautes Études Sci. Publ. Math. **43**(1974), 273–307.
- [4] M. Z. Garaev, V. C. Garcia, and S. V. Konyagin, *Waring problem with the Ramanujan* τ *-function.* Izvestiya: Mathematics **72**(2008), no. 1, 35–46.
- [5] L.-K. Hua, *The additive prime number theory*. Trav. Inst. Math. Stekloff 22(1947).
- [6] H. Iwaniec, *Topics in clasical automorphic forms*. Graduate Studies in Mathematics 17, American Mathematical Society, Providence, Rhode Island, 1997.
- [7] N. Koblitz, Introduction to elliptic curves and modular forms Second ed., Springer-Verlag, New York, 1993.
- [8] M. R. Murty, Oscillations of Fourier coefficients of modular forms. Math. Ann. 262(1983), no. 4, 431–446.
- [9] D. Niebur, A formula for Ramanujan's τ -function. Illinois J. Math. 19(1975), 448–449.
- J.-P. Serre, Congruences et formes modulaires. Lecture Notes in Math. 317, Springer, Berlin, 1973, 319–338.
- [11] I. E. Shparlinski, On the value set of the Ramanujan function. Arch. Math. 85(2005), no. 6, 508–513.

Instituto de Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089, Morelia, Michoacán, México

e-mail: garaev@matmor.unam.mx

garci@matmor.unam.mx

Department of Mechanics and Mathematics, Moscow State University, Moscow, 119992, Russia e-mail: konyagin@ok.ru

199