The Waring Problem with the Ramanujan τ-Function, II

M. Z. Garaev, V. C. Garcia, and S. V. Konyagin

Abstract. Let $\tau(n)$ be the Ramanujan τ-function. We prove that for any integer N with $|N| \geq 2$ the diophantine equation

$$
\sum_{i=1}^{148000} \tau\left(n_{i}\right)=N
$$

has a solution in positive integers $n_{1}, n_{2}, \ldots, n_{148000}$ satisfying the condition

$$
\max _{1 \leq i \leq 148000} n_{i} \ll|N|^{2 / 11} e^{-c \log |N| / \log \log |N|}
$$

for some absolute constant $c>0$.

1 Introduction

The Ramanujan function $\tau(n)$ is defined by the expansion

$$
X \prod_{n=1}^{\infty}\left(1-X^{n}\right)^{24}=\sum_{n=1}^{\infty} \tau(n) X^{n}
$$

It possesses many remarkable properties of an arithmetical nature. It is known that:

- $\tau(n)$ is an integer-valued multiplicative function, that is, $\tau(n m)=\tau(n) \tau(m)$ if $\operatorname{gcd}(n, m)=1 ;$
- for any integer $\alpha \geq 0$ and prime $q, \tau\left(q^{\alpha+2}\right)=\tau\left(q^{\alpha+1}\right) \tau(q)-q^{11} \tau\left(q^{\alpha}\right)$, in particular, $\tau\left(q^{2}\right)=\tau^{2}(q)-q^{11}$, and
- $|\tau(q)| \leq 2 q^{11 / 2}$ for any prime q and $|\tau(n)| \leq d(n) n^{11 / 2}$ for any integer $n>0$, where $d(n)$ is the number of divisors of n. In particular, there exists a positive absolute constant c such that $|\tau(n)| \leq n^{11 / 2} e^{c \log n / \log \log n}$ for any integer $n \geq 3$. This has been proved by Deligne [3].
There are many formulas that connect $\tau(n)$ with the function $\sigma_{s}(n)=\sum_{d \mid n} d^{s}$ and are useful for numerical computations of $\tau(n)$. It is known, for example, that

$$
\tau(n)=\frac{65}{756} \sigma_{11}(n)+\frac{691}{756} \sigma_{5}(n)-\frac{691}{3} \sum_{k=1}^{n-1} \sigma_{5}(k) \sigma_{5}(n-k)
$$

[^0]and that
$$
\tau(n)=n^{4} \sigma_{0}(n)-24 \sum_{k=1}^{n-1}\left(35 k^{4}-52 k^{3} n+18 k^{2} n^{2}\right) \sigma_{0}(k) \sigma_{0}(n-k)
$$

These properties of $\tau(n)$ can be found in $[1,3,6,7,9,10]$. Various properties of $\tau(n)$ modulo a prime number p can be found in [10].

Based on the deep sum-product estimate of Bourgain, Katz and Tao [2], Shparlinski [11] proved that the values of $\tau(n), n \leq p^{4}$, form a finite additive basis modulo p, i.e., there exists an absolute integer constant $s \geq 1$ such that any residue class modulo p is representable in the form $\tau\left(n_{1}\right)+\cdots+\tau\left(n_{s}\right)(\bmod p)$ with some positive integers $n_{1}, \ldots, n_{s} \leq p^{4}$.

In [4] we established that the set of values of $\tau(n)$ forms a finite additive basis for the set of integers. We proved that for any integer N the diophantine equation $\sum_{i=1}^{74000} \tau\left(n_{i}\right)=N$ has a solution in positive integers $n_{1}, n_{2}, \ldots, n_{74000}$ satisfying the condition

$$
\max _{1 \leq i \leq 74000} n_{i} \ll|N|^{2 / 11}+1
$$

(here and throughout the paper, the implied constants in Vinogradov's symbol "<" are absolute). From Deligne's result it follows that the constant $2 / 11$ in the exponent of $|N|$ is the best possible in the sense that it cannot be substituted by a smaller constant. Nevertheless, there still arises a question whether a similar result holds with the variables n_{i} being of the size $\leq|N|^{2 / 11} \Delta(N)$, where $\Delta(N) \rightarrow 0$ as $|N| \rightarrow \infty$. In this paper we give the following answer to this question.

Theorem 1 There exists an absolute constant $c>0$ such that for any integer N with $|N| \geq 2$ the diophantine equation $\sum_{i=1}^{148000} \tau\left(n_{i}\right)=N$ has a solution in positive integers $n_{1}, n_{2}, \ldots, n_{148000}$ satisfying the condition

$$
\max _{1 \leq i \leq 148000} n_{i} \ll|N|^{2 / 11} e^{-c \log |N| / \log \log |N|} .
$$

In view of Deligne's result, Theorem 1 reflects the best possible bound for the size of the variables n_{i}, apart from the value of the constant c.

Regarding the number of summands 148000 , it can be several times reduced using, in particular, the present state of art concerning the Waring-Goldbach problem. However, we do not consider such a reduction to be essential and we do not pursue this issue in the present paper.

2 Auxiliary Statements

Theorem 1 will be deduced from the following proposition.
Proposition 2 Any integer L with a sufficiently large modulus $|L|$ can be represented in the form

$$
L=\sum_{i=1}^{74000} \tau\left(n_{i}\right)
$$

with some positive integers n_{1}, \ldots, n_{74000} having the property that the interval ($\left.\log \log |L|, \log ^{2}|L|\right)$ is free of prime divisors of n_{i} and

$$
\max _{1 \leq i \leq 74000} n_{i} \ll|L|^{2 / 11}
$$

Proposition 2 extends [4, Theorem 1]; in that theorem we proved a similar result without any restrictions on prime divisors of n_{i}.

The proof of Proposition 2 is based on the following consequence of the classical result of Hua [5].

Lemma 3 Let s_{0} be a fixed integer ≥ 2049 and let J denote the number of solutions of the Waring-Goldbach equation

$$
\sum_{i=1}^{s_{0}} q_{i}^{11}=N
$$

in primes $q_{1}, \ldots, q_{s_{0}}$ with $q_{i}>(\log N)^{3}$ for all $1 \leq i \leq s_{0}$. There exist positive constants $c_{1}=c_{1}\left(s_{0}\right)$ and $c_{2}=c_{2}\left(s_{0}\right)$ such that for any sufficiently large integer N with $N \equiv s_{0}$ $(\bmod 2)$, the following bounds hold:

$$
c_{1} \frac{N^{s_{0} / 11-1}}{(\log N)^{s_{0}}} \leq J \leq c_{2} \frac{N^{s_{0} / 11-1}}{(\log N)^{s_{0}}}
$$

For the proof of Proposition 2 we refer the reader to [4], since it follows exactly the same lines as the proof of [4, Theorem 1]; the main difference is that in the proof of that theorem instead of Lemma 3 we used its analog where $q_{i}>(\log N)^{3}$ was replaced by $q_{i}>105$. Consequently, the set Q that we defined in the proof of that theorem should now be defined as the set of all prime numbers q with $\log ^{3} M<q \leq M^{1 / 11}$.

The following lemma, which is a consequence of a more general result of M. Ram Murty [8], forms the main ingredient in the deduction of Theorem 1 from Proposition 2.

Lemma 4 For a positive density of primes p, we have $|\tau(p)|>1.4 p^{11 / 2}$.

3 Proof of Theorem 1

Observe that it is sufficient to prove Theorem 1 for large values of N, that is for all N with $|N|>N_{0}$, where N_{0} is some absolute positive integer constant. For the values of N with $|N| \leq N_{0}$ Theorem 1 is a consequence of the aforementioned result from our work [4].

Let N be an integer with a sufficiently large modulus $|N|$. According to Lemma 4, there exists an absolute constant $C>100$ such that the interval

$$
\left[\frac{\log |N|}{C^{2}}, \frac{\log |N|}{C}\right]
$$

contains $\gg \log |N| / \log \log |N|$ primes p with $|\tau(p)|>1.4 p^{11 / 2}$. Define T to be the product of all these primes, except maybe one of them (to make $\tau(T)$ positive). Since $\tau(n)$ is multiplicative, we have

$$
\begin{equation*}
\tau(T) / T^{11 / 2}>e^{c_{1} \log |N| / \log \log |N|} \tag{1}
\end{equation*}
$$

for some absolute constant $c_{1}>0$. Therefore, for some large absolute positive constant C_{1}, we have

$$
\left((\log |N|) / C^{2}\right)^{\left(\log |N| /\left(C_{1} \log \log |N|\right)\right)}<T<e^{2 \log |N| / C}
$$

From this we deduce that

$$
\begin{equation*}
|N|^{c_{2}}<T<|N|^{0.02} \tag{2}
\end{equation*}
$$

with the additional property that any prime divisor $q \mid T$ satisfies

$$
c_{3} \log |N|<q<\log |N|
$$

where c_{2}, c_{3} are some absolute positive constants.
Having T defined this way, we let L be an integer such that

$$
\begin{equation*}
N=\tau(T) L+u, \quad \tau(T) \leq u \leq 2 \tau(T) \tag{3}
\end{equation*}
$$

Deligne's estimate combined with (1) and (2) yields $|N|^{11 c_{2} / 2} \leq \tau(T) \leq|N|^{1 / 5}$. Clearly, if $|N|$ is large, so are u and $|L|$. According to Proposition 2, we have a representation of u in the form

$$
\begin{equation*}
u=\sum_{i=1}^{74000} \tau\left(k_{i}\right), \quad \max _{i} k_{i} \ll u^{2 / 11} \tag{4}
\end{equation*}
$$

Since $|L|$ is large, we can use Proposition 2 again to get $L=\sum_{i=1}^{74000} \tau\left(n_{i}\right)$, where the positive integers n_{1}, \ldots, n_{74000} are free of prime divisors from the interval $(\log \log |L|$, $\left.\log ^{2}|L|\right)$ and

$$
\max _{1 \leq i \leq 74000} n_{i} \ll|L|^{2 / 11}
$$

In particular, since $|N|^{4 / 5} \ll|L| \leq|N|$, the numbers n_{i} are free of prime divisors from the interval $(\log \log |N|, \log |N|)$. On the other hand, all the prime divisors of T belong to the interval $c_{3} \log |N|<q<\log |N|$. Therefore, by the multiplicative property of $\tau(n)$ we deduce

$$
\begin{equation*}
\tau(T) L=\sum_{i=1}^{74000} \tau\left(T n_{i}\right) \tag{5}
\end{equation*}
$$

From (1) and (3),

$$
T \leq \tau(T)^{2 / 11} e^{-\left(2 c_{1} / 11\right) \log |N| / \log \log |N|} \ll\left(\frac{|N|}{|L|}\right)^{2 / 11} e^{-\left(2 c_{1} / 11\right) \log |N| / \log \log |N|}
$$

Therefore,

$$
T n_{i} \ll T|L|^{2 / 11} \leq|N|^{2 / 11} e^{-c \log |N| / \log \log |N|}
$$

for some absolute positive constant c. Combining this with (3), (4) and (5), we derive the result.

4 Remark

Let f be a fixed non-zero cusp form of a given weight k of the modular group such that f is a normalized eigenform for all the Hecke operators. Let the function $f(z)$ have the Fourier expansion

$$
f(z)=\sum_{n=1}^{\infty} a(n) e^{2 \pi i n z}
$$

in the upper-half plane. In the particular case $k=12$, the coefficients $a(n)$ coincide with $\tau(n)$. In the general case, the coefficients $a(n)$ satisfy some multiplicative relations similar to those satisfied by $\tau(n)$. A suitable modification of our arguments together with results from [8] imply that if $a(n)$ are integers, then for some positive integer ℓ and some constant $c>0$, any integer N with $|N| \geq 2$ is representable in the form $\sum_{i=1}^{\ell} a\left(n_{i}\right)=N$ for some n_{1}, \ldots, n_{ℓ} with

$$
\max _{1 \leq i \leq \ell} n_{i} \ll|N|^{2 /(k-1)} e^{-c \log |N| / \log \log |N|} .
$$

References

[1] T. M. Apostol, Modular functions and Dirichlet series in number theory. Second ed., Graduate Texts in Mathematics 41, Springer-Verlag, New York, 1990.
[2] J. Bourgain, N. Katz, and T. Tao, A sum-product estimate in finite fields and their applications. Geom. Funct. Anal. 14(2004), no. 1, 27-57.
[3] P. Deligne, La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math. 43(1974), 273-307.
[4] M. Z. Garaev, V. C. Garcia, and S. V. Konyagin, Waring problem with the Ramanujan τ-function. Izvestiya: Mathematics 72(2008), no. 1, 35-46.
[5] L.-K. Hua, The additive prime number theory. Trav. Inst. Math. Stekloff 22(1947).
[6] H. Iwaniec, Topics in clasical automorphic forms. Graduate Studies in Mathematics 17, American Mathematical Society, Providence, Rhode Island, 1997.
[7] N. Koblitz, Introduction to elliptic curves and modular forms Second ed., Springer-Verlag, New York, 1993.
[8] M. R. Murty, Oscillations of Fourier coefficients of modular forms. Math. Ann. 262(1983), no. 4, 431-446.
[9] D. Niebur, A formula for Ramanujan's τ-function. Illinois J. Math. 19(1975), 448-449.
[10] J.-P. Serre, Congruences et formes modulaires. Lecture Notes in Math. 317, Springer, Berlin, 1973, 319-338.
[11] I. E. Shparlinski, On the value set of the Ramanujan function. Arch. Math. 85(2005), no. 6, 508-513.

Instituto de Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089, Morelia, Michoacán, México
e-mail: garaev@matmor.unam.mx
garci@matmor.unam.mx
Department of Mechanics and Mathematics, Moscow State University, Moscow, 119992, Russia
e-mail: konyagin@ok.ru

[^0]: Received by the editors July 11, 2006; revised June 8, 2007.
 Garaev and Garcia were supported by the Project PAPIIT IN 100307 from UNAM. Konyagin was supported by the INTAS grant 03-51-5070 and by the RFBR grant 05-01-00066

 AMS subject classification: Primary: 11B13; secondary: 11F30.
 (C)Canadian Mathematical Society 2009.

