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CLASSIFYING PL 5-MANIFOLDS BY
REGULAR GENUS: THE BOUNDARY CASE

MARIA RITA CASALI

ABSTRACT. In the present paper, we face the problem of classifying classes of ori-
entable PL 5-manifolds M5 with h ½ 1 boundary components, by making use of a
combinatorial invariant called regular genus G(M5). In particular, a complete classifi-
cation up to regular genus five is obtained:

G(M5) ≥ • � 5 ≥) M5 ¾≥ #
•�

∂
•
(S4 ð S1)#(h)H∂

•
,

where ∂• ≥ G(∂M5) denotes the regular genus of the boundary ∂M5 and (h)H∂
•

denotes
the connected sum of h ½ 1 orientable 5-dimensional handlebodiesYãi of genus ãi ½ 0
(i ≥ 1, . . . , h), so that

Ph
i≥1 ãi ≥

∂•.
Moreover, we give the following characterizations of orientable PL 5-manifolds M5

with boundary satisfying particular conditions related to the “gap” between G(M5) and

either G(∂M5) or the rank of their fundamental group rk
�
ô1(M5)

�
:

G(∂M5) ≥ G(M5) ≥ • () M5 ¾≥ (h)H•

G(∂M5) ≥ ∂• ≥ G(M5)� 1 () M5 ¾≥ (S4 ð S1)#(h)H∂
•

G(∂M5) ≥ ∂• ≥ G(M5)� 2 () M5 ¾≥ #2(S4 ð S1)#(h)H∂
•

G(M5) ≥ rk
�
ô1(M5)

�
≥ • () M5 ¾≥ #

•�
∂
•
(S4 ð S1)#(h)H∂

•
.

Further, the paper explains how the above results (together with other known prop-
erties of regular genus of PL manifolds) may lead to a combinatorial approach to 3-
dimensional Poincaré Conjecture.

1. Introduction. As far as closed orientable PL 5-manifolds are concerned, many
(partial) classification results are known, which make use of a (non-negative) combina-
torial invariant called regular genus (see [G1]); in particular, we may collect them into
the following statement, where the symbol ¾≥ means PL-homeomorphism, #m(S4 ð S1)
denotes the connected sum of m copies of S4 ðS1, and S3 ðS2 (resp. S3 ð

¾
S2) indicates

the trivial (resp. non trivial) 3-sphere bundle over the 2-sphere.

THEOREM 1 ([FG1],[CG],[C3]). Let M5 be a closed orientable PL 5-manifold, with
regular genus G(M5), and fundamental group of rank rk

�
ô1(M5)

�
.

a) G(M5) ≥ 0 , M5 ¾≥ S5;
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b) G(M5) ≥ m � 7 , M5 ¾≥ #m(S4 ð S1);
c) if G(M5) ≥ 8, then either M5 ¾≥ S3 ðS2 or M5 ¾≥ S3 ð

¾
S2 or M5 ¾≥ #8(S4 ðS1);

d) G(M5) ≥ rk
�
ô1(M5)

�
≥ m , M5 ¾≥ #m(S4 ð S1);

e) it is impossible that rk
�
ô1(M5)

�
+ 1 � G(M5) � rk

�
ô1(M5)

�
+ 7;

f) if G(M5) ≥ m ≥ rk
�
ô1(M5)

�
+ 8 and ô1(M5) is a free group, then either M5 ¾≥

#m�8(S4 ð S1)#(S3 ð S2) or M5 ¾≥ #m�8(S4 ð S1)#(S3 ð
¾
S2).

In the present paper, the attention is fixed upon orientable PL 5-manifolds with bound-
ary, and the classification effort is carried out in case of “low” regular genus, in case of
“restricted gap” between the regular genus of the manifold and the regular genus of its
boundary1, and in case of “restricted gap” between the regular genus and the rank of the
fundamental group of the manifold.

The main results achieved are presented in the following theorems, where M5 is as-
sumed to be an orientable PL 5-manifold with h ½ 1 boundary components,S2ðD3 (resp.
S2 ð

¾
D3) indicates the trivial (resp. nontrivial) 3-ball bundle over the 2-sphere, and ∂#

denotes the boundary connected sum; further, if Yã (ã ½ 0) denotes the orientable 5-
dimensional handlebody of genusã (i.e. the orientable PL 5-manifold obtained from the
5-ball D5 by pairwise identification of 2ã disjoint 4-balls of its boundary), then we will
always indicate by (h)Hã the connected sum (h)Hã ≥ Yã1# Ð Ð Ð #Yãh , with

Ph
i≥1 ãi ≥ ã.

THEOREM 2. If G(M5) ≥ • � 5, then M5 ¾≥ #•�∂•(S
4 ð S1)#(h)H∂•, where ∂• ≥

G(∂M5) (0 � ∂• � •).

THEOREM 3. a) G(∂M5) ≥ G(M5) ≥ • , M5 ¾≥ (h)H•;
b) G(∂M5) ≥ ∂• ≥ G(M5) � 1 , M5 ¾≥ (S4 ð S1)#(h)H∂•;
c) G(∂M5) ≥ ∂• ≥ G(M5) � 2 , M5 ¾≥ #2(S4 ð S1)#(h)H∂•;
d) if G(∂M5) ≥ ∂• ≥ G(M5) � 3 and ô1(M5) ≥ ŁmZ then either M5 ¾≥

#3(S4 ð S1)#(h)H∂• or M5 ¾≥ (S2 ð D3)∂#(h)Hm or M5 ¾≥ (S2 ð
¾
D3)∂#(h)Hm.

THEOREM 4. a) G(M5) ≥ rk
�
ô1(M5)

�
≥ • , M5 ¾≥ #•�∂•(S

4 ð S1)#(h)H∂•, where
∂• ≥ G(∂M5);

b) it is impossible that rk
�
ô1(M5)

�
+ 1 � G(M5) � rk

�
ô1(M5)

�
+ 4;

c) if M5 Â¾≥ #•�∂•(S
4 ð S1)#(h)H∂•, then G(M5) ½ rk

�
ô1(M5)

�
+ 5 + å2(∂M5), where

å2(∂M5) denotes the second Betti number of the boundary ∂M5;
d) if G(M5) ≥ rk

�
ô1(M5)

�
+ 5, then ∂M5 ¾≥

`
f#ãi(S

3 ð S1)Ûi ≥ 1, . . . , hg, where
q denotes a disjoint union and

Ph
i≥1 ãi ≥ ∂•.

The proof of Theorems 2, 3 and 4 will be postponed till Section 4; in fact, the paper
is organized as follows:

ž in Section 2, we introduce and analyze the so called (1, n � 1)-handle presenta-
tions of PL n-manifolds, for n ½ 4 (i.e. particular handle-presentations, where
only handles of indices 1 and n � 1 appear);

1 Note that—as proved in [CP]—the inequality G(∂Mn) � G(Mn) holds for every PL n-manifold Mn.

https://doi.org/10.4153/CJM-1997-010-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-010-3


CLASSIFYING PL 5-MANIFOLDS 195

ž in Section 3, we give the necessary preliminaries about regular genus and its back-
ground (i.e. the representation theory of PL manifolds by edge-coloured graphs);
further, some technical Lemmas are obtained, yielding the combinatorial hypoth-
esis which ensure a 5-manifold M5 to admit a (1, n � 1)-handle presentation;

ž in Section 4, the main theorems are proved, together with other consequences
(see, for example, Corollary 9 and Corollary 10, where G(S2 ð D3) ≥ 7 and
G(S3 ð D2) ≥ 6 are respectively computed).

Moreover, we note that the results of the present paper, arranged with other known
properties of the regular genus, lead to a possible combinatorial approach to 3-dimen-
sional Poincaré Conjecture.

In [CG], the following sequence of conjectures appears, and Conjectures C1 and C2

together are shown to imply Poincaré Conjecture, for all closed orientable 3-manifolds
M3 of Heegaard genus H (M3) � 5.

CONJECTURE Cn ([CG]). For every closed orientable 3-manifold M3, G(M3ðSn) ½
G(M3 ð Dn).

Now, we are able to prove that Conjectures C1 and C2 together really imply Poincaré
Conjecture, for every closed orientable 3-manifold.

In fact, by Conjecture C2 and Theorem 3, G(M3ðS2) ½ G(M3ðD2) ½ G(M3ðS1)+3
follows; on the other hand, G(M3 ð D1) ½ G

�
∂(M3 ð D1)

�
+ 2 ≥ 2G(M3) + 2 is a di-

rect consequence of [CM; Proposition 5] (where arbitrary 4-manifolds M4 with G(M4)�
G(∂M4) � 1 are proved to be decomposable as connected sums of 4-dimensional han-
dlebodies and—possibly—of S3 ð S1). Thus, by assuming Conjecture C1, we have

G(M3 ð S2) ½ G(M3 ð S1) + 3 ½ G(M3 ð D1) + 3 ½ 2G(M3) + 5.

Poincaré Conjecture now easily would follow, since [CG; Corollary I] and [B] imply that
G(Σ3 ð S2) ≥ 8, for every homotopy 3-sphere Σ3, and since G(Σ3) ≥ H (Σ3) � 1 is an
obvious contradiction.

2. PL n-manifolds admitting (1, n � 1)-handle presentations. It is well-known
that every PL n-manifold with boundary2 admits a handle-presentation of type

Mn ≥ H(0) [ (H(1)
1 [ Ð Ð Ð [ H(1)

r1
) [ Ð Ð Ð [ (H(n�1)

1 [ Ð Ð Ð [ H(n�1)
rn�1

)

where every p-handle H(p)
i ≥ DpðDn�p (1 � p � n�1, 1 � i � rp) is endowed with an

embedding (called attaching map) f (p)
i : ∂DpðDn�p ! ∂

�
H(0)[Ð Ð Ð[(H(p�1)

1 [Ð Ð Ð[H(p�1)
rp�1 )

�
.

DEFINITION 1. A (1, n�1)-handle presentation of a PL n-manifold Mn (with ∂Mn Â≥
;) is a handle-presentation where only 1-handles and (n � 1)-handles appear, i.e.

Mn ≥ H(0) [ (H(1)
1 [ Ð Ð Ð [ H(1)

r ) [ (H(n�1)
1 [ Ð Ð Ð [ H(n�1)

s ) (0 � s � r).

2 For all basic notions of piecewise-linear (PL) topology, we refer to [RS].
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The purpose of the present section is to analyze the topological structure of PL n-
manifolds admitting a (1, n � 1)-handle presentation, for n ½ 5; note that, in dimension
n ≥ 3, the class of (1, n � 1)-handle presentations coincides with the whole class of
handle-presentations for manifolds with boundary, while in dimension n ≥ 4 the same
problem has already been faced and solved in [CM, Theorem 1].

The following—quite obvious—statement will be helpful for our research; here, Yn
ã

denotes the n-dimensional handlebody of genus ã ½ 0.

PROPOSITION 1. A PL n-manifold Mn, with h ½ 1 boundary components, admits a
(1, n � 1)-handle presentation if and only if it admits a decomposition of type

Mn ≥ Yn
r [ß Y

n
s (0 � s � r)

where ß: ∂Yn
s �

Sh
i≥1 int(Dn�1

(i) ) ! ∂Yn
r is a regular embedding and Dn�1

(1) , . . . ,Dn�1
(h) are h

disjoint (n � 1)-balls contained into ∂Yn
s .

Now, we are able to prove the characterization theorem for n-manifolds (n ½ 5)
admitting a (1, n�1)-handle presentation; here, (h)Hn

ã denotes the connected sum of h ½ 1
n-dimensional handlebodiesYn

ãi
of genus ãi ½ 0 (i ≥ 1, . . . , h), so that

Ph
i≥1 ãi ≥ ã.

PROPOSITION 2. For every n ½ 5, a PL n-manifold Mn, with h ½ 1 boundary com-
ponents, admits a (1, n�1)-handle presentation (with r ½ 0 1-handles and s � r (n�1)-
handles) if and only if

Mn ¾≥ #s(Sn�1 ð S1)#(h)Hn
r�s.

PROOF. Via Proposition 1, one implication is just an obvious remark:
#s(Sn�1 ð S1)#(h)Hn

r�s may be decomposed as Yn
r [ß̄ Y

n
s (0 � s � r), where ß̄: ∂Yn

s �Sh
i≥1 int(Dn�1

(i) ) ! ∂Yn
r is the canonical embedding which sends the i-th S1-factor of

∂Yn
s ≥ #s(Sn�2 ðS1) into the i-th S1-factor of ∂Yn

r ≥ #r(Sn�2 ðS1), for every 1 � i � s.
As far as the other implication is concerned, let us consider Mn ≥ Yn

r [ßY
n
s , ß: ∂Yn

s �Sh
i≥1 int(Dn�1

(i) ) ! ∂Yn
r being a given regular embedding.

Now, if S1
(i), 1 � i � s, is the i-th S1-factor of ∂Yn

s ≥ #s(Sn�2 ð S1), then the s-

tuple
�
S1̄

(1) ≥ ß(S1
(1)), . . . ,S1̄

(s) ≥ ß(S1
(s))
�

may be completed to an r-tuple ( ¯S1
(1), . . . ,S1̄

(s),

S1̄
(s+1), . . . ,S1̄

(r)) of generators for the fundamental group of ∂Yn
r ≥ #r(Sn�2 ð S1). By [L]

and [LP], a self-homeomorphism † of ∂Yn
r exists, so that †(S1̄

(i)) is the i-th S1-factor of
∂Yn

r ≥ #r(Sn�2 ð S1), for every 1 � i � r, and so that † may be extended to a self-
homeomorphism †̃ of the whole handlebody Yn

r .3 Moreover, [LP], [M] and [CH] state
that any self-homeomorphism f : #p(Sm�1ðS1) ! #p(Sm�1ðS1), (m ½ 3, p ½ 0) extends
to a self-homeomorphism f̃ :Ym+1

p ! Ym+1
p . Thus, the composition ß̄�1 Ž † Ž ß: ∂Yn

s �Sh
i≥1 int(Dn�1

(i) ) ! ∂Yn
s �

Sh
i≥1 int(Dn�1

(i) ) may be first completed to a self-homeomorphism

3 Note that, by [L] and [LP], † is generated by sliding 1-handles, twisting 1-handles, permuting 1-handles

and rotations.
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T: ∂Yn
s ! ∂Yn

s (since, for every i ≥ 1, . . . , h, ß̄�1Ž†Žßj∂Dn�1
(i)

extends to the whole (n�1)-

ball Dn�1
(i) of ∂Yn

s ); then, T may be extended to a self-homeomorphism T̃:Yn
s ! Yn

s .
Finally, the proof follows by considering the homeomorphism

†̃ [ T̃: Mn ≥ Yn
r [ß Y

n
s ! Yn

r [ß̄ Y
n
s ≥ #s(Sn�1 ð S1)#(h)Hn

r�s.

3. Technical results about crystallizations and regular genus. In order to under-
stand how to compute the combinatorial invariant “regular genus”, we have to briefly
recall the basic notions of the representation theory of PL n-manifolds (for every n) by
edge-coloured graphs; for a detailed treatment, see [FGG], [Co], [LM] or [V].

According to [FGG], we say that a finite ball-complex K is a pseudocomplex iff:
ž jKj ≥

`
fint(B)ÛB 2 Kg (where q denotes a disjoint union);

ž if A, B 2 K, then A \ B is a union of balls of K;
ž for each m-ball A 2 K, the poset fB 2 KÛB � Ag, ordered by inclusion, is

isomorphic with the lattice of all faces of the standard m-simplex.
Note that, in general, a pseudocomplex is not a simplicial complex, since its elements

may intersect in more than one face; notwithstanding this, we will always refer to an
m-ball B 2 K as to an m-simplex of K. Further, note that the (well defined) barycentric
subdivision of any pseudocomplex is actually a simplicial complex.

Now, it is easy to check that every PL n-manifold Mn admits a coloured pseudodis-
section (K, ò), i.e. a pseudocomplex K with jKj ¾≥ Mn, endowed with a vertex labelling
ò by colours of the set ∆n ≥ f0, 1, . . . , ng, which is injective on every n-simplex of K.4

Moreover, a coloured pseudodissection (K, ò) of Mn may be combinatorially visualized
by means of an (n + 1)-coloured graph (Γ, ç), where the multigraph Γ ≥

�
V(Γ), E(Γ)

�
is the 1-skeleton of the (well defined) ball-complex dual to K, and the edge-coloration
ç: E(Γ) ! ∆n is given by ç(e) ≥ c if the edge e 2 E(Γ) is dual to an (n � 1)-simplex of
K having no vertex labelled by colour c; (Γ, ç) is said to represent Mn, since the reversed
process allows to recontruct the associated coloured pseudodissection (K, ò)—and hence
Mn—from it.

Note that, for every subset B ² ∆n, with #B ≥ m, a (possibly disconnected) m-
coloured graph ΓB ≥

�
V(Γ), ç�1(B)

�
is well defined; by construction, its connected

components (which are said to be B-residues of Γ) are in bijection with the (n � m)-
simplices of K whose vertices are labelled by ∆n � fBg. The number of B-residues
of Γ is usually denoted by gB; in particular, if B ≥ fi, jg (resp. B ≥ fi, j, kg) (resp.
B ≥ ∆n � fig), we shall often write gij (resp. gijk) (resp. gî) instead of gB, and gî̂j (resp.
gî̂jk̂) (resp. gi) instead of g∆n �B.

Let Gn+1 be the class of (n + 1)-coloured graphs (Γ, ç) which are regular with respect
to the “last” colour n, i.e. so that Γn̂ is a regular graph of degree n.

A theorem of [P], together with its subsequent improvements (see [FGG] and its bibli-
ography), ensures that every PL n-manifold Mn may be represented by an (n+1)-coloured

4 For example, K may be the barycentric subdivision of any simplicial triangulation H of Mn, and ò may

associate to every vertex v of K the dimension of the simplex of H whose barycenter is v.
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graph (Γ, ç) 2 Gn+1. More precisely, if the boundary ∂Mn is either empty or connected,
Mn is proved to admit a contracted triangulation (resp. a crystallization), i.e. a coloured
pseudodissection (K, ò) containing exactly n + 1 vertices (resp. i.e. an (n + 1)-coloured
graph (Γ, ç) 2 Gn+1 with gî ≥ 1, for every i 2 ∆n); on the other hand, if ∂Mn has h ½ 2
connected components, then any contracted triangulation of Mn contains exactly nh + 1
vertices, and any crystallization of Mn satisfies gn̂ ≥ 1 and gî ≥ 1 for every i 2 ∆n�1.

Obviously, if (Γ, ç) 2 Gn+1 has order 2p ≥ #V(Γ), then (Γ, ç) contains 2ṗ � 2p degree
n + 1 vertices (which are said to be internal vertices) and 2p̄ ≥ 2p � 2ṗ ½ 0 degree n
vertices (which are said to be boundary vertices); further, if B ² ∆n, (Γ, ç) contains
ġB � gB internal B-residues (i.e. B-residues which result to be regular graphs), while
the other ḡB ≥ gB � ġB ½ 0 ones are said to be boundary B-residues.5

It is not difficult to check that, if (Γ, ç) 2 Gn+1 represents a PL n-manifold Mn, then
every internal (resp. boundary) B-residue, with #B ≥ m � n, belongs to Gm and repre-
sents the (m� 1)-sphere Sm�1 (resp. the (m � 1)-ball Dm�1); moreover, Mn is orientable
if and only if (Γ, ç) is bipartite, and Mn is closed if and only if (Γ, ç) has no boundary
vertex.

On the other hand, if (Γ, ç) 2 Gn+1 represents a PL n-manifold Mn with (non-empty)
boundary ∂Mn, then ∂Mn is represented by the so called boundary graph6 (∂Γ, ∂ç) 2 Gn,
whose vertices are in bijection with the boundary vertices of Γ, and whose i-coloured
edges (i 2 ∆n�1) are in bijection with the boundary fi, ng-residues of Γ; thus, for every
B ² ∆n�1, the number ∂gB of B-residues of ∂Γ equals the number ḡB[fng of boundary
(B [ fng)-residues of Γ.

In [G1] and [G2] it is proved that every bipartite (n + 1)-coloured graph (Γ, ç) 2 Gn+1

“regularly embeds” (see [G1] for details) onto an orientable surface F¢, which depends
on the choice of a cyclic permutation ¢ ≥ (¢1, ¢2, . . . ¢n�1, ¢n ≥ n) of the colour set
∆n; the regular genus •¢(Γ) of (Γ, ç) with respect to ¢ is defined as the genus of F¢,
and is computable—also in the generalized case of a disconnected graph with g ½ 2
components—by means of the following combinatorial formula:

(1)
X
i2Zn

ġ¢i¢i+1 + (1 � n)
ṗ
2

+ (2 � n)
p̄
2

+ ∂g¢0¢n�1 ≥ 2g� 2•¢(Γ).

Finally, the regular genus G(Mn) of an orientable PL n-manifold Mn is defined to be
the minimum value of •¢(Γ), for every crystallization (Γ, ç) of Mn and for every cyclic
permutation ¢ of ∆n.

If (Γ, ç) 2 Gn+1 represents an orientable PL n-manifold Mn, and ¢ ≥ (¢1, ¢2, . . . , ¢n�1,
¢n ≥ n) is a fixed cyclic permutation of ∆n, then every subset B ² ∆n inherits an induced
cyclic permutation ¢B ; thus, formula (1) may be applied also to compute the regular
genus •¢B (ΓB) for every (possibly disconnected) subgraph ΓB , and the regular genus
•¢n̂(∂Γ) for the (possibly disconnected) boundary graph (∂Γ, ∂ç).

5 Note that, if n Û2 B, every B-residue is an internal residue.
6 Obviously, the boundary graph is a possibly disconnected graph, having as many components as the bound-

ary manifold ∂Mn.
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From now on—for sake of notational simplicity—the fixed cyclic permutation ¢ ≥
(¢1, ¢2, . . . ¢n�1, ¢n ≥ n) will be assumed to be the identity on ∆n; thus, we shall always
write i instead of ¢i, for every i 2 ∆n, and • (resp. •B) (resp. ∂•) instead of •¢(Γ) (resp.
•¢B (ΓB )) (resp. •¢n̂(∂Γ)).

For our purposes, some general formulae—which extend similar ones already proved
in [CG] and [C2]—result to be useful.

PROPOSITION 3. With the above notations, the following relations hold:
(2c) gc�1,c+1 ≥ gc�1,c,c+1 + (• � •ĉ) + (gĉ � g) 8c Û2 f0, n � 1g;
(20) ġn,1 ≥ ġn,0,1 + (• � •0̂) + (g0̂ � g)� ∂gn�1,1 + ∂gn�1,0,1;

(2n�1) ġn�2,n ≥ ġn�2,n�1,0 + (• � •n̂�1) + (gn̂�1 � g) � ∂g0,n�2 + ∂gn�2,n�1,0;
(3i) ġi�1,i+1 ≥ ġi�1i,i+1 + (• � •î)� (∂• � ∂•î) � (g � ∂g � ġî) for i 2 f0, n� 1g;
(4) gî̂j ≥ (gî + gĵ � g) + • � •î � •ĵ + •î̂j for every i, j non-consecutive in ∆n, with

fi, jg Â≥ f0, n� 1g;
(5) ġî,̂j ≥ [ġî + ġĵ � (g� ∂g)] + (•� ∂•)� (•î �

∂•î)� (•ĵ �
∂•ĵ) + (•îĵ �

∂•î̂j) for every
i, j non-consecutive in ∆n�1.

PROOF. First of all, note that the Euler characteristic computation of all pseudocom-
plexes represented by fi, j, kg-residues of Γ easily yields the following relations:

(6) 2gi,j,k ≥ gi,j + gi,k + gj,k �
p
2 8i, j, k 2 ∆n�1;

(60) 2ġi,j,n + ∂gi,j ≥ gi,j + ġi,n + ġj,n �
ṗ
2 8i, j 2 ∆n�1.

Then formula (2c), for every c 2 ∆n, may be obtained by applying relation (1) both to
(Γ, ç) 2 Gn+1 and to its subgraph Γĉ, and by making suitable use of formulae (6) and/or
(60).

Further, note that, for i 2 f0, n� 1g, the comparison between formula (2i) applied to
an (n + 1)-coloured graph and the same formula applied to its boundary graph, directly
yields formula (3i).

As far as relation (4) is concerned, it is sufficient to apply formula (2i) both to (Γ, ç)
and to its subgraph Γĵ; finally, formula (5) easily follows from relation (4), applied both
to (Γ, ç) and to its boundary graph.

Let us now restrict our attention to the case of (Γ, ç) 2 G6 being a crystallization of
an orientable PL 5-manifold M5, with h ½ 1 boundary components; when we apply the
above formulae (2), (3), (4), (5) to (Γ, ç) or to the subgraph Γk̂ (k 2 ∆5), we have to
remind that g ≥ g5̂ ≥ ġ5̂ ≥ 1, while ∂g ≥ gî ≥ h and ġî ≥ 0 for every i 2 ∆4, and that
•î̂jk̂ ≥

∂•î̂j ≥ 0 (since every 3-coloured graph representing either S2 or D2 has always
regular genus zero). Moreover, the following statement lists other interesting relations.

PROPOSITION 4. Let (Γ, ç) 2 G6 be a crystallization of an orientable PL 5-manifold
M5, with connected boundary ∂M5 Â≥ ;. For every cyclic permutation ¢ ≥ (¢0, . . . , ¢4,
¢5 ≥ 5) of ∆5, we have:

(7) 2•î ≥
∂•î +

P
j Â≥i
•î̂j for every i 2 ∆4;

(8) 2•5̂ ≥
P
j Â≥5

•5̂ĵ;

(9) ġ0̂2̂4̂ ≥ 2(• � ∂•)� (•0̂ �
∂•0̂) � (•2̂ �

∂•2̂)� (•4̂ �
∂•4̂) + 2h� 2 ½ 2h � 2;
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(10) g1̂3̂5̂ ≥ 2• � (•1̂ + •3̂ + •5̂) + 2h� 1 ½ 2h � 1.

PROOF. In [C2; Lemma 8], the Euler characteristic of a (possibly disconnected, with
ġ closed components and ḡ bounded components) 4-manifold M4 has been computed
by means of the regular genera associated to any 5-coloured graph representing M4:
X (M4) ≥ 2ġ + ḡ � 2• + ∂• +

P
i •î.

Hence, formulae (7) and (8) directly follow, since—in the hypothesis of the state-
ment—Γî, with i 2 ∆4, consists of h ½ 1 connected components, each one representing
D4, while Γ5̂ is a connected graph representing S4.

Let us now consider the 6-coloured graph (Γ, ç) 2 G6 of the statement; summing up
relations (22), (30) and (34), together with an appropriate use of formulae (6) and (60),
gives:

g13+ġ51 + ġ35

≥ ġ501 + ġ345 + g123 + 3• � 2∂• � •2̂ � (•0̂ �
∂•0̂) � (•4̂ �

∂•4̂) + 3h� 3

≥
1
2

(g01 + ġ05 + ġ15 + g12 + g13 + g23 + g34 + ġ35 + ġ45 �
∂g01 �

∂g34)

�
3
4

ṗ �
1
4

p̄ + 3• � 2∂• � •2̂ � (•0̂ �
∂•0̂) � (•4̂ �

∂•4̂) + 3h � 3.

Now, formula (1) yields:

1
2

(g13 + ġ51 + ġ35 ≥ (1 � • �
1
2

∂g04 + ṗ +
3
4

p̄) �
1
2

(∂g01 + ∂g34)

�
3
4

ṗ �
1
4

p̄ + 3• � 2∂• � •2̂ � (•0̂ �
∂•0̂)

� (•4̂ �
∂•4̂) + 3h� 3.

Thus, the computation of ġ0̂2̂4̂ given in (9) follows from a further use of relation (60),
together with an application of formula (1) to the 4-coloured graph ∂Γ2̂:

ġ0̂2̂4̂ ≥ ġ135

≥ 1 + 2(• � ∂•) � •2̂ � (•0̂ �
∂•0̂) � (•4̂ �

∂•4̂)

+
1
2

p̄ �
1
2

(∂g01 + ∂g34 + ∂g13 + ∂g04) + 3h � 3

≥ 2(• � ∂•)� (•0̂ �
∂•0̂) � (•2̂ �

∂•2̂)� (•4̂ �
∂•4̂) + 2h� 2.

Further, it is not difficult to get the inequality ġ0̂2̂4̂ ½ 2h � 2, by recalling that the
pseudocomplex K (which has h ½ 1 boundary components) is strongly connected: for
example, in case h ≥ 2, two internal triangles õ and ú surely exist, so that õ (resp.
ú) has its i-labelled and j-labelled vertices (resp. its i-labelled vertex) on one boundary
component and its k-labelled vertex (resp. its j-labelled and k-labelled vertices) on the
other boundary component, fi, j, kg being a suitable permutation of f0, 2, 4g.
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On the other hand, summing up relations (21), (23) and (25), together with an appro-
priate use of of formulae (6) and (60), gives:

g02 + g24 + g40 ≥ g012 + g234 + g450 + 3• � (•1̂ + •3̂ + •5̂) + 2h � 2

≥
1
2

(g01 + g12 + g02 + g23 + g34 + g24 + ġ45 + ġ50 + g40 �
∂g04)

�
3
4

ṗ �
1
2

p̄ + 3• � (•1̂ + •3̂ + •5̂) + 2h� 2.

Now, formula (1) yields:

1
2

(g02 + g24 + g40) ≥ (1 � • �
1
2

∂g04 + ṗ +
3
4

p̄)

+
1
2

∂g04 �
3
4

ṗ �
1
2

p̄ + 3• � (•1̂ + •3̂ + •5̂) + 2h � 2.

Hence, the computation of g1̂3̂5̂ given in (10) may be completed by a further use of rela-
tion (6).

Finally, the inequality g1̂3̂5̂ ½ 2h � 1 is a consequence of the existence of h ½ 1
boundary components (each one containing at least an edge between its 1-labelled and
3-labelled vertices) and of the strong connectedness of the pseudocomplex K (which
implies the existence of at least h � 1 edges, with 1-labelled and 3-labelled end-points,
“connecting” the h boundary components.

If (Γ, ç) 2 G6 is assumed to be a crystallization of a PL 5-manifold M5 (with h ½ 1
boundary components), then the vertex set of the associated coloured pseudodissection
(K, ò) is

V(K) ≥ fv(1)
0 , . . . , v(h)

0 , v(1)
1 , . . . , v(h)

1 , v(1)
2 , . . . , v(h)

2 , v(1)
3 , . . . , v(h)

3 , v(1)
4 , . . . , v(h)

4 , v5g,

with ò(vi) ≥ i, for every i 2 ∆5.
For every fi, jg ² ∆5 (resp. fi, j, kg ² ∆5), let K(i, j) (resp. K(i, j, k)) denote the 1-

dimensional (resp. 2-dimensional) subcomplex of K generated by
n

v 2 V(K)Ûò(v) 2

fi, jg
o

(resp.
n
v 2 V(K)Ûò(v) 2 fi, j, kg

o
), and let N(i, j) (resp. N(i, j, k)) be a regular

neighbourhood of jK(i, j)j (resp. jK(i, j, k)j) into the polyhedron jKj. Moreover, if fi, jg ²
∆4 (resp. fi, j, kg ² ∆4), let K̇(i, j) (resp. K̇(i, j, k)) denote the subcomplex of K(i, j) (resp.
K(i, j, k)) consisting only of the 1-simplices (resp. 2-simplices) which are internal in K,
together with their faces, and set ∂K(i, j) ≥ K(i, j)\∂K (resp. ∂K(i, j, k) ≥ K(i, j, k)\∂K).

Note that, if
n
fi, j, kg, fi0, j0, k0g

o
is a partition of ∆5, then the 5-dimensional submani-

folds N(i, j, k) and N(i0, j0, k0) give rise to a decomposition M5 ≥ N(i, j, k)[ßN(i0, j0, k0),ß
being a (partial) boundary identification. Thus, it becomes interesting to get information
about the topological structure of the above described subcomplexes of K.

LEMMA 5. Let (Γ, ç) 2 G6 be a crystallization of an orientable PL 5-manifold M5,
with h ½ 1 boundary components.

a) If there exist i, j, k 2 ∆5, with i, j non-consecutive in ∆5�fkg and fi, jg Â≥ f0, 4g,
such that •k̂ � •îk̂ � •ĵk̂ ≥ 0, then K(i, j, k) collapses to K(i, j);
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b) if there exist i, j, k 2 ∆4, with i, j non-consecutive in ∆4�fkg, such that •k̂�
∂•k̂�

•îk̂ � •ĵk̂ ≥ 0, then K(i, j, k) collapses to ∂K(i, j, k) [ K̇(i, j).

PROOF. Formula (4), applied to the residue Γk̂ of (Γ, ç), gives gî̂jk̂ ≥ (gîk̂ +gĵk̂�gk̂)+
(•k̂ � •îk̂ � •ĵk̂), for every i, j non-consecutive in ∆5 � fkg, with fi, jg Â≥ f0, 4g. Thus, if
•k̂ � •îk̂ � •ĵk̂ ≥ 0 is assumed, gî̂jk̂ ≥ gîk̂ + gĵk̂ � gk̂ obviously holds, and K(i, j, k) surely
collapses to K(i, j) by a trivial extension of [C1; Lemma 5] (or [CG; Lemma 1a]).

On the other hand, formula (5), applied to the residue Γk̂ of (Γ, ç) (with k Â≥ 5), gives
ġî̂jk̂ ≥ (ġîk̂ + ġĵk̂) + (•k̂ �

∂•k̂ �•îk̂ �•ĵk̂), for every i, j non-consecutive in ∆4 �fkg. Thus,

if •k̂ �
∂•k̂ � •îk̂ � •ĵk̂ ≥ 0 is assumed, ġî̂jk̂ ≥ ġîk̂ + ġĵk̂ obviously holds.

Note that, since the edges of K(i, j) are a set of generators for the fundamental group
(see [CP]), every edge of K̇(i, k) and K̇(j, k) is face of a triangle of K̇(i, j, k), at least;
further, the fact that Γk̂ has no internal component implies the existence of at least a
triangle in K̇(i, j, k) having its (s, k)-face, for s 2 fi, jg, on the boundary of K.

It is now easy to check that, if ġŝk̂ ½ ġr̂k̂, with fr, sg ≥ fi, jg, then the edges of
K̇(s, k) are faces of at most ġî̂jk̂ � 1 ≥ ġîk̂ + ġĵk̂ � 1 � 2ġŝk̂ � 1 triangles; thus, at least

ġŝk̂ � ġr̂k̂ + 1 triangles of K̇(i, j, k) may collapse from their “free” internal (s, k)-face. On
the other hand, if ġŝk̂ Ú ġr̂k̂, some triangle of K̇(i, j, k) may obviously collapse from its
“free” internal (r, k)-face. Moreover, since the above considered collapses do not affect
the property ġk̂ ≥ 0 and leave K(i, j) fixed, the process may be iterated, until each triangle
of K̇(i, j, k) collapses either from its “free” internal (i, k)-face, or from its “free” internal
(j, k)-face. Finally, since relation ġî̂jk̂ ≥ ġîk̂ + ġĵk̂ holds at every step, the result of the

whole collapsing process is nothing but ∂K(i, j, k) [ K̇(i, j), as statement (b) claims.
The following Lemma makes use of Lemma 5 to prove that, under suitable combina-

torial hypothesis, the decomposition M5 ≥ N(i, j, k)[ß N(i0, j0, k0) induced by a partitionn
fi, j, kg, fi0, j0, k0g

o
of ∆5, is indeed a (1, 4)-handle presentation.

LEMMA 6. Let (Γ, ç) 2 G6 be a crystallization of an orientable PL 5-manifold M5,
with h ½ 1 boundary components. If there exist i, j 2 ∆5 such that •î̂j ≥ 0, then M5 ¾≥

#a(S4 ð S1)#(h)Hb, for suitable a, b, with 0 � b � ∂•, and 0 � a � • � ∂•.

PROOF. Let us assume the existence of i, j 2 ∆5, with i Â≥ 5, such that •î̂j ≥ 0, and
let (0(ij), 1(ij), 2(ij), 3(ij)) denote the (ordered) 4-tuples induced by ¢ on ∆5 � fi, jg; then,
formulae (7) and/or (8) imply

(•î �
∂•î � •0̂(ij) î � •2̂(ij) î) + (•î � •1̂(ij) î � •3̂(ij) î) ≥ •î̂j ≥ 0

(•ĵ �
∂•ĵ � •0̂(ij) ĵ � •2̂(ij) ĵ) + (•ĵ � •1̂(ij) ĵ � •3̂(ij) ĵ) ≥ •î̂j ≥ 0,

where—for sake of conciseness—we assume ∂•ĵ ≥ 0 in case j ≥ 5.
Since the four addenda are non-negative integer (see relations (4) and (5), together

with the trivial inequalities gî̂j ½ gî + gĵ � g and ġî̂j ½ ġî + ġĵ � (g � ∂g)), we have

both •ĵ � •1̂(ij) ĵ � •3̂(ij) ĵ ≥ 0 and •î �
∂•î � •0̂(ij) î � •2̂(ij) î ≥ 0; thus, Lemma 5

implies that both K(j, 1(ij), 3(ij)) collapses to K(1(ij), 3(ij)) and K(i, 0(ij), 2(ij)) collapses to
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K̇(0(ij), 2(ij)) [ ∂K(i, 0(ij), 2(ij)). Moreover, since the regular neighbourhood of any sim-
plex of ∂K(i, 0(ij), 2(ij)) is a collar of a 4-ball embedded in ∂M5, the decomposition of
M5 induced by the partition

n
fj, 1(ij), 3(ij)g, fi, 0(ij), 2(ij)g

o
of ∆5 may be thought of as

M5 ≥ Yr [ß Ys, for a suitable ß: ∂Ys �
Sh

i≥1 int(D4
(i)) ! ∂Yr, with r ≥ g1̂(ij),3̂(ij) �

(g1̂(ij) +g3̂(ij) �1) (recall that a maximal tree of K(1(ij), 3(ij)) is uninfluent) and s ≥ ġ0̂(ij),2(ij) �
(g0̂(ij) + g2̂(ij) � 1) + h (recall that a maximal tree of K(0(ij), 2(ij)) is uninfluent, too, and that
∂K(i, 0(ij), 2(ij)) has h connected components).

Now, M5 ¾≥ #a(S4 ð S1)#(h)Hb follows from Proposition 1 and Proposition 2 of the
second section, with a ≥ s ≥ (• � ∂•) � (•0̂(ij) � ∂•0̂(ij) ) � (•2̂(ij) � ∂•2̂(ij) ) + •0̂(ij)2̂(ij) , and
b ≥ r � s ≥ ∂• +

P3
k≥0(�1)k•k̂(ij) � ∂•0̂(ij) � ∂•2̂(ij) � •0̂(ij)2̂(ij) + •1̂(ij)3̂(ij) .

In case the crystallization (Γ, ç) being assumed to gain the regular genus G(M5) of
the 5-manifold M5, then Lemma 6 may be improved as follows.

PROPOSITION 7. Let M5 be a connected orientable PL 5-manifold M5, with h ½ 1
boundary components; let (Γ, ç) 2 G6 be a crystallization of M5 and ¢ ≥ (¢1, . . . ¢4, ¢5 ≥
5) be a cyclic permutation of ∆5, so that •¢(Γ) ≥ G(M5). If there exist i, j 2 ∆5 such that
•î̂j ≥ 0, then •k̂ ≥ 0 for every k 2 ∆5, and M5 ¾≥ #•�∂•(S

4 ð S1)#(h)H∂•.

PROOF. By Lemma 6, we have M5 ¾≥ #a(S4 ð S1)#(h)Hb, with a ≥ (• � ∂•) �
(•0̂(ij) � ∂•0̂(ij) ) � (•2̂(ij) � ∂•2̂(ij) ) + •0̂(ij)2̂(ij) , and b ≥ ∂• +

P3
k≥0(�1)k•k̂(ij) � ∂•0̂(ij) � ∂•2̂(ij) �

•0̂(ij)2̂(ij) + •1̂(ij)3̂(ij) . Since the regular genus is sub-additive with respect to connected sum
of n-manifolds, we have • ≥ G(M5) � a + b ≥ • � •1̂(ij) � •3̂(ij) + •1̂(ij)3̂(ij) � •, from
which •1̂(ij) ≥ •3̂(ij) ≥ 0 obviously follows. Moreover, G(∂M5) ≥ b ≥ ∂• + •0̂(ij) + •2̂(ij) �
∂•0̂(ij) � ∂•2̂(ij) �•0̂(ij)2̂(ij) ½ ∂• implies •0̂(ij) ≥ ∂•0̂(ij) , •2̂(ij) ≥ ∂•2̂(ij) and •0̂(ij)2̂(ij) ≥ 0. Further, we
already know that •î̂j ≥ 0 yields •î ≥ •1̂(ij) î + •3̂(ij) î and •ĵ ≥ •1̂(ij) ĵ + •3̂(ij) ĵ; thus, obviously,
•î ≥ •ĵ ≥ 0 follows. Finally, it is now easy to check—by means of formula (7)—that
also •0̂(ij) ≥ •2̂(ij) ≥ 0 holds, and hence the statement results to be completely proved.

We conclude the paragraph with a further result on the topological structure of the sub-
complexes N(i, j, k), which improves a similar one already stated in [C3] for contracted
triangulations of closed 5-manifolds.

LEMMA 8. Let (Γ, ç) 2 G6 be a crystallization of an orientable PL 5-manifold M5,
with h ½ 1 boundary components. If there exist i, j, k 2 ∆5, with i, j non-consecutive in
∆5 � fkg and i, k non-consecutive in ∆5, fi, jg Â≥ f0, 4g, fi, kg Â≥ f0, 4g and gk̂ � gĵ,
such that •k̂ � •îk̂ � •ĵk̂ ≥ 1 and •ĵ � •î̂j � •k̂ĵ ≥ 1, then either N(i, j, k) ¾≥ Ym, with

0 � m ≥ • � •î � •ĵ + •î̂j � 1 or N(i, j, k) ¾≥ N(F)∂#Ym, where N(F) is the regular
neighbourhood of a closed orientable (resp. non orientable) surface of genus g ½ 0
(resp. g̃ ½ 1) and m ≥ • � •î � •ĵ + •î̂j � 2g (resp. m ≥ • � •î � •ĵ + •î̂j � g̃).

PROOF. By formula (4), the hypotheses give:

gî̂jk̂ ≥ gîk̂ + gĵk̂ + (1 � gk̂);

gî̂jk̂ ≥ gî̂j + gĵk̂ + (1 � gĵ);

gîk̂ ≥ gî̂j + gk̂ � gĵ.
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We want now to perform a sequence of elementary collapses on K(i, j, k), not affecting
K(i, j): since it is known that the edges between two fixed vertices are a set of generators
for the fundamental group (see [CP]), this implies that, at every step, the total number of
edges belonging to K(i, k)[K(j, k) which are face of no triangle must be gk̂ � 1 at most.
Thus, if gr̂k̂ � gŝk̂ is assumed, with fr, sg ≥ fi, jg, relation gî̂jk̂ � 2gŝk̂ � (gk̂ � 1) yields
only the following two possibilities:

(-) exactly gk̂ � 1 edges of K(s, k) are face of no triangle of K(i, j, k), while the other
ones are face of exactly two triangles;

(-) some triangles of K(i, j, k) may collapse from their “free” edges belonging to
K(s, k).

By iterating the process, a new pseudocomplex C (consisting of 2c ½ 0 triangles) is
obtained, so that (if c Â≥ 0):

ž C contains c edges belonging to K(i, k) and c edges belonging to K(j, k) which are
face of exactly two triangles of C , and gk̂ � 1 further edges, belonging to K(l, k)
(with l 2 fi, jg), which are face of no triangle of C ;

ž C contains all gî̂j edges of K(i, k).
Now, let S, with #S ≥ p ½ 0, be the (possibly empty) subset of triangles of C ,

having a “free” edge belonging to K(i, j); it is easy to check that, for every õ 2 S, the
collapse of õ allows a finite sequence of collapses of triangles of C , from their “free”
edges belonging alternatively to K(j, k) and to K(i, k), till an edge of K(i, k) (which was
face of two triangles in C ) results to contain no triangle.

Hence, it is easy to check that the resulting pseudocomplex C 0 consists of 2c0 triangles
(0 � c0 � c) and contains:

ž c0 edges belonging to K(i, k) and c0 edges belonging to K(j, k) which are face of
exactly two triangles of C 0;

ž p edges belonging to K(i, k) which are face of no triangle of C 0;
ž gk̂ � 1 further edges, belonging to K(l, k) (with l 2 fi, jg), which are face of no

triangle of C ;
ž gî̂j � p edges belonging to K(i, j).

Moreover, the number of edges belonging to K(i, j) which are face of no triangle in
C 0 must be less or equal to the number of edges of K(i, k) which have been “lost” in
the process from K(i, j, k) to C 0 (since the edges of K(i, k) are a set of generators for the
fundamental group, too); thus, at least (gî̂j � p) � (gîk̂ � c0 � p) ≥ c0 + (gĵ � gk̂) ½ c0

edges belonging to K(i, k) are face of more than two triangles of C 0.
This obviously implies that either C 0 results to be a graph (from which N(i, j, k) ¾≥ Ym,

with 0 � m ≥ gî̂j � gî � gĵ ≥ •�•î �•ĵ + •î̂j � 1 easily follows) or C 0 may be obtained
from the triangulation T of an orientable (resp. non-orientable) surface F of genus g ½ 0
(resp. g̃ ½ 1), by suitable vertices identifications and by further addition of external
edges, having the end-points on T.

Finally, since each vertex identification and each external edge corresponds to a 1-
handle attached to the regular neighbourhood of the surface, the thesis follows by a direct
computation:

N(i, j, k) ¾≥ N(F)∂#Ym,
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with m ≥ [(2�2g+c0)�(gî +gĵ+1)]+(gî̂j�c0) ≥ gî̂j�gî�gĵ+1�2g ≥ •�•î�•ĵ +•î̂j�2g
(resp. m ≥ [(2�g̃+c0)�(gî+gĵ+1)]+(gî̂j�c0) ≥ gî̂j�gî�gĵ+1�g̃ ≥ •�•î�•ĵ+•î̂j�g̃).

4. Proofs of the main theorems. We are now able to prove the first of our character-
ization theorems, which concerns 5-manifolds whose regular genus exceeds the regular
genus of their boundary by less than three.

PROOF OF THEOREM 3. Let M5 be a connected orientable PL 5-manifold M5, with
h ½ 1 boundary components, satisfying the inequality G(M5) � G(∂M5) + 2; further, let
(Γ, ç) 2 G6 be a crystallization of M5 and ¢ ≥ (¢1, . . . ¢4, ¢5 ≥ 5) be a cyclic permutation
of ∆5, so that • ≥ •¢(Γ) ≥ G(M5).

Since ∂• ≥ •¢5̂
(∂Γ) ½ G(∂M5), relation (9) yields:

(•0̂ �
∂•0̂) + (•2̂ �

∂•2̂) + (•4̂ �
∂•4̂) � 2(• � ∂•) � 4;

hence, there exists i 2 f0, 2, 4g so that •î �
∂•î � 1.

Now, the inequality •î �
∂•î � •î̂j � •îk̂ ½ 0 (which holds true for every j, k non-

consecutive in ∆4 � fig) implies the existence of two colours i, j 2 ∆5 such that •î̂j ≥ 0.
Thus, M5 ¾≥ #•�∂•(S

4 ð S1)#(h)H∂• directly follows from Proposition 7, and the direct
implications of statements (a), (b), (c) result to be proved.

As far as the reversed implications are concerned, it is sufficient to recall that
G(S4 ð S1) ≥ 1 and G(Yã) ≥ G(∂Yã) ≥ ã, and to make use both of the sub-additivity
of regular genus with respect to connected sum and of relation rk

�
ô1(Mn)

�
� G(Mn)

(see [CP]).

Let us now assume (Γ, ç) 2 G6 be a crystallization of M5, and ¢ ≥ (¢1, . . . ¢4, ¢5 ≥ 5)
be a cyclic permutation of ∆5, so that • ≥ •¢(Γ) ≥ G(M5) and ∂• ≥ •¢5̂

(∂Γ) ≥ • � 3.
Relation (9) yields:

(•0̂ �
∂•0̂) + (•2̂ �

∂•2̂) + (•4̂ �
∂•4̂) � 2(• � ∂•) ≥ 6;

hence, either there exists i 2 f0, 2, 4g so that •î �
∂•î � 1 (which implies M5 ¾≥

#•�∂•(S
4 ð S1)#(h)H∂• , as above proved) or ġ0̂2̂4̂ ≥ 2h � 2 and •î �

∂•î ≥ 2 for every
i 2 f0, 2, 4g. In the second case, it is not difficult to check that, if •î̂j ½ 18i, j 2 ∆5 is

assumed (otherwise, M5 ¾≥ #•�∂•(S
4 ð S1)#(h)H∂• would follow again), then •î̂j ≥ 1 and

•î5̂ ≥
∂•î ≥ •î�2 hold 8i 2 f0, 2, 4g, j Â≥ 5; moreover, formula (5) implies that relations

•î̂j ≥ 1 and•î5̂ ≥
∂•î ≥ •î�2 hold also for i 2 f1, 3g,8j Â≥ 5. Hence,•1̂�•1̂3̂�•1̂5̂ ≥ •3̂�

•3̂1̂ �•3̂5̂ ≥ 1 easily follows, and Lemma 8 yields the topological structure of N(1, 3, 5):
either N(1, 3, 5) ¾≥ Y∂•�•5̂

or N(1, 3, 5) ¾≥ N(F)∂#Y∂•�•5̂+1�2g, g being the genus of the

closed surface F. On the other hand, since •0̂ �
∂•0̂ � •0̂2̂ � •0̂4̂ ≥ 0, Lemma 5(b) yields

N(0, 2, 4) ≥ Ys, with s ≥ ġ2̂,4̂�(g2̂+g4̂�1)+h ≥ (•�∂•)�(•2̂�
∂•2̂)�(•4̂�

∂•4̂)+•2̂4̂ ≥ 0,

i.e. N(0, 2, 4) ¾≥ D5. Finally, since ô1(M5) ≥ ô1

�
N(1, 3, 5)

�
≥ ŁmZ implies F ¾≥ S2, the
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thesis follows from Proposition 1 and Proposition 2 of the second section (in the partic-
ular case s ≥ 0): either M5 ¾≥ (S2 ð D3)∂#(h)Hm or M5 ¾≥ (S2 ð

¾
D3)∂#(h)Hm.7

COROLLARY 9. G(S2 ð D3) ≥ 7; G(S2 ð
¾
D3) ½ 7.

PROOF. Since G
�
∂(S2ðD3)

�
≥ G

�
∂(S2 ð

¾
D3)

�
≥ 4 (see [Cav]), both G(S2ðD3) ½

7 and G(S2 ð
¾
D3) ½ 7 are direct consequences of Theorem 3(a),(b).

On the other hand, a crystallization of S2 ðD3 of genus seven may be easily obtained
from the 6-coloured graph (Γ(1), ç(1)) depicted in Figure 1, which represents S2 ð D3

and satisfies •¢(Γ(1)) ≥ 7, ¢ being the identity on ∆5: (Γ(1) , ç(1)) directly results from the
“standard” crystallizations of S2 and D3, by an obvious modification of the construction
described in [GG].

PROOF OF THEOREM 4. As usual, if M5 is a connected orientable PL 5-manifold
M5, with h ½ 1 boundary components, let (Γ, ç) 2 G6 be a crystallization of M5 and
¢ ≥ (¢1, . . . ¢4, ¢5 ≥ 5) be a cyclic permutation of ∆5, so that • ≥ •¢(Γ) ≥ G(M5).

It is known that, for every choice of fi, jg 2 ∆5, a presentation hX; Ri for the funda-
mental group ô1(M5) of M5 exists, where X is the set of all (∆5�fi, jg)-residues of (Γ, ç),
but gî + gĵ � 1 arbitrarily chosen (see [CP]); thus, formula (4) implies that

rk
�
ô1(M5)

�
� • � •î � •ĵ + •î̂j

for every i, j non-consecutive in ∆5, fi, jg Â≥ f0, 4g.
Now, if G(M5) ≥ • ≥ rk

�
ô1(M5)

�
is assumed, •î ≥ 0 obviously holds, for every

i 2 ∆5; so, M5 ¾≥ #•�∂•(S
4 ð S1)#(h)H∂• directly follows from Proposition 7.

On the other hand, the inequality •î + •ĵ � •î̂j � • � rk
�
ô1(M5)

�
, together with rela-

tion (7), yields

(11)
X

k Â≥i,j
(•îk̂ + •ĵk̂) �

X
k Â≥i,j

(•îk̂ + •ĵk̂) + ∂•î + ∂•ĵ � 2
�
• � rk

�
ô1(M5)

��

for every i, j non-consecutive in ∆5, fi, jg Â≥ f0, 4g.
Now, if G(M5) � rk

�
ô1(M5)

�
� 4 is assumed, the existence of at least an addendum

•r̂ŝ ≥ 0 easily follows: in fact, there are eight non-negative addenda in the first member
of each inequality, and they can not be all equal to one, since relation (8) gives

P
j Â≥5 •5̂ĵ ≥

2•5̂ 2 P.
Thus, M5 ¾≥ #•�∂•(S

4 ð S1)#(h)H∂• again follows from Proposition 7.
As far as parts (c) and (d) is concerned, note that the Euler characteristic computation

for closed 4-manifolds (see [C1] or [Cav]), applied to each connected component of ∂M5,

7 Note that N(S2) is surely PL-homeomorphic to one or another of the two 3-ball bundles over the 2-sphere

(see [B]), and that the case N(1, 3, 5) ¾≥ Y∂
•�•5̂

implies M5 ¾≥ (h)H∂
•�•5̂

, which contradicts the hypothesis

G(M5) ≥ ∂• + 3.
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gives:

å2(∂M5) ≥ 2å1(∂M5)� 2∂• +
4X

j≥0

∂•ĵ

≥ [å1(∂M5) � (∂• � ∂•0̂(i) � ∂•2̂(i) )]

+ [å1(∂M5) � (∂• � ∂•1̂(i) � ∂•3̂(i) )] + ∂•î �
∂•î

where, for every i 2 ∆4, (0(i), 1(i), 2(i), 3(i)) denotes the (ordered) 4-tuples induced by ¢
on ∆4 � fig.

Hence, relation (11) yields

X
k Â≥i,j

(•îk̂ + •ĵk̂) + 2å2(∂M5) �
X

k Â≥i,j
(•îk̂ + •ĵk̂) + ∂•î + ∂•ĵ � 2

�
• � rk

�
ô1(M5)

��
.

Since no addendum of type •r̂ŝ may be equal to zero (otherwise, M5 ¾≥
#•�∂•(S

4 ð S1)#(h)H∂• would follow, against the hypothesis) and since the addenda of

type •r̂ŝ can not be all equal to one (as previously stated), •� rk
�
ô1(M5)

�
½ 5 +å2(∂M5)

easily follows. In particular, • � rk
�
ô1(M5)

�
≥ 5 implies either the existence of an ad-

dendum •r̂ŝ ≥ 0 (from which ∂M5 ≥ ∂(#•�∂•(S
4 ð S1)#(h)H∂•) ¾≥

`
f#ãi(S

3 ð S1)Ûi ≥
1, . . . , hg, with

Ph
i≥1 ãi ≥ ∂• directly follows) or the existence of ∂•ĵ ≥ 0 (from which

∂M5 ¾≥
`
f#ãi(S

3 ð S1)Ûi ≥ 1, . . . , hg, with
Ph

i≥1 ãi ≥ ã ≥ G(∂M5) � ∂•, follows by
[CM; Lemma 3(a)]).

Now, in order to complete the proof of Theorem 4, we have to prove the reversed
implication of part (a); for, it is sufficient to recall that G(S4 ð S1) ≥ 1 and G(Yã) ≥
G(∂Yã) ≥ ã, and to make use both of the sub-additivity of regular genus with respect to
connected sum and of relation rk

�
ô1(Mn)

�
� G(Mn) (see [CP]).

PROOF OF THEOREM 2. Let M5 be a connected orientable PL 5-manifold M5, with
h ½ 1 boundary components, satisfying the inequality G(M5) � 5; further, let (Γ, ç) 2
G6 be a crystallization of M5 and ¢ ≥ (¢1, . . . ¢4, ¢5 ≥ 5) be a cyclic permutation of ∆5,
so that • ≥ •¢(Γ) ≥ G(M5) � 5.

By Theorem 4(a), (b), the fundamental group of the manifold satisfies either
rk
�
ô1(M5)

�
≥ • (which implies M5 ¾≥ #•�∂•(S

4 ð S1)#(h)H∂•), or rk
�
ô1(M5)

�
� • � 5

(i.e. M5 simply connected with • ≥ G(M5) ≥ 5).
Further, Theorem 3 states that the only simply connected 5-manifold M5 (M5 Â≥ #hD5)

with • � ∂• � 3 are (S2 ð D3)#(#hD5) and (S2 ð
¾
D3)#(#hD5), whose regular genus is at

least seven (see Corollary 9); thus, if • ≥ 5 is assumed, ∂• � 1 necessarily holds.
Then, by applying relation (4) to each connected component of the boundary graph

(∂Γ, ∂ç), the existence of a colour i 2 ∆4 so that ∂•î ≥ 0 directly follows; further, [CM;
Lemma 3(a)] ensures that ∂M5 ¾≥

`
f#ãi(S

3 ð S1)Ûi ≥ 1, . . . , hg, with
Ph

i≥1 ãi ≥ ã ≥
∂• � ∂•0̂(i) � ∂•2̂(i) ≥ ∂• � ∂•1̂(i) � ∂•3̂(i) � 1.

Now,ã ≥ 0 contradicts the hypothesis of simply connectedness: in fact, [FG2] implies
M5 ¾≥ M̄5#(#hD5), M̄5 being a closed orientable 5-manifold, with G(M̄5) ≥ G(M5) ≥ 5,
and Theorem 1(b) ensures M̄5 ¾≥ #5(S4 ð S1). On the other hand, if ã ≥ 1 ≥ ∂• is
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assumed, ∂•ĵ ≥ 0 holds for every j 2 ∆4; hence, formula (9) yields •0̂ + •2̂ + •4̂ �

2(•� ∂•) ≥ 8, from which the existence of i, j 2 ∆5 so that •î̂j ≥ 0 easily follows. Hence,
another contradiction occurs, since Proposition 7 would imply M5 ¾≥ #4(S4 ð S1)#(h)H1,
which is not a simply connected manifold.

COROLLARY 10. G(S3 ð D2) ≥ 6.

PROOF. The inequality G(S3 ð D2) ½ 6 is a direct consequence of the complete
classification of 5-manifolds up to regular genus five (see Theorem 2).

On the other hand, a crystallization of S3 ð D2 of genus six may be easily obtained
from the 6-coloured graph (Γ(2), ç(2)) depicted in Figure 2, which represents S3 ð D2

and satisfies •¢(Γ(2)) ≥ 6, ¢ being the identity on ∆5: (Γ(2) , ç(2)) directly results from the
“standard” crystallizations of S3 and D2, by an obvious modification of the construction
described in [GG].
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