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Abstract
Let G be a connected reductive group, T a maximal torus of G, N the normalizer of T and 𝑊 = 𝑁/𝑇 the Weyl
group of G. Let 𝔤 and 𝔱 be the Lie algebras of G and T. The affine variety 𝔠𝔞𝔯 = 𝔱//𝑊 of semisimple G-orbits of 𝔤
has a natural stratification

𝔠𝔞𝔯 =
∐
𝜆

𝔠𝔞𝔯𝜆

indexed by the set of G-conjugacy classes of Levi subgroups: the open stratum is the set of regular semisimple
orbits and the closed stratum is the set of central orbits.

In [17], Rider considered the triangulated subcategory 𝐷b
c ( [𝔤nil/𝐺])Spr of 𝐷b

c ( [𝔤nil/𝐺]) generated by the direct
summand of the Springer sheaf. She proved that it is equivalent to the derived category of finitely generated dg
modules over the smash product algebra Qℓ [𝑊]#𝐻•

𝐺
(𝐺/𝐵) where 𝐻•

𝐺
(𝐺/𝐵) is the G-equivariant cohomology of

the flag variety. Notice that the later derived category is 𝐷b
c (B(𝑁)) where B(𝑁) = [Spec(𝑘)/𝑁] is the classifying

stack of N-torsors.
The aim of this paper is to understand geometrically and generalise Rider’s equivalence of categories: For each

𝜆 we construct a cohomological correspondence inducing an equivalence of categories between 𝐷b
c ( [𝔱𝜆/𝑁]) and

𝐷b
c ( [𝔤𝜆/𝐺])Spr.
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1. Introduction

Let G be a connected reductive algebraic group over an algebraic closure k of a finite field. Let T be a
maximal torus of G, and let B be the Borel subgroup of G containing T. We denote by N the normalizer
of T in G, and we let 𝑊 = 𝑁/𝑇 be the Weyl group of G. We denote by 𝔤, 𝔱, and 𝔟 the Lie algebras of G,
T and B, respectively, and we denote by 𝔤nil the nilpotent cone of 𝔤.

In [17], Rider considered the triangulated subcategory 𝐷b
c ([𝔤nil/𝐺])Spr of 𝐷b

c ([𝔤nil/𝐺]) generated
by the direct summand of the Springer sheaf. She proved that it is equivalent to the derived category of
finitely generated dg modules over the smash product algebra Qℓ [𝑊]#𝐻•

𝐺 (𝐺/𝐵), where 𝐻•
𝐺 (𝐺/𝐵) is

the G-equivariant cohomology of the flag variety (see also [12] for a similar result).
We denote by B(𝑁) = [Spec(𝑘)/𝑁] the classifying stack of N-torsors. Rider’s result can be then

reformulated as an equivalence of categories between 𝐷b
c (B(𝑁)) and 𝐷b

c ([𝔤nil/𝐺])Spr. The aim of this
paper is to construct this equivalence via a cohomological correspondence between B(𝑁) and [𝔤nil/𝐺]

in the spirit of Lusztig induction. Namely, we construct a complex N nil on B(𝑁) × [𝔤nil/𝐺], such that
the functor

𝐷b
c (B(𝑁)) → 𝐷b

c ([𝔤nil/𝐺])Spr, 𝐾 ↦→ pr2∗ Hom
(
N nil, pr!

1 (𝐾)
)

is an equivalence of categories, where pr1 and pr2 are the two obvious projections.
Let us remark that B(𝑁) and [𝔤nil/𝐺] are the zero fibres of the canonical maps

[𝔱/𝑁] → 𝔠𝔞𝔯, [𝔤/𝐺] → 𝔠𝔞𝔯

where

𝔠𝔞𝔯 := 𝔱//𝑊 = Spec(𝑘 [𝔱]𝑊 ).

In this paper we consider more generally the analogous equivalences above the strata of the natural
stratification

𝔠𝔞𝔯 =
∐
𝜆∈𝔏

𝔠𝔞𝔯𝜆

where 𝔏 is the set of G-conjugacy classes of Levi subgroups (of parabolic subgroups) of G.
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We consider the quotient stacks

G = [𝔤/𝐺], B = [𝔟/𝐵], T = [𝔱/𝑇], T = [𝔱/𝑁]

with respect to the adjoint actions Ad (which is trivial for T), and we denote by 𝜋 : T → T the induced
map. Notice that our stacks are algebraic stacks over 𝔠𝔞𝔯.

We consider the following commutative diagram:

B
𝑝

����
���

���
���

���
��

𝑞

�����
���

���
���

���
�

(𝑞,𝑝)

��
T
𝜋

��

T ×𝔠𝔞𝔯 G
prG ��prT��

𝜋×1
��

G

T T ×𝔠𝔞𝔯 G
prG

���������������
prT��

(1.1)

where q is induced by the projection 𝔟 → 𝔱, and p is induced by the inclusion 𝔟 ⊂ 𝔤.
We put

N := (𝑞, 𝑝)!Qℓ .

The Lusztig induction and restriction functors are defined by

Ind : 𝐷b
c (T ) → 𝐷b

c (G), 𝐾 ↦→ 𝑝∗𝑞
!𝐾 = prG ∗Hom

(
N , pr!

T (𝐾)
)

Res : 𝐷b
c (G) → 𝐷b

c (T ), 𝐾 ↦→ 𝑞!𝑝
∗𝐾 = prT !

(
N ⊗ pr∗G (𝐾)

)
For a stack X over 𝔠𝔞𝔯, we put

X𝜆 = X ×𝔠𝔞𝔯 𝔠𝔞𝔯𝜆.

We prove the following result (see Theorem 5.1).

Theorem 1.1 (Descent). For𝜆 ∈ 𝔏, the restrictionN𝜆 ofN to (T ×𝔠𝔞𝔯G)𝜆 descends toN 𝜆 on (T ×𝔠𝔞𝔯G)𝜆.

To prove the existence of N 𝜆, we regard the complex (𝑞𝜆, 𝑝𝜆)!Qℓ , (where (𝑞𝜆, 𝑝𝜆) is obtained from
(𝑞, 𝑝) by base change) as the outcome of a Postnikov diagram, which descends in a natural way to a
Postnikov diagram on (T ×𝔠𝔞𝔯 G)𝜆 using weight arguments. The complex N 𝜆 is then defined as the
outcome of the descended Postnikov diagram.

Remark 1.2.

(1) As a particular case, the restriction of N to B(𝑇) × [𝔤nil/𝐺] descends to a complex N nil on
B(𝑁) × [𝔤nil/𝐺].

(2) As noticed by S. Gunningham [6], the functor Res depends on the choice of the Borel subgroup
containing T, and so the restriction of a complex 𝐾 ∈ 𝐷b

c (G) cannot be W-equivariant. Therefore,
we cannot expect that N descends to T ×𝔠𝔞𝔯 G. In 5.4, we use an old computation of Verdier that
explains more directly why N cannot descend. Therefore, the above descent result seems to be
optimal.

(3) We also prove that N descends over regular elements, which stratum intersects with all strata above
𝔠𝔞𝔯 (see §5.3).
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For each 𝜆 ∈ 𝔏 we define the pair of adjoint functors (R𝜆, I𝜆) by

R𝜆 : 𝐷b
c (G𝜆) → 𝐷b

c (T 𝜆), 𝐾 ↦→ pr1!

(
N 𝜆 ⊗ pr∗2(𝐾)

)
,

I𝜆 : 𝐷b
c (T 𝜆) → 𝐷b

c (G𝜆), 𝐾 ↦→ pr2∗ Hom
(
N 𝜆, pr!

1(𝐾)
)

If Ind𝜆 and Res𝜆 denote the induction and restriction above 𝔠𝔞𝔯𝜆 and 𝜋𝜆 : T𝜆 → T 𝜆 the morphism
obtained by base change from 𝜋, then

Res𝜆 = 𝜋∗𝜆 ◦ R𝜆, Ind𝜆 = I𝜆 ◦ 𝜋𝜆 !.

For each geometric point c of 𝔠𝔞𝔯𝜆, we have the functor

Ind𝑐 : 𝐷b
c (T𝑐) �� 𝐷b

c (G𝑐),

which is compatible by base change with the functors Ind𝜆.
For each geometric point c of 𝔠𝔞𝔯, we define 𝐷b

c (G𝑐)Spr as the triangulated subcategory of 𝐷b
c (G𝑐)

generated by the direct factors of Ind𝑐 (Qℓ). We then define 𝐷b
c (G𝜆)Spr as the full subcategory of 𝐷b

c (G𝜆)
of complexes K such that 𝐾𝑐 ∈ 𝐷b

c (G𝑐)Spr for all geometric points c of 𝔠𝔞𝔯𝜆.
We prove the following theorem (see Theorem 7.7 and Remark 7.6):

Theorem 1.3. The functor I𝜆 induces an equivalence of categories 𝐷b
c (T 𝜆) → 𝐷b

c (G𝜆)Spr with inverse
given by R𝜆.

If G is of type A with connected center, then 𝐷b
c (G𝜆)Spr = 𝐷b

c (G𝜆), and so I𝜆 : 𝐷b
c (T 𝜆) → 𝐷b

c (G𝜆)
is an equivalence of categories with inverse functor R𝜆.

Remark 1.4.
(1) Notice that the stack T𝑐 with 𝑐 = 0 is B(𝑁) = [Spec(𝑘)/𝑁]. It follows from Theorem 1.3 that the

category 𝐷b
c (B(𝑁)) is equivalent to 𝐷b

c (G0)
Spr.

(2) When 𝜆 is the stratum of semisimple regular elements, the two stacks T 𝜆 and G𝜆 are isomorphic,
and the functors I𝜆, R𝜆 are the identity functors (see §6.2).

(3) The interested reader may follow the methods of [2, §6] to get similar results over the complex
numbers.

Consider the projection

T � B(𝑇) × 𝔱
𝑠 �� 𝔱.

The functor 𝑠! [dim𝑇] (dim𝑇) is an equivalence M(𝔱) → M(T ) between the categories of perverse
sheaves. Therefore, when working with perverse sheaves, we may work with the diagram

T
𝑠

��

B𝑞��

𝑝

����
���

���
���

���
�

𝑞′

		���
���

���
���

���
�

(𝑞′, 𝑝)

��
𝔱 𝔱 ×𝔠𝔞𝔯 Gpr1
��

pr2
�� G

which is more convenient, as the kernel (𝑞′, 𝑝)!Qℓ is the intersection cohomology complex of 𝔱 ×𝔠𝔞𝔯 G,
and so it descends naturally to [𝔱/𝑊] ×𝔠𝔞𝔯 G. Moreover, by Bezrukavnikov and Yom Din [3], the functor
Ind and Res maps perverse sheaves to perverse sheaves.

The above factorization of p via (𝑞′, 𝑝) and its generalisation in the framework of the generalised
Springer correspondence is due to Lusztig (see [11, Proof of Proposition 5.5.3] for more details and
[15] for the case where G is not necessarily connected).
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In §2.9, we define a pair of adjoint functors 𝑝I : M([𝔱/𝑊]) → M(G), and 𝑝R : M(G) →

M([𝔱/𝑊]) and we prove the following theorem (see Theorem 7.10).

Theorem 1.5. The functor 𝑝I induces an equivalence of categories M([𝔱/𝑊]) → M(G)Spr with
inverse functor 𝑝R. In particular, if G is of type A with connected center, then M(G)Spr = M(G), and
so the categories M([𝔱/𝑊]) and M(G) are equivalent.

This result is an analogue in the ℓ-adic setting of (a special case of) the main result of S. Gunningham
[7] in the D-module setting. We were informed by the anonymous referee that, using the result of
Bezrukavnikov and Yom Din, the proof of Gunningham works also in the ℓ-adic setting (although this
is not published).

2. Preliminaries

2.1. Postnikov diagrams in triangulated categories

Let D be a triangulated category. We will need the following lemma:

Lemma 2.1. Consider a diagram in D

𝐵[−1] 𝑢 ��

𝛽 [−1]
��

𝐶
𝑣 �� 𝐴

𝑤 ��

𝛼

��

𝐵

𝛽

��
𝐵′ [−1] 𝑢′ �� 𝐶 ′ 𝑣′ �� 𝐴′ 𝑤′

�� 𝐵′

where (𝑢, 𝑣, 𝑤) and (𝑢′, 𝑣′, 𝑤′) are distinguished triangles. Suppose that

Hom(𝐵, 𝐴′) = 0, and Hom(𝐴, 𝐵′ [−1]) = 0.

Then there exists a unique morphism 𝐶 → 𝐶 ′ which extends the above diagram into a morphism of
distinguished triangles.

Proof. Only the unicity needs to be proved (the existence follows from the axioms of a triangulated
category). We are thus reduced to prove that if we have a morphism of triangles,

𝐵[−1] 𝑢 ��

0
��

𝐶
𝑣 ��

𝛽

��

𝐴

0
��

𝑤 �� 𝐵

0
��

𝐵′[−1] 𝑢′ �� 𝐶 ′ 𝑣′ �� 𝐴′ 𝑤′
�� 𝐵′

then 𝛽 = 0.
As 𝛽 ◦ 𝑢 = 0, there exists 𝛾 : 𝐴 → 𝐶 ′ such that 𝛾 ◦ 𝑣 = 𝛽. Since

𝑣′ ◦ 𝛾 ◦ 𝑣 = 0

there exists 𝜀 : 𝐵 → 𝐴′ such that 𝑣′ ◦ 𝛾 = 𝜀 ◦ 𝑤. By assumption, 𝜀 = 0 and so 𝑣′ ◦ 𝛾 = 0.
There exists thus 𝛾 : 𝐴 → 𝐵′ [−1] such that 𝑢′ ◦ 𝛾 = 𝛾. By assumption, we must have 𝛾 = 0, and so

𝛾 = 0 from which we get that 𝛽 = 0. �

A Postnikov diagram Λ [16] consists of a complex

𝐴𝑚
𝜕𝑚 �� 𝐴𝑚−1

𝜕𝑚−1 �� · · ·
𝜕2 �� 𝐴1

𝜕1 �� 𝐴0
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in D, called the base and denoted by Λ𝑏 , together with a finite sequence of distinguished triangles

𝐶𝑖
𝛼𝑖 �� 𝐴𝑖

𝑑𝑖 �� 𝐶𝑖−1
+ �� ,

with 𝑖 = 1, . . . , 𝑚, such that 𝜕𝑖 = 𝛼𝑖−1 ◦ 𝑑𝑖 for all i. We visualize Λ as

𝐶𝑚

𝛼𝑚

��

𝐶𝑚−1
+��

𝛼𝑚−1

��

· · ·
+�� 𝐶2

+��

𝛼2

��

𝐶1
+��

𝛼1

��

𝐶0
+��

𝐴𝑚
𝜕𝑚 ��

𝑑𝑚

���������������
𝐴𝑚−1

𝜕𝑚−1 ��

𝑑𝑚−1

���������������
· · · �� 𝐴2

𝜕2 ��

𝑑2



�������������
𝐴1

𝜕1 ��

𝑑1



�������������
𝐴0

(2.1)

The length of Λ is the integer m.
The object 𝐶𝑚 will be called the outcome of the Postnikov diagram Λ.
Notice that if D is equipped with a nondegenerate t-structure, then we can define the Postnikov

diagram Λ(𝐾) with outcome K for any complex 𝐾 ∈ D [𝑛,𝑛+𝑚] as

𝐾

𝛼𝑚

��

(𝜏≤𝑛+𝑚−1𝐾 ) [1]
+��

𝛼𝑚−1

��

(𝜏≤𝑛+𝑚−2𝐾 ) [2]
+��

𝛼𝑚−2

��

· · ·
+��

H𝑛+𝑚 (𝐾 ) [−𝑛 −𝑚]
𝜕𝑚 ��

𝑑𝑚

�����������������
H𝑛+𝑚−1 (𝐾 ) [−𝑛 −𝑚 + 2]

𝜕𝑚−1 ��

𝑑𝑚−1
������������������

H𝑛+𝑚−2 (𝐾 ) [−𝑛 −𝑚 + 4] �� · · ·

· · · (𝜏≤𝑛+1𝐾 ) [𝑚 − 1]
+��

𝛼1

��

(𝜏≤𝑛𝐾 ) [𝑚]
+��

· · ·
𝜕2 �� H𝑛+1 (𝐾 ) [𝑚 − 𝑛 − 2]

𝜕1 ��

𝑑1
�������������

H𝑛 (𝐾 ) [𝑚 − 𝑛]

(2.2)

using the distinguished triangles

𝜏≤𝑛−𝑚+2𝑖−1 (𝜏≤𝑛+𝑖 (𝐾 ) [𝑚 − 𝑖 ]) �� 𝜏≤𝑛+𝑖 (𝐾 ) [𝑚 − 𝑖 ] �� 𝜏≥𝑛−𝑚+2𝑖 (𝜏≤𝑛+𝑖 (𝐾 ) [𝑚 − 𝑖 ]) = H𝑛+𝑖 (𝐾 ) [𝑚 − 𝑛 − 2𝑖 ]
+ ��

The construction of Λ(𝐾) is functorial in K.

Remark 2.2. Given 𝐾 ∈ D [𝑛,𝑛+𝑚] , then Λ(𝐾) is the unique (up to a unique isomorphism) Postnikov
diagram of the form (2.1) with outcome K such that

𝐶𝑖 ∈ D≤𝑛−𝑚+2𝑖 and 𝐴𝑖 ∈ D≥𝑛−𝑚+2𝑖 (2.3)

for all 𝑖 = 1, . . . , 𝑚. This follows from [2, Proposition 1.3.3(ii)].

Lemma 2.3. Given 𝐾 ∈ D [𝑛,𝑛+𝑚] , the Postnikov diagram Λ(𝐾) is the unique one (up a unique isomor-
phism) that completes the subdiagram

𝐾

𝛼𝑚

��
H𝑛+𝑚 (𝐾 ) [−𝑛 −𝑚]

𝜕𝑚 �� H𝑛+𝑚−1 (𝐾 ) [−𝑛 −𝑚 + 2]
𝜕𝑚−1 �� · · ·

𝜕1 �� H𝑛 (𝐾 ) [𝑚 − 𝑛]

Proof. By Remark 2.2, it is enough to prove that if we are given a Postnikov diagram of the form (2.1)
where 𝐴𝑖 = 𝑃𝑖 [𝑚 − 𝑛 − 2𝑖] with 𝑃𝑖 a perverse sheaf, then 𝐶𝑖 ∈ D [𝑖−(𝑚−𝑛) ,2𝑖−(𝑚−𝑛) ] for all 𝑖 = 1, . . . , 𝑚.
The proof goes by recurrence on 𝑚 ≥ 1 using the long exact sequence of perverse cohomology. �
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Lemma 2.4. Assume that we have a Postnikov diagram with the notation as in diagram (2.1) and that
for each 𝑖 = 0, . . . , 𝑚 − 2, any 𝑗 ≥ 𝑖 + 2 and any 𝑘 ≥ 1 we have

Hom(𝐴 𝑗 , 𝐴𝑖 [−𝑘]) = 0.

Then if (𝑑 ′𝑚, 𝑑 ′𝑚−1, . . . , 𝑑
′
1) is a sequence of arrows 𝑑 ′𝑖 : 𝐴𝑖 → 𝐶𝑖−1 such that 𝜕𝑖 = 𝛼𝑖−1 ◦ 𝑑

′
𝑖 for all i, then

(𝑑 ′𝑚, . . . , 𝑑
′
1) = (𝑑𝑚, . . . , 𝑑1).

Proof. We need to prove that

Hom(𝐴𝑖+2, 𝐶𝑖 [−1]) = 0

for all 𝑖 = 0, . . . , 𝑚 − 2.
Since we have a distinguished triangle

𝐶𝑖−1 [−2] �� 𝐶𝑖 [−1] �� 𝐴𝑖 [−1] + ��

we have an exact sequence

Hom(𝐴𝑖+2, 𝐶𝑖−1 [−2]) �� Hom(𝐴𝑖+2, 𝐶𝑖 [−1]) �� Hom(𝐴𝑖+2, 𝐴𝑖 [−1]).

By assumption, the right-hand side is 0, and so we are reduced to prove that

Hom(𝐴𝑖+2, 𝐶𝑖−1 [−2]) = 0.

Repeating the argument as many times as needed, we end up proving that Hom(𝐴𝑖+2, 𝐶0 [−1 − 𝑖]) = 0,
which follows also from the assumption as 𝐶0 = 𝐴0. �

Proposition 2.5. Assume given a complex Λ𝑏 in D

𝐴𝑚 �� 𝐴𝑚−1 �� · · · �� 𝐴1 �� 𝐴0 (2.4)

and suppose that it satisfies

Hom(𝐴 𝑗 , 𝐴𝑖) = 0, for all 𝑗 < 𝑖, (2.5)

and

Hom(𝐴 𝑗 , 𝐴𝑖 [−𝑘]) = 0, for all 𝑗 > 𝑖 and 𝑘 ≥ 1. (2.6)

Then the complex (2.4) can be completed in a unique way (up to a unique isomorphism) into a Postnikov
diagram Λ in D.

Proof. The proof goes by induction on 0 ≤ 𝑟 < 𝑚. If 𝑟 = 0, then this is obvious. Suppose that we have
proved the proposition up to the rank r. Therefore, we have the complex 𝐶𝑟 . By Lemma 2.4, there exists
a unique map 𝑑𝑟+1 such that the following diagram commutes:

𝐶𝑟

𝛼𝑟

��

𝐶𝑟−1

𝛼𝑟−1

��

�� · · ·��

𝐴𝑟+1

𝑑𝑟+1
��								 𝜕𝑟+1 �� 𝐴𝑟

𝜕𝑟 ��

𝑑𝑟
��								
𝐴𝑟−1 ��

��								
· · ·

.
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We complete 𝑑𝑟+1 into a distinguished triangle

𝐶𝑟 [−1] �� 𝐶𝑟+1 �� 𝐴𝑟+1
𝑑𝑟+1 �� 𝐶𝑟 .

Now we notice that

Hom(𝐴𝑟+1, 𝐶𝑟 [−1]) = 0, and Hom(𝐶𝑟 , 𝐴𝑟+1) = 0.

Indeed, the complexes 𝐶𝑟 being successive extensions of the complexes 𝐴𝑖 , with 𝑖 = 0, . . . , 𝑟 , this
follows from the assumptions (2.5) and (2.6) .

By Lemma 2.1, such a 𝐶𝑟+1 is thus unique (up to a unique isomorphism). �

2.2. Stacks and sheaves: notation and convention

Let k be an algebraic closure of a finite field. In these notes, unless specified, our stacks are k-algebraic
stacks of finite type, and quotient stacks are denoted by [𝑋/𝐺] if G is an algebraic group over k acting
a k-scheme X. If 𝑋 = Spec(𝑘), we put B(𝐺) = [𝑋/𝐺].

For a morphism 𝑓 : X → Y of stacks, we have the usual functors

𝑓∗ = 𝑅 𝑓∗ : 𝐷+
c (X ) → 𝐷+

c (Y), 𝑓! = 𝑅 𝑓! : 𝐷−
c (X ) → 𝐷−

c (Y),

𝑓 ∗, 𝑓 ! : 𝐷•
c (Y) → 𝐷•

c (X ), (with • ∈ {∅,−, +, 𝑏})

between derived categories of constructible Qℓ-sheaves (see [9]).

Remark 2.6. The fact that 𝑓 ! preserves −, +, 𝑏 follows from from our assumption that our stacks are of
finite type over a field. Indeed, the statement reduces to the case where X and Y are schemes of finite
type over a field which is known [5, Corollary 2.9].

We will use freely the properties of these functors (adjunction, projection formula, base change,. . . ).
When there is no ambiguity, we will sometimes write 𝐾 |X instead of 𝑓 ∗(𝐾).

Remark 2.7.

(i) Notice that if 𝑑 ∈ Z is the dimension of a fibre of f whose absolute value is maximal, then

𝑓! : 𝐷 ]−∞,𝑛]
c (X ) → 𝐷 ]−∞,𝑛+2𝑑 ]

c (Y).

For instance

𝐻𝑖𝑐 ([𝑋/𝐺],Qℓ) = 0 if 𝑖 > 2(dim 𝑋 − dim𝐺).

(ii) If f is representable, then 𝑓! induces

𝑓! : 𝐷b
c (X ) → 𝐷b

c (Y).

(iii) If f is smooth with fibres of pure relative dimension d, then [9, 9.1.2]

𝑓 ! = 𝑓 ∗ [2𝑑] (𝑑).

Except in some rare occasions, we will only need the category 𝐷b
c .

We will denote by Qℓ,X the constant sheaf on X . If there are no ambiguities, we will sometimes
denote it simply by Qℓ to alleviate the notation.
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For two Y-stacks X and X ′, we define the external tensor product of 𝐾 ∈ 𝐷−
c (X ) and 𝐾 ′ ∈ 𝐷−

c (X ′)

above Y as

𝐾 �Y 𝐾 ′ := pr∗1𝐾 ⊗ pr∗2𝐾
′ ∈ 𝐷−

c (X ×Y X ′).

where pr1 and pr2 are the two projections.
We consider the auto-dual perversity p and we denote by M(X ) the full subcategory of 𝐷b

c (X ) of
perverse sheaves on X . Then, if X is an equidimensional stack with smooth dense open substack U ,
the intersection cohomology complex on X with coefficient in a local system E on U is denoted by
ICX (E);its restriction to U is E . If E = Qℓ , we will simply write ICX instead of ICX (Qℓ). Recall that
ICX (E) [dimX ] ∈ M(X ) is the image of

𝑝H0( 𝑗!E [dimX ]) → 𝑝H0( 𝑗∗E [dimX ]),

where 𝑗 : U → X is the inclusion. Recall also that if X ′ → X is a small resolution of singularities
(representable, proper, birational, X ′ smooth), then 𝑓∗Qℓ = ICX .

If 𝐷X denotes the Verdier dual, then 𝐷X (ICX (E)) = ICX (E∨)[2dim(X )] (dim(X )), where E∨

denotes the dual local system.

Proposition 2.8. Let X be an equidimensional algebraic stack, and let U be a dense open smooth
substack of X . Suppose that we have a short exact sequence

0 �� 𝐴′ �� 𝐴 �� 𝐴′′ �� 0

in the category of perverse sheaves on X . If both 𝐴′ and 𝐴′′ are the intermediate extension of their
restriction to U , then A is also the intermediate extension of its restriction to U .

Proof. Let j be the inclusion of U in X . From 𝑗! 𝑗
∗ → 1 → 𝑗∗ 𝑗

∗ and the fact that A is a perverse sheaf,
we have a commutative diagram:

𝐴

��
















𝑝H0 𝑗! 𝑗
∗𝐴

������������

�� ����
���

���
��

𝑝H0 𝑗∗ 𝑗
∗𝐴

𝑗!∗ 𝑗
∗𝐴
� �

��

from which we can identify 𝑗!∗ 𝑗
∗𝐴 as a subquotient of A. In particular,

length( 𝑗!∗ 𝑗∗𝐴) ≤ length(𝐴).

It is thus enough to prove that

length( 𝑗!∗ 𝑗∗𝐴) ≥ length(𝐴). (2.7)
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10 G. Laumon and E. Letellier

We have the commutative diagram of perverse sheaves

𝑝H0 𝑗! 𝑗
∗𝐴′ ��

����

𝑝H0 𝑗! 𝑗
∗𝐴

����

�� 𝑝H0 𝑗! 𝑗
∗𝐴′′ ��

����

0

0 �� 𝐴′ = 𝑗!∗ 𝑗
∗𝐴′

� �

��

�� 𝑗!∗ 𝑗∗𝐴 ��
� �

��

𝐴′′ = 𝑗!∗ 𝑗
∗𝐴′′ ��

� �

��

0

0 �� 𝑝H0 𝑗∗ 𝑗
∗𝐴′ �� 𝑝H0 𝑗∗ 𝑗

∗𝐴 �� 𝑝H0 𝑗∗ 𝑗
∗𝐴′′

where the top and bottom horizontal sequences are exact. We thus deduce that the middle sequence is
exact at 𝐴′ and 𝐴′′ and the composition 𝐴′ → 𝐴′′ is zero, from which we deduce the inequality (2.7) as

length(𝐴) = length(𝐴′) + length(𝐴′′). �

As we assume that k is the algebraic closure of a finite field and that all our stacks are of finite type,
any stack we consider in this paper will be defined over some finite subfield of k.

If X is defined over finite subfield 𝑘𝑜 ⊂ 𝑘 , we denote by X𝑜 the corresponding 𝑘𝑜-structure on X (if
no confusion arises) and we denote by Frob𝑜 : X → X the induced geometric Frobenius on X .

Let 𝐾, 𝐾 ′ ∈ 𝐷𝑏c (X ). We recall that 𝐻𝑖𝑐 (X , 𝐾) (resp. Ext𝑖 (𝐾, 𝐾 ′) = Hom(𝐾, 𝐾 ′[𝑖])) is said to be pure
of weight r if there exists a finite subfield 𝑘𝑜 of k such that X and K (resp. K and 𝐾 ′) are defined over 𝑘𝑜,
and the eigenvalues of the induced automorphism Frob∗𝑜 on 𝐻𝑖𝑐 (X , 𝐾) (resp. Ext𝑖 (𝐾, 𝐾 ′)) are algebraic
numbers whose complex conjugates are all of absolute value |𝑘𝑜 |

𝑟/2. It is well known that this notion
of weight does not depend on the choice of 𝑘𝑜. In particular, the Tate twist Qℓ (𝑖) makes sense over k.

Let X𝑜 be a 𝑘𝑜-structure on X and 𝐾𝑜, 𝐾
′
𝑜 ∈ 𝐷𝑏c (X𝑜), and let us denote by K and 𝐾 ′ the induced

complexes in 𝐷b
c (X ). Then the following sequence [2, (5.1.2.5)]

0 �� Ext𝑖−1(𝐾, 𝐾 ′)Frob𝑜
�� Ext𝑖 (𝐾𝑜, 𝐾 ′

𝑜)
�� Ext𝑖 (𝐾, 𝐾 ′)Frob𝑜 �� 0 (2.8)

is exact for all i.
Notice that if Ext 𝑗 (𝐾, 𝐾 ′) = 0 for odd values of j, then it follows from the above exact sequence that

for all i,

Ext2𝑖 (𝐾𝑜, 𝐾 ′
𝑜) → Ext2𝑖 (𝐾, 𝐾 ′)Frob𝑜

is an isomorphism.

2.3. Cohomology of B(𝑇)

Let T be a rank d torus over k. Recall that for any k-scheme S, the category B(𝑇) (𝑆) is the category of
T-torsors over S, and the algebraic stack B(𝑇) is of dimension −𝑑.

The cohomology 𝐻•(B(𝑇),Qℓ) is concentrated in nonnegative even degrees, and the morphism

𝑐can : 𝑋∗(𝑇) → 𝐻2(B(𝑇),Qℓ) (1)

given by Chern classes induces an isomorphism

𝑋∗(𝑇) ⊗ Qℓ (−1) � 𝐻2 (B(𝑇),Qℓ).

As Qℓ-algebras, 𝐻2•(B(𝑇),Qℓ) is isomorphic to Sym•
(
𝑋∗(𝑇) ⊗ Qℓ (−1)

)
.

By duality, 𝐻•
𝑐 (B(𝑇),Qℓ) is thus concentrated in even degrees ≤ −2 dim(𝑇), and 𝐻2𝑖

𝑐 (B(𝑇),Qℓ) is
pure of weight 2𝑖.
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2.4. W-equivariant complexes

Let W be a finite group and a stack X . An action of W on a complex 𝐾 ∈ 𝐷b
c (X ) is a group

homomorphism

𝜃 : 𝑊 −→ Aut(𝐾).

In this case we define the W-invariant part 𝐾𝑊 → 𝐾 in 𝐷b
c (X ) of (𝐾, 𝜃) as follows.

Notice first that in any additive category, if for some morphism 𝑒 : 𝐴 → 𝐴, there exist two morphisms
𝑢 : 𝐴 → 𝐴′ and 𝑣 : 𝐴′ → 𝐴 such that 𝑣 ◦ 𝑢 = 𝑒 and 𝑢 ◦ 𝑣 = 1𝐾 ′ (in which case e is an idempotent
which is said to be split), then 1 − 𝑒 admits a kernel which is v and a cokernel which is u. In particular,
(𝐴′, 𝑢, 𝑣) is unique up to a unique isomorphism and we call it the splitting of e.

Since 𝐷b
c (X ) is a triangulated category with bounded t-structure, by the main theorem of [10], every

idempotent element e of End(𝐾) splits. Considering the indempotent

𝑒 = 𝑒𝐾 :=
1
|𝑊 |

∑
𝑤 ∈𝑊

𝜃 (𝑤) ∈ End(𝐾), (2.9)

we define 𝐾𝑊 → 𝐾 as the kernel of 1 − 𝑒.
A W-torsor is a morphism of stacks 𝜋 : X → X that fits to a cartesian diagram

X ��

𝜋
��

Spec(𝑘)

𝜋𝑜

��
X �� B(𝑊)

(2.10)

Remark 2.9. (1) A W-torsor 𝜋 : X → X is thus finite étale representable and for any scheme S and
morphism 𝑆 → Y , the projection

𝑆 ×X X → 𝑆

has a natural structure of W-torsor (between schemes).
(2) If 𝜋 : X → X is a W-torsor, then X is equipped with a right action of W in the sense of [18] and

conversely, from right action of W on X we get a W-torsor by taking the quotient morphism of X by
W. However, although this is implicit, we will not use the definition of group actions on stacks or the
notion of quotient of stacks by group action.

An ℓ-adic sheaf on B(𝑊) is a vector space equipped with a right action of W and

(𝜋𝑜)∗Qℓ = Qℓ [𝑊]

for right multiplication of W on itself. The left multiplication corresponds to the Galois action. We thus
have a decomposition

(𝜋𝑜)∗Qℓ =
⊕
𝜒

𝑉𝜒 ⊗ L𝑜,𝜒

where the sum is over the irreducible Qℓ-characters of W, 𝑉𝜒 is a W-module affording the character 𝜒
and L𝑜,𝜒 is the irreducible smooth ℓ-adic sheaf on B(𝑊) corresponding to 𝑉∗

𝜒.
By base change from Diagram (2.10) we get the analogous decomposition

𝜋∗Qℓ =
⊕
𝜒

𝑉𝜒 ⊗ L𝜒 (2.11)

Notice that L𝜒 may not be irreducible and that (𝜋∗Qℓ)𝑊 = Qℓ .
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Given a W-torsor 𝜋 : X → X , we denote by 𝐷b
c (X ,𝑊) the subcategory of 𝐷b

c (X ) whose objects
are isomorphic to objects of the form 𝜋∗(𝐾) with 𝐾 ∈ 𝐷b

c (X ) and morphisms are given by

Hom𝐷b
c (X ,𝑊 ) (𝜋

∗𝐴, 𝜋∗𝐵) := 𝜋∗Hom(𝐴, 𝐵) � Hom(𝐴, 𝐵).

We call 𝐷b
c (X ,𝑊) the category of W-equivariant complexes on X (with respect to 𝜋).

Remark 2.10. The inverse functor of 𝜋∗ : 𝐷b
c (X ) → 𝐷b

c (X ,𝑊) is given by

𝐷b
c (X ,𝑊) → 𝐷b

c (X ), 𝐾 ↦→ (𝜋∗𝐾)
𝑊 .

Indeed this follows from the above discussion and

𝜋∗𝜋
∗𝐾 = (𝜋∗Qℓ) ⊗ 𝐾

which is a consequence of the projection formula.

Given two W-equivariant complexes 𝐴 = 𝜋∗𝐴 and 𝐵 = 𝜋∗𝐵 in 𝐷b
c (X ), we define an action of W on

Hom𝐷b
c (X ) (𝐴, 𝐵) as follows.

We have

Hom𝐷b
c (X ) (𝐴, 𝐵) = Hom𝐷b

c (X ) (𝜋
∗𝐴, 𝜋∗𝐵)

= Hom𝐷b
c (X ) (𝐴, 𝜋∗𝜋

∗𝐵)

=
⊕
𝜒

𝑉𝜒 ⊗ Hom𝐷b
c (X )

(
𝐴,L𝜒 ⊗ 𝐵

)
.

The action of W on the 𝑉𝜒 defines thus an action of W on Hom𝐷b
c (X ) (𝐴, 𝐵), and we have

Hom𝐷b
c (X ) (𝐴, 𝐵)

𝑊 = Hom𝐷b
c (X ,𝑊 ) (𝐴, 𝐵).

Remark 2.11. Our definition of W-equivariant complexes is consistent with the usual one. If W acts
(on the right) on a scheme X, then following [8, III, 15], a W-equivariant complex on X is a pair (𝐾, 𝜃)
with 𝐾 ∈ 𝐷b

c (𝑋) and 𝜃 = (𝜃𝑤 )𝑤 ∈𝑊 a collection of isomorphisms

𝜃𝑤 : 𝑤∗(𝐾) → 𝐾

such that

(i) 𝜃𝑤𝑤′ = 𝜃𝑤 ◦ 𝑤∗(𝜃𝑤′ ) for all 𝑤, 𝑤′ ∈ 𝑊 , and
(ii) 𝜃1 = 1𝐾 ,

where 1𝐾 : 𝐾 → 𝐾 denotes the identity morphism.
Moreover, if (𝐾, 𝜃), (𝐾 ′, 𝜃 ′) ∈ 𝐷b

c (𝑋,𝑊), then the group W acts (on the left) on Hom𝐷b
c (𝑋 )

(𝐾, 𝐾 ′) as

𝑤 · 𝑓 = 𝜃 ′𝑤 ◦ 𝑤∗( 𝑓 ) ◦ (𝜃𝑤 )
−1

for all 𝑤 ∈ 𝑊 and 𝑓 ∈ Hom(𝐾, 𝐾 ′), and

Hom𝐷b
c (𝑋,𝑊 ) (𝐾, 𝐾

′) := Hom𝐷b
c (𝑋 )

(𝐾, 𝐾 ′)𝑊 .
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A commutative diagram

X 𝑓 ��

𝜋
��

X ′

𝜋′
��

X �� X ′

where 𝜋 and 𝜋′ are W-torsors, induces a functor 𝑓 ∗ : 𝐷b
c (X ′,𝑊) → 𝐷b

c (X ,𝑊), and, moreover, if
the above diagram is cartesian and f is representable, then we also get a functor 𝑓! : 𝐷b

c (X ,𝑊) →

𝐷b
c (X ′,𝑊). Both are compatible with the usual functors 𝑓 ∗ and 𝑓! where we forget the actions of W.

Remark 2.12. Notice that if K is W-equivariant, then its Postnikov diagram Λ(𝐾) is W-equivariant
(i.e., the vertices and the arrows of the diagram are W-equivariant).

In the next two following lemmas we assume given a W-torsor

𝜋 : X → X .

Lemma 2.13. Assume that we have a distinguished triangle

𝐶 ′
𝑓 �� 𝜋∗𝐴

𝑑 �� 𝜋∗𝐶
ℎ �� 𝐶 ′ [1] ��

in 𝐷b
c (X ) and that d is W-equivariant. Then there exists a distinguished triangle

𝐶
′ 𝑓 �� 𝐴

𝑑 �� 𝐶
ℎ �� 𝐶

′
[1] (2.12)

in 𝐷b
c (X ) and an isomorphism of triangles

𝐶 ′
𝑓 ��

𝑠

��

𝐴
𝑑 �� 𝐶

ℎ �� 𝐶 ′ [1]

𝑠 [1]
��

𝜋∗(𝐶
′
)

𝜋∗ ( 𝑓 ) �� 𝜋∗(𝐴)
𝜋∗ (𝑑) �� 𝜋∗(𝐶)

𝜋∗ (ℎ) �� 𝜋∗(𝐶
′
) [1]

If, moreover, we assume that

Hom(𝐴,𝐶 [−1]) = 0 and Hom(𝐶, 𝐴) = 0,

then the triangle (2.12) is unique (up to a unique isomorphism), and the morphism s is unique.

Proof. As 𝑑 : 𝜋∗𝐴 → 𝜋∗𝐶 is W-equivariant, by definition it descends to a unique morphism 𝑑 : 𝐴 → 𝐶
in 𝐷b

c (X ). We complete this morphism into a distinguished triangle

𝐶
′ 𝑓 �� 𝐴

𝑑 �� 𝐶
ℎ �� 𝐶

′
[1]

in 𝐷b
c (X ).
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There exists an isomorphism 𝑠 : 𝐶 ′ → 𝜋∗(𝐶
′
), such that the following diagram commutes:

𝐶 ′
𝑓 ��

𝑠

��

𝐴
𝑑 �� 𝐶

ℎ �� 𝐶 ′ [1]

𝑠 [1]
��

𝜋∗(𝐶
′
)

𝜋∗ ( 𝑓 ) �� 𝜋∗(𝐴)
𝜋∗ (𝑑) �� 𝜋∗(𝐶)

𝜋∗ (ℎ) �� 𝜋∗(𝐶
′
) [1]

The second statement follows from Lemma 2.1. �

Proposition 2.14. Assume that we have a Postnikov diagram Λ of the form (2.1) in 𝐷b
c (X ), such that

the complex Λ𝑏 is the image by 𝜋∗ of a complex

𝐴𝑚 �� 𝐴𝑚−1 �� · · · �� 𝐴1 �� 𝐴0 (2.13)

in 𝐷b
c (X ). Suppose also that

Hom(𝐴 𝑗 , 𝐴𝑖) = 0, for all 𝑗 < 𝑖, (2.14)

and

Hom(𝐴 𝑗 , 𝐴𝑖 [−𝑘]) = 0, for all 𝑗 > 𝑖 and 𝑘 ≥ 1. (2.15)

Then the complex (2.13) can be completed in a unique way (up to a unique isomorphism) into a Postnikov
diagram Λ in 𝐷b

c (X ), such that

𝜋∗(Λ) � Λ.

Proof. The conditions (2.14) and (2.15) imply the analogous conditions with 𝐴𝑖 replaced by 𝐴𝑖 .
Therefore, by Lemma 2.5 we can extend in a unique way the complex (2.13) into a Postnikov diagram
Λ. We prove by induction on 0 ≤ 𝑟 < 𝑚 that 𝜋∗(Λ) = Λ using Lemma 2.13 and the unicity of 𝑑𝑟+1
(Lemma 2.4). �

2.5. Cohomological correspondences

By a cohomological correspondence Γ = (C, 𝑁, 𝑝, 𝑞) we shall mean a correspondence of S-algebraic
stacks

C
𝑝

���
��

��
��

𝑞

����
��
��
�

Y X

(2.16)

together with a kernel 𝑁 ∈ 𝐷−
c (C).

The correspondence Γ comes with a functor

Res = ResΓ : 𝐷−
c (X ) → 𝐷−

c (Y), 𝐴 ↦→ 𝑞! (𝑁 ⊗ 𝑝∗𝐴)

which we call the restriction functor associated to Γ, whose right adjoint is the induction functor

Ind = IndΓ : 𝐷+
c (Y) → 𝐷+

c (X ), 𝐵 ↦→ 𝑝∗Hom(𝑁, 𝑞!𝐵).
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Lemma 2.15. If we have a morphism of correspondences 𝑓 : (C, 𝑝, 𝑞) → (C ′, 𝑝′, 𝑞′) (i.e., a commuta-
tive diagram)

C

𝑝

��

𝑞

��

𝑓

��
C ′

𝑝′ ���
��

��
��

�

𝑞′����
��
��
��

Y X

(2.17)

then we have natural isomorphisms

Res(C,𝑁 ,𝑝,𝑞) = Res(C′, 𝑓!𝑁 ,𝑝′,𝑞′) , Ind(C,𝑁 ,𝑝,𝑞) = Ind(C′, 𝑓!𝑁 ,𝑝′,𝑞′) .

Proof. This is an obvious consequence of the projection formulas (see [9, 9.1.1 and 9.1.i]). �

Lemma 2.16 (Composition). Assume that we have two cohomological correspondences Γ = (C, 𝑁, 𝑝, 𝑞)
and Γ′ = (C ′, 𝑁 ′, 𝑝′, 𝑞′). Consider the following diagram:

Z ×𝑆 X

pr1

��

pr2

��

C ′ ×Y C
pr2

���
��

��
��

��pr1

�����
��
��
��

(𝑞′, 𝑝)

��

C ′

𝑝′

���
��

��
��

��
�

𝑞′

����
��
��
��

C
𝑝

���
��

��
��

𝑞

����
��
��
��
��

Z Y X

Then

ResΓ′ ◦ ResΓ = ResΓ′◦Γ

where

Γ′ ◦ Γ :=
(
Z ×𝑆 X , (𝑞′, 𝑝)! (𝑁

′ �Y 𝑁), pr2, pr1
)
.

We keep the correspondence (2.16), and we assume that it can be completed into a diagram

Y
𝜋

��

C 𝑝 ��𝑞��

𝜌

��

X

Y C
𝑝



�������������
𝑞

��

where 𝜋 and 𝜌 are W-torsors and where the square is cartesian.
If N is W-equivariant (i.e., descends to a complex 𝑁 on C), then we have the following factorization

Ind = I ◦ 𝜋∗, Res = 𝜋∗ ◦ R (2.18)
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where I : 𝐷+
c (Y) → 𝐷+

c (X ) and R : 𝐷−
c (X ) → 𝐷−

c (Y) are respectively the induction and restriction
functors defined from the correspondence (C, 𝑁, 𝑝, 𝑞).

Remark 2.17. Notice that I can be computed as

I(𝐾) = Ind(𝜋∗𝐾)𝑊

since

Ind(𝜋∗𝐾) = I ◦ 𝜋∗ ◦ 𝜋∗(𝐾)

=
⊕
𝜒

𝑉𝜒 ⊗ I(L𝜒 ⊗ 𝐾),

where 𝜋∗Qℓ =
⊕

𝜒 𝑉𝜒 ⊗ L𝜒 is the decomposition indexed by the irreducible characters of W (see
Remark 2.10).

2.6. Reductive groups

For an affine connected algebraic group H over k, we denote by 𝔥 the Lie algebra of H. We denote by
𝑍 (𝐻) the center of H and by 𝑧(𝔥) the center of 𝔥. We will also denote by H := [𝔥/𝐻] the quotient stack
of 𝔥 by H for the adjoint action Ad : 𝐻 → GL(𝔥).

If, moreover, H is reductive, we denote by

𝔠𝔞𝔯𝔥 = 𝔥//𝐻 := Spec(𝑘 [𝔥]𝐻 )

the variety of characteristic polynomials of the elements of 𝔥, and we have a canonical map 𝜒𝔥 : H →

𝔠𝔞𝔯𝔥.
If H is commutative, then H � 𝔥 × B(𝐻), 𝔠𝔞𝔯𝔥 � 𝔥 and 𝜒𝔥 is the first projection.
From now, G is a connected reductive group over k, T is a maximal torus of G, B a Borel subgroup

of G containing T, U the unipotent radical of B, N the normalizer N𝐺 (𝑇) of T in G and W the Weyl
group 𝑁/𝑇 . Through this paper we put

𝑛 := dim𝑇.

We will simply use the notation 𝔠𝔞𝔯 instead of 𝔠𝔞𝔯𝔤, and we recall that

𝔠𝔞𝔯 = 𝔱//𝑊.

We let

𝜋 : T −→ T = [𝔱/𝑁]

be the canonical map.
The character group is denoted by 𝑋∗(𝑇) and the cocharacter group by 𝑋∗(𝑇).
When it makes sense, we use freely the subscripts reg and rss for restriction to G-regular or G-regular

semisimple elements. Similarly we will use the subscript nil for restriction to nilpotent elements.
We assume throughout this paper that the characteristic of k is not too small so that 𝔱reg ≠ ∅ and

centralizers of semisimple elements of 𝔤 are Levi subgroups (of parabolic subgroups) of G (see [11,
§2.6] for an explicit bound on p).
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2.7. Lusztig correspondence

Consider the correspondence (which we call Lusztig correspondence)

T B𝑞�� 𝑝 �� G (2.19)

where the arrows are induced by the inclusion 𝔟 ⊂ 𝔤 and by the projection 𝔟 → 𝔱.
Consider

𝑋 := {(𝑥, 𝑔𝐵) ∈ 𝔤 × 𝐺/𝐵 | Ad(𝑔) (𝑥) ∈ 𝔟}

The group G acts on X by 𝑔 · (𝑥, ℎ𝐵) = (Ad(𝑔) (𝑥), 𝑔ℎ𝐵), and the map

𝐵 → 𝑋, 𝑥 ↦→ (𝑥, 𝐵)

induces an isomorphism B → X := [𝑋/𝐺].
Under the identification B � X , the morphism p is the quotient by G of the Grothendieck-Springer

resolution

pr1 : 𝑋 → 𝔤, (𝑥, 𝑔𝐵) ↦→ 𝑥

from which we deduce the first assertion of the theorem below.

Theorem 2.18.

(i) The morphism 𝑝 : B → G is representable, proper and semi-small.
(ii) We have a factorization of p (Stein factorization)

B (𝑞′, 𝑝) �� S := 𝔱 ×𝔠𝔞𝔯 G
pr2 ��

��
�

G

��
𝔱 �� 𝔠𝔞𝔯

where 𝑞′ = 𝜒𝔱 ◦ 𝑞 : B → T → 𝔱, and (𝑞′, 𝑝) is a small resolution of singularities.

Proof. Above, Srss := 𝔱 ×𝔠𝔞𝔯 Grss, (𝑞′, 𝑝) is an isomorphism, and so Grss is smooth. The complementary
of Grss in S is of codimension at least 2. Therefore, S satisfies the condition (𝑅1) of Serres’s criterion
for normality. Moreover, 𝔱 is a complete intersection over 𝔠𝔞𝔯, and so by base change, the same is true
for S over G. As G is smooth, the stack S satisfies the condition (𝑆2) of Serres’s criterion. Therefore S
is normal from which we deduce the proposition. �

2.8. Lusztig induction and restriction

The morphism p is representable, proper and q is smooth of pure dimension 0. We thus have 𝑝∗ = 𝑝!
and 𝑞∗ = 𝑞!. The Lusztig induction and restriction functors [14, (7.1.7)] are the induction and restriction
defined from the correspondence (2.19) with the constant sheaf as a kernel:

Ind : 𝐷b
c (T ) → 𝐷b

c (G), 𝐾 ↦→ 𝑝∗𝑞
! (𝐾),

Res : 𝐷b
c (G) → 𝐷b

c (T ), 𝐾 ↦→ 𝑞!𝑝
∗(𝐾).
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Remark 2.19. Notice that Res is well-defined as 𝑞! maps bounded complexes to bounded complexes.
To see that, we consider the commutative triangle

T B𝑞��

[𝔟/𝑇]

ℎ

��

𝑎

���������������

Since h is an affine fibration, the adjunction morphism

ℎ!ℎ
∗ → 1

is an isomorphism, and so we conclude by noticing that a is representable.

By the main result of [3], the functors Ind and Res map perverse sheaves to perverse sheaves.
Consider the factorization

B
𝑞

�����
���

���
���

���
�

𝑝

����
���

���
���

���
��

(𝑞,𝑝)

��
T T ×𝔠𝔞𝔯 G

prT�� prG �� G

(2.20)

where the map T → 𝔠𝔞𝔯 is either the composition T → G → 𝔠𝔞𝔯 or the composition T → 𝔱 → 𝔠𝔞𝔯.
By §2.5, we have

Res(𝐾) = prT !

(
pr∗G (𝐾) ⊗ (𝑞, 𝑝)!Qℓ

)
,

Ind(𝐾) = prG∗
Hom

(
(𝑞, 𝑝)!Qℓ , pr!

T (𝐾)
)

= prG !

(
pr∗T (𝐾) ⊗ (𝑞, 𝑝)!Qℓ

)
.

The last identity follows from the fact that 𝑞! = 𝑞∗ and 𝑝! = 𝑝∗ since we can then regard Ind as the
restriction functor associated to the correspondence (B, 𝑞, 𝑝).

Notice also that (𝑞, 𝑝)!Qℓ ∈ 𝐷b
c (T ×𝔠𝔞𝔯 G).

2.9. Induction and restriction for perverse sheaves

As we say in the previous section, the two functors Ind and Res are t-exact but, as we will see later, the
kernel (𝑞, 𝑝)!Qℓ is not W-equivariant. In this section we introduce slightly modified functors 𝑝Ind and
𝑝Res defined from a kernel which is naturally W-equivariant.

We consider the following commutative diagram

T
𝑠

��

B𝑞��

𝑝

����
���

���
���

���
���

𝑞′

�����
���

���
���

���
��

(𝑞′, 𝑝)

��
𝔱 S = 𝔱 ×𝔠𝔞𝔯 Gpr1
��

pr2
�� G

(2.21)

where 𝑠 : T � 𝔱 × B(𝑇) → 𝔱 is the projection on 𝔱. Notice that s is not representable.
Consider the induction functor

Ind := Ind ◦ 𝑠! [𝑛] (𝑛) : 𝐷+
c (𝔱) → 𝐷+

c (G), 𝐾 ↦→ 𝑝∗𝑞
′!(𝐾) [𝑛] (𝑛).
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Since the functor 𝑠! [𝑛] (𝑛) : M(𝔱) → M(T ) is an equivalence of categories with inverse functor
𝑝H0 ◦ (𝑠! [−𝑛] (−𝑛)) and since Ind maps perverse sheaves to perverse sheaves (see §2.8), the functor
Ind preserves perversity and we denote by 𝑝Ind the induced functor on perverse sheaves:

𝑝Ind := Ind ◦ 𝑠! [𝑛] (𝑛) : M(𝔱) → M(G), 𝐾 ↦→ 𝑝∗𝑞
′! (𝐾) [𝑛] (𝑛).

The functor Ind admits a left adjoint

Res := 𝑠! ◦ Res[−𝑛] (−𝑛) : 𝐷−
c (G) → 𝐷−

c (𝔱), 𝐾 ↦→ 𝑞′!𝑝
∗(𝐾) [−𝑛] (−𝑛)

which is right t-exact but not left t-exact (unlike Ind).
Since Res preserves perversity, for 𝐾 ∈ M(G), we have

Res(𝐾) = 𝑠!𝑠
!(𝐾 ′) = 𝐾 ′ ⊗ 𝑅Γ𝑐 (B(𝑇),Qℓ) [−2𝑛] (−𝑛)

where 𝐾 ′ ∈ M(𝔱) is defined as 𝑠!(𝐾 ′) [𝑛] (𝑛) = Res(𝐾).
Define the restriction

𝑝Res := 𝑝H0 ◦ Res : M(G) → M(𝔱), 𝐾 ↦→ 𝐾 ′.

Lemma 2.20. 𝑝Res is left adjoint to 𝑝Ind.

Proof. We have

HomM(𝔱)
(𝑝Res(𝐴), 𝐵

)
= HomM(T )

(
𝑠!(𝑝Res(𝐴)) [𝑛] (𝑛), 𝑠!𝐵[𝑛] (𝑛)

)
= HomM(T )

(
Res(𝐴), 𝑠!𝐵[𝑛] (𝑛)

)
= HomM(G)

(
𝐴, Ind(𝑠!𝐵[𝑛] (𝑛))

)
= HomM(G)

(
𝐴, 𝑝Ind(𝐵)

)
. �

Put

𝔱 := [𝔱/𝑊]

and let 𝜋𝔱 : 𝔱 → 𝔱 be the quotient map.

Proposition 2.21. The functors 𝑝Ind and 𝑝Res factorize as

𝑝Ind = 𝑝I ◦ 𝜋𝔱 ∗, 𝑝Res = 𝜋∗𝔱 ◦
𝑝R

where 𝑝I : M(𝔱) → M(G) and 𝑝R : M(G) → M(𝔱) are defined as

𝑝I(𝐾) := pr2 ∗ Hom
(
IC𝔱×𝔠𝔞𝔯G , pr!

1𝐾
)
[𝑛] (𝑛),

𝑝R(𝐾) := 𝑝H0
(
pr1 !

(
IC𝔱×𝔠𝔞𝔯G ⊗ pr∗2 (𝐾)

)
[−𝑛] (−𝑛)

)
.

Proof. Follows from the diagram (2.21) using that (𝑞′, 𝑝)!Qℓ = IC𝔱×𝔠𝔞𝔯G , which follows from the fact
that (𝑞′, 𝑝) is a small resolution of singularities by Theorem 2.18 (ii). �
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We have the following proposition.
Proposition 2.22.
(1) Let 𝐾 ∈ M(𝔱) be W-equivariant, and let 𝐿 ∈ M(G). The adjunction isomorphism

HomM(𝔱)
(𝑝Res(𝐿), 𝐾

)
� HomM(G)

(
𝐿, 𝑝Ind(𝐾)

)
is W-equivariant.

(2) The functor 𝑝R is left adjoint to 𝑝I.
Proof. From Proposition 2.21 we find that

𝑝Ind(𝑤 · 𝑓 ) = 𝑤 · 𝑝Ind( 𝑓 )

for any 𝑓 ∈ Hom(𝑝Res(𝐿), 𝐾) and 𝑤 ∈ 𝑊 , from which we deduce the assertion (1). The second
assertion is a consequence of (1) together with following identities:

HomM(𝔱)

(
𝑝R(𝐿), 𝐾

)
= HomM(𝔱)

(𝑝Res(𝐿), 𝐾
)𝑊

,

HomM(G)
(
𝐿, 𝑝I(𝐾)

)
= HomM(G)

(
𝐿, 𝑝Ind(𝐾)

)𝑊
where 𝐾 = 𝜋∗𝔱 (𝐾). �

2.10. Springer action

From Borho-MacPherson construction of the Springer action [4], the complex 𝑝!Qℓ is endowed with
an action of the Weyl group W (i.e., a group homomorphism 𝑊 → Aut(𝑝! (Qℓ))). Their strategy was
to prove that 𝑝∗Qℓ is the intermediate extension of some smooth ℓ-adic sheaf on Grss on which W acts.
From the diagram (2.21), we see that 𝑝!Qℓ = pr2 !IC𝔱×𝔠𝔞𝔯G , and so the action of W follows from the fact
that IC𝔱×𝔠𝔞𝔯G is naturally W-equivariant.

This defines an action of W on 𝐻𝑖 (B,Qℓ) as well as an action on the cohomology of the fibres. These
actions are compatible with the restriction maps from the cohomology of B to the cohomology of the
fibres.

On the other hand, the natural map B(𝑇) → B(𝐵) is a U-fibration, and so 𝐻𝑖 (B(𝑇),Qℓ) =
𝐻𝑖 (B(𝐵),Qℓ). The action of W on B(𝑇) induces thus an action of W on 𝐻𝑖 (B(𝐵),Qℓ). This action
coincides with the Springer action (regarding B(𝐵) as the zero fibre of p).
Lemma 2.23. The restriction map 𝐻𝑖 (B(𝐵),Qℓ) → 𝐻𝑖 (B,Qℓ) induced by the map B → B(𝐵) (given
by the B-torsor 𝔟 → B) is W-equivariant for the Springer actions.
Proof. We know that the restriction map

𝑖∗ : 𝐻𝑖 (B,Qℓ) → 𝐻𝑖 (B(𝐵),Qℓ)

of the inclusion 𝑖 : B(𝐵) ↩→ B is W-equivariant for the Springer actions.
The morphism 𝑏 : B → B(𝐵) is a vector bundle with fibre 𝔟. Hence 𝑏∗ is an isomorphism with

inverse 𝑖∗ and so is W-equivariant. �

3. Steinberg stacks

3.1. Geometry of Steinberg stacks

We consider the following stacks

Z := B ×G B, Y := B ×S B.
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We have the following cartesian diagrams

Y ��

��

Z

��
S

��

�� S ×G S

��
𝔱 �� 𝔱 ×𝔠𝔞𝔯 𝔱

where the top horizontal arrow is the natural map, and the last two arrows are the diagonal morphisms.
Since the diagonal morphism 𝔱 → 𝔱 ×𝔠𝔞𝔯 𝔱 is closed, the stack Y is a closed substack of Z .

Remark 3.1. Consider

𝑍 = {(𝑥, 𝑔𝐵, 𝑔′𝐵) ∈ 𝔤 × 𝐺/𝐵 × 𝐺/𝐵 | Ad(𝑔−1) (𝑥) ∈ 𝔟, Ad(𝑔′−1
) (𝑥) ∈ 𝔟}

so that Z = [𝑍/𝐺] where G acts on Z by

(𝑥, 𝑔𝐵, 𝑔′𝐵) · ℎ = (Ad(ℎ−1)𝑥, ℎ−1𝑔𝐵, ℎ−1𝑔′𝐵).

The canonical morphisms B → B(𝐵) and G → B(𝐺) induce a morphism

Z 𝜑 �� B(𝐵) ×B(𝐺) B(𝐵)

and the canonical map [𝐵\𝐺/𝐵] → B(𝐵) ×B(𝐺) B(𝐵) is an isomorphism.
Consider the stratification

[𝐵\𝐺/𝐵] =
∐
𝑤 ∈𝑊

O𝑤 ,

where O𝑤 = [𝐵\𝐵𝑤𝐵/𝐵]. Notice that the natural map B(𝐵𝑤 ) → O𝑤 is an isomorphism.
This induces partitions into locally closed substacks

Z =
∐
𝑤 ∈𝑊

Z𝑤 , Y =
∐
𝑤 ∈𝑊

Y𝑤 .

For 𝑤 ∈ 𝑊 , put

𝐵𝑤 := 𝐵 ∩ 𝑤𝐵𝑤−1, 𝔟𝑤 := Lie(𝐵𝑤 ), 𝑈𝑤 := 𝑈 ∩ 𝑤𝑈𝑤−1, 𝔲𝑤 := Lie(𝑈𝑤 ).

Then

Z𝑤 = [𝔟𝑤/𝐵𝑤 ], Y𝑤 = [(𝔱𝑤 + 𝔲𝑤 )/𝐵𝑤 ]

where 𝐵𝑤 acts by the adjoint action and 𝔱𝑤 are the points of 𝔱 fixed by w.
Since 𝐵𝑤 = 𝑇𝑈𝑤 , we proved the following proposition.

Proposition 3.2.

(1) For all 𝑤 ∈ 𝑊 , the projection

Z𝑤 → T

induced by the canonical projection 𝔟 → 𝔱 is a fibration with fibre isomorphic to [𝔲𝑤/𝑈𝑤 ], where
𝑈𝑤 acts by the adjoint action.
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(2) The fibres of the projection Z𝑤 → O𝑤 (resp. Y𝑤 → O𝑤 ) are affine spaces all of same dimension
𝔟𝑤 (resp. dim 𝔱𝑤 + dim 𝔲𝑤 ).

3.2. Purity of cohomology

Proposition 3.3. The compactly supported cohomology of Z and Y is pure and vanishes in odd degree.

Proof. We prove it for Y , but the proof is completely similar for Z . Let us choose 𝑘𝑜, a finite subfield
of k such that G, B and T are defined over 𝑘𝑜 and T is split. Then Gal(𝑘/𝑘𝑜) acts trivially on W.

Recall (see §3) that we have a partition into locally closed substacks

Y =
∐
𝑤 ∈𝑊

Y𝑤 . (3.1)

By our choice of 𝑘𝑜, each stratum is defined over 𝑘𝑜.
We choose a total order {𝑤0, 𝑤1, . . . } on W so that we have a decreasing filtration of closed substacks

Y = Y0 ⊃ Y1 ⊃ · · · ⊃ Y |𝑊 |−1 ⊃ Z |𝑊 | = ∅

satisfying Y𝑖\Y𝑖+1 = Y𝑤𝑖 for all i. This defines a spectral sequence [5, Chapter 6, Formula (2.5.2)] from
which we can reduce the proof of the purity of the cohomology of Y and the vanishing in odd degrees
to the analogous statement for Y𝑤 .

The fibres of the projection Y𝑤 → O𝑤 are affine spaces all of same dimension 𝑛(𝑤) = dim 𝔱𝑤 +

dim 𝔲𝑤 by Proposition 3, and so

𝐻𝑖𝑐 (Y𝑤 ,Qℓ) = 𝐻𝑖−2𝑛(𝑤)
𝑐 (O𝑤 ,Qℓ) (−𝑛(𝑤)).

Recall also that the map B(𝐵𝑤 ) → O𝑤 is an isomorphism and that

𝐻𝑘+2dim𝑈𝑤
𝑐 (B(𝑇),Qℓ) (dim𝑈𝑤 ) = 𝐻𝑘𝑐 (B(𝐵𝑤 ),Qℓ).

Therefore,

𝐻𝑖𝑐 (Y𝑤 ,Qℓ) = 𝐻𝑖−2dim 𝔱𝑤
𝑐 (B(𝑇),Qℓ) (−dim 𝔱𝑤 ).

Since the cohomology of B(𝑇) is pure and vanishes in odd degree, the same is true for 𝐻𝑖𝑐 (Y𝑤 ,Qℓ). �

3.3. Restriction to the diagonal

Notice that

𝐻𝑖𝑐 (Z ,Qℓ) = 𝐻𝑖𝑐 (G, 𝑝!Qℓ ⊗ 𝑝!Qℓ)

and so 𝐻𝑖𝑐 (Z ,Qℓ) is naturally equipped with an action of 𝑊 ×𝑊 .
The aim of this section is to prove the following theorem.

Theorem 3.4. The cohomological restriction

𝐻2𝑖
𝑐 (Z ,Qℓ) −→ 𝐻2𝑖

𝑐 (B,Qℓ)

of the diagonal morphism B → Z is W-equivariant for the Springer actions (where we consider the
diagonal action of W on the source).
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Let 𝑞′ : B → 𝔱 be induced by the canonical projection 𝔟 → 𝔱. Then

𝐻𝑖𝑐 (Z ,Qℓ) = 𝐻𝑖𝑐 (𝔱 ×𝔠𝔞𝔯 𝔱, (𝑞
′, 𝑞′)!Qℓ), 𝐻𝑖𝑐 (B,Qℓ) = 𝐻𝑖𝑐 (𝔱, 𝑞

′
!Qℓ).

Choose a total ordering {𝑤0, 𝑤1, . . . } on W so that we have a decreasing filtration of closed substacks

Z = Z0 ⊃ Z1 ⊃ · · · ⊃ Z |𝑊 |−1 ⊃ Z |𝑊 | = ∅

satisfying Z𝑖\Z𝑖+1 = Z𝑤𝑖 for all i.
By [5, Chapter 6, Formula (2.5.2)], we have a spectral sequence

𝐸
𝑖 𝑗
1 = H𝑖+ 𝑗

((
(𝑞′, 𝑞′) |Z𝑤𝑖

)
!
Qℓ

)
⇒ H𝑖+ 𝑗 (𝑞′, 𝑞′)!Qℓ .

For 𝑤 ∈ 𝑊 , consider the morphism

Δ𝔱,𝑤 : 𝔱 −→ 𝔱 ×𝔠𝔞𝔯 𝔱, 𝑡 ↦→ (𝑤(𝑡), 𝑡)

and the following commutative diagram:

Z𝑤 ��

𝑞′𝑤
��

Z

(𝑞′,𝑞′)

��
𝔱

Δ𝔱,𝑤 �� 𝔱 ×𝔠𝔞𝔯 𝔱

Then

((𝑞′, 𝑞′) |Z𝑤 )!Qℓ = Δ𝔱,𝑤 ∗𝑞
′
𝑤 ∗Qℓ = Δ𝔱,𝑤 ∗Qℓ ⊗ 𝑅Γ𝑐 (B(𝑇),Qℓ).

As 𝐻odd
𝑐 (B(𝑇),Qℓ) vanishes, the spectral sequence degenerates at 𝐸1.

Proof of Theorem 3.4. Since the above spectral sequence degenerates at 𝐸1, we have Hodd
𝑐 (𝑞′, 𝑞′)!Qℓ =

0, and Heven(𝑞′, 𝑞′)!Qℓ is a successive extension of the Δ𝔱,𝑤 ∗Qℓ ⊗𝐻even
𝑐 (B(𝑇),Qℓ). By Proposition 2.8,

H2𝑖 (𝑞′, 𝑞′)!Qℓ is thus a perverse sheaf (up to a shift) that is the intermediate extension of its restriction
to 𝔱reg ×𝔠𝔞𝔯 𝔱reg.

We thus have

H2𝑖 (𝑞′, 𝑞′)!Qℓ = Δ∗Qℓ ⊗ 𝐻2𝑖
𝑐 (B(𝑇),Qℓ)

where Δ : 𝑊 × 𝔱 → 𝔱 ×𝔠𝔞𝔯 𝔱, (𝑤, 𝑡) ↦→ (𝑤(𝑡), 𝑡) is the normalization morphism.
Using the spectral sequence

𝐻𝑖𝑐

(
𝔱 ×𝔠𝔞𝔯 𝔱,H 𝑗 (𝑞′, 𝑞′)!Qℓ

)
⇒ 𝐻

𝑖+ 𝑗
𝑐 (Z ,Qℓ)

together with the fact that 𝐻𝑖𝑐 (𝔱 ×𝔠𝔞𝔯 𝔱,Δ∗Qℓ) = 0 unless 𝑖 = 2𝑛, we deduce that

𝐻−2𝑖
𝑐 (Z ,Qℓ) = 𝐻2𝑛

𝑐 (𝔱 ×𝔠𝔞𝔯 𝔱,Δ∗Qℓ) ⊗ 𝐻−2𝑛−2𝑖
𝑐 (B(𝑇),Qℓ).

The restriction morphism 𝐻𝑖𝑐 (Z ,Qℓ) → 𝐻𝑖𝑐 (B,Qℓ) is induced by the restriction morphism

Δ∗
𝔱,1 : 𝐻2𝑛

𝑐 (𝔱 ×𝔠𝔞𝔯 𝔱,Δ∗Qℓ) → 𝐻2𝑛
𝑐 (𝔱,Qℓ)

which is W-equivariant, hence the theorem. �
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4. Postnikov diagrams of kernels

The aim of this section is to compute the kernel

N := (𝑞, 𝑝)!Qℓ

as well as its restriction to nilpotent elements.
To alleviate the notation, we will denote by f the representable morphism

(𝑞′, 𝑝) : B → S

considered in Theorem 2.18.
The map (𝑞, 𝑝) decomposes as

B 𝛿:=(𝑞,1B) �� B̂ := T ×𝔱 B
𝑓 :=1T ×𝑝 �� Ŝ := T ×𝔠𝔞𝔯 G (4.1)

or equivalently as

B 𝛿:=(𝜏,1B) �� B(𝑇) × B
1B(𝑇 ) × 𝑓 �� B(𝑇) × S .

under the identification T = 𝔱 × B(𝑇). Notice that 𝜏 corresponds to the T-torsor �B = [𝔟/𝑈] →

[𝔟/𝐵] = B.
The first map is a T-torsor which fits into the cartesian diagram

B 𝜏 ��

𝛿
��

�� B(𝑇) ��

��

Spec(𝑘)

��
B̂ �� B(𝑇) × B(𝑇) �� 𝐵(𝑇)

where the map B(𝑇) → B(𝑇) ×B(𝑇) is the diagonal embbeding, and B(𝑇) ×B(𝑇) → B(𝑇) is induced
by 𝑇 × 𝑇 → 𝑇, (𝑡, ℎ) ↦→ 𝑡ℎ−1.

4.1. Postnikov diagrams associated to T-torsors

Let V be an algebraic stack and �V a T-torsor 𝜌 : �V → V . We want to compute 𝜌!Qℓ .
This torsor corresponds to a morphism

𝜎 : V → B(𝑇).

We have a Chern class morphism

𝑐can : 𝑋∗(𝑇) → 𝐻2(B(𝑇),Qℓ) (1)

associated to the canonical T-torsor Spec(𝑘) → B(𝑇), which induces an isomorphism

𝑋∗(𝑇) ⊗ Qℓ � 𝐻2 (B(𝑇),Qℓ) (1).

Composed with 𝜎∗, it induces a Chern class morphism

𝑐𝜌 : 𝑋∗(𝑇) → 𝐻2 (V ,Qℓ) (1).
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Concretely, if 𝜒 ∈ 𝑋∗(𝑇), then 𝑐𝜌 (𝜒) is the Chern class of the line bundle

( �V × A1)/𝑇 → V ,

where T acts on A1 as 𝑥 · 𝑡 = 𝜒(𝑡−1)𝑥, for (𝑥, 𝑡) ∈ A1 × 𝑇 .
Since 𝐻2 (V ,Qℓ) = Ext2V (Qℓ ,Qℓ) = HomV (Qℓ ,Qℓ [2]), we can regard c as a map

𝑐𝜌 : Qℓ → 𝑋∗(𝑇) ⊗ Qℓ [2] (1)

in 𝐷b
c (V).

This defines a complex of objects of 𝐷b
c (V)

Qℓ [−2𝑛] (−𝑛)
𝜕𝑛
−→ 𝑋∗(𝑇) ⊗ Qℓ [2 − 2𝑛] (1 − 𝑛)

𝜕𝑛−1
−→

2∧
𝑋∗(𝑇) ⊗ Qℓ [4 − 2𝑛] (2 − 𝑛)

𝜕𝑛−2
−→ · · ·

· · · →

𝑛−1∧
𝑋∗(𝑇) ⊗ Qℓ [−2] (−1)

𝜕1
−→

𝑛∧
𝑋∗(𝑇) ⊗ Qℓ , (4.2)

where 𝜕𝑛−𝑖+1 [2𝑛 − 2𝑖 + 2] (𝑛 − 𝑖 + 1) is induced by the morphism

𝑖−1∧
𝑋∗(𝑇) ⊗ Qℓ −→

𝑖∧
𝑋∗(𝑇) ⊗ Qℓ [2] (1)

that maps v to 𝑣 ∧ 𝑐𝜌 (1).

Proposition 4.1.

(1) We have

𝑝H𝑖 (𝜌!Qℓ) = H𝑖 (𝜌!Qℓ) �

2𝑛−𝑖∧
𝑋∗(𝑇) ⊗ Qℓ (𝑛 − 𝑖).

(2) The complex (4.2) is the base Λ𝑏 (𝜌!Qℓ) of the Postnikov diagram Λ(𝜌!Qℓ).

Proof. The proposition reduces to the case 𝑛 = 1 using an isomorphism𝑇 � (G𝑚)
𝑛. Indeed, the complex

(4.2) can be realized as the tensor product of analogous complexes associated to rank 1 tori. �

4.2. Postnikov diagram of N
Since the map 𝑓 : B̂ → Ŝ is a small resolution of singularities, we have

𝑓!Qℓ = ICŜ .

Following §4.1 we now regard the Chern class morphism

𝑐𝛿 : 𝑋∗(𝑇) → 𝐻2 (B̂,Qℓ) (1)

associated to the T-torsor 𝛿 : B → B̂ as a morphism

𝑐𝛿 : Qℓ → 𝑋∗(𝑇) ⊗ Qℓ [2] (1).

Applying 𝑓! we get

𝑓!(𝑐𝛿) : ICŜ → 𝑋∗(𝑇) ⊗ ICŜ [2] (1).
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Applying the functor 𝑓! to the complex Λ𝑏 (𝛿!Qℓ) we obtain a complex

ICŜ [−2𝑛] (−𝑛)
𝜕𝑛
−→ 𝑋∗(𝑇) ⊗ ICŜ [2 − 2𝑛] (1 − 𝑛)

𝜕𝑛−1
−→ · · · (4.3)

· · ·
𝜕1
−→

(
𝑛∧

𝑋∗(𝑇)

)
⊗ ICŜ ,

where 𝜕𝑛−𝑖+1 [2𝑛 − 2𝑖 + 2] (𝑛 − 𝑖 + 1) is induced by the morphism(
𝑖−1∧

𝑋∗(𝑇)

)
⊗ ICŜ −→

(
𝑖∧
𝑋∗(𝑇)

)
⊗ ICŜ [2] (1)

given by 𝑣 ⊗ 𝑠 ↦→ 𝑣 ∧ 𝑓! (𝑐𝛿) (𝑠).

Proposition 4.2.

(1) The perverse cohomology sheaves of N are

pH𝑖 (N ) =

(2𝑛−𝑖∧
𝑋∗(𝑇)

)
⊗ ICŜ (𝑛 − 𝑖).

(2) We have Λ(N ) = 𝑓!

(
Λ(𝛿!Qℓ)

)
.

(3) Assume that G, B and T are defined over a finite subfield 𝑘𝑜 of k. The diagram Λ(N ) is the unique
Postnikov diagram defined over 𝑘𝑜 whose base is the complex (4.3).

Proof. The assertion (1) follows from the fact that the morphism 𝑓 is small and that the cohomology
groups of Λ(𝛿!Qℓ) are constant (see Proposition 4.1(1)). The assertion (2) follows from Lemma 2.3.

To prove assertion (3), we choose a finite subfield 𝑘𝑜 of k on which G, T and B are defined, and we let
𝑇𝑜 and Ŝ𝑜 be the induced 𝑘𝑜-structure on T and Ŝ . We want to prove that 𝑓𝑜!

(
Λ(𝛿𝑜!Qℓ)

)
is the unique

Postnikov diagram that completes the complex (4.3) with T and Ŝ replaced by 𝑇𝑜 and Ŝ𝑜.
We need to prove that the hypothesis of Lemma 2.5 is satisfied. The condition (2.5) is verified as

Hom(ICŜ𝑜
[−2 𝑗] (− 𝑗), ICŜ𝑜

[−2𝑖] (−𝑖)) = Ext2( 𝑗−𝑖) (ICŜ𝑜
, ICŜ𝑜

( 𝑗 − 𝑖)) = 0

for all 𝑗 < 𝑖.
The proof of the condition (2.6) reduces to prove that

Hom(ICŜ𝑜
[−2 𝑗] (− 𝑗), ICŜ𝑜

[−2𝑖 − 𝑘] (−𝑖)) = Ext2( 𝑗−𝑖)−𝑘 (ICŜ𝑜
, ICŜ𝑜

( 𝑗 − 𝑖)) = 0

for all 𝑗 > 𝑖 and 𝑘 ≥ 1. But this is clear from the next proposition using the exact sequence (2.8). �

Proposition 4.3. Ext 𝑗
Ŝ
(ICŜ , ICŜ ) = 0 if j is odd and Ext2𝑖Ŝ (ICŜ , ICŜ ) is pure of weight 2𝑖.

Proof. We need to compute

Ext𝑖Ŝ (ICŜ , ICŜ ) = Hom(ICŜ , ICŜ [𝑖]).

Since Ŝ = B(𝑇) ×S and since the statement of the proposition is true if we replace 𝑆 by B(𝑇) (noticing
that ICB(𝑇 ) = Qℓ), by Künneth formula we are reduced to prove the proposition with S instead of Ŝ .
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Consider the cartesian diagram

Y = B ×S B
pr2 ��

pr1
��

B
𝑓

��
B 𝑓 �� S

Since f is representable, the morphism pr1 is also representable. We have

Hom(ICS , ICS [𝑖]) = Hom( 𝑓!Qℓ , 𝑓!Qℓ [𝑖])

= Hom( 𝑓 ∗ 𝑓!Qℓ ,Qℓ [𝑖])

= Hom(pr1!Qℓ ,Qℓ [𝑖])

= Hom(Qℓ , pr!
1Qℓ [𝑖])

= 𝐻𝑖 (Y , pr!
1Qℓ)

= 𝐻−𝑖
𝑐 (Y ,Qℓ),

where the last identity is by Poincaré duality (notice that dimY = 0). We thus conclude from
Proposition 3.3. �

4.3. Restriction to nilpotent elements

We let 𝔷 be a locally closed subset of 𝑧(𝔤). We consider the Lusztig correspondence

B𝔷 := [(𝔷 + 𝔲)/𝐵]
𝑝𝔷

������
�����

�����
�����

�
𝑞𝔷

������
����

����
����

��
(𝑞𝔷 , 𝑝𝔷)

��
T𝔷 := [𝔷/𝑇] Ŝ𝔷 := B(𝑇) × [(𝔷 + 𝔤nil)/𝐺]

prG𝔷 ��
prT𝔷�� G𝔷 := [(𝔷 + 𝔤nil)/𝐺]

over 𝔷 = 𝔷//𝑊 ⊂ 𝔠𝔞𝔯.
The T-torsor 𝛿𝔷 : B𝔷 → B̂𝔷 = B(𝑇) × B𝔷 induced from 𝛿 gives rise to a Chern class morphism

𝑐𝛿𝔷 : Qℓ → 𝑋∗(𝑇) ⊗ Qℓ [2] (1)

and so following the same lines as in §4.2, we end up with a complex(
Qℓ, B(𝑇 ) � 𝑝𝔷 !Qℓ

)
[−2𝑛] (−𝑛) → 𝑋∗(𝑇) ⊗

(
Qℓ, B(𝑇 ) � 𝑝𝔷 !Qℓ

)
[2 − 2𝑛] (1 − 𝑛) → · · · (4.4)

· · · −→

(
𝑛∧

𝑋∗(𝑇)

)
⊗

(
Qℓ, B(𝑇 ) � 𝑝𝔷 !Qℓ

)
.

which is the restriction of the complex (4.3) to Ŝ𝔷.
If 𝔷 = 0, we will replace the subscript 𝔷 by nil.
Let prnil : Ŝ𝔷 → Ŝnil = B(𝑇) × Gnil be the morphism induced by the projection 𝔷 + 𝔤nil → 𝔤nil.

Proposition 4.4.

(1) We have

(𝑞𝔷, 𝑝𝔷)!Qℓ = pr∗nil

(
(𝑞nil, 𝑝nil)!Qℓ

)
.
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(2) Assume also that 𝐺, 𝐵 and T are defined over a finite subfield 𝑘𝑜 of k. The Postnikov diagram
Λ((𝑞nil, 𝑝nil)!Qℓ) = 𝑓nil !

(
Λ(𝛿nil !Qℓ)

)
is the unique Postnikov diagram defined over 𝑘𝑜 whose base

is the complex (4.4) with 𝔷 = 0.

Proof. The assertion (1) is clear. The proof of assertion (2) goes exactly along the same lines as the
proof of Proposition 4.2. �

5. Descent

As explained in §5.4, the kernel N does not descend to T ×𝔠𝔞𝔯 G. However, we will prove in this section
that we have a descent result if we restrict ourselves to strata of 𝔠𝔞𝔯 that we are now defining.

5.1. The main theorem

We have a natural stratification of 𝔠𝔞𝔯 into smooth locally closed subsets indexed by the set 𝔏 of G-
conjugacy classes of Levi subgroups (of parabolic subgroups) of G

𝔠𝔞𝔯 =
∐
𝜆∈𝔏

𝔠𝔞𝔯𝜆.

Concretely, let L be a representative of 𝜆 ∈ 𝔏 containing T. Then 𝔠𝔞𝔯𝜆 is the image of

𝑧(𝔩)𝑜 := {𝑥 ∈ 𝔩 |𝐶𝐺 (𝑥) = 𝐿} ⊂ 𝑧(𝔩) ⊂ 𝔱

by the quotient map 𝔱 → 𝔠𝔞𝔯.
If X is either T ,B, B̂,S , Ŝ , T or G we put

X𝜆 := X ×𝔠𝔞𝔯 𝔠𝔞𝔯𝜆

for any 𝜆 ∈ 𝔏.
We consider the Lusztig correspondence over 𝜆 ∈ 𝔏

T𝜆 T𝜆 ×𝔠𝔞𝔯𝜆 G𝜆
prT𝜆��

prG𝜆 �� G𝜆 .

Notice that T𝜆 = [𝔱𝜆/𝑇] � 𝔱𝜆 × B(𝑇) with

𝔱𝜆 =
∐

𝑔∈𝑁𝐺 (𝑇 )/𝑁𝐺 (𝐿,𝑇 )

𝑔 𝑧(𝔩)𝑜𝑔−1.

Notice that if for some 𝑔 ∈ 𝐺 and 𝑠 ∈ 𝑧(𝔩)𝑜 we have Ad(𝑔) (𝑠) ∈ 𝑧(𝔩)𝑜, then 𝑔 ∈ 𝑁𝐺 (𝐿) [11, Lemma
2.6.16].

We thus have isomorphisms of stacks

G𝜆 � [(𝑧(𝔩)𝑜 + 𝔩nil)/𝑁𝐺 (𝐿)], T 𝜆 = [𝔱𝜆/𝑁] � [𝑧(𝔩)𝑜/𝑁𝐺 (𝐿,𝑇)] .

Put 𝐵𝐿 := 𝐵∩ 𝐿, and let 𝔲𝐿 be the Lie algebra of the unipotent radical of 𝐵𝐿 . We consider the following
commutative diagram (as in §4.3 with 𝐺 = 𝐿 and 𝔷 = 𝑧(𝔩)𝑜):
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[(𝑧(𝔩)𝑜 + 𝔲𝐿)/𝐵𝐿]
𝑝𝐿

�����
����

����
����

���
𝑞𝐿

������
����

����
����

(𝑞𝐿 , 𝑝𝐿 )

��
[𝑧(𝔩)𝑜/𝑇]

��

[𝑧(𝔩)𝑜/𝑇] ×𝑧 (𝔩)𝑜 [(𝑧(𝔩)𝑜 + 𝔩nil)/𝐿] ����

��

[(𝑧(𝔩)𝑜 + 𝔩nil)/𝐿]

��
T 𝜆 T 𝜆 ×𝔠𝔞𝔯𝜆 G𝜆 ���� G𝜆

(5.1)

Put

𝑊𝐿 := 𝑁𝐿 (𝑇)/𝑇, 𝑊𝐿 := 𝑁𝐺 (𝐿,𝑇)/𝑇, 𝑊𝐿 := 𝑁𝐺 (𝐿)/𝐿

We have an exact sequence

1 → 𝑊𝐿 → 𝑊𝐿 → 𝑊𝐿 → 1

and the group 𝑊𝐿 acts on

[𝑧(𝔩)𝑜/𝑇] ×𝑧 (𝔩)𝑜 [(𝑧(𝔩)𝑜 + 𝔩nil)/𝐿]

in the natural way on the first factor and via 𝑊𝐿 on the second factor.
The first two vertical arrows of the diagram (5.1) are 𝑊𝐿-torsors while the right vertical arrow is

𝑊𝐿-torsor.

Theorem 5.1. The complex N 𝐿 := (𝑞𝐿 , 𝑝𝐿)!Qℓ is 𝑊𝐿-equivariant (i.e., it descends to a complex N 𝜆

on T 𝜆 ×𝔠𝔞𝔯𝜆 G𝜆).

Remark 5.2. We have the following commutative diagram

B𝜆
(𝑞𝜆 , 𝑝𝜆)

��

[(𝑧(𝔩)𝑜 + 𝔲𝐿)/𝐵𝐿]

(𝑞𝐿 , 𝑝𝐿 )

��

��

T𝜆 ×𝔠𝔞𝔯𝜆 G𝜆

��

[𝑧(𝔩)𝑜/𝑇] ×𝑧 (𝔩)𝑜 [(𝑧(𝔩)𝑜 + 𝔩nil)/𝐿]��

  �����
�����

�����
�����

T 𝜆 ×𝔠𝔞𝔯𝜆 G𝜆

where the top square is cartesian. From this diagram we see that

N 𝜆 |T𝜆×𝔠𝔞𝔯G𝜆 � N |T𝜆×𝔠𝔞𝔯G𝜆 = (𝑞𝜆, 𝑝𝜆)!Qℓ

where N is as in §4. In other words, the complex N𝜆 := N |T𝜆×𝔠𝔞𝔯G𝜆 is W-equivariant.

5.2. Proof of Theorem 5.1

The essential case is when 𝐿 = 𝐺 which case reduces to the nilpotent elements (see §4.3). We thus
consider the following diagram:
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Bnil = [𝔲/𝐵]
𝑝nil

�����
����

����
����

���
𝑞nil

������
����

����
����

�
(𝑞nil , 𝑝nil)
��

Tnil = B(𝑇) Ŝnil = B(𝑇) × [𝔤nil/𝐺]
prGnil ��

prTnil�� Gnil = [𝔤nil/𝐺]

and we want to prove that the complex (𝑞nil, 𝑝nil)!Qℓ is W-equivariant and so descends to B(𝑁) × Gnil.
Consider now the diagram

B
𝑝

����
���

���
���

���
��

𝜏

�����
���

���
���

���
�

(𝜏,𝑝)

��
B(𝑇) B(𝑇) × G

prG ��
prB(𝑇 )�� G

Notice that the complex (𝑞nil, 𝑝nil)!Qℓ is the restriction of (𝜏, 𝑝)!Qℓ to B(𝑇) × Gnil.
It is thus enough to prove that (𝜏, 𝑝)!Qℓ is W-equivariant.
The map (𝜏, 𝑝) decomposes as

B 𝛿 �� B̂ = B(𝑇) × B
�̂�:=1B(𝑇 ) ×𝑝 �� Ĝ := B(𝑇) × G

Following the strategy of §4.1, we see that the complex (𝜏, 𝑝)!Qℓ is the outcome of the Postnikov
diagram 𝑝!Λ(𝛿!Qℓ). The base of this Postnikov diagram is the complex

ICĜ (L̂) [−2𝑛] (−𝑛)
𝜕𝑛
−→ 𝑋∗(𝑇) ⊗ ICĜ (L̂) [2 − 2𝑛] (1 − 𝑛)

𝜕𝑛−1
−→ · · · (5.2)

· · ·
𝜕1
−→

(
𝑛∧

𝑋∗(𝑇)

)
⊗ ICĜ (L̂),

where L̂ is the semisimple local system Qℓ � L with L = 𝑝rss !Qℓ where 𝑝rss : Brss → Grss is the
restriction of p to semisimple regular elements.

We consider on vertices of (5.2) the W-action given by the Springer action on ICG (L) = 𝑝!Qℓ and
the obvious one on 𝑋∗(𝑇).

Theorem 5.3. The arrows of the complex (5.2) are W-equivariant.

Theorem 5.3 will be a consequence of Theorem 5.6 below.

Corollary 5.4. The complex (5.2) descends to a unique complex Λ𝑏 in 𝐷b
c (Ĝ) whose vertices are(2𝑛−𝑖∧

𝑋∗(𝑇)

)
⊗

(
Qℓ, B(𝑁 ) � ICG (L)

)
[2𝑛 − 2𝑖] (𝑛 − 𝑖).

If 𝑘𝑜 is a finite subfield of k on which 𝐺,𝑇 and B are defined, then Λ𝑏 is naturally defined over 𝑘𝑜.

Theorem 5.5. The complex Λ𝑏 of Corollary 5.4 can be completed into a unique Postnikov diagram Λ
(up to a unique isomorphism) such that for any finite subfield 𝑘𝑜 of k on which 𝐺,𝑇 and B are defined,
the diagram Λ is also defined over 𝑘𝑜 with Λ𝑏 equipped with its natural 𝑘𝑜-structure.

We have

Λ|Ĝ � 𝑝!Λ(𝛿!Qℓ).

In particular, the outcome (𝜏, 𝑝)!Qℓ of 𝑝!Λ(𝛿!Qℓ) descends naturally to B(𝑁) × G.
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Proof. We choose a finite subfield 𝑘𝑜 on which G, T and B are defined. By the proof of Proposition
4.2, the conditions of Proposition 2.14 are satisfied over 𝑘𝑜. Therefore, by Proposition 2.14, there is a
unique Postnikov diagram Λ𝑜 that completes the natural descent of Λ𝑏 to 𝑘𝑜. The wanted Postnikov
diagram Λ is the one induced by Λ𝑜 from 𝑘𝑜 to k. �

As explained in §2.4, the group W acts on

Ext𝑖Ĝ
(
ICĜ (L̂), ICĜ (L̂)

)
= Hom

(
ICĜ (L̂), ICĜ (L̂) [𝑖]

)
.

Theorem 5.6. The map

𝑋∗(𝑇)
𝑐𝛿
−→ 𝐻2(B̂,Qℓ) (1) = Ext2B̂ (Qℓ ,Qℓ) (1) −→ Ext2Ĝ

(
ICĜ (L̂), ICĜ (L̂)

)
(1),

where the first arrow is the Chern class morphism of 𝛿 and the second arrow is given by 𝑝!, is W-
equivariant.

This is apriori not obvious as the natural action of W on Ĝ does not lift to B̂.
We have the following proposition.

Proposition 5.7. The Chern class morphism

𝑐𝛿 : 𝑋∗(𝑇) → 𝐻2 (B̂,Qℓ) (1)

of the T-torsor 𝛿 is W-equivariant.

Proof. As B̂ = B(𝑇) × B, by Künneth formula we have

𝐻2(B̂,Qℓ) (1) = 𝐻2 (B,Qℓ) (1) ⊕ 𝐻2(B(𝑇),Qℓ) (1).

Then

𝑐𝛿 = 𝑐𝜋 ⊕ −𝑐can,

where 𝜋 is the T-torsor �B → B. The Chern class morphism 𝑐can of the trivial T-torsor Spec(𝑘) → B(𝑇)
is W-equivariant.

We thus need to prove that 𝑐𝜋 is W-equivariant.
The Chern class morphism 𝑐𝜋 decomposes as

𝑋∗(𝑇) → 𝐻2(B(𝑇),Qℓ) � 𝐻2(B(𝐵),Qℓ) → 𝐻2 (B,Qℓ),

where the first map is 𝑐can and the second map is the cohomological restriction of the canonical map
B → B(𝐵). It is W-equivariant by Lemma 2.23. �

Theorem 5.6 is a consequence of Proposition 5.7 together with the following one.

Proposition 5.8. The map

𝐻2(B̂,Qℓ) (1) = Ext2B̂ (Qℓ ,Qℓ) (1) → Ext2Ĝ
(
ICĜ (L̂), ICĜ (L̂)

)
(1) (5.3)

induced by 𝑝! is W-equivariant.

Proof. By Künneth formula, we are reduced to prove that the same statement is true with B̂ and Ĝ
replaced by B and G. That is, we need to see that the map

𝐻2(B,Qℓ) (1) = Ext2B (Qℓ ,Qℓ) (1) → Ext2G (ICG (L), ICG (L))(1) (5.4)

given by the functor 𝑝! is W-equivariant.
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Consider the cartesian diagram

Z
pr2 ��

pr1

��

B
𝑝

��
B 𝑝 �� G

We have

Ext𝑖G (ICG (L), ICG (L)) = Hom(𝑝!Qℓ , 𝑝!Qℓ [𝑖])

= Hom(𝑝∗𝑝!Qℓ ,Qℓ [𝑖])

= 𝐻𝑖 (Z , pr!
1Qℓ)

= 𝐻−𝑖
𝑐 (Z ,Qℓ).

The dual of the map (5.4) is the cohomological restriction

𝐻−2
𝑐 (Z ,Qℓ) −→ 𝐻−2

𝑐 (B,Qℓ)

of the diagonal morphism B → Z . The proposition is thus a consequence of Theorem 3.4. �

5.3. Descent over regular elements

We consider the diagram (4.1) over regular elements

Breg
𝛿reg ��

(𝑞,𝑝)reg

!!
B̂reg

𝑓reg �� Ŝreg

and put

Nreg := (𝑞, 𝑝)reg !Qℓ = N |Ŝreg
.

Theorem 5.9. The kernel Nreg is W-equivariant (i.e., it descends to T ×𝔠𝔞𝔯 Greg).

Proof. Following the strategy of §5.2, we need to prove that the base Λ𝑏 (Nreg) of the Postnikov diagram
Λ(Nreg) is W-equivariant. With the map 𝑓reg being an isomorphism, the vertices ofΛ𝑏 (Nreg) are constant
sheaves (up to a shift) and so are clearly W-equivariant. To prove that the arrows are W-equivariant, we
need to prove (analogously to Theorem 5.6) that the map

𝑋∗(𝑇) −→ 𝐻2(B̂reg,Qℓ) (1) −→ Ext2( 𝑓reg !Qℓ , 𝑓reg !Qℓ) (1)

is W-equivariant. The first map being W-equivariant (see Proposition 5.7), we need to see that the second
map too. However, notice that 𝑓reg is an isomorphism, and so the second map is an isomorphism

𝐻2 (B̂reg,Qℓ) −→ 𝐻2 (Ŝreg,Qℓ)

which is dual to the restriction morphism

𝐻−2
𝑐 (Ŝreg,Qℓ) −→ 𝐻−2

𝑐 (B̂reg,Qℓ).
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By Künneth formula, we are reduced to prove that the restriction map (which is an isomorphism)

𝐻−2
𝑐 (Sreg,Qℓ) −→ 𝐻−2

𝑐 (Breg,Qℓ)

is W-equivariant. Notice that 𝐻−2
𝑐 (Sreg,Qℓ) and 𝐻−2

𝑐 (Breg,Qℓ) are both the hypercohomology of the
proper pushforwards of Qℓ along the maps pr2 : Sreg → Greg and 𝑝reg : Breg → Greg, respectively,
and these pushforwards are the intermediate extensions of the pushforwards over semisimple regular
elements. The result follows from the fact that W acts on Brss and that the isomorphism Brss � Srss is
W-equivariant. �

5.4. “Un calcul triste”

In this section we give an example where the kernel N is not W-equivariant.

5.10. Notice that if N were W-equivariant, then by Remark 2.12, the diagram Λ(N ) would be also
W-equivariant and by Proposition 4.2(2), so would be the arrows of the complex Λ𝑏 (N ).

For 𝑤 ∈ 𝑊 , put B𝑤 := [Ad(𝑤)𝔟/𝑤𝐵𝑤−1]. We then have a cartesian diagram

B
(𝑞′, 𝑝)

��

𝑤 �� B𝑤
(𝑞′𝑤 , 𝑝𝑤 )

��
S 𝑤 �� S

from which we get a commutative diagram (base change)

𝐻2(B𝑤 ,Qℓ)

𝑤∗

��

𝑎𝑤 �� Ext2
(
(𝑞′𝑤 , 𝑝𝑤 )!Qℓ , (𝑞

′
𝑤 , 𝑝𝑤 )!Qℓ

)
𝑤∗

��

𝐻2(B,Qℓ)
𝑎 �� Ext2

(
(𝑞′, 𝑝)!Qℓ , (𝑞

′, 𝑝)!Qℓ

)
where the horizontal arrows are given by the functors (𝑞′𝑤 , 𝑝𝑤 )! and (𝑞, 𝑝)!, respectively. Identifying
𝐻2 (B,Qℓ) and 𝐻2(B𝑤 ,Qℓ) with 𝐼𝐻2(S ,Qℓ) on one hand, and (𝑞′, 𝑝)!Qℓ and (𝑞′𝑤 , 𝑝𝑤 )!Qℓ with ICS
on the other hand, we end up with a commutative diagram

𝐼𝐻2(S ,Qℓ)

𝑤∗

��

𝑎𝑤 �� Ext2(ICS , ICS )

𝑤∗

��
𝐼𝐻2(S ,Qℓ)

𝑎 �� Ext2(ICS , ICS )

Similarly to §5.2, we see that that the arrows of the diagram Λ𝑏 (N ) are W-equivariant if and only if
𝑎 = 𝑎𝑤 for all 𝑤 ∈ 𝑊 .

5.11. Assume that 𝐺 = SL2 and put 𝑎− := 𝑎𝑤 for 𝑤 ≠ 1 and 𝑎+ := 𝑎. We prove below that 𝑎+ ≠ 𝑎−,
proving thus the nonequivariance of N .

Note that

𝑆 := 𝔱 ×𝔠𝔞𝔯 𝔤 = {(𝑥, 𝑡) ∈ 𝔰𝔩2 × A
1 | det(𝑥) = −𝑡2}

𝑋+ = {(𝑥, 𝑡, 𝐷) ∈ 𝔰𝔩2 × A
1 × P1 | (𝑥, 𝑡) ∈ 𝑆, 𝐷 ⊂ Ker(𝑥 − 𝑡Id)}

and denote by 𝜌+ : 𝑋+ → 𝑆 the map (𝑥, 𝑡, 𝐷) ↦→ (𝑥, 𝑡). We consider also the analogous map 𝜌− : 𝑋− →

𝑆, where we replace Ker(𝑥 − 𝑡Id) in the definition of 𝑋+ by Ker(𝑥 + 𝑡Id).
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Note that if B denotes the Borel subgroup of upper triangular matrices, then

𝑋+ � {(𝑥, 𝑡, 𝑔𝐵) ∈ 𝔰𝔩2 × A
1 × SL2/𝐵 | 𝑔−1𝑥𝑔 ∈ (𝑡,−𝑡) + 𝔲}

and 𝑋− corresponds to choosing the opposite Borel subgroup of lower triangular matrices.
We have compactifications

𝑆 := {(𝑋;𝑇 ; 𝑍) ∈ P4 | det(𝑋) = −𝑇2}

𝑋+ := {((𝑋;𝑇 ; 𝑍), 𝐷) ∈ 𝑆 × P1 | 𝐷 ⊂ Ker(𝑋 − 𝑇Id)}

𝑋− := {((𝑋;𝑇 ; 𝑍), 𝐷) ∈ 𝑆 × P1 | 𝐷 ⊂ Ker(𝑋 + 𝑇Id)}

where we identify 𝔰𝔩2 with A3 in the obvious way, and the small resolutions 𝜌+ : 𝑋+ → 𝑆 and
𝜌− : 𝑋− → 𝑆.

Identifying 𝐼𝐻2(𝑆,Qℓ) with 𝐻2(𝑋+,Qℓ) (resp. with 𝐻2(𝑋−,Qℓ)) and IC𝑆 with 𝜌+∗Qℓ (resp. 𝜌− ∗Qℓ)
we get a map

𝑎+ : 𝐼𝐻2(𝑆,Qℓ) → Ext2
(
IC𝑆 , IC𝑆

)
(resp. we get a map 𝑎− : 𝐼𝐻2(𝑆,Qℓ) → Ext2

(
IC𝑆 , IC𝑆

)
).

If we compose 𝑎+ (resp. 𝑎−) with the natural map

Ext2
(
IC𝑆 , IC𝑆

)
→ Hom

(
𝐼𝐻2(𝑆,Qℓ), 𝐼𝐻

4(𝑆,Qℓ)
)

we get the cup-product

𝐼𝐻2(𝑆,Qℓ) ⊗ 𝐼𝐻2 (𝑆,Qℓ)
⌣+
−→ 𝐼𝐻4(𝑆,Qℓ)

induced by the one on 𝐻∗(𝑋+,Qℓ) (resp. we get the cup-product⌣− induced by the one on 𝐻∗(𝑋−,Qℓ)).
We have the following result [20].

Proposition 5.12 (Verdier). The two cup-products

𝐼𝐻2(𝑆,Qℓ) ⊗ 𝐼𝐻2 (𝑆,Qℓ)
⌣−

��
⌣+ ��

𝐼𝐻4(𝑆,Qℓ)

are not the same.

Proof. For the convenience of the reader, we outline the proof.
Consider the following commutative diagram

P1 × P1

pr1

		���
���

���
���

��� pr2

����
���

���
���

���
�

P1 𝑋+ ×𝑆 𝑋−

pr−

����
���

���
���

��pr+

		���
���

���
���

��

𝑓

��

P1

𝑋+

𝜌+

����
���

���
���

���
��

𝑓+

��

𝑋−

𝜌−

�����
���

���
���

���
�

𝑓−

��

𝑆
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Consider the divisors

𝐷1,+ := pr+
(
𝑓 −1({∞} × P1)

)
= 𝑓 −1

+ (∞), 𝐷2,+ := pr+
(
𝑓 −1(P1 × {∞})

)
𝐷1,− := pr−

(
𝑓 −1(P1 × {∞})

)
= 𝑓 −1

− (∞), 𝐷2,− := pr−
(
𝑓 −1({∞} × P1)

)
Under the natural identifications

𝐻2(𝑋+,Qℓ) � 𝐼𝐻2(𝑆,Qℓ) � 𝐻2 (𝑋−,Qℓ)

the class cl(𝐷1,+/−) ∈ 𝐻2(𝑋+/−,Qℓ) corresponds to cl(𝐷2,−/+) ∈ 𝐻2 (𝑋−/+,Qℓ), and so the proposition
follows from the calculations

cl(𝐷1,+/−) ⌣+/− cl(𝐷1,+/−) = 0, cl(𝐷2,+/−) ⌣+/− cl(𝐷2,+/−) ≠ 0. �

As a consequence of the proposition, we get that the two maps 𝑎+ and 𝑎− are different.
Let us now deduce from this that 𝑎+ and 𝑎− are also different.
Put

𝐾 := Hom(IC𝑆 , IC𝑆).

Notice that

𝐾 |𝑆 = Hom(IC𝑆 , IC𝑆).

Put

𝜎 := 𝑎+ − 𝑎− : 𝐼𝐻2(𝑆,Qℓ) → Ext2(IC𝑆 , IC𝑆) = 𝐻2(𝑆, 𝐾)

𝜎 := 𝑎+ − 𝑎− : 𝐼𝐻2(𝑆,Qℓ) → Ext2(IC𝑆 , IC𝑆) = 𝐻2(𝑆, 𝐾 |𝑆).

We have the following commutative diagram:

𝐼𝐻2(𝑆,Qℓ)
𝜎 ��

��

𝐻2 (𝑆, 𝐾)

𝜑𝑆

��
𝐼𝐻2(𝑆,Qℓ)

𝜎 �� 𝐻2(𝑆, 𝐾 |𝑆)

where the vertical arrows are the restriction maps.
Let 𝛼 ∈ 𝐼𝐻2 (𝑆,Qℓ) be such that 𝜎(𝛼) ≠ 0, and denote by 𝛼 ∈ 𝐼𝐻2(𝑆,Qℓ) the image of 𝛼.

Proposition 5.13. We have

𝜎(𝛼) ≠ 0

and so 𝑎+ ≠ 𝑎−.

Proof. We need to prove that

𝜑𝑆 (𝜎(𝛼)) ≠ 0. (5.5)

We have the open covering

𝑆 = 𝑆reg ∪ 𝑆

where 𝑆reg is the smooth open subset of elements (𝑋;𝑇 ; 𝑍) in 𝑆 such that 𝑋 ≠ 0.
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Notice that 𝑆reg = 𝑆reg ∩ 𝑆, and so we have the exact sequence (Mayer-Vietoris)

· · · → 𝐻1(𝑆reg, 𝐾 |𝑆reg ) → 𝐻2 (𝑆, 𝐾)
𝜑

−→ 𝐻2 (𝑆reg, 𝐾 |𝑆reg
) ⊕ 𝐻2(𝑆, 𝐾 |𝑆) → · · ·

Since 𝑆reg and 𝑆reg are smooth open subsets of S and 𝑆, respectively, we have

𝐾 |𝑆reg = Hom𝑆reg
(Qℓ ,Qℓ) = Qℓ , and 𝐾 |𝑆reg

= Qℓ .

Notice also that

𝐻1(𝑆reg,Qℓ) = 0

as 𝜌 |𝑋reg : 𝑋reg � 𝑆reg and 𝐻1(𝑋reg,Qℓ) � 𝐻1(𝑋,Qℓ) = 0.
The map 𝜑 is thus injective, and so to prove (5.5), we are reduced to prove that

𝜑𝑆reg
(𝜎(𝛼)) = 0

where 𝜑𝑆reg
: 𝐻2(𝑆, 𝐾) → 𝐻2(𝑆reg,Qℓ) is the restriction map.

As the restrictions of 𝜌+ and 𝜌− over regular elements induce isomorphisms 𝑋+,reg � 𝑆reg and
𝑋−,reg � 𝑆reg we have the following commutative diagram:

𝐻2(𝑋+,Qℓ) � 𝐼𝐻2 (𝑆,Qℓ)𝑎+
− ��

��

𝐻2(𝑆, 𝐾)

𝜑𝑆reg
��

𝐻2 (𝑋+,reg,Qℓ) � 𝐻2 (𝑆reg,Qℓ)Id
− �� 𝐻2(𝑆reg,Qℓ)

and the analogous diagram with 𝑋− instead of 𝑋+. From these two commutative diagrams we deduce that

𝜑𝑆reg
◦ 𝜎 = 0. �

6. The functors I𝜆 and R𝜆
6.1. Definition

We consider the cohomological correspondence where pr𝑖 is the i-th projection

T 𝜆 T 𝜆 ×𝔠𝔞𝔯𝜆 G𝜆
pr2 ��pr1�� G𝜆 .

with kernel N 𝜆.
We define the associated restriction and induction functors

R𝜆 : 𝐷b
c (G𝜆) → 𝐷b

c (T 𝜆), 𝐾 ↦→ pr1!

(
pr∗2 (𝐾) ⊗ N 𝜆

)
,

I𝜆 : 𝐷b
c (T 𝜆) → 𝐷b

c (G𝜆), 𝐾 ↦→ pr2∗ Hom
(
N 𝜆, pr!

1(𝐾)
)

as in §2.5.
If we denote Ind𝜆 and Res𝜆 the induction and restriction functors associated to the correspondence

T𝜆 T𝜆 ×𝔠𝔞𝔯𝜆 G𝜆
pr2 ��pr1�� G𝜆
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with kernel N𝜆 = N |T𝜆×𝔠𝔞𝔯G𝜆 , then by Remark 5.2,

Ind𝜆 = I𝜆 ◦ 𝜋𝜆 ∗, Res𝜆 = 𝜋∗𝜆 ◦ R𝜆.

Since 𝑞!
𝜆 = 𝑞∗𝜆 and 𝑝𝜆 ! = 𝑝𝜆 ∗, we see that Ind𝜆 decomposes also as the composition of 𝜋𝜆 ! followed by

the functor

𝐷b
c (T 𝜆) → 𝐷b

c (G𝜆), 𝐾 ↦→ pr2!

(
pr∗1 (𝐾) ⊗ N 𝜆

)
and so by Remark 2.17, we have

I𝜆(𝐾) = pr2!

(
pr∗1 (𝐾) ⊗ N 𝜆

)
. (6.1)

As in §2.9, we define a pair of adjoint functors (𝑝R𝜆, 𝑝I𝜆)

M(𝔱𝜆)
𝑝I𝜆

"" M(G𝜆)
𝑝R𝜆##

where 𝔱𝜆 := [𝔱𝜆/𝑊]. We let 𝑠𝜆 : T 𝜆 → 𝔱𝜆 be the quotient map of the identity map 𝔱𝜆 → 𝔱𝜆 by 𝑁 → 𝑊 .

Lemma 6.1. We have
𝑝I𝜆 = I𝜆 ◦ 𝑠!

𝜆 [𝑛] (𝑛),
𝑝R𝜆 = 𝑝H0 ◦ 𝑠𝜆 ! ◦ R𝜆 [−𝑛] (−𝑛).

Proof. Since the functors 𝑠!
𝜆 [𝑛] (𝑛) and 𝑝H0 ◦ 𝑠𝜆 ! [−𝑛] (−𝑛) between M(𝔱𝜆) and M(T 𝜆) are inverse

to each other, by adjunction we deduce the second equality from the first one.
Analogously to the definition 𝑝Ind (see §2.9) we define 𝑝Ind𝜆 by

𝑝Ind𝜆 := Ind𝜆 ◦ 𝑠!
𝜆 [𝑛] (𝑛) =

𝑝I𝜆 ◦ 𝜋𝔱𝜆 !.

where

T𝜆
𝑠𝜆 ��

𝜋𝜆
��

𝔱𝜆

𝜋𝔱𝜆
��

T 𝜆
𝑠𝜆 �� 𝔱𝜆

By Remark 2.17, to prove the first equality, we need to see that

𝑝Ind𝜆 = I𝜆 ◦ pr!
𝔱𝜆 [𝑛] (𝑛) ◦ 𝜋𝔱𝜆 !

Using that Ind𝜆 = I𝜆 ◦ 𝜋𝜆 !, we are reduced to prove that

𝑠!
𝜆 [𝑛] (𝑛) ◦ 𝜋𝔱𝜆 ! = 𝜋𝜆 ! ◦ 𝑠

!
𝜆 [𝑛] (𝑛).

But this follows from the base change theorem as 𝑠𝜆 and 𝑠𝜆 are smooth and of the same relative
dimension. �

6.2. Semisimple regular elements

Let us see that I𝜆 and R𝜆 are the identity functors when 𝜆 represents semisimple regular elements (i.e.,
when 𝜆 is the conjugacy class of maximal tori), in which case we use the subscript rss instead of 𝜆 in
the notation.
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Recall that

𝑈 × 𝔱reg −→ 𝔟rss, (𝑢, 𝑡) ↦→ Ad(𝑢) (𝑡)

is an isomorphism and so, taking the quotient by B on both sides, we end up with an isomorphism

Treg
∼

−→ Brss.

Moreover, the natural injection 𝔱reg → 𝔤rss induces an isomorphism

T reg � Grss.

Therefore, the morphism (𝑞rss, 𝑝rss) is the diagonal morphism

Treg −→ Treg ×𝔠𝔞𝔯 Grss = Treg ×𝔠𝔞𝔯 T reg.

We thus have the following cartesian diagram:

Treg

(𝑞rss , 𝑝rss)

��

𝜋reg �� T reg

ΔTreg
��

Treg ×𝔠𝔞𝔯 T reg
𝜋reg×1 �� T reg ×𝔠𝔞𝔯 T reg

where the horizontal arrows are the quotient maps by W, and the vertical arrows are the diagonal
morphisms (which are T-torsors). Therefore,

Nrss = (𝑞rss, 𝑝rss)!Qℓ � (𝜋reg × 1)∗ΔT reg!Qℓ

(i.e., N rss = ΔT reg!Qℓ). The functors Irss : 𝐷b
c (T reg) → 𝐷b

c (Grss) � 𝐷b
c (T reg) and Rrss : 𝐷b

c (T reg) �

𝐷b
c (Grss) → 𝐷b

c (T reg) are thus the identity functors.

6.3. The isomorphism R𝜆 ◦ I𝜆 � 1

By (6.1) we can regard I𝜆 as a restriction functor. We thus consider the composition of correspondences

T 𝜆 ×𝔠𝔞𝔯𝜆 T 𝜆

𝑏

$$

𝑎

%%

T 𝜆 ×𝔠𝔞𝔯𝜆 G𝜆 ×𝔠𝔞𝔯𝜆 T 𝜆

prT 𝜆,T 𝜆

��

pr23

����
���

���
���

��
pr12

�����
���

���
���

�

T 𝜆 ×𝔠𝔞𝔯𝜆 G𝜆

����
���

���
���

���
��

&&���
��
��
��
�

G𝜆 ×𝔠𝔞𝔯𝜆 T 𝜆

''�
��

��
��

��
�

�����
���

���
���

���
�

T 𝜆 G𝜆 T 𝜆

where the arrows are the obvious projections.
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We put

N 𝜆 ◦G N 𝜆 := prT 𝜆 ,T 𝜆! (pr∗12N 𝜆 ⊗ pr∗23N 𝜆) = prT 𝜆 ,T 𝜆! (N 𝜆 �G𝜆 N 𝜆).

Then it follows from §2.5 that the functor R𝜆 ◦ I𝜆 is the restriction functor of the cohomological
correspondence

(T 𝜆 ×𝔠𝔞𝔯𝜆 T 𝜆,N 𝜆 ◦G N 𝜆, 𝑎, 𝑏).

Theorem 6.2. There is a natural isomorphism

N 𝜆 ◦G N 𝜆
�

−→ ΔT 𝜆!Qℓ ,

where

ΔT 𝜆
: T 𝜆 → T 𝜆 ×𝔠𝔞𝔯𝜆 T 𝜆

is the diagonal morphism. In particular we have R𝜆 ◦ I𝜆 � 1.

As we did in §5.2, we explain the proof in the nilpotent case, which is the essential case. We thus
consider the first diagram of §5.2, and we put

Nnil := (𝑞nil, 𝑝nil)!Qℓ ∈ 𝐷b
c (B(𝑇) × Gnil).

We have

(N nil ◦G N nil) |B(𝑇 )×B(𝑇 ) = prB(𝑇 ) ,B(𝑇 ) ! (Nnil �Gnil Nnil)

where

prB(𝑇 ) ,B(𝑇 ) : Ŝnil ×G Ŝnil = B(𝑇) × Gnil × B(𝑇) −→ B(𝑇) × B(𝑇)

is the obvious projection.
Consider the decomposition of (𝑞nil, 𝑞nil) as

Znil = Bnil ×Gnil Bnil
𝛿nil×𝛿nil�� B̂nil ×Gnil B̂nil

𝑓nil× 𝑓nil �� Ŝnil ×Gnil Ŝnil
prB(𝑇 ) ,B(𝑇 )�� B(𝑇) × B(𝑇) .

By Künneth formula, we have

(N nil ◦G N nil) |B(𝑇 )×B(𝑇 ) = (𝑞nil, 𝑞nil)!Qℓ . (6.2)

We consider the following commutative diagram

Bnil
ΔBnil ��

𝑞nil

��

Znil

(𝑞nil ,𝑞nil)

��
B(𝑇)

ΔB(𝑇 ) �� B(𝑇) × B(𝑇)

(6.3)

with diagonal morphisms ΔBnil and ΔB(𝑇 ) .
The morphism ΔBnil : Bnil → Znil is schematic closed, and so by adjunction we have a morphism

Qℓ → ΔBnil∗Qℓ = ΔBnil!Qℓ ,
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and by applying the functor (𝑞nil, 𝑞nil)!, we get a morphism

(𝑞nil, 𝑞nil)!Qℓ �� ΔB(𝑇 )!𝑞nil !Qℓ . (6.4)

On the other hand, the morphism 𝑞nil being smooth with fibres isomorphic to [𝔲/𝑈], we have by
adjunction a morphism

𝑞nil !Qℓ = 𝑞nil ! (𝑞nil)
!Qℓ �� Qℓ (6.5)

which is an isomorphism, and so we obtain an isomorphism

ΔB(𝑇 )!𝑞nil !Qℓ �� ΔB(𝑇 )!Qℓ . (6.6)

Composing (6.4) with (6.6), we end up with a morphism

(𝑞nil, 𝑞nil)!Qℓ �� ΔB(𝑇 )!Qℓ . (6.7)

From (6.2) together with (6.7) we get a morphism

N nil ◦G N nil −→ (𝜋nil × 𝜋nil)!ΔB(𝑇 )!Qℓ = ΔB(𝑁 )!𝜋nil !Qℓ

where 𝜋nil is the canonical map B(𝑇) → B(𝑁).
Composing with the adjunction morphism

𝜋nil ! (𝜋nil)
∗ = 𝜋nil !(𝜋nil)

! −→ 1

we find

N nil ◦G N nil �� ΔB(𝑁 )!Qℓ (6.8)

Consider the cartesian diagram

𝑊 × B(𝑇)
𝑓 ��

𝜋nil

��

B(𝑇) × B(𝑇)

𝜋nil×𝜋nil

��
B(𝑁)

ΔB(𝑁 ) �� B(𝑁) × B(𝑁)

where the top arrow is given by (𝑤, 𝑡) ↦→ (𝑤(𝑡), 𝑡) and the bottom arrow is the diagonal morphism.
If we denote by ΔB(𝑇 ) ,𝑤 : B(𝑇) → B(𝑇) × B(𝑇) the w-twisted diagonal morphism induced by

𝑡 ↦→ (𝑤(𝑡), 𝑡), then

𝑓!Qℓ =
⊕
𝑤 ∈𝑊

ΔB(𝑇 ) ,𝑤 !Qℓ = (𝜋nil × 𝜋nil)
∗ΔB(𝑁 )!Qℓ

and so the pullback of (6.8) along the map 𝜋nil × 𝜋nil provides a morphism

(𝑞nil, 𝑞nil)!Qℓ →
⊕
𝑤 ∈𝑊

ΔB(𝑇 ) ,𝑤 !Qℓ . (6.9)

of 𝑊 ×𝑊-equivariant complexes.
Theorem 6.2 is thus a consequence of the following result.

Theorem 6.3. The morphism (6.9), and so the morphism (6.8), is an isomorphism.
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It is enough to show that the morphism

H𝑖 (𝑞nil, 𝑞nil)!Qℓ → H𝑖

(⊕
𝑤 ∈𝑊

ΔB(𝑇 ) ,𝑤 !Qℓ

)

induced by the morphism (6.9) is an isomorphism for all i.
To prove this, we prove that we have an isomorphism

H𝑖 (𝑞, 𝑞)!Qℓ → H𝑖

(⊕
𝑤 ∈𝑊

ΔT ,𝑤 !Qℓ

)

where ΔT ,𝑤 : T → T ×𝔠𝔞𝔯 T is induced by 𝑡 ↦→ (𝑤(𝑡), 𝑡).

Proposition 6.4. The sheaf H𝑖 (𝑞, 𝑞)!Qℓ is (up to a shift by −𝑛) perverse and is the intermediate
extension of its restriction to the open substack of regular elements of T ×𝔠𝔞𝔯 T . In particular, it is
𝑊 ×𝑊-equivariant.

To prove the proposition, we will use a weight argument. Therefore, we choose a finite subfield 𝑘𝑜
of k such that 𝐺,𝑇, and B are defined over 𝑘𝑜, and T is split over 𝑘𝑜.

Recall that we have a stratification (see §3)

Z =
∐
𝑤 ∈𝑊

Z𝑤 .

The restriction of (𝑞, 𝑞) to Z𝑤 is the composition of the projection 𝑞𝑤 : Z𝑤 → T followed by the
morphism ΔT ,𝑤 : T → T ×𝔠𝔞𝔯 T .

As the cohomology of [𝔲𝑤/𝑈𝑤 ] is trivial, we deduce that

((𝑞, 𝑞) |Z𝑤 )!Qℓ = ΔT ,𝑤 !Qℓ . (6.10)

We choose a total order {𝑤0, 𝑤1, . . . } on W so that we have a decreasing filtration of closed substacks

Z = Z0 ⊃ Z1 ⊃ · · · ⊃ Z |𝑊 |−1 ⊃ Z |𝑊 | = ∅

satisfying Z𝑖\Z𝑖+1 = Z𝑤𝑖 for all i.
By [5, Chapitre 6, 2.5], we have a spectral sequence

𝐸
𝑖 𝑗
1 = H𝑖+ 𝑗 ((𝑞, 𝑞) |Z𝑖\Z𝑖+1

)
!Qℓ ⇒ H𝑖+ 𝑗 (𝑞, 𝑞)!Qℓ .

Lemma 6.5. This spectral sequence degenerates at 𝐸1.

Proof. As Z𝑖\Z𝑖+1 = Z𝑤𝑖 and T = 𝑇 × B(𝑇), by (6.10) we have

𝐸
𝑖 𝑗
1 = H𝑖+ 𝑗ΔT ,𝑤𝑖 !Qℓ =

2𝑛−𝑖− 𝑗∧
𝑋∗(𝑇) ⊗

(
Δ𝔱,𝑤𝑖 !Qℓ � Qℓ ,B(𝑇 )×B(𝑇 )

)
(𝑛 − 𝑖 − 𝑗) (6.11)

where Δ𝔱,𝑤 : 𝔱 → 𝔱 ×𝔠𝔞𝔯 𝔱 is given by 𝑡 ↦→ (𝑤(𝑡), 𝑡). Notice that

Δ𝔱,𝑤𝑖 !Qℓ � Qℓ ,B(𝑇 )×B(𝑇 )

is (up to a shift) perverse and pure of weight 0. Hence 𝐸
𝑖 𝑗
1 is (up to a shift) pure of weight 2(𝑖 + 𝑗).

Therefore, the sources and the targets of the differentials 𝑑1 are (up to a shift) perverse of different
weight, and so 𝑑1 vanishes. We keep applying the same argument for the other differentials and we
deduce that the spectral sequence degenerates at 𝐸1, i.e. 𝐸1 = 𝐸∞. �
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Proof of Proposition 6.4. It follows from Lemma 6.5 thatH𝑘 (𝑞, 𝑞)!Qℓ is a successive extension of 𝐸 𝑖 𝑗1 ’s
which are intermediate extensions of their restriction to the open substack of regular elements by (6.11).
It is thus perverse (up to a shift by −𝑛), and so the proposition is a consequence of Proposition 2.8. �

Following the proof of (6.4), we have also a morphism

(𝑞, 𝑞)!Qℓ −→ ΔT !Qℓ

where ΔT : T → T ×𝔠𝔞𝔯 T is the diagonal morphism. We thus get a morphism

H𝑖 (𝑞, 𝑞)!Qℓ −→ H𝑖ΔT !Qℓ

and since, by Proposition 6.4, the sheaf H𝑖 (𝑞, 𝑞)!Qℓ is 𝑊 ×𝑊-equivariant, we get a morphism

H𝑖 (𝑞, 𝑞)!Qℓ −→
⊕
𝑤 ∈𝑊

H𝑖ΔT ,𝑤 !Qℓ .

The source and the target of this morphism are intermediate extensions of their restriction to regular
elements (see Proposition 6.4). It is thus an isomorphism, as its restriction to regular element is an
isomorphism.

7. Main results

7.1. Derived categories

Fix 𝜆 ∈ 𝔏. In this section we choose a geometric point 𝑐 : Spec(𝑘) → 𝔠𝔞𝔯𝜆. For any stack X above 𝔠𝔞𝔯𝜆
we put

X𝑐 := Spec(𝑘) ×𝔠𝔞𝔯 X ,

and for any complex 𝐾 ∈ 𝐷b
c (X ) we denote by 𝐾𝑐 ∈ 𝐷b

c (X𝑐) the pullback of K along the base change
morphism X𝑐 → X .

We have a commutative diagram with Cartesian squares

T𝑐

𝜄

��

T𝑐 × G𝑐
pr2 ��

𝜄

��

pr1�� G𝑐

𝜄

��
T 𝜆 T 𝜆 ×𝔠𝔞𝔯𝜆 G𝜆 ���� G𝜆

(7.1)

We then define the pair (R𝑐 , I𝑐) of adjoint functors

𝐷b
c (T𝑐)

I𝑐
"" 𝐷b

c (G𝑐)
R𝑐##

by

I𝑐 : 𝐾 ↦→ pr2!(N 𝑐 ⊗ pr∗1(𝐾)), R𝑐 : 𝐾 ↦→ pr1!(N 𝑐 ⊗ pr∗2(𝐾)).

The following lemma follows from the base change theorem and the projection formula.
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Lemma 7.1. We have the commutation formulas.

(a)

𝜄! ◦ I𝑐 = I𝜆 ◦ 𝜄!, I𝑐 ◦ 𝜄∗ = 𝜄∗ ◦ I𝜆.

(b)

𝜄! ◦ R𝑐 = R𝜆 ◦ 𝜄!, R𝑐 ◦ 𝜄∗ = 𝜄∗ ◦ R𝜆.

Theorem 7.2. We have

R𝑐 ◦ I𝑐 � 1.

Proof. The isomorphism of functors R𝑐 ◦ I𝑐 � 1 is obtained by taking the pullback along T𝑐 × T𝑐 →

T 𝜆 ×𝔠𝔞𝔯𝜆 T 𝜆 of the isomorphism of complexes

N 𝜆 ◦G N 𝜆
�

−→ ΔT 𝜆 !Qℓ

of Theorem 6.2. �

We have also the functor

Ind𝑐 : 𝐷b
c (T𝑐) −→ 𝐷b

c (G𝑐)

defined by base change from the diagram (2.20). It satisfies

Ind𝑐 = I𝑐 ◦ 𝜋𝑐 !

where 𝜋𝑐 is the W-torsor T𝑐 → T 𝑐 . When 𝑐 = 0, we will use the notation 𝜋nil instead of 𝜋𝑐 .
We define 𝐷b

c (G𝑐)Spr as the triangulated subcategory of 𝐷b
c (G𝑐) generated by the simple direct factors

of Ind𝑐 (Qℓ) which, by Springer theory, are indexed by the irreducible characters of the Weyl group 𝑊𝑐

of the centralizer of c.

Proposition 7.3. The functor I𝑐 : 𝐷b
c (T 𝑐) → 𝐷b

c (G𝑐)Spr induces a bijection between simple perverse
sheaves compatible with parametrization by irreducible representations of 𝑊𝑐 .

Proof. The essential case is 𝑐 = 0 in which case we have T𝑐 = B(𝑇), T 𝑐 = B(𝑁) and 𝐷b
c (G𝑐)Spr =

𝐷b
c (Gnil)

Spr. The simple objects of 𝐷b
c (B(𝑁)) and 𝐷b

c (Gnil)
Spr are both parametrized by the irreducible

characters of W. This is Springer theory in the second case and, in the first case, the simple objects are
the simple direct summands of 𝜋nil ∗Qℓ . The pullback functor 𝑠!

nil [𝑛] (𝑛) along the obvious morphism
𝑠nil : B(𝑁) → B(𝑊) induces an equivalence between the categories of perverse sheaves that is
compatible with the indexation of the simple perverse sheaves by the irreducible characters of W. By
Lemma 6.1 applied to nilpotents, we have

𝑝Inil = Inil ◦ 𝑠
!
nil [𝑛] (𝑛).

We are thus reduced to prove the statement of the proposition for 𝑝Inil : M(B(𝑊)) → M(Gnil)
Spr.

Unlike Inil, the construction of 𝑝Inil extends to a global functor 𝑝I. A standard argument using the functor
𝑝I and its restriction to semisimple regular elements proves the proposition for 𝑝Inil. �

Proposition 7.4. The functor I𝑐 induces an equivalence of categories 𝐷b
c (T 𝑐) → 𝐷b

c (G𝑐)Spr with
inverse functor R𝑐 .
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Proof. Since R𝑐 ◦ I𝑐 � 1, the functor I𝑐 induces an injection between the Ext𝑖 of simple perverse
sheaves. On the other hand, by the proposition below together with [1, Theorem 4.6] and Proposition
7.3, we know that the Ext𝑖 of the simple objects that corresponds under I𝑐 have the same dimension and
so I𝑐 induces an isomorphism between the Ext𝑖 . By a lemma of Beilinson [19, Lemma 6], the functor
I𝑐 induces thus an equivalence of categories 𝐷b

c (T 𝑐) � 𝐷b
c (G𝑐)Spr. �

Consider the decomposition

𝜋nil !Qℓ =
⊕
𝜑

𝑉𝜑 ⊗ L𝜑

where the sum runs over the irreducibleQℓ-characters of W,𝑉𝜑 is an irreducible representation affording
the character 𝜑 and the L𝜑 are the irreducible smooth ℓ-adic sheaves on B(𝑁).

Proposition 7.5. For any irreducible characters 𝜑 and 𝜑′ of W, we have

Ext𝑖 (L𝜑 ,L𝜑′ ) =
(
𝑉𝜑 ⊗ 𝐻𝑖 (B(𝑇),Qℓ) ⊗ 𝑉∗

𝜑′

)𝑊
.

Proof. The proof is similar to that of [1, Theorem 4.6]. We give it for the convenience of the reader. We
have

Ext𝑖 (L𝜑 ,L𝜑′ ) = Hom𝑊

(
𝑉∗
𝜑 ,Ext𝑖 (𝜋nil !Qℓ ,L𝜑′ )

)
= Hom𝑊

(
𝑉∗
𝜑 ,Ext𝑖 (Qℓ , 𝜋∗nil(L𝜑′ ))

)
= Hom𝑊

(
𝑉∗
𝜑 ,Ext𝑖B(𝑇 ) (Qℓ ,Qℓ) ⊗ Hom(Qℓ , 𝜋

∗
nil(L𝜑′ ))

)
= Hom𝑊

(
𝑉∗
𝜑 , 𝐻

𝑖 (B(𝑇),Qℓ) ⊗ Hom(𝜋nil !Qℓ ,L𝜑′ )
)

=
(
𝑉𝜑 ⊗ 𝐻𝑖 (B(𝑇),Qℓ) ⊗ 𝑉∗

𝜑′

)𝑊
.

The third equality follows from the canonical isomorphism

𝜋∗nil (L𝜑′ ) � Qℓ ⊗ Hom(Qℓ , 𝜋
∗
nil(L𝜑′ ))

as the category M(B(𝑇)) is semisimple linear with unique simple object Qℓ [−𝑛]. �

Define 𝐷b
c (G𝜆)Spr as the full subcategory of 𝐷b

c (G𝜆) of complexes K such that 𝐾𝑐 ∈ 𝐷b
c (G𝑐)Spr for

all geometric point c of 𝔠𝔞𝔯𝜆.

Remark 7.6. If G is of type A with connected center then we have 𝐷b
c (G𝜆)Spr = 𝐷b

c (G𝜆) for all 𝜆.

Theorem 7.7. The functor I𝜆 induces an equivalence of categories 𝐷b
c (T 𝜆) → 𝐷b

c (G𝜆)Spr with inverse
functor R𝜆.

Proof. Since R𝜆 ◦ I𝜆 � 1, it suffices to see that the morphism

𝐾 −→ I𝜆 ◦ R𝜆 (𝐾)

is an isomorphism for all 𝐾 ∈ 𝐷b
c (G𝜆)Spr. But it follows from the fact that it is true over G𝑐 for any

geometrical point c of 𝔠𝔞𝔯𝜆 by the above proposition. �

https://doi.org/10.1017/fms.2023.10 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.10


Forum of Mathematics, Sigma 45

7.2. Perverse sheaves

Let (𝑝R, 𝑝I) be the pair of adjoint functors defined in §2.9.

Theorem 7.8. The adjunction map

𝑝R ◦ 𝑝I → 1

is an isomorphism.

It is enough to prove that for any 𝜆 ∈ 𝔏 and any 𝐾 ∈ M(𝔱), the restriction

(𝑝R ◦ 𝑝I(𝐾)) |T 𝜆
→ 𝐾 |T 𝜆

of the adjunction morphism 𝑝R ◦ 𝑝I(𝐾) → 𝐾 along the map T 𝜆 → 𝔱 is an isomorphism.
Therefore, the theorem is a consequence of Theorem 6.2 together with the following result, which is

straightforward.

Proposition 7.9. For any 𝐾 ∈ M(𝔱) and 𝐿 ∈ M(G), we have

𝑝I(𝐾) |G𝜆 = I𝜆(𝐾 |T 𝜆
) [−𝑛], 𝑝R(𝐿) |T 𝜆

= R𝜆 (𝐿 |G𝜆 ) [𝑛] .

Denote by M(G)Spr the full subcategory if M(G) of perverse sheaves K such that 𝐾𝑐 ∈ 𝐷b
c (G𝑐)Spr

for all geometric point c of 𝔠𝔞𝔯.

Theorem 7.10. The functor 𝑝I induces an equivalence of catgeories M(𝔱) → M(G)Spr with inverse
functor 𝑝R.

In particular, if G is of type A with connected center, then M(G)Spr = M(G), and so the categories
M(𝔱) and M(G) are equivalent.

Proof. Thanks to Theorem 7.8, it remains to prove that

𝐾 → 𝑝I ◦ 𝑝R(𝐾)

is an isomorphism for all 𝐾 ∈ M(G)Spr. We are thus reduced to prove that this is an isomorphism after
restriction to G𝜆 for all 𝜆 ∈ 𝔏. But this is a consequence of Proposition 7.9 and Theorem 7.7. �
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