The Milne Quadrics of the Trinodal Cubic Surface, and the Contact Conics of the Harmonic Envelope of the Plane Trinodal Quartic

By J. Blakey, Leeds University.
Communicated by Professor W. P. Milne.
(Received 5th December 1930. Read 5th December 1930.)

There are two planes, called "parabolic planes," through each line on the cubic surface cutting the surface in residual conics touching the line in question at two points called the "parabolic points" of that line.

If the cubic surface be taken in the form $U V W=U^{\prime} V^{\prime} W^{\prime}$, where $U, V, W, U^{\prime}, V^{\prime}, W^{\prime}$ are six planes defining nine lines on the cubic surface, then the remaining eighteen lines on the surface form "three associated double-sixes," each line belonging to two double-sixes.

The following results were obtained by W. P. Milne and A. L. Dixon.
${ }^{1}$ The twenty-four tangent planes to a cubic surface at the twentyfour parabolic points on the twelve lines of a double-six of the surface touch the same quadric, and there are thirty-six such quadrics corresponding to the thirty-six double-sixes of the surface. These thirty-six quadrics are contact quadrics of the harmonic envelope ' T ' of the surface (i.e. they touch T wherever they meet it), and have been termed "Milne Quadrics" by A. L. Dixon.
${ }^{2}$ The eighteen lines of "three associated double-sixes" meet the parabolic curve in thirty-six points, and the tangent planes to the cubic surface at each of these thirty-six points touch the same cubic envelope Γ, which also touches the common tangent planes of the harmonic envelope T and each of the "triad" of Milne quadrics corresponding to the three associated double-sixes.
${ }^{2}$ If M_{1}, M_{2}, M_{3} be a triad of Milne quadrics corresponding to three associated double-sixes, then $M_{1}+M_{2}+M_{3} \equiv 3 P^{2}$ where P is a point.
${ }^{1} T \equiv 3 \Gamma^{2}-M_{1} M_{2} M_{3}$ for all "triads" of Milne quadrics.

[^0]It was suggested to me by Professor W. P. Milne that I should investigate in this connection the case of the trinodal cubic surface; I have obtained the following results.
§ 2. The Trinodal Cubic Surface.
Take the three nodes of the cubic surface at A, B, and C, and let D be the point of intersection of the three constant tangent planes along $B C, C A, A B$, where $A B C D$ is the tetrahedron of reference. Then the equation of the trinodal cubic surface can be written

$$
\begin{equation*}
U \equiv d t^{3}+3 d_{1} t^{2} x+3 d_{2} t^{2} y+3 d_{3} t^{2} z+6 s x y z=0 \tag{1}
\end{equation*}
$$

We can map this surface U on a plane π by means of a web of plane cubics passing through the six points $A_{1}, A_{2} \ldots A_{6}$, where A_{1} coincides with A_{2}, A_{3} with A_{4}, and A_{5} with A_{6}. Taking $A_{1} A_{3} A_{5}$ as the triangle of reference in π, and ξ, η, ζ as coordinates, we obtain the following mapping equations:-

$$
x=\xi^{2}\left(p_{1} \eta+\zeta\right), \quad y=\eta^{2}\left(q_{1} \zeta+\xi\right), \quad z=\zeta^{2}\left(r_{1} \dot{\xi}+\eta\right), \quad t=s_{1} \xi \eta \zeta
$$

By comparison with equation (1) we see that
$p_{1} q_{1} r_{1}+1=-d k, s_{1} r_{1}=-3 d_{1} k, s_{1} p=-3 d_{2} k, s_{1} q_{1}=-3 d_{3} k, s_{1}{ }^{3}=6 k s$, whence k satisfies the equation $9 d_{1} d_{2} d_{3} k^{2}-2 d s k-2 s=0$.
Take $\quad \Delta=d^{2} s+18 d_{1} d_{2} d_{3}, \quad \sigma=\Delta^{\frac{1}{2}} s^{-\frac{1}{2}}, \quad k_{1}=\frac{s(d+\sigma)}{9 d_{1} d_{2} d_{3}}, \quad k_{2}=\frac{s(d-\sigma)}{9 d_{1} d_{2} d_{3}}$
To the points $A_{1} \equiv A_{2}$ etc., correspond the lines $a_{1} \equiv a_{2}$ etc., on the cubic surface which we will denote by a, β, and γ. To the lines $A_{1} A_{2} \equiv p_{1} \eta+\zeta=0, A_{3} A_{+}$etc., correspond the lines c_{12}, c_{34}, c_{36}, which we shall denote by q, r, s respectively. To the lines $A_{3} A_{j} \equiv A_{3} A_{6}$ $\equiv A_{4} A_{5} \equiv A_{4} A_{6}$ etc., correspond the lines $c_{35} \equiv c_{30} \equiv c_{45} \equiv c_{46}$ etc., which we shall denote by x, y, z. To the conic touching the lines $A_{3} A_{4}$, $A_{5} A_{\epsilon}$, at A_{3} and A_{5} and passing through A_{1} corresponds the line $b_{1} \equiv b_{2}$ which we denote by α^{\prime}, and similarly for β^{\prime} and γ^{\prime}.

The equations of the lines on the cubic surface together with the two parabolic planes corresponding to each are given below.

Line on the Surface.

$$
x \equiv\{x=0, t=0\}
$$

Corresponding Parabolic Planes.

$$
x=0 \text { taken twice over, }
$$

and similarly for y and z.

$$
a \equiv\left\{d t+3 d_{2} y+3 d_{3} z=0, t=3 d_{3} k_{1} z\right\} . \quad(d+\sigma) t+3 d_{2} y+3 d_{3}\left(1-\sigma k_{1}\right) z=0
$$

taken twice over.

Similarly for β and γ; in the case of $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, k_{i}$ is replaced by k_{2} in the equations of a, β, γ respectively; in the corresponding parabolic planes the sign of σ is also changed, besides replacing k_{1} by k_{2} in the parabolic planes corresponding to α, β, γ respectively.

$$
\begin{aligned}
q & \equiv\left\{d t+3 d_{1} x+3 d_{2} y+3 d_{3} z=0, x=0\right\} \\
x^{\prime} & \equiv 6 d t+d_{2}^{-1} d_{3}^{-1} \Delta x+18 d_{2} y+18 d_{3} z=0, x=0
\end{aligned}
$$

And similarly for r and s.
Corresponding to the curve of section of the cubic surface and the plane $l x+m y+n z+p t=0$, we have in π the curve
$p_{1} l \xi^{2} \eta+l \xi^{2} \zeta+q_{1} m \eta^{2} \zeta+m \eta^{2} \xi+r_{1} n \zeta^{2} \xi+n \zeta^{2} \eta+s_{1} p \xi \eta \zeta=0$.
Using Salmon's conditions that the curve (3) be harmonic and equianharmonic and the fact that there is a $1: 1$ correspondence between the two curves we find that if T_{4} and S_{6} be the harmonic and equianharmonic envelopes of the cubic surface, and if we transform to the lettering d, \ldots, s we have

$$
\begin{align*}
& S=16 s^{2} s_{1}^{-4} S_{4} \equiv \Theta^{\prime 2}-\Theta \Delta^{\prime}=0 \tag{4}\\
& T=16 s^{3} s_{1}^{-6} T_{6} \equiv 2 \Theta^{\prime 3}-3 \Theta \Theta^{\prime}-3 \Delta \Delta^{\prime}=0 \tag{5}\\
& \text { where } \quad \Delta^{\prime}=2 l m n \\
& \qquad \begin{array}{l}
\Theta^{\prime}=s p^{2}+2\left(d_{1} m n+d_{2} n l+d_{3} l m\right) \\
\qquad \Theta=2\left\{d s p+3\left(d_{2} d_{3} l+d_{3} d_{1} m+d_{1} d_{2} n\right)\right\}
\end{array}
\end{align*}
$$

The quadric $\Theta^{\prime}=0$ is the quadric inscribed in the three nodal cones of the cubic surface, and the point $\Theta=0$ is the intersection of the six parabolic planes through $a, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma, \gamma^{\prime}$.

Since α and α^{\prime} are generators of the nodal cone at A of the cubic surface, and the parabolic planes through these lines touch the nodal cone at A along the lines, it follows that $\Theta=0$ is the pole of the plane $\alpha \alpha^{\prime}$ with respect to the nodal cone at A, and similarly with respect to the nodal cones at B and C.

We see from its equation that the equianharmonic envelope S has four nodes at the points A, B, C, and $\Theta=0$, and the nodal cones of S at A, B, and C are the nodal cones of the surface.

From (5) we see that

$$
\begin{equation*}
T \equiv 3 \Delta^{-1}\left(\Delta \Delta^{\prime}-\frac{1}{2} \Theta \Theta^{\prime}\right)-\Theta^{\prime 2}\left(\frac{3}{4} \Theta^{\prime 3} / \Delta-2 \Theta^{\prime}\right)=0 \tag{6}
\end{equation*}
$$

which leads to the following important results:-
The harmonic envelope T, the quadric $\Theta^{\prime}=0$, and the cubic envelope $\Theta \Theta^{\prime}-2 \Delta \Delta^{\prime}=0$ have a common developable touching all the three
surfaces, each plane of which touches T at two points, and every tangent plane of each of the three nodal cones of the surface U are bitangent planes of T.

Now W. P. Milne proved, in the paper referred to, that a Milne quadric is the envelope of planes cutting the cubic surface in sections U^{\prime} such that the pairs of points in which U^{\prime} is met by conjugate lines of a double-six are "apolar pairs" of points with respect to the Hessian of U^{\prime} (i.e. the polar line of one point of the pair with respect to the Hessian of U^{\prime} passes through the other point, and vice-versa). By the $1: 1$ correspondence between points in π and points on the cubic surface, we see that we can obtain the Milne quadrics by stating that the pairs of points in π, corresponding to the pairs of points in which conjugate pairs of lines of a double-six cut U^{\prime}, are " apolar pairs" with respect to the Hessian of (3) i.e. $H_{1}{ }^{\prime}$ (corresponding to U^{\prime}). The points in π corresponding to the points in which the lines on the cubic surface cut $l x+m y+n z+p t=0$ are readily obtained; taking

$$
\begin{gathered}
H_{1}{ }^{\prime} \equiv a_{1}{ }^{\prime} \xi^{3}+b_{2}{ }^{\prime} \eta^{3}+c_{3}{ }^{\prime} \zeta^{3}+3 a_{2}{ }^{\prime} \xi^{2} \eta+3 a_{3}{ }^{\prime} \xi^{2} \zeta+3 b_{1}{ }^{\prime} \eta^{2} \xi+3 b_{3}{ }^{\prime} \eta^{2} \zeta \\
+3 c_{1}{ }^{\prime} \zeta^{2}+3 c_{2}{ }^{\prime} \zeta^{2} \eta+6 q^{\prime} \xi \eta \zeta=0
\end{gathered}
$$

we find that, if $\phi=r_{1} m n+p_{1} n l+q_{1} l m-\left(s_{1}^{2} / 4\right) p^{2}$, then

$$
\begin{array}{rlrl}
a_{1}^{\prime} & =l^{2}\left(m+p_{1}^{2} r_{1} n-p_{1} s_{1} p\right) \quad b_{2}{ }^{\prime} & =m^{2}\left\{n+p_{1} q_{1}{ }^{2} l-q_{1} s_{1} p\right\}, \quad c_{3}^{\prime}=n^{2}\left\{l+q_{1} r_{1}{ }^{2} m-r_{1} s_{1} p\right\} \\
3 a_{2}^{\prime} & =p_{1} l\left\{\phi-3 q_{1} l m\right\}, & 3 a_{3}^{\prime} & =l\left\{\phi-3 p_{1} n l\right\} \\
3 b_{3}^{\prime} & =q_{1} m\left\{\phi-3 q_{1} l m\right\}, & 3 b_{1}^{\prime} & =m\left\{\phi-3 r_{1} m n\right\} \\
3 c_{1}^{\prime} & =r_{1} n\left\{\phi-3 p_{1} n l\right\}, & 3 c_{2}^{\prime} & =n\left\{\phi-3 r_{1} m n\right\}, \quad 6 q^{\prime}=\left\{s_{1} p \phi-3\left(p_{1} q_{1} r_{1}+1\right) l m n\right\} .
\end{array}
$$

The condition that two points $\left(\xi_{1}, \eta_{1}, \zeta_{1}\right),\left(\xi_{2}, \eta_{2}, \zeta_{2}\right)$ be an apolar pair of points with respect to $H_{1}{ }^{\prime}=0$ is

$$
\xi_{1}^{2}\left(a_{1}^{\prime} \xi_{2}+a_{2}^{\prime} \eta_{2}+a_{3}^{\prime} \zeta_{2}\right)+\ldots+2 \eta_{1} \zeta_{1}\left(q^{\prime} \xi_{2}+b_{3}^{\prime} \eta_{2}+c_{3}^{\prime} \zeta_{2}\right)=0
$$

The thirty-six double-sixes of the general cubic surface reduce to fourteen in the trinodal case, which fall into types as follows, each giving a Milne quadric obtained by the foregoing method. (The lettering has been converted from p_{1}, q_{1} etc., to d, d_{1} etc., and the types of the double-sixes are made to correspond with Jolliffe's types of Steinerian Complexes in his paper "The Inflexional Tangents of the Plane Quartic," ${ }^{1}$ there being no type corresponding to his Type II.)

[^1]Double-Six. Corresponding Milne Quadric.
Type I. $\quad \beta \beta^{\prime} y y x s$

$$
\gamma \gamma^{\prime} z z r x \quad L \equiv \Theta^{\prime}-6 d_{1} m n, \text { and similarly for } M \text { and } N .
$$

Type III. a $\beta \gamma x y z$

$$
x y z \alpha^{\prime} \beta^{\prime} \gamma^{\prime} \quad \Theta^{\prime}=0
$$

Type IY. $\alpha \alpha \beta \beta \gamma \gamma$

$$
a^{\prime} a^{\prime} \beta^{\prime} \beta^{\prime} \gamma^{\prime} \gamma^{\prime} \quad \Theta_{0} \equiv 3 \Theta^{2} / 4 \Delta-2 \Theta^{\prime}=0
$$

Type $V . \quad a r \gamma \gamma z z \quad U_{1} \equiv \Theta^{\prime}-6 l d_{1}^{-1}\left\{-d_{2} d_{3}\left(d k_{1}+1\right) l\right.$
$\left.s \alpha^{\prime} y y \beta^{\prime} \beta^{\prime} \quad+d_{2} d_{1} m+d_{1} d_{2} n+3 d_{1} d_{2} d_{3} k_{1} p\right\}=0$.
U_{2} has k_{2} in place of k_{1} in U_{1}, and so on for $V_{1}, V_{2} ; W_{1}, W_{2}$.
The point $\left\{-d_{2} d_{3}\left(d k_{1}+1\right) l+d_{3} d_{1} m+d_{1} d_{2} n+3 d_{1} d_{2} d_{3} k_{1} p\right\}=0$ is the point of intersection of γ and p^{\prime}. The remaining three doublesixes need not be considered as they give rise to the degenerate quadrics $l^{2}=0, m^{2}=0, n^{2}=0$.

Professor Milne also proved in his paper that the cubic envelope Γ is the envelope of planes cutting the cubic surface in sections U^{\prime} such that the triad of points, in which any set of three nonintersecting lines on the cubic surface cut U^{\prime}, is an apolar triad with respect to H^{\prime} the Hessian of U^{\prime} (i.e. the mixed polar line of one pair of points with respect to the Hessian of U^{\prime} passes through the third point). Hence as before by $1: 1$ correspondence, we see that, if our three points in π are $\left(\xi_{1}, \eta_{1}, \zeta_{1}\right),\left(\xi_{2}, \eta_{2}, \zeta_{2}\right),\left(\xi_{3}, \eta_{3}, \zeta_{3}\right), \Gamma$ is given by
$\xi_{3}\left(A \xi_{2}+H \eta_{2}+G \zeta_{2}\right)+\eta_{3}\left(H \xi_{2}+B \eta_{2}+F \zeta_{2}\right)+\zeta_{3}\left(G \xi_{2}+F \eta_{2}+C \zeta_{2}\right)=0$, where $A=\left(a_{1}{ }^{\prime} \xi_{1}+a_{2}{ }^{\prime} \eta_{1}+a_{3}{ }^{\prime} \zeta_{1}\right)$ etc., $\quad F=\left(q^{\prime} \xi_{1}+b_{3}{ }^{\prime} \eta_{1}+c_{2}{ }^{\prime} \zeta_{1}\right)$ etc., since this is the condition that the three points $\left(\xi_{1}, \eta_{i}, \zeta_{1}\right)$ etc., are an apolar triad with respect to $H_{1}{ }^{\prime}$.

The point $P=0$, where $M_{1}+M_{2}+M_{3}=3 P^{2}$, was proved by W. P. Milne to be the fixed point through which π_{1} passes, if the plane π_{1} intersects the cubic surface in a curve L^{\prime} such that the three non-intersecting lines (lines which would not intersect on the general cubic surface, and give a distinct Γ) on the surface, corresponding to the triad M_{1}, M_{2}, M_{3}, cut π_{1} in three points forming an apolar triad on U^{\prime}.

The sets of three non-intersecting lines, their corresponding triads of Milne quadrics, points $P=0$, and cubic envelopes Γ are found to be as follows, and are divided into five classes.

The Milne Quadrics of the Trinodal Cubic Surface 173

Three non-	Triad		
intersecting	of	Point P.	Cubic Envelope .
lines on the	Milne		

Class I. a \quad LMN $\quad p=0 \quad s^{\frac{1}{2}}\left(\Theta^{\prime} p-d \Delta^{\prime}\right)=0$
Class II. $\quad \beta_{\gamma y} \quad L \Theta^{\prime} U_{1} \quad A_{1}{ }^{\prime} \equiv s p-3 d_{2} d_{3} k_{1} l=0 \quad s^{-\frac{1}{2}}\left[\Theta^{\prime} A_{1}{ }^{\prime}+\Delta^{\frac{1}{2}} s^{\frac{1}{2}} \Delta^{\prime}\right]=0$.
For the triad $L \Theta^{\prime} U_{2}$, corresponding to $\beta \gamma z, k_{2}$ is exchanged for k_{1} in the above, and similar results are obtained for the triads $M \Theta^{\prime} V_{1}, M \Theta^{\prime} V_{2} ; \quad N \Theta^{\prime} W_{1}, N \Theta^{\prime} W_{2}$.

For the triad $L V_{2} W_{1}\left(\beta^{\prime} \gamma^{\prime} q\right) k_{1}$ is exchanged for k_{2}, and vice versa in the above, similar results being obtained from the triads $M W_{1} U_{2}, M W_{2} U_{1} ; N U_{1} V_{2}, N U_{2} V_{1}$.
Class IV. $\quad \alpha \alpha^{\prime} x$
$\Theta^{\prime 2} \Theta_{0}$
$\Theta=0$

$$
\Delta^{-\frac{1}{2}}\left(\Delta \Delta^{\prime}-\Theta \Theta^{\prime} / 2\right)=0
$$

Class $V . \quad \beta \beta^{\prime} z \quad \dot{\Theta}_{0} U_{1} U_{2} \quad 3 d_{1} \Theta=4 \Delta l$

$$
\Delta^{-\frac{1}{2}}\left[\begin{array}{l}
\Theta^{\prime}\left(\frac{1}{2} \Theta+\frac{4}{3} \Delta l d_{1}^{-1}\right. \\
-l d_{1}^{-1}\left(\frac{1}{2} \Theta^{2}+2 d_{1} \Delta m n\right)
\end{array}\right]=0
$$

The results for $\Theta_{0} V_{1} V_{2}, \Theta_{0} W_{1} W_{2}$ are obtained by symmetry.
The properties of the Milne quadrics, Γ 's, and the points P can be easily obtained from their equations, but will not be discussed here.

§3. The Plane Trinodal Quartic Curve.

In the paper, previously referred to, A. E. Jolliffe proved that if I_{4} and J_{6} denote the harmonic and equianharmonic envelopes of a plane quartic curve, then a conic K can be so defined that the sextic envelope $J_{6}+K I_{4}=0$ shall touch the twenty-four inflexional tangents of the quartic curve, and every one of the twelve bitangents of a Steinerian complex.

The properties of the conics K, which are contact conics of J_{6} were further discussed by W. P. Milne in two papers "Contravariant envelopes of the plane quartic curve ${ }^{1}$," and "Contravariant envelopes of the cubic surface."

[^2]It was shown in my own paper "Note on a property of the plane quartic curve" that
(i) J_{6} can be expressed in the form $J_{6} \equiv \Phi_{3}^{2}-K_{1} K_{2} K_{3}$, where $K_{1} K_{2} K_{3}$ is a "triad of contact conics" of J_{6}.
(ii) $K_{1}+K_{2}+K_{3} \equiv P^{\prime 2}$, where $P^{\prime}=0$ is a point.

I now proceed to obtain these triads of contact conics of J_{6} in the case of the trinodal plane quartic.
§4. The Trinodal Plane Quartic.
Take the equation of the trinodal plane quartic to be (as in Jolliffe's paper)

$$
Q \equiv a y^{2} z^{2}+b z^{2} x^{2}+c x^{2} y^{2}+2 x y z(f x+g y+h r)=0
$$

where A, B, and C, the three vertices of the triangle of reference are taken at the three nodes of the quartic. We also use the notation
$\Delta=a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}$,
$\Theta=2(F l+G m+H n)$,
where $F=g h-c f$ etc., and l, m, n are tangential coordinates, $\Theta^{\prime}=-\left(a l^{2}+b m^{2}+c n^{2}-2 f m n-2 g n l-2 h l m\right)$, $\Delta^{\prime}=2 l m n, \quad F_{1}=F-i a^{\frac{1}{2}} \Delta^{\frac{1}{2}}, \quad F_{2}=F+i a^{\frac{1}{2}} \Delta^{\frac{1}{2}} \quad$ etc. $a \equiv C z-F_{2} y, \alpha^{\prime} \equiv C z-F_{1} y=0 ;$ similarly for the tangents from B and C to Q we use $\beta, \beta^{\prime} ; \gamma, \gamma^{\prime}$.
$x \equiv x=0$, and similarly for y and z
$\left.p \equiv f_{1} x+g_{1} y+h_{1} z=0\right)$
$q \equiv f_{1} x+g_{2} y+h_{2} z=0 \quad$ Bitangents of Q (where $f_{1}=f-\sqrt{b c}$, $r \equiv f_{2} x+g_{1} y+h_{2} z=0$ $s \equiv f_{2} x+g_{2} y+h_{1} z=0$

$$
f_{2}=f+\sqrt{b c}, \text { etc.) }
$$

Then we have $I \equiv 12 I_{\dot{f}} \equiv \Theta^{\prime 2}-3 \Delta^{\prime} \Theta$

$$
\begin{aligned}
J & \equiv 432 J_{6} \equiv 2 \Theta^{\prime 3}-9 \Theta \Theta^{\prime}+27 \Delta \Delta^{\prime}=0, \\
\text { i.e., } \Delta J & \equiv 3\left(\frac{1}{2} \Theta \Theta^{\prime}-3 \Delta \Delta^{\prime}\right)^{2}+\Theta^{\prime 2}\left(2 \Theta^{\prime}-\frac{3}{4} \Theta^{2} / \Delta\right)=0 .
\end{aligned}
$$

Since $\Theta^{\prime}=0$ is the equation of the conic touching the nodal tangents of the quartic, we see from the last equation that the harmonic envelope of the trinodal quartic curve has six bitangents, which are the six nodal

The Milne Quadrics of the Trinodal Cubic Surface 175

tangents of the quartic, and also the conics $\Theta^{\prime}=0$, and $3 \Theta^{2}-8 \Delta \Theta^{\prime}=0$ are contact conics of J.

From $I=0$ we see that the equianharmonic envelope has four nodes at the points A, B, C, and $\Theta=0$, and has as its four pairs of nodal tangents the nodal tangents of the quartic, and the pair of tangents from $\Theta=0$ to the conic $\Theta^{\prime}=0$.

Dividing the conics K into types as in Jolliffe's paper, and using his method for obtaining them, we obtain the following table (taking $K=$ twice Jolliffe's K)

Conic K.

Type I. $\quad L \equiv \Theta^{\prime}-6 f_{2} m n=0$

$$
L_{1} \equiv \Theta^{\prime}-6 f_{1} m n=0
$$

Type II. $\quad P \equiv \Theta^{\prime}+3 a^{-1}\left(C m^{2}+2 F m n+B n^{2}\right)=0 \quad x^{2}$ twice, a α^{\prime} twice, $p q, r s$, and similarly for Q and R.

Type III. $\Theta^{\prime}=0$

$$
x a, x \alpha^{\prime}, y \beta, y \beta^{\prime}, z \gamma, z \gamma^{\prime} .
$$

Type IV. $\Theta_{0} \equiv \frac{3}{4} \Theta^{2} / \Delta-2 \Theta^{\prime}=0$ $\alpha \alpha^{\prime}$ twice, $\beta \beta^{\prime}$ twice, $\gamma \gamma^{\prime}$ twice.

Type V. $\quad U_{1} \equiv \Theta^{\prime}+6 A^{-1} f_{1}\left[G_{1} H_{1} A^{-1} l+G_{1} m+H_{1} n\right]=0 \quad y \gamma$ twice, $z \beta^{\prime}$ twice, $a^{\prime} r$, as. $U_{2} \equiv \Theta^{\prime}+6 A^{-1} f_{1}\left[G_{2} H_{2} A^{-1} l+G_{2} m+H_{2} n\right]=0 \quad y \gamma^{\prime}$ twice, $z \beta$ twice, $\alpha r, \alpha^{\prime} s$. $U_{3} \equiv \Theta^{\prime}+6 A^{-1} f_{2}\left[G_{2} H_{1} A^{-1} \imath+G_{2} m+H_{1} n\right]=0 \quad y \gamma$ twice, $z \beta$ twice, $\alpha^{\prime} p, \alpha q$. $U_{4} \equiv \Theta^{\prime}+6 A^{-1} f_{2}\left[G_{1} H_{2} A^{-1} l+G_{1} m+H_{2} n\right]=0 \quad y \gamma^{\prime}$ twice, $z \beta^{\prime}$ twice, $\alpha p, a^{\prime} q$. Similarly for $V_{1}, V_{2}, V_{3}, V_{4} ; W_{1}, W_{2}, W_{3}, W_{4}$.

The pair of points $C m^{2}+2 F m n+B n^{2}=0$ are the points where x intersects a and a^{\prime} etc.

The point $G_{1} H_{1} A^{-1} l+G_{1} m+H_{1} n=0$ is the point of intersection of β^{\prime} and γ etc.

We know by Jolliffe's paper that, corresponding to each conic K, we have $Q \equiv k_{1}{ }^{\prime} S_{1} S_{2}+S_{3}^{2}$, while S_{1}, S_{2}, S_{3} are conics or line pairs, and $k_{1}{ }^{\prime}$ is a constant. If Ψ_{3} be the cubic envelope, which is the envelope of lines cutting S_{1}, S_{2}, S_{3} in involution, then we obtain the following Ψ_{3}^{\prime} 's corresponding to each K.

Conic K.
Cubic Envelope Ψ_{3}.
Type I. $L \quad \frac{1}{2} m n\left[f_{2} \sqrt{b} m+f_{2} \sqrt{\bar{c} n}-(h \sqrt{c}+g \sqrt{\bar{b}}) l\right]=0$
$L_{1} \quad \frac{1}{2} m n\left[f_{\mathrm{r}} \sqrt{b} m-f_{1} \sqrt{c n}+(h \sqrt{c}-g \sqrt{b}) l\right]=0$, and so on.
Type II. P $a^{-\frac{-1}{2}}\left[(h m-g n)\left(C m^{2}+2 F m n+B n^{2}\right)+a l\left(C m^{2}+B n^{2}\right)\right]=0$ etc.
Type III. $\Theta^{\prime}=0 \quad-i \Delta^{\frac{1}{2}} \Delta^{\prime} / 4=0$
Type IV. $\Theta_{0} \quad J^{-i}\left[B C F l^{3}+\ldots+C(2 H F+B G) l^{2} m+\ldots\right.$

$$
+(A B C+2 F G H) l m n]=0
$$

Type V. $\quad U_{1} \quad \frac{1}{2} l A^{-1}\left[\sqrt{b} G_{1} m^{2}+\sqrt{ } c H_{1} n^{2}-p_{1} H_{1} G_{1} A^{-1} l^{2}-p_{1} A m n\right.$

$$
\left.+H_{1}\left\{\sqrt{c} G_{1} A^{-1}-p_{1}\right\} n l+G_{1}\left\{\sqrt{b} H_{1} A^{-1}-p_{1}\right\} l m\right]=0
$$

For U_{2} the suffix 1 is changed to 2 in G, H and p in above.

$$
\begin{aligned}
& U_{3} \quad \frac{1}{2} l A^{-1}\left[\sqrt{b} G_{2} m^{2}-\sqrt{c} H_{1} n^{2}-p_{3} H_{1} G_{2} A^{-1} l^{2}-p_{3} A m n\right. \\
&\left.-H_{1}\left\{\sqrt{c} G_{2} A^{-1}+p_{3}\right\} n l+G_{2}\left\{\sqrt{b} H_{1} A^{-1}-p_{3}\right\} l m\right]=0
\end{aligned}
$$

For U_{4}, G_{2} and H_{1} are replaced by G_{1} and H_{2} respectively, and p_{3} by p_{4} in the above, where

$$
\begin{array}{ll}
p_{1}=\left(h \sqrt{c}+g \sqrt{b}+i \Delta^{\frac{1}{2}}\right) f_{2}^{-1}, & p_{2}=\left(h \sqrt{c}+g \sqrt{b}-i \Delta^{\frac{1}{3}}\right) f_{2}^{-1}, \\
p_{3}=\left(g \sqrt{b}-h \sqrt{c}-i \Delta^{\frac{1}{2}}\right) f_{1}^{-1}, & p_{4}=\left(g \sqrt{b}-h \sqrt{c}+i \Delta^{\frac{1}{2}}\right) f_{1}^{-1} \text { etc. }
\end{array}
$$

It was proved by A. E. Jolliffe in a note on his paper that for any conic K we have $J \equiv 108 k_{1}{ }^{\prime 2} \Psi_{3}^{\bullet}+8 K\left(9 I_{4}-K^{2}\right)=0$.

Hence if we take any two conics K_{1}, K_{2}, and can find Φ_{3} such that $\Phi_{3} \equiv k_{1}{ }^{\prime \prime}\left(\Psi_{3}{ }^{\prime}+A_{1} K_{1}\right) \equiv k_{2}{ }^{\prime \prime}\left(\Psi_{3}{ }^{\prime \prime}+A_{2} K_{2}\right)$ where $\Psi_{3}{ }^{\prime}$ refers to K_{1}, and $\Psi_{3}^{\prime \prime}$ to K_{2}, and A_{1}, A_{2} are the tangential equations to two points, then K_{1}, K_{2} are two conics of a triad, and the third conic K_{3} of the triad can be obtained similarly ($k_{1}{ }^{\prime \prime}, k_{2}{ }^{\prime \prime}$ are constants).

We find that $J \equiv-3 \Phi_{3}^{2}-K_{1} K_{2} K_{3}$, and in each case

$$
A_{1}=A_{2}=A_{3}=P^{\prime}
$$

Since the trinodal quartic curve is a degenerate case of the general quartic, the method used in my paper, referred to previously, of obtaining the "triad of conics" by means of three bitangents through whose six points of contact with the quartic no conic passes, does not give the complete set of triads, but the above method is applicable in all cases, and by its use we obtain the following triads, their points P^{\prime}, and their corresponding cubic envelopes Φ_{3}.

The Milne Quadrics of the Trinodal Cubic Surface 177

Triad of Conics
Class 1.

$$
\begin{aligned}
& L M N \\
& L M_{1} N_{1} \\
& L_{1} M N_{1} \\
& L_{1} M_{1} N
\end{aligned}
$$

Point P^{\prime}

$$
\begin{aligned}
& A_{1}{ }^{\prime} \equiv \sqrt{ } \overline{a l}+\sqrt{b} m+\sqrt{c} n=0 \\
& A_{2}{ }^{\prime} \equiv-\sqrt{a} \bar{a}+\sqrt{b} m+\sqrt{c} \overline{c n}=0 \\
& A_{3}{ }^{\prime} \equiv \sqrt{ } \bar{a} l-\sqrt{b} m+\sqrt{c} \bar{c}=0 \\
& A_{4}{ }^{\prime} \equiv \sqrt{a l}+\sqrt{ } \bar{b} m-\sqrt{c n}=0
\end{aligned}
$$

Cubic Envelope Φ_{3}
$\Phi_{1}{ }^{\prime} \equiv \Theta^{\prime} A_{1}{ }^{\prime}-3 \Delta^{\prime}(\quad f \sqrt{a}+g \sqrt{b}+h \sqrt{c}+\sqrt{a b c})=0$
$\Phi_{2}{ }^{\prime} \equiv \Theta^{\prime} A_{2}{ }^{\prime}+3 \Delta^{\prime}(f \sqrt{\bar{a}}-g \sqrt{b}-h \sqrt{c}+\sqrt{a b c})=0$
$\Phi_{3}{ }^{\prime} \equiv \Theta^{\prime} A_{3}{ }^{\prime}+3 \Delta^{\prime}(-f \sqrt{a}+g \sqrt{b}-h \sqrt{c}+\sqrt{a b c})=0$
$\Phi_{4}{ }^{\prime} \equiv \Theta^{\prime} A_{4}{ }^{\prime}+3 \Delta^{\prime}(-f \sqrt{a}-g \sqrt{b}+h \sqrt{c}+\sqrt{a b c})=0$

Triad of Conics

Class II.
$L \Theta^{\prime} U_{1} \quad B_{1}{ }^{\prime} \equiv-p_{1} l+\sqrt{b} m-\sqrt{c n}=0 \quad \Theta^{\prime} B_{1}{ }^{\prime}+3 i \Delta^{\frac{1}{2}} \Delta^{\prime}=0$
$L \Theta^{\prime} U_{2}$
$B_{2}{ }^{\prime} \equiv-p_{2} l+\sqrt{b} m+\sqrt{c} n=0$
$\Theta^{\prime} B_{2}{ }^{\prime}-3 i \Delta^{\frac{1}{2}} \Delta^{\prime}=0$
$L \Theta^{\prime} U_{3}$
$B_{3}{ }^{\prime} \equiv p_{5} l-\sqrt{ } \bar{b} m+\sqrt{c} n=0$
$\Theta^{\prime} B_{3}{ }^{\prime}+3 i \Delta^{\frac{1}{2}} \Delta^{\prime}=0$
$L \Theta^{\prime} U_{4}$
$B_{4}{ }^{\prime} \equiv p_{4} l-\sqrt{b} m+\sqrt{c} n=0$
$\Theta^{\prime} B_{4}{ }^{\prime}-3 i \Delta^{\frac{1}{2}} \Delta^{\prime}=0$, and similarly for the triads $\left\{\begin{array}{lll}M \Theta^{\prime} V_{1}, & M \Theta^{\prime} V_{2}, & M \Theta^{\prime} V_{3}, \\ N \Theta^{\prime} W_{1}, & N \Theta^{\prime} W_{2}, & N \Theta^{\prime} W_{3}, \\ \hline \Theta^{\prime} W_{4}\end{array}\right.$.
Class IIa.
$L L_{1} Q \quad C_{1}{ }^{\prime} \equiv-h l+b m+f n=0 \quad \Phi_{1}{ }^{\prime \prime} \equiv b^{-\frac{1}{2}}\left\{\Theta^{\prime} C_{1}{ }^{\prime}+6 m n(A n+G l)\right\}=0$
$L L_{1} R \quad C_{2}{ }^{\prime} \equiv-g l+f m+c n=0 \quad \Phi_{2}{ }^{\prime \prime} \equiv c^{-\frac{1}{2}}\left\{\Theta^{\prime} C_{2}{ }^{\prime}+6 m n(H l+A m)\right\}=0$, and similarly for the triads $M M_{1} R, M M_{1} P ; N N_{1} Q, N N_{1} P$.
Class III.
$L V_{1} W_{2}-\sqrt{\bar{a}} l+q_{1} m+r_{2} n=0 \quad \Phi_{2}{ }^{\prime}+L\left\{\left(q_{1}-\sqrt{b}\right) m+\left(r_{2}-\sqrt{c}\right) n\right\}=0$
$L V_{2} W_{1}-\sqrt{ } \bar{a} l+q_{2} m+r_{1} n=0 \quad \Phi_{2}{ }^{\prime}+L\left\{\left(q_{2}-\sqrt{b}\right) m+\left(r_{1}-\sqrt{c}\right) n\right\}=0$
$L V_{3} W_{3} \quad \sqrt{\bar{a}} l+q_{3} m+r_{3} n=0 \quad \Phi_{\mathrm{J}}{ }^{\prime}+L\left\{\left(q_{3}-\sqrt{b}\right) m+\left(r_{3}-\sqrt{c}\right) n\right\}=0$
$L V_{4} W_{4} \quad \sqrt{a} l+q_{4} m+r_{4} n=0 \quad \Phi_{7}{ }^{\prime}+L\left\{\left(q_{4}-\sqrt{b} \bar{b} m+\left(r_{4}-\sqrt{c}\right) n\right\}=0\right.$
$L_{1} V_{1} W_{3} \quad \sqrt{\bar{a}} l-q_{1} m+r_{3} n=0 \quad \Phi_{3}{ }^{\prime}+L_{1}\left\{\left(q_{1}+\sqrt{b}\right) m+\left(r_{3}+\sqrt{c}\right) n\right\}=0$
$L_{1} V_{2} W_{4} \quad \sqrt{\bar{a}} l-q_{2} m+r_{4} n=0 \quad \Phi_{3}{ }^{\prime}+L_{1}\left\{\left(q_{2}+\sqrt{b}\right) m-\left(r_{4}+\sqrt{c}\right) n\right\}=0$
$L_{1} V_{3} W_{2} \quad \sqrt{\bar{a} l}+q_{3} m-r_{2} n=0 \quad \Phi_{4}{ }^{\prime}+L_{1}\left\{\left(r_{2}+\sqrt{c}\right) n-\left(q_{3}+\sqrt{\bar{b}}\right) m\right\}=0$
$L_{1} V_{4} W_{1} \quad \sqrt{ }{ }^{\bar{a}} l+q_{4} m-r_{1} n=0 \quad \Phi_{4}{ }^{\prime}+L_{1}\left\{\left(r_{1}+\sqrt{c}\right) n-\left(q_{4}+\sqrt{b}\right) m\right\}=0$.
Similar results are obtained for the triads:-
($M W_{1} U_{2}, M W_{2} U_{1}$, etc;
${ }^{l} N U_{1} V_{2}, N U_{2} V_{1}$, etc.

Class IV.

$$
\Theta^{\prime} \Theta^{\prime} \Theta_{0} \quad \Theta=0 \quad-i \Delta^{\frac{1}{2}}\left(3 \Delta \Delta^{\prime}-\frac{1}{2} \Theta \Theta^{\prime}\right)=0
$$

Class V.

$$
\begin{array}{lll}
\Theta_{0} U_{1} U_{2} & \Theta-4 \Delta f_{2}^{-1} l=0 & \Delta^{-\frac{1}{2}}\left[\left(\Theta \Theta^{\prime}-3 \Delta \Delta^{\prime}\right)-2 l \Delta \Theta_{0} f_{2}^{-1}\right]=0 \\
\Theta_{0} U_{3} U_{4} & \Theta-4 \Delta f_{1}^{-1} l=0 & \Delta^{-\frac{1}{2}}\left[\left(\Theta \Theta^{\prime}-3 \Delta \Delta^{\prime}\right)-2 l \Delta \Theta_{0} f_{1}^{-1}\right]=0,
\end{array}
$$

$$
\text { and similarly for the triads } \Theta_{0} V_{1} V_{2}, \Theta_{0} V_{3} V_{4} ; \Theta_{0} W_{1} W_{2}, \Theta_{0} W_{3} W_{4}
$$

Class VI.

$$
\begin{array}{lll}
P V_{1} V_{4} & a l+\left\{h+2 a H_{1} B^{-1}{ }_{5}^{2} m-g n=0\right. & \Phi_{3}^{\prime \prime}+2 H_{1} a^{\frac{1}{2}} B^{-1} m P=0 \\
P V_{2} V_{3} & a l+\left\{h+2 a H_{2} B^{-1}\right\} m-g n=0 & \Phi_{5}^{\prime \prime}+2 H_{2} a^{\frac{1}{2}} B^{-1} m P=0 \\
P W_{1} W_{3} & a l-h m+\left\{g+2 a G_{1} C^{-1}\right\} n=0 & \Phi_{4}{ }^{\prime \prime}+2 G_{1} a^{\frac{1}{2}} C^{-1} n P=0 \\
P W_{2} W_{4} & a l-h m+\left\{g+2 a G_{2} C^{-1}\right\} n=0 & \Phi_{4}{ }^{\prime \prime}+2 G_{2} a^{\frac{1}{2}} C^{-1} n P=0 .
\end{array}
$$

Including the cases of degenerate bitangents (i.e. lines joining two nodes, and tangents from a node), we find that the only sets of triads which do not correspond to three bitangents, through whose points of contact with the quartic no conic passes, are those of Classes IV and V which both contain the conic Θ_{0}. The conic Θ_{0} is defined by the Steinerian complex $\alpha \alpha^{\prime}, \beta \beta^{\prime}, \gamma \gamma^{\prime}$ (all taken twice), and hence there is no third bitangent such that no conic passes through its points of contact with the quartic Q, and those of any pair $a \alpha^{\prime}, \beta \beta^{\prime}, \gamma \gamma^{\prime}$. By considering all triads of bitangents it can be shown that Classes IV and V are the only two sets of triads of conics into which the conic Θ_{0} enters, and hence that the triads given in the above tables are the only ones possible.

The properties of the conics K, the cubic envelopes Φ_{3}, and the points P will not be considered in this paper, as they are easily obtainable from their equations.

§5. Summary.

By adopting Geiser's ${ }^{1}$ method of regarding the quartic curve as the section of the enveloping cone to a cubic surface from a point on itself, we obtain analogous results in the case of the trinodal quartic curve as for the trinodal cubic surface, for a double-six projects by this method into a Steinerian complex, and hence the section of the enveloping cone of a Milne quadric by the plane of projection is a contact conic K.

[^3]Since the tangent plane to the cubic surface at the vertex of the enveloping cone projects into a bitangent (p) of the trinodal quartio curve, we find that this gives rise to more contact conics K than there are Milne quadrics of the trinodal cubic surface. Thus we find that there are no Milne quadrics corresponding to Jolliffe's Type II, and also that there are twice as many conics K in each of Jolliffe's Types I and V as there are Milne quadrics in the corresponding Types I and V. Conics K which are the sections of enveloping cones of Milne quadrics are lettered the same as their corresponding Milne quadrics, and all others are due to the bitangent p.

The Milne quadrics can be represented according to the number of the nodal cones they can be inscribed in as follows:-

Type
Milne Quadrics
$I V$.
$V . \quad U_{1}, U_{2} ; V_{1}, V_{2} ; W_{1}, W_{2}$
I.
III.
L, M, N
Θ^{\prime}

No. of nodal cones quadrics can be inscribed in
0.
1.
2.
3.

The triads of Milne quadrics obtained are:-
Class I. LMN.
Class $I I . \quad \Theta^{\prime} L U_{1}, \Theta^{\prime} L U_{2} ; \Theta^{\prime} M V_{1}, \Theta^{\prime} M V_{2} ; \Theta^{\prime} N W_{1}, \Theta^{\prime} N W_{2}$.
Class III. $L V_{1} W_{2} ; L V_{2} W_{1} ; ~ M W_{1} U_{2}, M W_{2} U_{1} ; N U_{1} V_{2}, N U_{2} V_{1}$.
Class IV. $\Theta^{\prime} \Theta^{\prime} \Theta_{0}$.
Class $V . \quad \Theta_{0} U_{1} U_{2}, \quad \Theta_{0} V_{1} V_{2}, \quad \Theta_{0} W_{1} W_{2}$.
We have the following classification for the conics K according to the number of nodal tangent pairs that they touch.

Type	Conics K	Number of pairs of nodal tangents K touches
IV. $)$	Θ_{0},	0
II. $\}$	$P, Q, R\}$	0
V.	$\left.\begin{array}{lll} U_{1}, U_{2} ; & V_{1}, & V_{2} ; \\ U_{3}, U_{4} ; & W_{2} \\ V_{3}, & V_{4} ; & W_{3}, W_{4} \end{array}\right\}$	1
I.	$\left.\begin{array}{ll} L, & M, \\ L_{1}, & M_{1}, N \end{array}\right\}$	2
III.	Θ^{\prime}	3

The triads of contact conics K are as follows:-
Class I. $\quad \mid L M N$. $\left(L M_{1} N_{1}, \quad L_{1} M N_{1}, L_{1} M_{1} N\right.$.
Class IIa. $P M M_{1}, P N N_{1} ; Q N N_{1} ; R L L_{1}, R M M_{1}$.
Class II. $\quad \Theta^{\prime} L U_{1}, \Theta^{\prime} L U_{2} ; \Theta^{\prime} M V_{1}, \Theta^{\prime} M V_{2} ; \Theta^{\prime} N W_{1}, \Theta^{\prime} N W_{3}$. $\Theta^{\prime} L_{1} U_{3}, \Theta^{\prime} L_{1} U_{4} ; \quad \Theta^{\prime} M_{1} V_{3}, \Theta^{\prime} M_{1} V_{4} ; \quad \Theta^{\prime} N_{1} W_{3}, \Theta^{\prime} N_{1} W_{4}$.
Class III. $\left(L V_{1} W_{2}, L V_{2} W_{1} ; M W_{1} U_{2}, M W_{2} U_{1} ; N U_{1} V_{2}, N U_{2} V_{1}\right.$. $L V_{3} W_{3}, L V_{4} W_{4} ; \quad M W_{3} U_{3}, M W_{4} U_{4} ; N U_{3} V_{3}, N U_{4} V_{4}$. $L_{1} V_{1} W_{3}, L_{1} V_{2} W_{4}, L_{1} V_{3} W_{2}, L_{1} V_{4} W_{1} ; \quad M W_{1} U_{3}, M_{1} W_{2} U_{4}$, $M_{1} W_{3} U_{2}, M W_{4} U_{1} ; \quad N_{1} U_{1} V_{3}, N_{1} U_{2} V_{4}, N_{1} U_{3} V_{2}, N_{1} U_{4} V_{1}$.
Class IV. $\Theta^{\prime} \Theta^{\prime} \Theta_{0}$. Class V. $\left\{\begin{array}{l}\Theta_{0} U_{1} U_{2}, \Theta_{0} V_{1} V_{2}, \Theta_{0} W_{1} W_{2} . \\ \Theta_{0} U_{3} U_{4}, \Theta_{0} V_{3} V_{4}, \Theta_{0} W_{3} W_{4} .\end{array}\right.$ $\Theta_{\Theta_{0} U_{3} U_{4}, \Theta_{0} V_{3} V_{4}, \Theta_{0} W_{3} W_{4} .}^{\text {. }}$
Class VI. $\quad P V_{3} V_{3}, P V_{1} V_{4}, P W_{1} W_{3}, P W_{2} W_{4} ; Q W_{1} W_{4}, Q W_{2} W_{3}$, $Q U_{1} U_{3}, Q U_{2} U_{4} ; R U_{1} U_{4}, R U_{2} U_{3}, R V_{1} V_{3}, R V_{2} V_{4}$.
The triads in the first lines of Classes I-V constitute the triads of contact conics K corresponding to the total number of Milne quadric triads, and the classes in each case correspond.

[^0]: ${ }^{1}$ W. P. Milne, Proc. London Math. Soc. (2), 26 (1927), 377-394.
 ${ }^{2}$ A. L. Dixon, Proc. London Math. Soc. (2), 26 (1927), 351-362.

[^1]: 1 A. E. Jolliffe, Proc. London Math. Soc. (2), 23 (1924), 250-278.

[^2]: ${ }^{1}$ W. P. Milne, Proc. London Math. Soc. (2) 24 (1925), 335-338.

[^3]: ${ }^{1}$ G. F. Geiser, Math. Ann. 1 (1868), 129-138.

