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Asymptotic behaviour of large-scale solutions of

Hitchin’s equations in higher rank

TakuroMochizuki and Szilárd Szabó

Abstract

Let X be a compact Riemann surface. Let (E, θ) be a stable Higgs bundle of degree
0 on X. Let hdet(E) denote a flat metric of the determinant bundle det(E). For any
t > 0, there exists a unique harmonic metric ht of (E, tθ) such that det(ht) = hdet(E).
We prove that if the Higgs bundle is induced by a line bundle on the normalization
of the spectral curve, then the sequence ht is convergent to the naturally defined
decoupled harmonic metric at the speed of the exponential order. We also obtain a
uniform convergence for such a family of Higgs bundles.
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1. Introduction

1.1 Background

Let X be a Riemann surface. Let (E, ∂E , θ) be a Higgs bundle of rank r on X. Let h be a

Hermitian metric of E. We obtain the Chern connection ∇h of (E, ∂E , h) and the adjoint θ†h of
θ with respect to h. Let R(h) denote the curvature of ∇h. The metric h is called a harmonic
metric of (E, ∂E , θ) if

R(h) + [θ, θ†h] = 0.

The metric h is called a decoupled harmonic metric of (E, ∂E , θ) if

R(h) = [θ, θ†h] = 0.

Suppose that X is compact and that (E, ∂E , θ) is stable of degree 0. Let ΣE,θ denote
the spectral curve of (E, θ). We assume that (E, ∂E , θ) is generically regular semisimple, i.e.
D(E, θ) = {P ∈X | |T ∗

PX ∩ΣE,θ|< r} is a finite subset of X.
Let hdet(E) be a flat metric of det(E). According to Hitchin [Hit87] and Simpson [Sim88],

(E, ∂E , θ) has a unique harmonic metric h such that det(h) = hdet(E). Because (E, ∂E , tθ) is

stable of degree 0 for any t > 0, there exists a unique harmonic metric ht of (E, ∂E , tθ) for
any t > 0 such that det(ht) = hdet(E). We are interested in the behaviour of ht as t→∞. See
[GMN10], [KNP15] and [MSW16] for the motivation for this study. It is related to the geometric
P=W conjecture [Sza21, Sza22]. See also helpful survey papers [Li19, Swo21].

For any simply connected relatively compact open subset K of X \D(E, θ), there exists a
decomposition of the Higgs bundle

(E, ∂E , θ)|K =

r⊕
i=1

(EK,i, ∂EK,i
, θK,i) (1)

such that rankEK,i = 1. According to [Moc16], there exist C(K)> 0, ε(K)> 0 such that

|ht(u, v)|�C(K) exp(−ε(K)t)|u|ht
|v|ht

for any local sections u and v of EK,i and EK,j (i �= j) in the decomposition (1). This implies
that there exist C ′(K)> 0 and ε′(K)> 0 such that
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|R(ht)|K |ht
= |[θ, θ†ht

]|ht
�C ′(K) exp(−ε′(K)t).

As a result, for any sequence t(i)→∞, there exist a subsequence t′(j)→∞ and gauge transfor-
mations gt′(j) such that the sequence g∗t′(j)ht′(j) is convergent to a decoupled harmonic metric of

(E, ∂E , θ)|X\D(E,θ) in the C∞-sense locally on X \D(E, θ).
We may ask the following questions under appropriate assumptions.

Q1 Is there a sequence of gauge transformations gt such that g∗t ht is convergent as t→
∞ locally on X \D(E, θ). In other words, is the limit independent of the choice of a
subsequence?

Q2 Let K ⊂X \D(E, θ) be any relatively compact open subset. Then, is the order of the
convergence on K dominated by e−δ(K)t for some δ(K)> 0?

In the rank two case, under the assumption that ΣE,θ is smooth, Mazzeo et al. [MSW16]
solved the both questions completely. In [Moc16], the question Q1 was solved without assuming
the smoothness of the spectral curve. In the higher rank case, Collier and Li [CL17] solved both
questions for cyclic Higgs bundles. Fredrickson [Fred] studied both questions when the spectral
curve is smooth, under a mild assumption on the ramification of the spectral curve over X (see
Remark 1.2 and [Fred, Proposition 2.2, (2.9)]).

Remark 1.1. Chronologically, the study [Moc16] was inspired by the previous research in [CL17],
[KNP15] and [MSW16].

Remark 1.2. Let Q∈ΣE,θ be a critical point of π : ΣE,θ →X. Put P = π(Q). Let (XP , z) be
a coordinate neighbourhood around P . By using the holomorphic 1-form dz, we obtain the
trivialization T ∗XP 	C×XP . Let ΣE,θ,Q denote the connected component of T ∗XP ∩ΣE,θ

which contains Q. We may assume that ΣE,θ,Q ∩ T ∗
PXP = {Q} and that ΣE,θ,Q is holomorphically

isomorphic to a disc. Let r(Q) denote the degree of ΣE,θ,Q →XP . There exist holomorphic
functions aj (j = 0, . . . , r(Q)− 1) on XP such that

ΣE,θ,Q =

⎧⎨
⎩(y, z)∈C×XP

∣∣∣∣∣∣ yr(Q) +

r(Q)−1∑
j=0

aj(z)y
j = 0

⎫⎬
⎭ .

Because T ∗XP ∩ΣE,θ,Q = {Q}, there exists α∈C such that

yr(Q) +

r(Q)−1∑
j=0

aj(0)y
j = (y− α)r(Q). (2)

The smoothness of ΣE,θ,Q is equivalent to the condition that a0(z)− (−α)r(Q) has a simple 0
at z = 0. To study the local property of ΣE,θ,Q around Q and θ around P , we may assume that
α= 0 by considering θ|XP

− αdz · idE|XP
. Moreover, we may assume that ar(Q)−1 is constantly 0

by considering θ|XP
− r(Q)−1ar(Q)−1 dz · idE|XP

. By changing the coordinate z to w(z) satisfying

w(0) = 0 and w(∂zw)
r(Q) =−a0(z), we may assume that a0(z) =−z. In general, aj (1� j �

r(Q)− 2) are not constantly 0.

1.2 Main results

1.2.1 The symmetric case As a first main result, let us mention that if (E, ∂E , θ) has a non-
degenerate symmetric pairing C, then both questions Q1 and Q2 are extremely easy to answer.
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As explained in [LM10b], there exists a unique decoupled harmonic metric hC of (E, θ)|X\D(E,θ)

which is compatible with C. By using a variant of Simpson’s main estimate and an elementary
linear algebraic argument in §3.1, we can answer both questions Q1 and Q2, and the limit is
hC in this case. The following theorem is a special case of Corollary 3.5.

Theorem 1.3. Let K be any relatively compact open subset of X \D(E, θ). Let s(hC , ht)
denote the automorphism of E|X\D(E,θ) determined by ht = hC · s(hC , ht). For any �∈Z�0,

there exist positive constants C(�, K) and ε(�, K) such that the L2
� -norm of s(hC , ht)− id on

K is dominated by C(�, K) exp(−ε(�, K)t) as t→∞.

For example, we may apply this theorem to a Higgs bundle contained in the Hitchin section
because it has a canonical non-degenerate symmetric pairing.

Indeed, in Theorem 1.3, we do not need to assume that X is compact. See Theorem 3.4 and
Corollary 3.5 for the precise statements. These results are also technically useful, which will be
applied to the third main result (see §1.2.3 and 1.2.4).

1.2.2 The irreducible case The second main result in this paper is an affirmative answer to
question Q1 in the case that the spectral curve is locally and globally irreducible.

We obtain the ideal sheaf I(ΣE,θ)⊂OT ∗X of ΣE,θ. We say that ΣE,θ is locally irreducible
if the stalks I(ΣE,θ)P (P ∈ΣE,θ) are prime ideals. It is equivalent to the condition that for
any P ∈ΣE,θ the germ of ΣE,θ at P cannot be expressed as the union of two distinct germs of
non-empty complex analytic subsets. (See [GR84, §4.1].) We say that ΣE,θ is globally irreducible
if it cannot be expressed as the union of two distinct closed analytic non-empty subsets. The
two conditions are independent, in general. Under the assumption that (E, θ) is stable, ΣE,θ is
locally irreducible if and only if it is globally irreducible.

Theorem 1.4 (Corollary 7.7). Suppose that ΣE,θ is locally irreducible. Then, the sequence ht
is convergent to a decoupled harmonic metric h∞ in the C∞-sense locally on X \D(E, θ).

See Theorem 7.5 for the more general statement.
More precisely, we canonically construct a filtered bundle P�∗ (V) over V =E(∗D(E, θ)) in an

algebraic way from (E, θ) such that (i) (P�∗ (V), θ) is a decomposable filtered Higgs bundle in the
sense of Definition 5.10, (ii) (P�∗ (V), θ) is stable of degree 0 and (iii) det(P�∗V) equals the filtered
bundle naturally induced by det(E). There exists a unique decoupled harmonic metric h∞ of
(E, θ)|X\D(E,θ) adapted to P�∗ (V) such that det(h∞) = hdet(E). We shall prove that the sequence
ht is convergent to h∞ as t→∞ on X \D(E, θ).

An outline of the proof is as follows. Let P ∈D(E, θ). Let XP be a small neighbourhood of
P in X. By a theorem of Donaldson [Don92], there exists a harmonic metric hP,t of (E, ∂, tθ)|XP

such that hP,t|∂XP
= h∞|∂XP

. According to Proposition 6.6, the sequence hP,t is convergent to
h∞|XP \{P} in the C∞-sense locally on XP \ {P} as t→∞. As in [MSW16], by patching hP,t and

h∞, we construct a family of Hermitian metrics h̃t (t > 0) of E such that (i) det(h̃t) = hdet(E),

(ii) limt→∞ h̃t = h∞ on X \D(E, θ) and (iii)
∫
X |R(h̃t) + [tθ, (tθ)†

˜ht

]| → 0. Let s(h̃t, ht) denote the

automorphism of E determined by ht = h̃t · s(h̃t, ht). Then, we shall prove that supX(s(h̃t, ht)−
idE)→ 0 by essentially the same argument as that in [Moc16].

Because of the assumption of the local irreducibility of ΣE,θ, it is easy to find the candidate
of ‘the limiting configuration’ h∞. In the rank two case, the Higgs bundle (E, θ)|XP

is easy to
understand. There is a homogeneous wild harmonic bundle (E′

P , θ
′
P , h

′
P ) on (P1,∞) such that

the restriction of (E′
P , θ

′
P ) to a neighbourhood of 0 is isomorphic to (E, θ)|XP

, where we consider
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an S1-action on P1 induced by (a, z) �→ amz for some m∈Z>0. (See [Moc21, §8] for homogeneity
of harmonic bundles with respect to an S1-action.) The special case is a fiducial solution in
[MSW16]. In [Moc16], the restriction of h′P was useful in the construction of approximate solu-

tions h̃t. In the higher rank case, the Higgs bundle (E, θ)|XP
is more complicated even under the

assumption of local irreducibility. It does not seem that the approximation by a homogeneous
wild harmonic bundle can work well. Therefore, we develop a way to use the solutions of the
boundary-value problem in the construction of approximate solutions.

Remark 1.5. Because we also study the question Q1 for wild harmonic bundles under a similar
assumption on the spectral curve, we also study the Dirichlet problem for wild harmonic bundles
(Theorem 2.8).

1.2.3 The order of convergence in the smooth case We study question Q2 under the
following additional condition.

Condition 1.6. Let ρ : Σ̃E,θ →ΣE,θ be the normalization. There exists a holomorphic line
bundle L with an isomorphism E 	 (π ◦ ρ)∗L such that θ is induced by the OT ∗X -action on
ρ∗L.

For example, this condition is satisfied if ΣE,θ is smooth according to [BNR89, Hit87]. We
shall prove the following theorem.

Theorem 1.7 (Theorem 7.14). Suppose that Condition 1.6 is satisfied. Let s(h∞, ht) be the
automorphism of (E, θ)|X\D(E,θ) determined by ht = h∞ · s(h∞, ht). Let K ⊂X \D(E, θ) be
any relatively compact open subset. For any �∈Z�0, there exist C(�, K)> 0 and ε(�, K)> 0
such that the following holds as t→∞:

‖(s(h∞, ht)− id)|K‖L2
�
�C(�, K) exp(−ε(�, K)t).

To prove Theorem 1.7, we refine the construction of h̃t in §1.2.2. For each P ∈D(E, θ),
there exists a non-degenerate symmetric pairing CP of (E, ∂E , θ)|XP

such that CP |XP \{P} is
compatible with h∞|XP \{P}. It is easy to see that the harmonic metric hP,t of (E, θ)|XP

satisfying
hP,t|∂XP

= h∞|∂XP
is compatible with CP . Let s(h∞, hP,t) be the automorphism of E|XP \{P}

determined by hP,t = h∞|XP \{P} · s(h∞, hP,t). By the result in the symmetric case mentioned in
§1.2.1, on any relatively compact open subset K of XP \ {P}, s(h∞, hP,t)− id converges to 0 at
a speed of the order of e−δ(K)t. Then, the following stronger condition is satisfied:∫

X
|R(h̃t) + [tθ, (tθ)†

˜ht

]|
˜ht
�Ce−δt.

Then, we can obtain the estimate of sup |s(h̃t, ht)− id| on any relatively compact open subset
in X \D(E, θ). By a general argument in §4.2, we can obtain the desired estimate of the norms

of s(h̃t, ht)− id and its higher derivatives on X even around D(E, θ).

1.2.4 A family case The result and the method in §1.2.3 can be generalized to the following
family case. Let p1 : X̃ → S be a smooth proper morphism of complex manifolds such that each
fiber is connected and 1-dimensional. We also assume that S is connected. Let π : S × T ∗X→
S ×X and p2 : S ×X→S denote the projections. Let Φ0 : X̃ → S × T ∗X be a morphism of
complex manifolds such that p2 ◦ π ◦Φ0 = p1. We set Φ1 := π ◦Φ0 : X̃ → S ×X. We assume the
following.

5

https://doi.org/10.1112/mod.2024.9 Published online by Cambridge University Press

https://doi.org/10.1112/mod.2024.9


Takuro Mochizuki and Szilárd Szabó

– Φ1 is proper and finite.

– There exists a closed complex analytic hypersurface D⊂S ×X such that (i) D is finite
over S, (ii) the induced map X̃ \Φ−1

1 (D)−→ (S ×X) \ D is a covering map, and (iii) Φ0

induces an injection X̃ \Φ−1
1 (D)−→S × T ∗X.

We set r := |Φ−1
1 (P )| for any P ∈ (S ×X) \ D. Let g(X) and g̃ denote the genus of X and

p−1
1 (x) (x∈ S), respectively. We set Xx = {x} ×X and Dx =D ∩Xx. There exists a natural

isomorphism Xx 	X. We note that D→S is not assumed to be a covering map, and hence |Dx|
is not necessarily constant on S.

Let L be a holomorphic line bundle on X̃ such that deg(L|p−1
1 (x)) = g̃− rg(X) + r− 1. We

obtain a locally free OS×X -module E =Φ1∗(L). It is equipped with the morphism θ : E → E ⊗
Ω1
S×X/S induced by the OS×T ∗X -action on Φ0∗L. For each x∈ S, we obtain the Higgs bundle

(Ex, θx) = (E , θ)|Xx
, which is stable of degree 0.

There exists a Hermitian metric hdet E of det(E) such that hdet E|Xx
are flat for any x∈ S. There

exist harmonic metrics ht,x of (Ex, tθx) (x∈ S) such that det(ht,x) = hdet E|Xx
. There also exist

decoupled harmonic metrics h∞,x (x∈ S) of (Ex, θx)|Xx\Dx
such that det(h∞,x) = hdet(E)|Xx\Dx

.

Theorem 1.8 (Theorem 7.22). Let x0 ∈ S. Let K be a relatively compact open subset of Xx0
\

Dx0
. Let S0 be a neighbourhood of x0 in S such that S0 ×K is relatively compact in (S ×X) \ D.

For any �∈Z�0, there exist C(�), ε(�)> 0 such that the L2
� -norm of s(h∞,x, ht,x)− id (x∈ S0, t�

1) on K are dominated by C(�) exp(−ε(�)t).
Remark 1.9. Note that for another Hermitian metric h′det E of det(E) such that h′det E|Xx

are flat

for any x∈ S, we obtain an R>0-valued C∞-function β on S determined by h′det(E) = βhdet(E),
and β1/rht,x (respectively β1/rh∞,x) are harmonic metrics (respectively decoupled harmonic
metrics) of (Ex, tθx) (respectively (Ex, θx)|Xx\Dx

) such that det(β1/rht,x) = h′det E|Xx
(respectively

det(β1/rh∞,x) = h′det(E)|Xx\Dx
). Hence, the claim of Theorem 1.8 is independent of the choice

of hdet E .

Remark 1.10. We may apply Theorem 1.8 to obtain a locally uniform estimate for large-scale
solutions of the Hitchin equation for a family of stable Higgs bundles of degree 0 whose spectral
curves are smooth.

2. Preliminaries

2.1 Some definitions

2.1.1 Decoupled harmonic bundles Let Y be a Riemann surface. Let (V, θ) be a Higgs bundle
on Y .

Definition 2.1. A Hermitian metric h of V is called a decoupled harmonic metric of (V, θ) if
the following conditions are satisfied.

(A1) h is a harmonic metric of the Higgs bundle (V, ∂V , θ).

(A2) h is flat, i.e. the Chern connection ∇h of (V, ∂V , h) is flat.

Such a (V, θ, h) is called a decoupled harmonic bundle.

Note that the conditions (A1) and (A2) imply that θ and θ†h are commuting.
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2.1.2 Symmetric Higgs bundles Let C be a non-degenerate symmetric product of V . It is
called a non-degenerate symmetric product of the Higgs bundle (V, θ) if θ is self-adjoint with
respect to C. Such a tuple (V, θ, C) is called a symmetric Higgs bundle. Let V ∨ denote the dual
bundle of V . Let ΨC : V → V ∨ be the isomorphism induced by C. Let θ∨ be the induced Higgs
field of V ∨. The condition is equivalent to ΨC inducing an isomorphism of the Higgs bundles
(V, θ)	 (V ∨, θ∨).

A Hermitian metric h of V is said to be compatible with C if ΨC is isometric with respect
to h and its dual Hermitian metric h∨ of V ∨.

2.1.3 Generically regular semisimple Higgs bundles Let ΣV,θ ⊂ T ∗Y denote the spectral
curve of (V, θ). We say that (V, θ) is regular semisimple if the projection ΣV,θ → Y is a covering
map. We say that (V, θ) is generically regular semisimple if there exists a discrete subset D⊂ Y
such that (V, θ)|Y \D is regular semisimple.

Let π : ΣV,θ → Y denote the projection. If (V, θ) is regular semisimple, there exists a line
bundle LV on ΣV,θ with an isomorphism π∗LV 	 V such that θ is induced by OT ∗Y -action
on LV .

2.2 Regular semisimple case

2.2.1 Decoupled harmonic metrics Suppose that (V, θ) is regular semisimple. We consider
the following condition for a Hermitian metric h of V .

(A3) For any P ∈ Y , the eigen decomposition of θ at P is orthogonal with respect to h.

Note that (A3) holds if and only if θ and θ†h are commuting. The following lemma is easy to
see.

Lemma 2.2. If two of the conditions (A1), (A2), and (A3) are satisfied for a Hermitian metric
h of V , then h is a decoupled harmonic metric of (V, θ).

A flat metric hLV
of LV induces a Hermitian metric π∗(hLV

) of V . It is easy to check that
π∗(hLV

) is a decoupled harmonic metric of (V, θ).

Proposition 2.3. This procedure induces an equivalence between flat metrics of LV and
decoupled harmonic metrics of (V, θ).

Remark 2.4. Let (V, θ, h) be a decoupled harmonic bundle. Let ΣV,θ =
∐

i∈Λ ΣV,θ,i be the decom-
position into connected components. There exists the corresponding decomposition of the Higgs
bundle (V, θ) =

⊕
i∈Λ(Vi, θi) such that ΣVi,θi =ΣV,θ,i. Because h is a decoupled harmonic metric,

the decomposition is orthogonal with respect to h. Hence, we obtain the decomposition of a
decoupled harmonic bundle (V, θ, h) =

⊕
(Vi, θi, hi).

2.2.2 Symmetric products The multiplication of OΣV,θ
induces a multiplication

π∗OΣV,θ
⊗ π∗OΣV,θ

−→ π∗OΣV,θ
.

Any local section f of π∗OΣV,θ
induces an endomorphism Ff of the locally free OY -module

π∗OΣV,θ
. We obtain the local section tr(f) := tr(Ff ) of OY .

Let CLV
be a non-degenerate symmetric pairing of LV . We obtain the non-degenerate pairing

C of V = π∗LV :

V ⊗OY
V

π∗CLV−→ π∗OΣV,θ

tr−→OY . (3)
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Proposition 2.5. This procedure induces an equivalence between non-degenerate symmetric
pairings of LV and non-degenerate symmetric pairings of (V, θ).

We recall the following proposition.

Proposition 2.6 [LM10b, Proposition 2.30]. For any non-degenerate symmetric pairing C
of (V, θ), there exists a unique decoupled harmonic metric hC of (V, θ) which is compatible
with C.

Indeed, let CLV
be the non-degenerate symmetric pairing of LV corresponding to C. Let hLV

be
the unique Hermitian metric of LV satisfying hLV

(s, s) = |CLV
(s, s)|. We obtain the Hermitian

metric hC corresponding to hLV
. Then, hC is the decoupled harmonic metric compatible with C.

As for the converse, the following holds.

Lemma 2.7. Let h be a decoupled harmonic metric of (V, θ). There exists a non-degenerate
symmetric pairing of (V, θ) compatible with h if and only if the following condition is satisfied.

– Let hLV
be the corresponding Hermitian metric of LV , whose Chern connection is flat.

Let ΣV,θ,i be any connected component of ΣV,θ. Let ρi : π1(ΣV,θ,i)→ S1 be the homomor-
phism obtained as the monodromy of (LV , hLV

)|ΣV,θ,i
. Then, the image of ρi is contained

in {±1}.
Proof. There exists a non-degenerate symmetric pairing of (V, θ) compatible with h if and only
if there exists a non-degenerate symmetric pairing CLV

of LV compatible with hLV
. If such a

CLV
exists, then each ρi comes from an R-representation. (See [LM10b, §2].) Hence, the image

is contained in {±1}. Conversely, if the image of each ρi is contained in {±1}, then it is easy to
construct such a pairing CLV

. �

2.3 Dirichlet problem for wild harmonic bundles on curves

Let Y be a Riemann surface equipped with a Kähler metric gY . Let X ⊂ Y be a connected
relatively compact connected open subset whose boundary ∂X is smooth and non-empty. Let
D⊂X be a finite subset.

Let (P∗V , θ) be a good filtered Higgs bundle on (Y, D) of rank r. (See [Moc21, §2.4] for the
notion of good filtered Higgs bundles.) We obtain (det(P∗V), tr(θ)). We set (V, θ) = (V , θ)|Y \D.
Let h∂X be a Hermitian metric of V|∂X .

Theorem 2.8. There exists a unique harmonic metric h of (V, ∂V , θ)|X\D such that (i) h|∂X =

h∂X and (ii) Ph∗ (V ) =P∗V . (See [Moc21, §2.5] for the filtered sheaf Ph∗ (V ).)

Proof. Let us study the case r= 1. There exists a Hermitian metric h0 of V such that (i)
h0|∂X = h∂X , (ii) h0 is flat around any point of D, and (iii) Ph0∗ (V ) =P∗V . There exists a C∞-

function α :X→R such that α|∂X = 0 and that ∂∂α=R(h0). Then, h= e−αh0 is a flat metric of
V satisfying the desired conditions. Let h′ be another flat metric satisfying the same condition.
We obtain the C∞-function s on X determined by h′ = esh. Because ΔgY s= 0 and s|∂X = 0, we
obtain that s= 0 on X, and hence h′ = h.

Let us study the case r� 2. At each point P ∈D, let (XP , zP ) be a holomorphic coordinate
neighbourhood around P such that (i) XP is relatively compact in X \ (D \ {P}), (ii) XP ∩
XP ′ = ∅ for any P, P ′ ∈D, and (iii) the coordinate zP induces (XP , P )	 ({|z|< 1}, 0). Let hdet(V )

be a flat metric of det(V ) adapted to det(P∗V ) such that hdet(V )|∂X =det(h∂X). Let h0 be a

Hermitian metric of V such that (i) h0|∂X = h∂X , (ii) det(h0) = hdet(V ), (iii) Ph0∗ (V ) =P∗V , and

8

https://doi.org/10.1112/mod.2024.9 Published online by Cambridge University Press

https://doi.org/10.1112/mod.2024.9


Asymptotic behaviour of large-scale solutions

(iv) around P ∈D, we have |R(h0) + [θ, θ†h0
]|h,gY =O(|zP |−2+ε) for some ε > 0. (For example,

see [Moc21] for the construction.) We set F (h0) =R(h0) + [θ, θ†h0
]. There exists p > 1 such that

F (h0) is Lp on X. There exists an Lp
2-function α on X such that (i) ΔgY (α) = |F (h0)|X |h0,gY

and (ii) α|∂X = 0. There exists C0 > 0 such that |α|<C0 on X.
For 0< δ < 1, we set XP (δ) = {|zP |< δ} and Z(δ) :=X \⋃P∈D XP (δ). We have ∂Z(δ) =

∂X ∪⋃
P∈D ∂XP (δ). By the Dirichlet problem for harmonic metrics [Don92, LM10a], there

exists a harmonic metric hZ(δ) of (V, ∂V , θ)|Z(δ) such that (i) det(hZ(δ)) = hdet(V )|Z(δ) and (ii)
hZ(δ)|∂Z(δ) = h0|∂Z(δ). Let sZ(δ) be the automorphism of V|Z(δ) determined by hZ(δ) = h0|Z(δ) ·
sZ(δ). According to [Sim88, Lemma 3.1], the following holds on Z(δ):

ΔgY log Tr(sZ(δ))� |F (h0)|Z(δ)|h0,gY .

Because ΔgY (log Tr(sZ(δ))− α)� 0, we obtain

log Tr(sZ(δ))� 2C0 + log r.

Because det(sZ(δ)) = 1, there exists C1 > 0, which depends only on C0 and r, such that

|sZ(δ)|h0
+ |s−1

Z(δ)|h0
�C1.

Then, there exists a sequence δ(i)→ 0 (i= 1, 2, . . .) such that the following hold (see [LM10a,
Proposition 2.6]).

– The sequence hZ(δ(i)) is convergent in the C∞-sense on any relatively compact open
subset of X \D. Let h∞ denote the limit, which is a harmonic metric.

– h∞ is mutually bounded with h0. As a result, Ph∞∗ (V ) =P∗V|X .

– det(h∞) = hdet(V ).

Let Z :=Z(1/2). There exists a harmonic metric h1,Z of (V, ∂V , θ)|Z such that (i) det(h1,Z) =
hdet(V )|Z , (ii) h1,Z|∂XP (1/2) = h∞|∂XP (1/2) for any P ∈D, and (iii) h1,Z|∂X = h0|∂X . Let i0 such that
δ(i0)< 1/2. Let s1,δ(i) be the automorphism of V|Z determined by hZ(δ(i))|Z = h1,Z · s1,δ(i). We
obtain ΔgY log Tr(s1,δ(i))� 0 on Z. Hence, we obtain

log(Tr(s1,δ(i))/r)�max
P∈D

max
Q∈∂XP (1/2)

{log(Tr(s1,δ(i)|Q)/r)}.

Because log Tr(s1,δ(i)/r)→ 0 on
⋃

P∈D ∂XP (1/2), we obtain that s1,δ(i) → idV on Z. Hence, we
obtain h∞|Z = h1,Z , which implies that h∞ satisfies the condition h∞|∂X = h0|∂X .

Let h′ be another harmonic metric satisfying the conditions (i) and (ii). Note that det(h′) =
hdet(V ). Let s be the automorphism of V determined by h′ = h · s. By [Sim88, Lemma 3.1], we
have the following equality on X \D:

ΔgY Tr(s) =−|∂V (s) · s−1/2|2h,gY − |[θ, s]s−1/2|2h,gY .
This implies that Tr(s) is subharmonic on X \D. Because Tr(s) is bounded, we obtain that
Tr(s) is a subharmonic function on X (see [Sim90, Lemma 2.2]). We obtain maxX Tr(s)�
max∂X Tr(s) = r. Because det(s) = 1, we have Tr(s)� r. Hence, we obtain Tr(s) = r on X, which
implies s= idV . �

Corollary 2.9. Suppose that (P∗V , θ) is equipped with a perfect symmetric pairing C. If h∂X
is compatible with C|∂X , then h is also compatible with C.

Proof. Let h∨∂X be the Hermitian metric of V ∨
|∂X induced by h∂X . Let h∨ be the Hermitian metric

of V ∨ induced by h. Then, h∨ is the unique harmonic metric of (V ∨, θ∨) satisfying h∨|∂X = h∨∂X .
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Let ΨC : (V, θ)	 (V ∨, θ∨) denote the isomorphism induced by C. Because h∂X is compat-
ible with C, h∂X =Ψ∗

Ch
∨
∂X holds on ∂X. By the uniqueness, we obtain h=Ψ∗

C(h
∨), i.e. h is

compatible with C. �

3. Large-scale solutions in the symmetric case

3.1 Preliminary from linear algebra

3.1.1 Hermitian metrics compatible with a non-degenerate symmetric pairing Let V be an
r-dimensional C-vector space. The dual space is denoted by V ∨. An R-structure of V is an r-
dimensional R-subspace VR such that the natural morphism C⊗R VR −→ V is an isomorphism.
A positive definite symmetric bilinear form CR of VR induces a Hermitian metric h and a non-
degenerate symmetric bilinear form C of V by h(α⊗ u, β ⊗ v) = αβCR(u, v) and C(α⊗ u, β ⊗
v) = αβCR(u, v) for any α, β ∈C and u, v ∈ VR. An orthogonal decomposition VR =

⊕
VR,i with

respect to CR induces a decomposition V =
⊕

VR,i ⊗C which is clearly orthogonal with respect
to both h and C.

Let C be a non-degenerate symmetric pairing of V . It induces a C-linear morphism ΨC : V →
V ∨. A Hermitian metric h of V is called compatible with C if ΨC is isometry between (V, h) and
(V ∨, h∨), where h∨ denotes the Hermitian metric of V ∨ induced by h. If h is compatible with
C, there uniquely exists an R-structure VR of V equipped with a positive definite symmetric
bilinear form CR such that (i) VR ⊗C= V and (ii) h and C are induced by CR.

3.1.2 An estimate Let C be a non-degenerate symmetric form of V . Let V =
⊕r

i=1 Vi be
an orthogonal decomposition with respect to C such that dim Vi = 1. The following lemma is
obvious.

Lemma 3.1. There exists a unique Hermitian metric h0 of V such that (i) h0 is compatible
with C and (ii) the decomposition V =

⊕
Vi is orthogonal with respect to h0.

For any Hermitian metric h of V compatible with C, let s(h0, h) be the automorphism of V
determined by the condition h(u, v) = h0(s(h0, h)u, v) for any u, v ∈ V . Note that det(s(h0, h)) =
1. Let H(C; ε) be the set of Hermitian metrics h of V compatible with C such that the following
holds for any u∈ Vi, v ∈ Vj (i �= j):

|h(u, v)|� ε|u|h · |v|h. (4)

Lemma 3.2. There exists C > 0, depending only on r, such that the following holds for any
0� ε� (2r)−1 and any h∈H(C; ε):

|s(h0, h)− idV |h0
+ |s(h0, h)−1 − idV |h0

�Cε.

Proof. Let ei be a base of Vi such that C(ei, ei) = 1. Note that the tuple (e1, . . . , er) is an
orthonormal base with respect to h0. Let H be the matrix determined by Hi,j = h(ei, ej). Then,
the linear map s(h0, h) is represented by the matrix tH with respect to the base (e1, . . . , er).
Because h is compatible with C, tH ·H is the identity matrix. We obtain

H2
i,i − 1 =−

∑
1�j�r

j �=i

Hi,jHj,i. (5)
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By condition (4), we have |Hi,j |� εH
1/2
i,i H

1/2
j,j for i �= j. We obtain

H2
i,i − 1� ε

∑
1�j�r

j �=i

Hi,iHj,j .

We set A=
∑r

j=1Hj,j . We obtain

H2
i,i − 1− εHi,iA� 0. (6)

Lemma 3.3. The following holds: Hi,i � εA+ 1.

Proof. Let a> 0. Let us consider the R-valued function f(s) = s2 − as− 1 (s∈R). We set s± =
2−1(a±√

a2 + 4), and then we have f(s±) = 0 and s− < s+. We obtain f(s)> 0 for any s > s+.
Hence, if f(s)� 0, we obtain

s� s+ � 2−1(a+ a+ 2) = a+ 1. (7)

By setting a= εA, we obtain the claim of the lemma from (6) and (7). �

We obtain A� εrA+ r, and hence A� (1− εr)−1r� 2r. By (4) and (5), we obtain

|H2
i,i − 1|�

∑
1�j�r

j �=i

|Hi,j | · |Hj,i|� ε
∑

1�j�r

Hi,i ·Hj,j � εA2 � 4r2ε.

Because Hi,i are positive numbers, we obtain |Hi,i − 1|� 4r2ε. We also obtain
|Hi,j |� ε(1 + 4r2ε). �

3.2 Harmonic metrics compatible with a non-degenerate symmetric pairing

Let Y be any Riemann surface. Let (V, ∂V , θ) be a Higgs bundle on Y of rank r, which is regular
semisimple. Let C be a non-degenerate symmetric pairing of (V, θ).

For any t > 0, let Harm(V, ∂V , tθ, C) denote the set of harmonic metrics of (V, ∂V , tθ) com-
patible with C. Let gY be a Kähler metric of Y . For any non-negative integer � and p > 1, and
for any relatively compact open subset K of Y , we define the Lp

� -norm ‖f‖Lp
� ,K

of a section f of

End(V ) on K by using gY , h
C and the Chern connection of hC . (See Proposition 2.6 for hC .)

Theorem 3.4. Let K be any relatively compact open subset of Y . There exists t(K)> 0 such
that:

– for any (�, p)∈Z>0 ×R>1, there exist A(�, p, K)> 0 and ε(�, p, K)> 0 such that, for any
h∈Harm(V, ∂V , tθ, C) (t� t(K)),

‖s(hC , h)− idE‖Lp
� ,K

+ ‖s(hC , h)−1 − idE‖Lp
� ,K

�A(�, p, K) exp(−ε(�, p, K)t). (8)

Proof. To simplify the description, we set s(h) := s(hC , h) in this proof. By [Moc16, Corollary
2.6] and Lemma 3.2, there exist A(K)> 0, ε(K)> 0, and t(K)> 0 such that the following holds
for any h∈Harm(V, ∂V , tθ, C) (t� t(K)):

sup
K

|s(h)− idV |hC + sup
K

|s(h)−1 − idV |hC �A(K) exp(−ε(K)t). (9)

Let R(h) denote the curvature of the Chern connection of (V, ∂V , h). By [Moc16,
Theorem 2.9], there exist A(1)(K)> 0 and ε(1)(K)> 0 such that the following holds for any
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h∈Harm(V, ∂V , tθ, C) (t� t(K)):

sup
K

|R(h)|hC ,gY
�A(1)(K) exp(−ε(1)(K)t). (10)

Note that R(h) = ∂V (s(h)
−1∂hCs(h)).

Because s(h) is self-adjoint with respect to hC and satisfies det s(h) = 1, we have
Tr(s(h)− id)� 0, and Tr(s(h)− idV ) = 0 holds if and only if s(h) = idV . The following holds on
Y (see [Sim88, Lemma 3.1]):

ΔgY Tr(s(h)− idV ) =ΔgY (Tr(s(h))− r) =−|s(h)−1/2∂hCs(h)|2gY ,hC − |[θ, s(h)]s(h)−1/2|2gY ,hC .

Let K1 be a relatively compact open neighbourhood of K in Y . Let χ : Y →R�0 be a function
such that χ= 1 on K and χ= 0 on Y \K1. We obtain the following:∫

K
|s(h)−1/2∂hCs(h)|2gY ,hC �

∫
Y
Tr(s(h)− idE) · |ΔgY χ|.

There exist constants A(2)(K)> 0 and ε(2)(K)> 0 such that the following holds for any h∈
Harm(V, ∂V , tθ, C) (t� t(K)):∫

K
|s(h)−1∂hCs(h)|2gY ,hC �A(2)(K) exp(−ε(2)(K)t). (11)

By (10) and (11), there exist A(3)(p, K)> 0 and ε(3)(p, K)> 0 such that the following holds for
any h∈Harm(V, ∂V , tθ, C) (t� t(K)):

‖s(h)−1∂hCs(h)‖Lp
1 ,K

�A(3)(K) exp(−ε(3)(p, K)t). (12)

By (9) and (12), there exist A(4)(p, K)> 0 and ε(4)(p, K)> 0 such that the following holds for
any h∈Harm(V, ∂V , tθ, C) (t� t(K)):

‖s(h)− id‖Lp
1 ,K

�A(4)(K) exp(−ε(4)(p, K)t). (13)

By (12) and (13), there exist A(5)(p, K)> 0 and ε(5)(p, K)> 0 such that the following holds for
any h∈Harm(V, ∂V , tθ, C) (t� t(K)):

‖s(h)− id‖Lp
2 ,K

�A(5)(K) exp(−ε(5)(p, K)t). (14)

Then, by using a standard bootstrapping argument, we obtain the claim of the theorem. �

Corollary 3.5. Let t(i)> 0 be any sequence such that limi→∞ t(i) =∞. For each t(i), we take
any ht(i) ∈Harm(V, ∂V , t(i)θ, C). Then, the sequence ht(i) is convergent to h

C in the C∞-sense
on any relatively compact open subsets of Y . The order of the convergence is estimated as
in (8).

4. Some estimates for harmonic bundles on a disc

This section is a preliminary for Theorem 7.17.

4.1 Universal boundedness of higher derivatives of Higgs fields

For any R> 0, we set B(R) = {z ∈C | |z|<R}. Let R0 > 0. Let (E, ∂E , θ) be a Higgs bundle on
B(R0) of rank r. Let f be the endomorphism of E determined by θ= f dz. Let C0 be a constant
such that

|tr(f j)|<C0 (j = 1, . . . , r).
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Let h be a harmonic metric of (E, ∂E , θ). Let ∇h denote the Chern connection of h. Let R(h)
denote the curvature of ∇h. We obtain the endomorphism R determined by R(h) =R dz dz. Let

f †h denote the adjoint of f with respect to h. Because R(h) + [θ, θ†h] = 0, we have R+ [f, f †h] = 0.
Let g0 = dz dz denote the standard Euclidean metric. We consider the Lp

� -norm of sections
of End(E) with respect to g0 and h, and the derivatives with respect to ∇h.

Proposition 4.1. Let 0<R1 <R0. For any �∈Z�0 and p� 1, there exist C(�, p), depending
only on r, R0, R1 and C0, such that

‖f|B(R1)‖Lp
�
+ ‖f †h|B(R1)

‖Lp
�
+ ‖R|B(R1)‖Lp

�
�C(�, p).

Proof. Let R2 = (R0 +R1)/2. By Simpson’s main estimate [Sim90, Sim92], there exists C1,

depending only on r, R0, R1 and C0, such that |f |h = |f †h|h �C1 on B(R2). We also obtain
|R(h)|h,g0 = |R|h � 2C2

1 on B(R2).
We recall a result due to Uhlenbeck.

Theorem 4.2 [Uhl82, Theorem 1.3]. Let V be a vector bundle on B(1) equipped with a
Hermitian metric hV and a unitary connection ∇V . Let R(∇V ) denote the curvature of ∇V .
For p� 1, let ‖R(∇V )‖Lp,hV

denote the Lp-norm with respect to g0 and hV . Then, there exist
positive constants c and κ depending only on r and p such that the following holds.

– If ‖R(∇V )‖Lp,hV
� κ, then there exists an orthonormal frame v of V such that the

connection form A of ∇V with respect to v satisfies (i) d∗A= 0 and (ii) ‖A‖Lp
1
�

c‖R(∇V )‖Lp .

We choose T > 0 such that 100T−1C2
1 <κ and T (R0 −R2)> 100. Let ϕT :Cw →Cz be defined

by ϕT (w) = T−1z. We consider (Ẽ, ∂
˜E , θ̃, h̃) =ϕ∗

T (E, ∂E , θ, h) on B(TR0). Let w0 ∈B(TR2 − 1).

Let p > 2. Let v(w0) be an orthonormal frame of Ẽ|D(w0,1) as in Theorem 4.2 for the metric h̃ and

the connection ∇
˜h
. Let A(w0) and R(w0) denote the connection form and the curvature form of

∇
˜h
with respect to v(w0). We have

d∗A(w0) = 0, dA(w0) +A(w0) ∧A(w0) =R(w0), (15)

‖A(w0)‖Lp
1(D(w0,1)) � c‖R‖Lp(D(w0,1)). (16)

Let Θ(w0) denote the matrix-valued (1, 0)-form determined by θ̃v(w0) = v(w0)Θ(w0). We have

the decomposition A(w0) =A(w0)
w dw+A(w0)

w dw. We have A(w0)
w =−tA(w0)

w . Because ∂θ̃= 0, the
following holds:

∂wΘ
(w0) + [A(w0)

w ,Θ(w0)] = 0. (17)

We also have

R(w0) + [Θ(w0), tΘ(w0)] = 0. (18)

Then, by a standard bootstrapping argument, we can prove that for any � there exists C2(�),
depending only on � and r such that

‖Θ(w0)‖Lp
� (D(w0,1/2))

+ ‖A(w0)‖Lp
�+1(D(w0,1/2))

�C2(�).

We obtain a desired estimate for ‖f|B(R1)‖Lp
�
, which implies a desired estimate for ‖f †h|B(R1)

‖Lp
�
.

Because R+ [f, f †h] = 0, we also obtain a desired estimate for ‖R|B(R1)‖Lp
�
.
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4.2 Difference of two families of large-scale solutions on a disc

Let R0 > 0. Let (E, ∂E , θ) be a Higgs bundle on B(R0) of rank r. Let f be the endomorphism
of E determined by θ= f dz. Let C0 be a constant such that

|tr(f j)|<C0 (j = 1, . . . , rank(E)).

Let hdet(E) be a flat metric of det(E). Let h0,t (t > 0) be harmonic metrics of (E, ∂E , tθ) such

that det(h0,t) = hdet(E). Let ∇0,t denote the Chern connection of (E, ∂E , h0,t). For any section u

of End(E) and for any element κ= (κ1, κ2, . . . , κ�)∈ {z, z}�, we set

∇0,t
κ u=∇0,t

κ1
◦∇0,t

κ2
◦ · · · ◦ ∇0,t

κ�
(u).

Theorem 4.3. Let 0<R1 <R0. Let C1, ε1 > 0. For any �∈Z�0, there exist positive constants
C(�), ε(�)> 0, depending only on r, C0, C1, ε1 and � such that the following holds.

– Let t(i)> 0 be an increasing sequence such that t(i)→∞ as i→∞. We also assume that
t(1)(R0 −R1)> 100. Let ht(i) be harmonic metrics of (E, ∂E , t(i)θ) such that det(ht(i)) =
hdet(E). Assume the following on B(R0) \B(R1):

|s(h0,t(i), ht(i))− id|h0,t(i)
�C1 exp(−ε1t(i)). (19)

Then, the following holds on B(R1) for any κ∈ {z, z}�:∣∣∣∇0,t(i)
κ (s(h0,t(i), ht(i))− id)

∣∣∣
h0,t(i)

�C(�) exp(−ε(�)t(i)).

4.2.1 The case �= 0 To simplify the notation we set si = s(h0,t(i), ht(i)). By (19), there exist
C ′(0), ε′(0)> 0, depending only on r, C1 and ε1, such that the following holds onB(R0) \B(R1):

Tr(si − idE)�C ′(0) exp(−ε′(0)t(i)). (20)

By [Sim88, Lemma 3.1], we have

−∂z∂zTr(si − idE) =−|∂(si)s−1/2
i |2h0,t(i)

− |[t(i)θ, si]s−1/2
i |2h0,t(i)

. (21)

In particular, Tr(si − idE) is a subharmonic function on B(R0). By the maximum principle of
subharmonic functions, (20) holds on B(R0). Because det(si) = 1, we obtain the claim in the
case �= 0.

4.2.2 Estimates for L2-norms We set R2 = (R0 +R1)/2 and R3 = (R0 +R2)/2. Let χ :C→
R�0 be a C∞-function such that χ(z) = 1 (|z|�R2) and χ(z) = 0 (|z|�R3). Let gz = dz dz be
the standard Euclidean metric. By using [Sim88, Lemma 3.1], we obtain∫

B(R2)

(
|∂(si)s−1/2

i |2h0,t(i),gz
+ |[t(i)θ, si]s−1/2

i |2h0,t(i),gz

)
dvolgz �

∫
B(R3)\B(R2)

|∂z∂z(χ)| · (Tr(si − idE)) dvolgz . (22)

Hence, there exist C5 > 0, ε5 > 0 such that∫
B(R2)

(
|∂(si)s−1

i |2h0,t(i),gz
+ |s−1

i [t(i)θ, si]|2h0,t(i),gz

)
dvolgz �C5 exp(−ε5t(i)). (23)
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4.2.3 Rescaling To study the derivatives, for any t > t(1), we define the map ρt :Cw →Cz by
ρt(w) = t−1w. We have ρ−1

t (B(R)) =B(tR). We use the standard Euclidean metric gw = dw dw
on Cw.

We set Ẽt = ρ∗t (E) on B(tR0). It is equipped with the Higgs field θ̃t = ρ∗t (tθ). We have θ̃t =

ρ∗t (f) dw. We have the harmonic metrics h̃0,t =ϕ∗
t (h0,t) of the Higgs bundles (Ẽt, ∂ ˜Et

, θ̃t). Let

∇̃0,t denote the Chern connection of (Ẽt, ∂ ˜Et
, h̃0,t).

By Simpson’s main estimate, there exists C10 > 0, depending only on r and C0, such that the
following holds on B(tR0 − 1):

|θ̃t|˜h0,t,gw
�C10. (24)

Let R(h̃0,t) denote the curvature of the Chern connection of (Ẽt, ∂ ˜Et
, h̃0,t). We have the

following equality:

R(h̃0,t) + [θ̃t, (θ̃t)
†
˜h0,t

] = 0. (25)

By (24) and (25), we have the following on B(tR0 − 1):

|R(h̃0,t)|˜h0,t,gw
� 2C2

10. (26)

We also have the universal estimates for higher derivatives of θ̃ and R(h̃0,t) as in
Proposition 4.1.

4.2.4 Estimates for higher derivatives We also have the harmonic metrics h̃t(i) =ϕ∗
t(i)(ht(i))

of (Ẽt(i), ∂ ˜Et(i)
, θ̃t(i)). Let s̃i =ϕ∗

t(i)(si). We have h̃t(i) = h̃0,t(i)s̃i. By (23), we have∫
B(t(i)R2)

(
|∂(s̃i)s̃−1

i |2
˜h0,t(i),gw

+ |s̃−1
i [θ̃t(i), s̃i]|2˜h0,t(i),gw

)
dvolgw �C5 exp(−ε5t(i)). (27)

This implies ∫
B(t(i)R2)

|s̃−1
i ∂

˜h0,t(i)
(s̃i)|2˜h0,t(i),gw

dvolgw �C5 exp(−ε5t(i)). (28)

Let R(h̃t(i)) denote the curvature of the Chern connection of (Ẽt(i), ∂ ˜Et(i)
, h̃t(i)). We have

R(h̃t(i)) + [θ̃t(i), (θ̃t(i))
†
˜ht(i)

] = 0.

Note that

(θ̃t(i))
†
˜ht(i)

= s̃−1
t(i)(θ̃t(i))

†
˜h0,t(i)

s̃t(i).

We obtain

∂(s̃−1
i ∂

˜h0,t(i)
s̃i) =R(h̃t(i))−R(h̃0,t(i)) =−

[
θ̃t(i), s̃

−1
i (θ̃t(i))

†
˜h0,t(i)

s̃i − (θ̃t(i))
†
˜h0,t(i)

]
=−

[
θ̃t(i), s̃

−1
i [(θ̃t(i))

†
˜h0,t(i)

, s̃i − id]
]
. (29)

Hence, there exist C11 > 0 and ε11 > 0 such that the following holds on B(t(i)R0 − 1):

|∂(s̃−1
i ∂

˜h0,t(i)
s̃i)|˜h0,t(i),gw

�C11 exp(−ε11t(i)). (30)
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For any w0 ∈Cw, we set D(w0, T ) = {|w−w0|<T}. By (26), (28) and (30), for any p� 2, there
exist C12(p)> 0, ε12(p)> 0 such that the following holds for any w0 ∈B(t(i)R2 − 1):

|s̃−1
i ∂

˜h0,t(i)
s̃i|Lp

1(D(w0,2/3)),˜h0,t(i),gw
�C12(p) exp(−ε12(p)t(i)). (31)

By (31) and the estimate in the case �= 0, for any p > 1, there exist C13(p)> 0, ε13(p)> 0 such
that the following holds for any w0 ∈B(t(i)R2 − 1):

|s̃i − id|
Lp

2(D(w0,2/3)),˜h0,t(i),gw
�C13(p) exp(−ε13(p)t(i)). (32)

By a standard bootstrapping argument, for any p > 1 and �∈Z�2, there exist C14(�, p)>
0, ε14(�, p)> 0 such that the following holds for any w0 ∈B(t(i)R2 − 1):

|s̃i − id|
Lp

� (D(w0,1/2)),˜h0,t(i),gw
�C14(�, p) exp(−ε14(�, p)t(i)). (33)

Then, we obtain the claim of Theorem 4.3.

5. Decomposable filtered extensions

5.1 Meromorphic extensions and filtered extensions

5.1.1 Vector bundles Let U ⊂C be a simply connected open neighbourhood of 0. We set
U∗ =U \ {0}. Let ι :U∗ →U denote the inclusion. Let V be a locally free OU∗-module of rank r.
We obtain a locally free ι∗OU∗-module ι∗(V ). A meromorphic (respectively smooth) extension of
V is defined to be a locally free OU (∗0)-submodule (respectively OU -submodule) V ⊂ ι∗(V ) such
that V|U∗ = V . A filtered extension of V is defined to be a meromorphic extension V equipped
with a filtered bundle P∗(V) over V .
Example 5.1. The OU (∗0)-submodule OU (∗0) exp(z−1)⊂ ι∗(OU∗) is a meromorphic extension of
OU∗ , which is different from OU (∗0)⊂ ι∗(OU∗).

For a positive integer �, let ϕ� :C→C be defined by ϕ�(ζ) = ζ�. We set U (�) =ϕ−1
� (U) and

U (�)∗ =U (�) \ {0}. The induced morphisms U (�) →U and U (�)∗ →U∗ are also denoted by ϕ�.
Let Gal(�) denote the Galois group of the ramified covering ϕ�. Namely, we put Gal(�) = {a∈
C∗ | a� = 1}, and we consider the action of Gal(�) on U (�) by the multiplication on the coor-
dinate ζ. Let ι(�) :U (�)∗ →U (�) denote the inclusion. We set V (�) :=ϕ∗

� (V ), which is naturally
Gal(�)-equivariant. The (ι(�))∗OU (�)∗-module (ι(�))∗(V (�)) is also Gal(�)-equivariant. A Gal(�)-
equivariant meromorphic extension of V (�) is defined to be a locally free OU (�)(∗0)-submodule

V(�) ⊂ ι
(�)
∗ (V (�)) which is preserved by the Gal(�)-action. A Gal(�)-equivariant filtered exten-

sion of V (�) is defined to be a filtered bundle P∗(V(�)) over a Gal(�)-equivariant meromorphic
extension V(�) of V (�) such that each PaV(�) is preserved by the Gal(�)-action.

A meromorphic extension V of V induces a Gal(�)-equivariant meromorphic extension
ϕ∗
�(V) of V (�). Conversely, for any Gal(�)-equivariant meromorphic extension V(�) of V (�), we

obtain the OU (∗0)-module ϕ�∗(V(�)) equipped with the Gal(�)-action. The Gal(�)-invariant part
ϕ�∗(V(�))Gal(�) is called the descent of V(�) which is a meromorphic extension of V .

Lemma 5.2. For a meromorphic extension V of V , the descent of ϕ∗
� (V) equals V . For a

Gal(�)-equivariant meromorphic extension V(�) of V (�), ϕ∗
� (ϕ�∗(V(�))Gal(�)) equals V(�). These

procedures induce an equivalence between meromorphic extensions of V and Gal(�)-equivariant
meromorphic extensions of V (�).
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For a filtered extension P∗V of V , we obtain a Gal(�)-equivariant filtered extension P∗(ϕ∗
� (V))

over V(�) as follows:

Pa(ϕ
∗
�V) =

∑
b∈R,k∈Z
�b+k�a

ζ−kϕ∗
� (PbV)⊂ϕ∗

� (V).

The filtered bundle P∗(ϕ∗
� (V)) is denoted by ϕ∗

� (P∗V).
For a Gal(�)-equivariant filtered extension P∗(V(�)) of V (�), we obtain a filtered extension

P∗(ϕ�∗(V(�))Gal(�)) as follows:

Pa(ϕ�∗(V(�))Gal(�)) =ϕ�∗(P�aV(�))Gal(�).

It is called the descent of P∗(V(�)).

Lemma 5.3. These procedures induce an equivalence between filtered extensions of V and
Gal(�)-equivariant filtered extensions of V (�).

5.1.2 Non-degenerate symmetric pairing For any b∈R, let P(b)
∗ (OU (∗0)) denote the filtered

bundle over OU (∗0) defined by

P(b)
a (OU (∗0)) = z−[a−b]OU .

Here, we set [c] :=max{n∈Z | n� c} for any c∈R.
Let C : V ⊗ V →OU∗ be a holomorphic non-degenerate symmetric pairing. We say that a

meromorphic extension V is compatible with C if C extends to a pairing V ⊗V →OU (∗0). We

say that a filtered extension P∗V is compatible with C if C induces P∗V ⊗P∗V →P(0)
∗ (OU (∗0)).

We say that C is perfect with respect to P∗V if C induces an isomorphism P∗(V)	P∗(V∨).
We have the induced symmetric pairing det(C) of det(V ). If V (respectively P∗V) is

compatible with C, then det(V) (respectively det(P∗V)) is compatible with det(C).

Lemma 5.4 [LM10b]. Suppose that P∗V is compatible with C. Then, C is perfect with respect
to P∗(V) if and only if det(C) is perfect with respect to det(P∗V).
Lemma 5.5. There exists a unique meromorphic extension L of det(V ) which is compatible
with det(C). There exists a unique filtered bundle PC∗ L over L such that det(C) is perfect with
respect to PC∗ L.
Proof. We may assume that U is a disc. Let v0 be a frame of det(V ) on U∗. We obtain a
holomorphic function (detC)(v0, v0) on U

∗. There exist an integer k and a holomorphic function
g1 such that (detC)(v0, v0) = z−k exp(g1). We obtain a frame v1 = exp(−g1/2)v0 of det(V ) on
U∗. We set L=OU (∗0)v1 ⊂ ι∗(det V ). Then, L is compatible with det(C).

We have det(C)(v1, v1) = z−k. We define

PC
a (L) = z−[a−k/2]OU · v1.

Then, PC∗ L satisfies the desired condition. The uniqueness is clear. �

We set C(�) :=ϕ∗
�C which is a non-degenerate symmetric pairing of V (�).

Lemma 5.6. V (respectively P∗V) is compatible with C if and only if ϕ∗
� (V) (respectively

ϕ∗
� (P∗V)) is compatible with C(�). When P∗V and C are compatible, C is perfect with respect

to P∗V if and only if C(�) is perfect with respect to ϕ∗
� (P∗V).
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5.1.3 Higgs bundles Let θ be a Higgs field of V , i.e. θ : V → V ⊗Ω1
U∗ . We obtain ι∗(θ) :

ι∗(V )→ ι∗(V )⊗Ω1
U . A meromorphic (respectively smooth) extension of (V, θ) is defined to be a

meromorphic (respectively smooth) extension V of V such that ι∗(θ)(V)⊂V ⊗Ω1
U . The induced

Higgs field of V is denoted by θ. A filtered extension of (V, θ) is defined to be a filtered extension
P∗(V) over a meromorphic extension V of (V, θ). A filtered extension (P∗V , θ) is said to be regular
(respectively good, unramifiedly good) if (P∗V , θ) is a regular (respectively good, unramifiedly
good) filtered Higgs bundle. (See [Moc21, §2.4] for the notion of good filtered Higgs bundles and
unramifiedly good filtered Higgs bundles.)

Lemma 5.7. Let f be the endomorphism of V defined by θ= f dz/z. Let aj(z) be the
holomorphic functions on U∗ obtained as the coefficients of the characteristic polynomial
det(tidV − f) =

∑r
j=0 aj(z)t

j .

– A meromorphic extension of (V, θ) exists if and only if the Higgs bundle (V, θ) is wild,
i.e. aj(z) are meromorphic at z = 0. In that case, there exists a good filtered extension.

– A regular filtered extension exists if and only if (V, θ) is tame, i.e. aj(z) are holomorphic
at z = 0.

We obtain the Higgs field θ(�) of V (�). The following lemmas are clear.

Lemma 5.8. The pull back and the descent induce an equivalence between meromorphic
extensions of (V, θ) and Gal(�)-equivariant meromorphic extensions of (V (�), θ(�)).

Lemma 5.9. The pull back and the descent induce an equivalence between regular (respectively
good) filtered extensions of (V, θ) and Gal(�)-equivariant regular (respectively good) filtered
meromorphic extensions of (V (�), θ(�)).

5.2 Decomposable filtered extensions of regular semisimple Higgs bundles

5.2.1 Decomposable filtered extensions We continue to use the notation in §5.1.1. Let (V, θ)
be a regular semisimple Higgs bundle on U∗. Assume that θ is wild. There exist �∈Z>0 and the
decomposition

ϕ∗
� (V, θ) =

r⊕
i=1

(Vi, θi), (34)

where rank Vi = 1, and θi − θj (i �= j) are nowhere vanishing on U (�)∗. Let V be a meromorphic
extension of (V, θ). The decomposition (34) extends to

ϕ∗
� (V , θ) =

r⊕
i=1

(Vi, θi), (35)

where each Vi is a meromorphic extension of Vi.

Definition 5.10. A filtered bundle P∗V over V is called a decomposable filtered extension of
(V, θ) if the filtered bundle ϕ∗

� (P∗V) is compatible with the decomposition (35), i.e. the following
holds for any a∈R:

Pa(ϕ
∗
�V) =

r⊕
i=1

Pa(ϕ
∗
�V)∩ Vi.

Such a (P∗V , θ) is called a decomposable filtered Higgs bundle.

The following lemma is obvious by definition.
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Lemma 5.11. Suppose that (P∗V , θ) is decomposable:

– (P∗V , θ) is a good filtered Higgs bundle;

– any decomposition (V , θ)|U∗ = (V1, θ1)⊕ (V2, θ2) extends to a decomposition (P∗V , θ) =
(P∗V1, θ1)⊕ (P∗V2, θ2) such that Vi|U∗ = Vi.

5.2.2 Filtered line bundles and decomposable filtered Higgs bundles There exists the
decomposition

(V, θ) =
⊕
k∈S

(V [k], θ[k]), (36)

such that ΣV [k],θ[k] are connected. We set rk = rank V [k]. For each k, there exists the decomposi-
tion of the Higgs bundle

ϕ∗
rk(V

[k], θ[k]) =

rk⊕
i=1

(V
[k]
i , θ

[k]
i ), (37)

where rank V
[k]
i = 1, and θ

[k]
i are 1-forms such that θ

[k]
i − θ

[k]
j (i �= j) are nowhere vanish-

ing on U (rk)∗. A decomposable filtered extension P∗V of (V, θ) induces filtered extensions

P∗(V [k]
i ) of (V

[k]
i , θ

[k]
i ). Note that P∗(V [k]

i ) = σ∗P∗(V [k]
1 ) for σ ∈Gal(rk) such that σ∗θ[k]1 = θ

[k]
i .

Conversely, a filtered extension P∗V [k]
1 of V

[k]
1 induces a Gal(rk)-equivariant filtered extension⊕

σ∈Gal(rk)
σ∗P∗V [k]

1 of ϕ∗
rk(V

[k]) =
⊕rk

i=1 V
[k]
i , and hence a decomposable filtered extension P∗V [k]

of (V [k], θ[k]). Thus, we obtain a decomposable filtered extension
⊕

k∈S P∗V [k] of (V, θ). Note that

P∗V [k] is also obtained as (ϕrk)∗(P∗V [k]
1 ) by the natural identification (ϕrk)∗(V

[k]
1 ) = V [k]. The

following proposition is easy to see.

Proposition 5.12. This procedure induces an equivalence between decomposable filtered

extensions of (V, θ) and a tuple of filtered extensions of V
[k]
1 (k ∈ S).

5.2.3 Decomposable filtered extension determined by determinant bundles Let V be a
meromorphic extension of (V, θ). The decomposition (36) extends to a decomposition

(V , θ) =
⊕
k∈S

(V [k], θ[k]). (38)

The decomposition (35) extends to a decomposition

ϕ∗
rk(V [k], θ[k]) =

rk⊕
i=1

(V [k]
i , θ

[k]
i ). (39)

Proposition 5.13. For a tuple of filtered bundles P∗ det(V [k]) over det(V [k]), there uniquely
exists a decomposable filtered bundle P�∗ (V) =

⊕
k∈S P�∗ (V [k]) over V such that det(P�∗V [k]) =

P∗ det(V [k]) for any k ∈ S. Moreover, the following hold for any k ∈ S:
– dimGrP

�

a (V [k])� 1 for any a∈R;

– let dk be a real number such that GrPdk
(det(V [k])) �= 0, so then GrP

�

a (V [k]) �= 0 if and only
if rka− dk ∈Z (rk is odd) or rka− dk ∈ 1

2Z \Z (rk is even).

– GrP
�

a (V [k]
i ) �= 0 if and only if a− dk ∈Z (rk is odd) or a− dk ∈ 1

2Z (rk is even).
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Proof. It is enough to consider the case where ΣV,θ is connected, i.e. |S|= 1. We omit the
superscript [k] and the subscript k. We set (V (r), θ(r)) =ϕ∗

r(V, θ) and V(r) =ϕ∗
r(V). There exists

the following decomposition of the Higgs bundle on U (r)∗:

(V (r), θ(r)) =

r⊕
i=1

(Vβ(i), β(i) dζ). (40)

Here, β(i) are meromorphic functions on (U (r), 0) such that β(i)− β(j) (i �= j) are nowhere
vanishing on U (r)∗. The decomposition (40) extends to a decomposition on U (r):

(V(r), θ(r)) =

r⊕
i=1

(Vβ(i), β(i) dζ). (41)

We have σ∗Vβ(i) = Vσ∗(β(i)) for any σ ∈Gal(r).
Let vβ(1) be a frame of Vβ(1). We obtain frames vσ∗(β(1)) = σ∗vβ(1) of Vσ∗β(1), and the tuple

vβ(1), . . . , vβ(r) is a frame of V(r). We set

b :=min
{
c∈R | vβ(1) ∧ · · · ∧ vβ(r) ∈Pc(ϕ

∗
r det V)

}
.

We define the filtered bundles P�∗ (Vβ(i)) as follows:

P�
a(Vβ(i)) = ζ−[a−b/r]OU (r)vβ(i).

They are independent of the choice of vβ(1). We set P�∗ (V(r)) =
⊕P�∗ (Vβ(i)), which is Gal(r)-

equivariant. As the descent, we obtain a filtered bundle P�∗ (V) over V , which satisfies the desired
condition. The uniqueness is clear. By the construction, (P�∗ (V), θ) is clearly a good filtered
Higgs bundle.

Let τ be a frame of Pd(det V). There exist an integer m and a nowhere vanishing holomorphic
function g on U (r) such that

vβ(1) ∧ · · · ∧ vβ(r) = ζmg(ζ)ϕ∗
rτ.

Because a generator σ0 of Gal(r) acts on the set {β(i)} in a cyclic way, we have σ∗0(vβ(1) ∧
· · · ∧ vβ(r)) = (−1)(r−1)vβ(1) ∧ · · · ∧ vβ(r). Hence, we obtain that σ∗0(ζm) = (−1)r−1ζm and σ∗0g=
g. This implies that m/r ∈Z if r is odd or that m/r ∈ 1

2Z \Z if r is even. By our choice of

b, we have b=−m+ rd. It is easy to see that GrP
�

c (Vβ(i)) �= 0 if and only if c− b/r ∈Z. For

each p∈Z, we have the Gal(r)-invariant sections
∑

σ∈Gal(r) σ
∗(ζpvβ(1)) of V(r) which induces a

section of P�
b/r2−p/r(V). Moreover, it induces a frame of GrP

�

b/r2−p/r(V). Hence, it is easy to see

that GrP
�

a (V) �= 0 if and only if ra− b/r ∈Z, and that dimGrP
�

a (V)� 1. Then, we obtain the last
two claims. �

5.3 Non-degenerate pairings and decomposable filtered extensions

5.3.1 Non-degenerate symmetric pairings of regular semisimple Higgs bundles We continue
to use the notation in §5.2. Let C be a non-degenerate symmetric pairing of (V, θ). For any
z0 ∈U∗, the eigen decomposition of θ at z0 is orthogonal with respect to C. The decomposition
(34) is orthogonal with respect to ϕ∗

�C.
The decomposition (36) is orthogonal with respect to C. Let C [k] denote the restriction of

C to V [k]. The decomposition (37) is orthogonal with respect to ϕ∗
rkC

[k]. Let C
[k]
i denote the

induced symmetric pairing of V
[k]
i . We have C

[k]
i = σ∗C [k]

1 for σ ∈Gal(rk) such that σ∗θ[k]1 =
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θ
[k]
i . Conversely, for any non-degenerate symmetric pairings C

[k]
1 (k ∈ S), we obtain a Gal(rk)-

equivariant non-degenerate symmetric pairing
⊕

σ∈Gal(rk)
σ∗C [k]

1 of ϕ∗
rkV

[k]. It induces a non-

degenerate symmetric pairing C [k] of (V [k], θ[k]), and a non-degenerate pairing
⊕

C [k] of (V, θ).
The following lemma is a special case of Proposition 2.5.

Lemma 5.14. These procedures induce an equivalence between a non-degenerate symmetric

pairing C of (V, θ) and a tuple (C
[k]
1 )k∈S of non-degenerate symmetric pairings of V

[k]
1 .

5.3.2 Canonical decomposable filtered extensions in the symmetric case We recall the
following [LM10b, §4.1].
Proposition 5.15. For a non-degenerate symmetric pairing C of (V, θ), there uniquely exists
a meromorphic extension VC of (V, θ) compatible with C. Moreover, there uniquely exists a
filtered bundle PC∗ (VC) over VC satisfying the following conditions:

– C is perfect with respect to PC∗ (VC);

– PC∗ (VC) is a decomposable filtered extension of (V, θ).

We have the non-degenerate symmetric pairing C
[k]
1 (k ∈ S) of V [k]

1 corresponding to C as in

Lemma 5.14. There exist unique filtered extensions PC∗ ((V [k]
1 )C) of V

[k]
1 compatible with C

[k]
1 as

in Lemma 5.5. The decomposable filtered extension PC∗ (VC) of (V, θ) corresponds to the tuple

PC∗ ((V [k]
1 )C) (k ∈ S) (Proposition 5.12).

5.3.3 Comparison of two canonical extensions Let C be a non-degenerate symmetric pairing
of (V, θ). We have the unique filtered extension PC∗ VC of (V, θ) compatible with C. We have the
decomposition

(VC , θ) =
⊕
k∈S

((VC)[k], θ[k]).

Let det(C [k]) denote the induced symmetric pairings of (det(V [k]), tr(θ[k])). Note that
det((VC)[k]) is a meromorphic extension of (det(V [k]), tr(θ[k])) compatible with det(C [k]).
We have the unique filtered extension PC∗ det((VC)[k]) of (det(V [k]), tr(θ[k])) compatible with
det(C [k]). We obtain the decomposable filtered Higgs bundle (P�∗ (VC), θ) determined by the
tuple PC∗ det((VC)[k]) as in Proposition 5.13.

Proposition 5.16. The following holds: PC∗ (VC) =P�∗ (VC).

Proof. The filtered Higgs bundle (PC∗ (VC), θ) is decomposable. We have det(PC∗ (VC)[k]) =
PC∗ det((VC)[k]) = detP�∗ ((VC)[k]). Hence, we obtain PC∗ (VC) =P�∗ (VC) by the uniqueness. �

Corollary 5.17. Let P∗(VC) be a filtered extension of (V, θ) satisfying the following
conditions:

– C is perfect with respect to P∗(VC);

– P∗VC =
⊕

k∈S P∗((VC)[k]).

Let P�∗ (V) be the decomposable filtered extension of (V, θ) determined by the filtered bundles
det(P∗((VC)[k])) (k ∈ S). Then, PC∗ (VC) =P�∗ (VC).
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Proof. It follows from det(P∗((VC)[k])) =PC∗ det((VC)[k]). �

Let C and C ′ be non-degenerate symmetric pairings of (V, θ). Let C [k] and C ′[k] (k ∈ S) be the
induced non-degenerate symmetric pairings of (V [k], θ[k]). We have the corresponding symmetric

pairings C
[k]
1 and C

′[k]
1 of V

[k]
1 .

Corollary 5.18. Suppose that det(C [k]) = det(C ′[k]) for any k ∈ S. Then, VC = VC′
holds if

and only if PC∗ VC =PC′
∗ VC′

holds. It is equivalent to the condition that there exist holomorphic

functions γ
[k]
1 (k ∈ S) on U (rk) satisfying C

′[k]
1 = exp(γ

[k]
1 )C

[k]
1 and

∑
σ∈Gal(rk)

σ∗γ[k]1 = 0.

Proof. The ‘if’ part of the claim is clear. The “only if” part of the claim follows from
Corollary 5.17. �

5.4 Prolongation of decoupled harmonic bundles

Let (V, θ) be a Higgs bundle on U∗, which is regular semisimple and wild. Let h be a decoupled
harmonic metric of (V, θ). We obtain the good filtered Higgs bundle (Ph∗ V, θ) on (U, 0).

Lemma 5.19. The filtered Higgs bundle (Ph∗ V, θ) is decomposable.

Proof. Because the decomposition (34) is orthogonal with respect to ϕ−1
� (h), the claim is

clear. �

Remark 5.20. If h is a decoupled harmonic metric of (V, θ), then we obtain that Ph∗ V is a filtered
bundle without assuming θ is wild.

We have the decomposition Ph∗ (V ) =
⊕

k∈S Ph∗ (V [k]). We obtain the filtered extensions

det(Ph∗ V [k]) =Pdet(h)
∗ det(V [k]) of det(V [k]). We have the filtered bundle P�∗ (V) over V =PhV

determined by det(Ph∗ V [k]) as in Proposition 5.13.

Lemma 5.21. We have Ph∗ (V ) =P�∗ (V).
Proof. This follows from the uniqueness of the decomposable filtered extension P�∗ (V) of (V, θ)
satisfying the condition in Proposition 5.13. �

The decomposition (36) is orthogonal with respect to h. Let h[k] denote the induced decoupled
harmonic metric of (V [k], θ[k]) (k ∈ S). The decomposition (37) is orthogonal with respect to

ϕ∗
rk(h

[k]). Let h
[k]
1 denote the induced flat metric of V

[k]
1 .

Let h′ be another decoupled harmonic metric of (V, θ). Similarly, we obtain the induced

decomposable harmonic metric h′[k] of (V [k], θ[k]) and the induced flat metric h
′[k]
1 of V

[k]
1 .

Corollary 5.22. Suppose that det(h[k]) = det(h′[k]) for any k ∈ S. Then, PhV =Ph′
V hold

if and only if Ph∗ (V ) =Ph′
∗ (V ) holds. This is equivalent to the condition that there uniquely

exist holomorphic functions γ
[k]
1 (k ∈ S) on U (rk) such that (i) h

′[k]
1 = exp(2Re(γ

[k]
1 ))h

[k]
1 and (ii)∑

σ∈Gal(rk)
σ∗γ[k]1 = 0.

Proof. The ‘if’ part of the claim is clear. The “only if” part of the claim follows from Lemma 5.21.
The second claim is clear. �
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5.5 Decoupled harmonic metrics and symmetric products

5.5.1 Comparison of extensions Let (V, θ) be a Higgs bundle on U∗ which is regular
semisimple and wild. Let C be a non-degenerate symmetric pairing of (V, θ). There exists a
unique decoupled harmonic metric hC of (V, θ) compatible with C.

Lemma 5.23. We have PhC

∗ (V ) =PC∗ (VC).

Proof. By the pull back via ϕ�, it is enough to consider the case rank V = 1, which is easy to
check. �

5.5.2 Symmetric products compatible with a decoupled harmonic metric The following
lemma is a special case of Lemma 2.7.

Lemma 5.24. Suppose rank V = 1. Let h be a flat metric of V . There exists a holomorphic non-
degenerate symmetric product C of V which is compatible with h if and only if the monodromy
of the Chern connection of h is 1 or −1. It is equivalent to the condition

{d∈R | GrP
h

d (V ) �= 0} ⊂ 1

2
Z.

If C ′ is another non-degenerate symmetric pairing of V which is compatible with h, there exists
a non-zero constant α such that (i) C ′ = αC and (ii) |α|= 1.

Proposition 5.25. Let h be a decoupled harmonic metric of (V, θ). Suppose that there exist
non-degenerate symmetric products Cdet(V [k]) (k ∈ S) of det(V [k]) which are compatible with

det(h[k]).

– There exists a non-degenerate symmetric pairing C of (V, θ) such that (i) C is compatible
with h and (ii) det(C [k]) =Cdet(V [k]).

– If C ′ is another non-degenerate symmetric pairing of (V, θ) satisfying the above
conditions (i) and (ii), then there exist rk-roots μk of 1 such that C ′[k] = μkC

[k].

Proof. Let h
[k]
1 (k ∈ S) be the induced flat metrics of V

[k]
1 . By Lemma 2.7, Proposition 5.13

and Lemma 5.24, there exist non-degenerate symmetric products C
[k]
1 of V

[k]
1 compatible with

h
[k]
1 for any k ∈ S. They induce non-degenerate symmetric products C [k] of (V [k], θ[k]). Because

det(C [k]) is compatible with det h[k], there exist constants αk such that det(C [k]) = αk ·Cdet(V [k])

and |αk|= 1. By replacing C [k] with α
1/rk
k C [k], we obtain the first claim. The second claim is

also clear. �

5.5.3 Existence Let V be a meromorphic extension of (V, θ).

Lemma 5.26. Let Cdet(V [k]) be non-degenerate symmetric pairings of det(V [k]) such that

det(V [k]) is compatible with Cdet(V [k]). Then, there exists a non-degenerate symmetric pairing C

of (V, θ) such that (i) det(C [k]) =Cdet(V [k]) and (ii) VC = V .
Proof. It is enough to consider the case |S|= 1. We omit the superscript [k] and the sub-
script k. We use the notation in the proof of Proposition 5.13. Let C ′

1,β(1) be a non-degenerate

symmetric pairing of Vβ(1). We obtain a Gal(r)-invariant non-degenerate symmetric pair-

ing
⊕

σ∈Gal(r) σ
∗C ′

1,β(1) of V(r). It induces a non-degenerate symmetric pairing C ′ of V .
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From C ′′
1,β(1) = ζC ′

1,β(1), we obtain another non-degenerate symmetric pairing C ′′, for which we

have det(C ′′) = z det(C ′).
Let α be the holomorphic function on U∗ determined by det(C ′) = α ·Cdet(V ). By the above

consideration, we may assume that α induces a nowhere vanishing holomorphic function on U . By
choosing an rth root α1/r of α, and by setting C = α−1/rC ′, we obtain a desired non-degenerate
pairing C. �

We can prove the following lemma similarly.

Lemma 5.27. Let hdet(V [k]) be flat metrics of det(V [k]) such that det(V [k]) =

Ph
det(V [k])(det(V [k])). There exists a decoupled harmonic metric h of (V, θ) such that (i)

det(h[k]) = hdet(V [k]) and (ii) Ph(V ) = V .

5.6 Global case

5.6.1 Meromorphic extensions and filtered extensions Let Y be a Riemann surface with a
discrete subset D. Let ιY \D : Y \D→ Y denote the inclusion. For a holomorphic vector bundle
V on Y \D, a meromorphic extension of V to (Y, D) is defined to be a locally free OY (∗D)-
submodule V of (ιY \D)∗V such that V|Y \D = V . A filtered extension of V to (Y, D) is a filtered
bundle P∗V over a meromorphic extension V of V . We use similar terminology for non-degenerate
symmetric parings and Higgs bundles in this situation.

5.6.2 Decomposable filtered extensions Let (V, θ) be a regular semisimple Higgs bundle on
Y \D which is wild along D. Let P∗V be a filtered extension of (V, θ) to (Y, D).

Definition 5.28. P∗V is called a decomposable filtered extension of (V, θ) if the restriction to
a neighbourhood of any P ∈D is decomposable.

The following lemma is clear.

Lemma 5.29. A decomposable filtered Higgs bundle (P∗V , θ) is a good filtered Higgs bun-
dle. Any decomposition (V , θ)|Y \D = (V1, θ1)⊕ (V2, θ2) extends to a decomposition (P∗V , θ) =
(P∗V1, θ1)⊕ (P∗V2, θ2).

We have the line bundle LV on ΣV,θ corresponding to (V, θ). Let P(T ∗Y ) be the projective

completion of T ∗Y . Let Z be the closure of ΣV,θ ⊂ T ∗(Y \D) in P(T ∗Y ). Let Σ̃V,θ →Z denote

the normalization. We may naturally regard Σ̃V,θ as a partial compactification of ΣV,θ. We set

D̃= Σ̃V,θ \ΣV,θ. The morphism π : ΣV,θ → Y \D uniquely extends to a morphism π̃ : (Σ̃V,θ, D̃)→
(Y, D). From a meromorphic extension LV of LV to (Σ̃V,θ, D̃), we obtain a meromorphic extension

π̃∗(LV ) of (V, θ) to (Y, D). From a filtered extension P∗LV of LV to (Σ̃V,θ, D̃), we obtain a
decomposable filtered extension π̃∗(P∗LV ) of (V, θ) to (Y, D). The following proposition is a
reformulation of Proposition 5.12.

Proposition 5.30. The above procedure induces an equivalence between filtered extensions
(respectively meromorphic extensions) of LV to (Σ̃V,θ, D̃) and decomposable filtered extensions
(respectively meromorphic extensions) of (V, θ) to (Y, D).

5.6.3 Symmetric products Let C be a non-degenerate symmetric pairing of (V, θ). We
restate Proposition 5.15 in the global setting.

24

https://doi.org/10.1112/mod.2024.9 Published online by Cambridge University Press

https://doi.org/10.1112/mod.2024.9


Asymptotic behaviour of large-scale solutions

Proposition 5.31. For a non-degenerate symmetric pairing C of (V, θ), there uniquely exists
a meromorphic extension VC of (V, θ) to (Y, D) compatible with C. Moreover, there uniquely
exists a filtered bundle PC∗ (VC) over VC satisfying the following conditions;

– C is perfect with respect to PC∗ (VC);

– PC∗ (VC) is a decomposable filtered extension of (V, θ).

The decomposable filtered extension PC∗ (VC) is described as follows. Let C0 be the non-
degenerate symmetric pairing of LV corresponding to C. There exists the unique filtered
extension PC0∗ (LC0

V ) of LV to (Σ̃V,θ, D̃). Then, PC∗ (VC) = π̃∗(PC0∗ (LC0

V )).

5.6.4 Decoupled harmonic bundles Let h be a decoupled harmonic metric of (V, θ). We
obtain the good filtered Higgs bundle (Ph∗ V, θ) on (Y, D). We obtain the following lemma from
Lemma 5.19.

Lemma 5.32. The filtered Higgs bundle (Ph∗ V, θ) is decomposable.

We obtain the following lemma from Lemma 5.23.

Lemma 5.33. For a non-degenerate symmetric pairing C of (V, θ), we have PhC

∗ (V ) =PC∗ (VC).

5.7 Kobayashi–Hitchin correspondence for decoupled harmonic bundles

Let X be a compact Riemann surface. Let D⊂X be a finite subset. Let (V, θ) be a regular
semisimple Higgs bundle on X \D, which is wild along D. For any decoupled harmonic metric h
of (V, θ) we obtain a good filtered Higgs bundle (Ph∗ V , θ) on (X,D) which is polystable of degree
0. According to Lemma 5.32, it is decomposable.

Conversely, let (P∗V , θ) be a polystable decomposable filtered Higgs bundle of degree 0 on
(X,D) such that (V, θ) = (V , θ)|X\D is regular semisimple. There exists a harmonic metric h of
(V, θ) adapted to P∗V by [BB04, Moc21, Sim90].

Proposition 5.34. The harmonic metric h is a decoupled harmonic metric.

Proof. It is enough to consider the case where (P∗V , θ) is stable. By Lemma 5.29, ΣV,θ is con-
nected. Let P(T ∗X) denote the projective completion of T ∗X. Let Z denote the closure of ΣV,θ

in P(T ∗X). Let Σ̃V,θ →Z denote the normalization. Let ρ : Σ̃V,θ →X denote the induced mor-

phism. We set D̃= ρ−1(D). Let LV be the line bundle on ΣV,θ corresponding to (V, θ). Because
P∗V is a decomposable filtered extension of (V, θ), there exists the corresponding filtered exten-
sion P∗LV of LV on (Σ̃V,θ, D̃). We have ρ∗(P∗L) =P∗V . By Proposition 5.35 below, we have
deg(P∗LV ) = deg(P∗V) = 0. There exists a flat metric hLV

of LV adapted to P∗LV . We obtain
a decoupled harmonic metric h1 of (V, θ) corresponding to hLV

, which is adapted to P∗V . By
the stability, there exists a positive constant h= ah1, and hence h is also a decoupled harmonic
metric. �

5.7.1 Degree Let ρ :X1 →X2 be a non-constant morphism of compact Riemann surfaces.
Let D2 ⊂X2 be a finite subset. We set D1 = ρ−1(D2). Let P∗V be a filtered bundle on (X1, D1).
We obtain a filtered bundle ρ∗(P∗V) on (X2, D2). Let m(P ) denote the ramification index of ρ
at P ∈X1.
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Proposition 5.35. The following holds:

deg(ρ∗(P∗V)) = deg(P∗V)− rank V
2

∑
P∈X1\D1

(m(P )− 1).

Proof. We have P0(ρ∗V) = ρ∗(P0V). By the Grothendieck–Riemann–Roch theorem and the
Riemann–Hurwitz formula, we have

deg(ρ∗P0V) = deg(P0V)− rank V
2

∑
P∈X1

(m(P )− 1).

By the construction of ρ∗(P∗V), we obtain

deg(ρ∗(P∗V)) = deg(ρ∗(P0V))−
∑
a∈D1

∑
−1<a�0

m(P )−1∑
j=0

(
a− j

m(P )

)
dimGrPa (VP )

= deg(P0V)− rank V
2

∑
P∈X1

(m(P )− 1)−
∑
P∈D1

∑
−1<a�0

(
a− 1

2
(m(P )− 1)

)
dimGrPa (VP )

= deg(P∗V)− rank V
2

∑
P∈X1\D1

(m(P )− 1). (42)

Thus, we are done. �

Remark 5.36. If there is no ramification point in X1 \D1, we have deg(P∗V) = deg(ρ∗P∗V). We
can also prove it as follows. Let h0 be a Hermitian metric of V|X1\D1

such that (i) h0 is flat
around any point of D1 and (ii) h0 is adapted to P∗V . Let R(h0) be the curvature of the Chern
connection of h. Then, we have

deg(P∗V) =
√−1

2π

∫
X1\D1

trR(h0).

We have the induced metric ρ∗(h0) of ρ∗(V)|X2\D2
. It is flat around any point of D2, and it is

adapted to ρ∗(P∗V). Hence, we have

deg(ρ∗(P∗V)) =
√−1

2π

∫
X2\D2

trR(ρ∗h0).

Then, we obtain deg(P∗V) = deg(ρ∗P∗V).

5.8 Dirichlet problem for wild decoupled harmonic bundles

Let Y , X, D and (P∗V , θ) be as in §2.3.
Proposition 5.37. Assume that (V, θ) is regular semisimple and that P∗(V) is a decomposable
filtered extension. Then, the harmonic metric h in Theorem 2.8 is decoupled.

Proof. It is enough to consider the case where ΣV,θ is connected. Let Σ̃V,θ be the partial

compactification of ΣV,θ as in §5.6.2. Let X̃ and D̃ denote the inverse images of X and D,

respectively, by the natural morphism Σ̃V,θ → Y . There exists a line bundle LV on ΣV,θ corre-

sponding to (V, θ). Let P∗LV be the filtered line bundle on (Σ̃V,θ, D̃) corresponding to (P∗V , θ).
There exists a Hermitian metric h0 of LV such that (i) h0 is flat around any point of D̃,
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(ii) h0 is adapted to P∗LV and (iii) h0|∂ ˜X induces h∂X . Let R(h0) denote the curvature of

the Chern connection of (LV , h0). It vanishes around D̃. There exists an R-valued C∞-function
α on X̃ such that (i) ∂∂α=R(h0)| ˜X and (ii) α|∂ ˜X = 0. Then, h1 = e−αh0 is a flat metric of LV | ˜X
adapted to P∗LV such that h1|∂ ˜X = h0|∂ ˜X . Let h2 be the decoupled harmonic metric of (V, θ)|X\D
corresponding to h1. It is adapted to P∗V and it satisfies h2|∂X = h∂X . By the uniqueness in
Theorem 2.8, we have h= h2. �

6. Large-scale solutions with prescribed boundary value

6.1 Harmonic metrics of regular semisimple Higgs bundles on a punctured disc

6.1.1 General case Let U be a neighbourhood of 0 in C. Let U0 be a relatively compact open
neighbourhood of 0 in U with smooth boundary ∂U0. We set U∗ =U \ {0} and U∗

0 =U0 \ {0}.
Let (P∗V , θ) be a good filtered Higgs bundle of rank r on (U, 0) such that (V, θ) := (V , θ)|U∗

is regular semisimple. Let h∂U0
be a Hermitian metric of V|∂U0

. According to Theorem 2.8, for
any t > 0, there exists a unique harmonic metric ht of (V, tθ)|U∗

0
such that ht|∂U0

= h∂U0
and that

Pht∗ (V ) =P∗V . Note that det(ht) = det(h1) for any t > 0.

Proposition 6.1. Let t(i) be any sequence of positive numbers such that t(i)→∞. Then, there
exists a subsequence t′(j) such that the following hold:

– t′(j)→∞;

– the sequence ht′(j) is convergent to a harmonic metric on any relatively compact open
subset of U∗

0 in the C∞-sense.

The limit h∞ is a decoupled harmonic metric of (V, θ) such that Ph∞(V ) = V and that det(h∞) =
det(h1).

Proof. By taking the pull back via a ramified covering map ϕ� as in §5.1.1, it is enough to consider
the case where there exist meromorphic functions γ(1), . . . , γ(r) on (U, 0) and a decomposition

(V , θ) =
r⊕

i=1

(Vi, γ(i) dz).

Let vi be a frame of Vi on U such that vi is a section of P<0V .
Lemma 6.2. There exists a constant C > 0 such that ht(vi, vi)�C for any t > 0.

Proof. It is enough to consider the case where γ(i) = 0. We have θ(vi) = 0. Then, we have
−∂z∂z|vi|2ht

� 0 on U∗
0 (see a preliminary Weitzenböck formula in [Sim90, Proof of Lemma 4.1]).

Because vi is a section of P<0V , |vi|2ht
is bounded for each t. Hence, |vi|2ht

is subharmonic on U0.
By the maximum principle, we obtain |vi|2ht

�max∂U0
|vi|2ht

=max∂U0
|vi|2h1

. �

Let V∨ =HomOU
(V ,OU (∗0)) denote the dual of V . We have the induced filtered bundle

P∗(V∨) on V∨. We set (V ∨, θ∨) = (V∨, θ∨)|U∗ . The induced harmonic metric h∨t of (V ∨, tθ∨) is
adapted to P∗(V∨).

There exists the induced decomposition V∨ =
⊕r

i=1 V∨
i . Let v∨i denote the section of V∨

i

such that v∨i (vi) = 1. There exists m(i)∈Z>0 such that zm(i)v∨i is a section of P<0(V∨). By
Lemma 6.2, we obtain the following lemma.
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Lemma 6.3. There exists C > 0 such that |z|2m(i)h∨t (v∨i , v
∨
i )�C for any t > 0.

Let st be the automorphism of V|U∗
0
determined by ht = h1 · st. Let K be any relatively

compact open subset of U∗
0 . By Lemmas 6.2 and 6.3, there exist CK,1 > 0 such that the following

holds for any t > 0:

|st|h1
+ |s−1

t |h1
�CK,1. (43)

By a variant of Simpson’s main estimate (see [Moc16, Proposition 2.3]), there exist
tK,1, CK,2, CK,3 > 0 such that the following holds for any t > tK,1 and for any local sections
uβ(i) and uβ(j) of Vβ(i) and Vβ(j) on K (i �= j):

|ht(uβ(i), uβ(j))|�CK,2 exp(−CK,3t)|uβ(i)|ht
· |uβ(j)|ht

. (44)

There also exist tK,2, CK,4, CK,5 > 0 such that the following holds on K for any t > tK,2 (see
[Moc16, Theorem 2.9]):

|R(ht)|h1
�CK,4 exp

(
−CK,5t

)
. (45)

By (43) and (45), it is standard to obtain the existence of a convergent subsequence ht′(j).
By (44) and (45), the limit is a decoupled harmonic metric. By Lemma 6.2, we obtain that
h∞(vi, vi)�C. Hence, vi are sections of Ph∞(V ). This implies that V ⊂Ph∞(V ). Because both
V and Ph∞(V ) are locally free OU (∗0)-modules, we obtain that V =Ph∞(V ).

Proposition 6.4. Let h∞ denote the limit of a convergent subsequence in Proposition 6.1.
Suppose the following condition holds.

– For every z0 ∈ ∂U0, the eigen decomposition of θ at z0 is orthogonal with respect to
h∂U0

.

Then, h∞|∂U0
= h∂U0

.

Proof. Let U1 be a relatively compact open neighbourhood of 0 in U0 with smooth boundary
∂U1. Because h∞ is a decoupled harmonic metric, the following condition is satisfied.

– For every z1 ∈ ∂U1, the eigen decomposition of θ at z1 is orthogonal with respect to h∞.

We set A=U0 \U1. By Proposition 5.37, there exists a decoupled harmonic metric h(1) of

(V, ∂V , θ)|A such that h
(1)
|∂U0

= h∂U0
and h

(1)
|∂U1

= h∞|∂U1
. We note that h(1) is a harmonic met-

ric of (V, ∂V , tθ)|A for any t > 0. We also note that det(h(1)) = det(h1)|A because det(h(1))|∂A =
det(h1)|∂A.

Let st be determined by ht = h(1)st on A. We have −∂z∂zTr(st)� 0. We have st′(j) → id on
∂U1 and st′(j) = id on ∂U0. Hence, we obtain |Tr(st′(j) − id)| → 0 as t′(j)→∞. This implies the
claim of the proposition. �

6.1.2 The irreducible case Suppose that the spectral curve is irreducible, i.e. ΣV,θ is con-
nected. We obtain the decomposable filtered bundle P�∗ (V) determined by det(P∗V) as in
Proposition 5.13, which is not necessarily equal to P∗(V).
Lemma 6.5. Let h∞ denote the limit of a convergent subsequence in Proposition 6.1. Then, we
have Ph∞∗ (V ) =P�∗ (V).
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Proof. We have Ph∞V = V . Because h∞ is a decoupled harmonic metric, Ph∞∗ (V) is decom-
posable. Because det(h∞) = det(h1), we obtain det(Ph∞∗ V ) = det(P∗V). Then, the claim follows
from the uniqueness of P�∗ (V). �

Let h0 be any decoupled harmonic metric of (V, ∂V , θ) such that Ph0(V ) = V and that det(h0)
is adapted to det(P∗V). By the argument in the proof of Lemma 6.5, we can prove Ph0∗ (V ) =
P�∗ (V). Let ht (t > 0) be the harmonic metrics of (V, ∂V , tθ) adapted to P∗V such that ht|∂U0

=
h0|∂U0

.

Proposition 6.6. The sequence ht is convergent to h0 as t→∞ in the C∞-sense on any
relatively compact open subset of U∗

0 .

Proof. Let ti be any subsequence such that ti →∞ and that hti is convergent. Let h∞ denote
the limit. By Proposition 6.4, we have h∞|∂U0

= h0|∂U0
. We also have Ph∞∗ (V ) =P�∗ (V) =Ph0∗ (V ).

Hence, we obtain h∞ = h0. This implies that ht is convergent to h0 as t→∞. �

6.1.3 Symmetric case We do not assume that the spectral curve is irreducible. Instead,
suppose that there exists a perfect pairing C of (P∗V , θ). There uniquely exists a decoupled
harmonic metric hC of (V, θ) which is compatible with C. As in Lemma 5.23, we have PhC

∗ (V ) =
PC∗ V .

Suppose that h∂U0
is compatible with C|∂U0

. Then, ht (t > 0) are compatible with C by

Corollary 2.9. Let st be determined by ht = hCst. We note that det(ht) = det(h1) = det(hC) by
the compatibility with C. The following proposition is a special case of Corollary 3.5.

Proposition 6.7. If h∂U0
is compatible with C|∂U0

, the sequence ht is convergent to h
C in the

C∞-sense on any relatively compact subset K of U∗
0 . Moreover, there exists t(K)> 0 such that

the following holds for any �� 0.

– There exists C(K, �) and ε(K, �) such that the norms of st − id (t� t(K)) and their
derivatives up to order � are dominated by C(K, �) exp(−ε(K, �)t).

Let us also consider the case where h∂U0
is not necessarily compatible with C|∂U0

, but
det(h∂U0

) is compatible with det(C)|∂U0
. Because det(ht) are compatible with det(C) on U0,

we obtain det(ht) = det(h1) = det(hC).

Proposition 6.8. Let ht(i) be a convergent subsequence, and let h∞ denote the limit as in

Proposition 6.1. Then, Ph∞∗ (V ) =PC∗ (V).
Proof. Let h′t (t > 0) be harmonic metrics of (V, tθ) which are compatible with C, such
that det(h′t) = det(h1). We have already proved that the sequence h′t is convergent to hC .
We have det(h′t) = det(ht). Let st be the automorphism determined by ht = h′tst. Let s∞
be determined by h∞ = hCs∞. The sequence st is convergent to s∞. Because det(st) = 1,
we have det(s∞) = 1. Because Tr(st) is subharmonic on U0, we obtain that maxU0

Tr(st) =
max∂U0

Tr(st) =max∂U0
Tr(s1). We obtain that Tr(s∞) is bounded. Then, s∞ and s−1∞ are

bounded, and we obtain Ph∞(V ) =PC∗ (V). �

Suppose that for every z0 ∈ ∂U0 the eigen decomposition of θ is orthogonal with respect to

h∂U0
. There exists a decoupled harmonic metric h̃ of (V, θ) such that h̃|∂U0

= h∂U0
and P˜h∗ (V ) =

PC∗ (V).
Corollary 6.9. The sequence ht is convergent to h̃.
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6.2 Local symmetrizability of Higgs bundles

Let U be a simply connected open subset in C. Let D be a finite subset of U . Let (E, ∂E , θ) be a
Higgs bundle on U such that (V, θ) = (E, θ)|U\D is regular semisimple. Let π : ΣE,θ →U denote

the projection. Let ρ : Σ̃E,θ →ΣE,θ denote the normalization of ΣE,θ. We set D̃= (π ◦ ρ)−1(D).
We assume the following condition.

– There exists a line bundle L on Σ̃E,θ with an isomorphism (π ◦ ρ)∗L	E. Moreover, the
Higgs field θ of E is induced by the OT ∗U -action on ρ∗L.

For any P ∈D, let UP be a simply connected neighbourhood of P in U such that UP ∩D=
{P}. We set U∗

P =UP \ {P}. There exists the decomposition

(V, θ)|U∗
P
=

⊕
k∈S(P )

(V
[k]
P , θ

[k]
P ), (46)

such that the spectral curves of (V
[k]
P , θ

[k]
P ) are connected. Because E 	 (π ◦ ρ)∗L, (46) extends

to the decomposition

(E, θ)|U∗
P
=

⊕
i∈S(P )

(E
[k]
P , θ

[k]
P ).

Let h be a decoupled harmonic metric of (V, θ). The decomposition (46) is orthogonal with

respect to h. Let h
[k]
P denote the restriction of h to V

[k]
P . We consider the following condition.

Condition 6.10. det(h
[k]
P ) induces a flat metric of det(E

[k]
P ), and PhV =E(∗D) holds.

We shall prove the following proposition in §6.2.2 after the preliminary in §6.2.1.
Proposition 6.11. Suppose that Condition 6.10 is satisfied at each P ∈D. Moreover, we
assume that each connected component of Σ̃E,θ is simply connected. Then, the following claims
hold.

– There exists a non-degenerate symmetric pairing C of (E, θ) such that C|U\D is
compatible with h.

– Let C ′ be a non-degenerate symmetric pairing of (V, θ) which is compatible with h.
Then, C ′ induces a non-degenerate symmetric pairing of E.

Remark 6.12. If ΣE,θ is a simply connected complex submanifold of T ∗U , we can apply
Proposition 6.11 to (E, θ).

6.2.1 Special case Let us study the case that D= {0}, and that ΣV,θ is connected. We

set V =E(∗0). We use the notation in §5.1.1. By choosing an r-th root of (π ◦ ρ)∗(z) on Σ̃E,θ,

we obtain a holomorphic isomorphism ψ : Σ̃E,θ →U (r) such that ϕr ◦ψ= π ◦ ρ. There exists
the decomposition (41) on U (r). There exists the natural isomorphism ψ∗(L)(∗0)	Vβ(1). Let
Eβ(1) ⊂Vβ(1) denote the image of L. We have ϕr∗(Eβ(1)) =E.

Let Cβ(1) : Vβ(1) ⊗Vβ(1) −→OU (r)(∗0) be a non-degenerate symmetric pairing. There exists
the morphism tr :ϕr∗OU (r)(∗0)→OU (∗0) as in §2.2.2. We obtain the induced symmetric pairing
Ψ(Cβ(1)) = tr ◦ϕr∗(Cβ(1)) of V =ϕr∗(Vβ(1)). There exists an integer k such that Cβ(1)(Eβ(1) ⊗
Eβ(1)) =OU (r)(k{0}).
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Lemma 6.13. The pairing Ψ(Cβ(1)) induces a symmetric pairing of E if and only if k� r− 1.

The induced pairing is non-degenerate if and only if k= r− 1.

Proof. There exists a frame v of Eβ(1) such that Cβ(1)(v, v) = ζ−k. The tuple v, ζv, . . . , ζr−1v
induces a frame of E. Note that tr(ζj) = 0 unless j ∈ rZ. It is easy to see that

tr(Cβ(1)(ζ
iv, ζjv)) = tr(ζi+j−k) (0� i, j � r− 1)

are holomorphic at 0 if and only if k� r− 1, and that the induced pairing is non-degenerate at
0 if and only if k= r− 1. �

Let C0,β(1) be a non-degenerate symmetric pairing of Vβ(1) such that C0,β(1)(Eβ(1) ⊗Eβ(1)) =
OU (r)((r− 1){0}). We set C0 =Ψ(C0,β(1)) which is a non-degenerate symmetric pairing of (E, θ).
Let h0 be a decoupled harmonic metric of (V, θ) compatible with C0. We note that det(h0) is
compatible with det(C0), and hence it induces a Hermitian metric of det(E).

Let h1 be any decoupled harmonic metric of (V, θ) such that Ph1(V ) = V and that det(h1) =
det(h0). According to Corollary 5.22, there exists a holomorphic function γ1 on U (r) such that
(i) ϕ∗

r(h1)|Vβ(1)
= exp(2Reγ1)ϕ

∗
r(h0)|Vβ(1)

and (ii)
∑

σ∈Gal(r) σ
∗γ1 = 0. We set

C1,β(1) = exp(2γ1)C0,β(1).

It is a non-degenerate symmetric pairing of Vβ(1) satisfying C1,β(1)(Eβ(1) ⊗Eβ(1)) =OU (r)((r−
1){0}). We obtain a non-degenerate symmetric pairing C1 =Ψ(C1,β(1)) of (E, θ) such that C1|U∗

is compatible with h1.
Let h be any decoupled harmonic metric of (V, θ) such that Ph(V ) = V and that det(h)

induces a flat metric of det(E). There exists a holomorphic function γ2 on U such that
det(h) = exp(2rRe(γ2)) det(h1). Then, C = exp(2γ2)C1 is compatible with h, and it induces a
non-degenerate symmetric pairing of E.

Lemma 6.14. Let C ′ be a non-degenerate symmetric pairing of (V, θ) compatible with h. Then,
C ′ induces a non-degenerate symmetric pairing of E.

Proof. There exist non-degenerate symmetric pairings Cβ(1) and C ′
β(1) of Vβ(1) such that

Ψ(Cβ(1)) =C and Ψ(C ′
β(1)) =C ′, respectively. Because both Cβ(1) and C ′

β(1) are compati-

ble with ϕ∗
r(h)|Vβ(1)

, there exists a constant α such that |α|= 1 and C ′
β(1) = αCβ(1). Hence,

C ′
β(1)(Eβ(1) ⊗Eβ(1)) =OU (r)((r− 1){0}), and hence C ′ induces a non-degenerate symmetric

pairing of E. �

6.2.2 Proof of Proposition 6.11 It is enough to consider the case where ΣV,θ is connected,

which implies that Σ̃E,θ is connected. Let hL denote the flat metric of L|ΣV,θ
corresponding to

the decoupled harmonic metric h. Let P be any point of D. By Proposition 5.25, there exists
a non-degenerate symmetric pairing of V|U∗

P
which is compatible with h|U∗

P
. There exists a non-

degenerate symmetric pairing of L on (π ◦ ρ)−1(U∗
P ) which is compatible with hL. Hence, the

monodromy of the Chern connection of hL around any point of D̃ is 1 or −1. Because Σ̃E,θ is
simply connected, Lemma 2.7 implies that there exists a non-degenerate symmetric pairing CL of
L|ΣV,θ

compatible with hL. It induces a non-degenerate symmetric pairing C of (V, θ) compatible
with h. By Lemma 6.14, C induces a non-degenerate symmetric pairing of E. Thus, we obtain
the first claim of Proposition 6.11. The second claim also follows from Lemma 6.14.
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6.3 A uniform estimate in the symmetric case

6.3.1 Setting For R> 0, we set B(R) = {z ∈C | |z|<R}. Let S ⊂Cn be a connected open
subset with a base point x0. Let Zi (i= 1, 2) be an open subset of S ×Czi . For simplicity,
we assume that Z2 = S ×B(2). Let pi :Zi →S denote the projections. We set T ∗(Z2/S) =
S × T ∗B(2). Let π2 : T

∗(Z2/S)→Z2 denote the projection. Let Φ0 :Z1 → T ∗(Z2/S) be a holo-
morphic map such that p1 = p2 ◦ π2 ◦Φ0. We set Φ1 := π2 ◦Φ0 :Z1 →Z2. We assume the following
conditions:

– Φ1 is proper and finite;

– there exists a complex analytic closed hypersurface D⊂S ×B(R1)⊂Z2 for some 0<
R1 < 1 such that (i) the induced map Z1 \Φ−1

1 (D)−→Z2 \ D is a covering map, (ii) Φ0

induces an injection Z1 \Φ−1
1 (D)→ T ∗(Z2 \ D) and (iii) D ∩ ({x0} ×C) = {(x0, 0)}.

We set r := |Φ−1
1 (P )| for any P ∈Z2 \ D. We also set D̃=Φ−1

1 (D).

Lemma 6.15. The sheaf E =Φ1∗(OZ1
) is a locally free OZ2

-module of rank r.

Proof. By a change of local holomorphic coordinate system on Z1, it is enough to consider
the case where Φ∗

1(z2) is expressed as a Weierstrass polynomial. Then, it is reduced to [GR84,
Chapter 2, §4.2, Theorem]. �

Note that E = π2∗(Φ0∗OZ1
) is naturally a π2∗(OT ∗(Z2/S))-module. Hence, we obtain the

relative Higgs field θ : E → E ⊗Ω1
Z2/S . The following lemma is clear by the construction.

Lemma 6.16. For any P ∈Z2 \ D, there exist a neighbourhood U of P in Z2 \ D and a
decomposition

(E , θ)|U =

r⊕
i=1

(EP,i, θP,i), (47)

where rank EP,i = 1, and θP,i − θP,j (i �= j) are nowhere vanishing.

For any x∈ S, we set Zi,x =Zi ∩ ({x} ×C), D̃x = D̃ ∩ ({x} ×C) and Dx =D ∩ ({x} ×C). Note
that Z2,x =B(2) for any x∈ S. Let ιx :Z2,x →Z2 denote the inclusion. We obtain the Higgs
bundles (Ex, θx) := ι∗x(E , θ) on Z2,x which is regular semisimple outside Dx.

6.3.2 A uniform estimate in the symmetric case Let h◦x (x∈ S) be decoupled harmonic
metrics of (Ex, θx)|B(2)\Dx

such that they induce a C∞-metric of E|Z2\D. Assume the following.

Condition 6.17. For each (x, P )∈D, Condition 6.10 is satisfied for (Ex, θx, h◦x) at P .
Let hx,t be harmonic metrics of (Ex, tθx)|B(1) such that hx,t|∂B(1) = h◦x|∂B(1). Let sx,t be the

automorphism of Ex|B(1)\Dx
determined by hx,t = h◦x · sx,t.

Proposition 6.18. Let R1 <R2 < 1. Let S ′ be a relatively compact open subset of S. Then,
there exists t0 > 0 such that the following hold.

– For any �∈Z�0, there exist positive constants C(�) and ε(�) such that

|(sx,t − id)|B(R2)\B(R1)|L2
�
�C(�) exp(−ε(�)t)

for any x∈ S ′ and any t� t0. Here, we consider the L2
� -norms with respect to h◦x and

the standard Euclidean metric dz2 dz2.

32

https://doi.org/10.1112/mod.2024.9 Published online by Cambridge University Press

https://doi.org/10.1112/mod.2024.9


Asymptotic behaviour of large-scale solutions

Proof. For 0<R� 2, we set Z1,x(R) := Φ−1
1 ({x} ×B(R))⊂Z1,x.

Lemma 6.19. If R1 <R� 2, each connected component of Z1,x(R) is diffeomorphic to a two2-
dimensional disc.

Proof. Let us consider the case R1 <R< 2. We set Z1(R) := Φ−1
1 (S ×B(R))⊂Z. The closure

Z1(R) of Z1(R) is a C
∞-manifold with smooth boundary. The projection Z1(R)→S is submer-

sive and proper. Each connected component of Z1,x0
(R) is diffeomorphic to a disc. Because S is

connected, we obtain that each connected component of Z1,x(R) is diffeomorphic to a disc. For
R1 <R< 2, there exists a diffeomorphism ρR :B(R)	B(2) whose restriction to B(R1) is the
identity. We can construct a diffeomorphism Z1,x(R)	Z1,x(2) by lifting ρR. �

Lemma 6.20. There exist holomorphic non-degenerate symmetric pairings Cx (x∈ S) of (Ex, θx)
such that the restrictions Cx|B(1)\Dx

are compatible with h◦x and continuous with respect to x.

Proof. Let h◦0,x denote the flat metric of OZ1,x\ ˜Dx
corresponding to h◦x, which are continuous with

respect to x. Let ∇◦
0,x denote the Chern connection. They are flat connections, and continuous

with respect to x.
By Proposition 6.11 and Lemma 6.19, for each x∈ S, there exists a holomorphic non-

degenerate symmetric pairing C ′
x of (Ex, θx) such that the restriction (C ′

x)|B(1)\Dx
is compatible

with h◦x. Let C ′
0,x denote the holomorphic non-degenerate symmetric bilinear form of OZ1,x\ ˜Dx

corresponding to C ′
x, which is compatible with h◦0,x.

Let z1 ∈B(1) \B(R1). There exists a continuous family of non-degenerate symmetric pairings
C◦
0,(x,z1)

of the vector space OZ1|(x,z1) which are compatible with (h◦0,x)|z1 . We obtain αx ∈C∗

determined by C◦
0,(x,z1)

= αx(C
′
0,x)|z1 . We set C0,x = αxC

′
0,x. Because C0,x are ∇◦

0,x-flat, they are

continuous with respect to x. Let Cx denote the non-degenerate symmetric pairing of (Ex, θx)
corresponding to C0,x. (See Proposition 6.11.) Then, they satisfy the desired condition. �

Because ht,x|∂B(1) = h◦x|∂B(1) are compatible with Cx|∂B(1), we obtain that ht,x are compatible
with Cx. Then, the claim of Proposition 6.18 follows from Theorem 3.4.

We also obtain the following proposition from Theorem 3.4, as in the proof of
Proposition 6.18. �

Proposition 6.21. Let R1 <R2 < 2. Let S ′ be a relatively compact open subset of S. There
exists t0 > 0 such that the following holds.

– Let h′x,t be any harmonic metrics of (Ex, tθx) (x∈ S ′) compatible with C◦
x. Let s

′
x,t be

determined by h′x,t = h◦x · s′x,t. Then, for any �∈Z�0, there exist positive constants C(�)
and ε(�) such that

|(s′x,t − id)|B(R2)\B(R1)|L2
�
�C(�) exp(−ε(�)t),

for any t� t0.

6.3.3 Examples of non-degenerate symmetric pairings and decoupled harmonic metrics We
obtain a holomorphic function G= ∂z1(Φ

∗
1(z2)). We have G−1(0)⊂ D̃. We define the symmetric

product C0 :OZ1
⊗OZ1

−→G−1OZ1
by

C0(a⊗ b) =G−1ab.

We obtain the following lemma by using Lemma 6.13.
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Lemma 6.22. The pairing C0 induces a non-degenerate symmetric pairing C1 of E , which
induces a non-degenerate symmetric pairing of (Ex, θx) for any x∈ S.

Let h0 be the flat metric of OZ1\ ˜D defined as follows:

h0(a, b) = |G|−1ab.

Lemma 6.23. The metric h0 induces a flat metric h1 of E|Z2\D. For each x∈ S, the induced
metric h1,x of (Ex, θx)|Z2,x\Dx

is a decoupled harmonic metric such that det(h1,x) induces a flat
metric of det(Ex) for each x∈ S.
Remark 6.24. We shall use h0 in §7.3.

7. Large-scale solutions on compact Riemann surfaces

7.1 Convergence in the locally irreducible case

7.1.1 Statement Let X be a compact Riemann surface. Let π : T ∗X→X denote the pro-
jection. For any A⊂ T ∗X, the induced map A→X is also denoted by π. Let D⊂X be a finite
subset.

Let (P∗V , θ) be a good filtered Higgs bundle of degree 0 on (X,D). We obtain the Higgs
bundle (V, θ) = (V , θ)|X\D. We assume the following.

Condition 7.1. The Higgs bundle (V, θ) is a regular semisimple Higgs bundle on X \D.

Remark 7.2. If (V, θ) is generically regular semisimple, there exists a finite subset D′ ⊂X such
that (V ′, θ′)|X\D′ is regular semisimple and that D⊂D′. We set V ′ = V(∗D′). For each P ∈
D′ \D, we consider the filtered bundle P∗(V ′

P ) over V ′
P defined by PaV ′

P = VP ([a]P ), where
[a] =max{n∈Z | n� a}. For harmonic metrics of (V, tθ) adapted to P∗V , it is enough to study
harmonic metrics of (V ′, tθ′) adapted to P∗V ′.

For any P ∈D, there exist a neighbourhood XP of P in X and a decomposition of the
meromorphic Higgs bundle

(V , θ)|XP
=

⊕
i∈S(P )

(VP,i, θP,i), (48)

such that the spectral curves of (VP,i, θP,i)|XP \{P} are connected.

Condition 7.3. We assume the following conditions:

– the spectral curve ΣV,θ is connected;

– for any P ∈D, the decomposition (48) is compatible with the filtered bundle P∗(VP )
over VP , i.e. P∗(VP ) =

⊕
i∈S(P ) P∗((VP,i)P ).

For each P ∈D, we obtain the filtered bundle P�∗ (VP ) =
⊕

i∈S(P ) P�∗ ((VP,i)P ) over VP deter-
mined by the filtered bundles det(P∗VP,i) as in Proposition 5.13. By patching P�∗ (VP ) (P ∈D)
with V , we obtain a decomposable filtered Higgs bundle (P�∗ (V), θ).
Lemma 7.4. The filtered Higgs bundle (P�∗ (V), θ) is stable of degree 0. As a result, there exists
a decoupled harmonic metric h∞ of (V, θ) adapted to P�∗ (V).
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Proof. Because ΣV,θ is connected, there does not exist a non-trivial Higgs subbundle of (V, θ).
Hence, (P∗V , θ) is stable. Because det(P�∗V) = det(P∗V), we obtain deg(P�∗V) = 0. The second
claim follows from Proposition 5.34. �

Note that det(h∞) is a flat metric of det(V ) adapted to det(P∗V) = det(P�∗V). Because ΣV,θ

is connected, (P∗V , θ) is stable of degree 0 as in Lemma 7.4. Hence, for any t > 0, there exists a
harmonic metric ht of (V, tθ) which is adapted to P∗V such that det(ht) = det(h∞).

Theorem 7.5. On any relatively compact open subset K ⊂X \D, the sequence ht is convergent
to h∞ in the C∞-sense.

7.1.2 The case of locally and globally irreducible Higgs bundles We state Theorem 7.5 in
a special case for clarification (see also Remark 7.2). Let (E, ∂E , θ) be a generically regular
semisimple Higgs bundle of degree 0 on X. Let ΣE,θ denote the spectral curve. There exists the
finite subset D(E, θ)⊂X such that the following holds:

– P ∈D(E, θ) if and only if |T ∗
PX ∩ΣE,θ|< r.

We impose the following condition.

Condition 7.6.

– The spectral curve ΣE,θ is irreducible, i.e. ΣE,θ \ π−1(D(E, θ)) is connected.

– For any P ∈D(E, θ), there exist a neighbourhood XP of P in X and a decomposition

(E, θ)|XP
=

⊕
i∈S(P )

(EP,i, θP,i), (49)

such that the spectral curves ΣEP,i,θP,i
are irreducible.

We set D=D(E, θ). Let P(0)
∗ (E(∗D)P ) be the filtered bundle over E(∗D)P defined by

P(0)
a (E(∗D)P ) =EP ([a]P ), where [a] =max{n∈Z | n� a}. Because there exists the decompo-

sition

P(0)
∗ (E(∗D)P ) =

⊕
i∈S(P )

P(0)
∗ (EP,i(∗D)P ),

induced by (49), we obtain the filtered bundle P�∗ (E(∗D)P ) determined by det(P(0)
∗ EP,i(∗D)P )

as in Proposition 5.13. By patching them with (E(∗D), θ), we obtain a filtered bundle P�∗V over
V =E(∗D). The filtered Higgs bundle (P�∗ (E(∗D)), θ) is decomposable.

As in Lemma 7.4, there exists a decoupled harmonic metric h∞ of (E, θ)|X\D such that h∞
is adapted to P�∗V . For any t > 0, there exists a unique harmonic metric ht of (E, tθ) such that
det(ht) = det(h∞). As a special case of Theorem 7.5, we obtain the following.

Corollary 7.7. On any relatively compact open subset K ⊂X \D, the sequence ht is
convergent to h∞ in the C∞-sense.

Remark 7.8. The second condition in Condition 7.6 is satisfied if ΣE,θ is locally irreducible.

7.1.3 Proof of Theorem 7.5 Let P ∈D. We set X∗
P =XP \ {P}. We set VP,i = VP,i|X∗

P
and

r(P, i) = rank VP,i. Let zP be a holomorphic coordinate of XP by which XP 	 {z ∈C | |z|< 2}.

35

https://doi.org/10.1112/mod.2024.9 Published online by Cambridge University Press

https://doi.org/10.1112/mod.2024.9


Takuro Mochizuki and Szilárd Szabó

We set (h∞)P,i := h∞|VP,i
. Let ht,P,i be a harmonic metric of (VP,i, tθP,i) such that (i) the bound-

ary value at |zP |= 1 is equal to that of (h∞)P,i and (ii) ht,P,i is adapted to P∗VP,i. We have
det(ht,P,i) = det((h∞)P,i). We obtain the following lemma by Proposition 6.6.

Lemma 7.9. The sequence ht,P,i is convergent to (h∞)P,i as t→∞ in the C∞-sense on any
relatively compact open subset of X∗

P .

We regard XP as an open subset of C by the coordinate zP . Let ϕP,r(P,i) :C→C be defined

by ϕP,r(P,i)(ζP,i) = ζ
r(P,i)
P,i . We set X

(r(P,i))
P =ϕ−1

P,r(P,i)(XP ) and X
(r(P,i))∗
P =ϕ−1

P,r(P,i)(X
∗
P ). The

induced maps X
(r(P,i))
P →XP and X

(r(P,i))∗
P →X∗

P are also denoted by ϕP,r(P,i).

We define a Hermitian product h
(r(P,i))
t,P,i of ϕ∗

P,r(P,i)(VP,i)|X(r(P,i))∗
P

as follows. We have the

decomposition

ϕ∗
P,r(P,i)(VP,i, θP,i)|X(r(P,i))∗

P
=

r(P,i)⊕
p=1

(VP,i,β(p), β(p) dζP,i),

where β(p) are meromorphic functions on X
(r(P,i))
P . Let vβ(1) be a holomorphic frame of VP,i,β(1).

We obtain a frame vσ∗β(1) = σ∗(vβ(1)) of VP,i,σ∗β(1). Let χ(ζP,i) be an R�0-valued function such
that (i) χ(ζP,i) depends only on |ζP,i| and (ii) χ(ζP,i) = 1 (|ζP,i|� 1/2), χ(ζP,i) = 0 (|ζP,i|� 2/3).
For p �= q, we put

h
(r(P,i))
t,P,i (vβ(p), vβ(q)) = χ(ζP,i)ϕ

∗
P,r(P,i)(ht,P,i)(vβ(p), vβ(q)).

We define h
(r(P,i))
t,P,i (vβ(p), vβ(p)) by

log h
(r(P,i))
t,P,i (vβ(p), vβ(p)) = χ(ζP,i) log ϕ

∗
P,r(P )(ht,P,i)(vβ(p), vβ(p))

+ (1− χ(ζ(P, i))) log ϕ∗
P,r(P )((h∞)

(r(P,i))
P,i )(vβ(p), vβ(p)). (50)

Then, h
(r(P,i))
t,P,i is Gal(r(P, i))-invariant, and we have h

(r(P,i))
t,P,i =ϕ−1

P,r(P,i)(ht,P,i) on {0< |ζP,i|<
1/4} and h

(r(P,i))
t,P,i =ϕ−1

P,r(P,i)((h∞)P,i) on {4/5< |ζP,i|}. There exists a Hermitian metric h̃t,P,i of

VP,i such that ϕ−1
P,r(P,i)(h̃t,P,i) = h

(r(P,i))
t,P,i on X

(r(P,i))∗
P . We obtain a Hermitian metric

h̃t,P =
⊕

i∈S(P )

h̃t,P,i,

of V|X∗
P
. By patching h̃t,P and h∞, we obtain Hermitian metrics h̃′t of V . We obtain the

C∞-function αt on X \D determined by det(h̃′t) = eαt det(h∞). We set h̃t = e−αt/rh̃′t. By the
construction, the following lemma is clear.

Lemma 7.10. There exists t0 such that h̃t is positive definite for any t� t0. Moreover, the
following holds.

– The sequence h̃t is convergent to h∞ in the C∞-sense on any relatively compact open

subset of X \D. The support of R(h̃t) + [tθ, (tθ)†
˜ht

] is contained in {(14)rank(E) � |zP |�
4
5} for P ∈D. In particular,∫

X

∣∣∣R(h̃t) + [tθ, (tθ)†
˜ht

]
∣∣∣
˜ht,gX

→ 0, (51)

as t→∞.
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Let gX be a Kähler metric ofX. Let st denote the automorphism of V determined by ht = h̃tst.
We have det(st) = 1. According to [Sim88, Lemma 3.1], we obtain the following on X \D:

ΔgXTr(st) =Tr
(
(R(h̃t) + [tθ, (tθ)†

˜ht

])st

)
− |∂(st)s−1/2

t |2
˜ht,gX

− |[tθ, st]s−1/2|2
˜ht,gX

. (52)

Note that
⊕

i∈S(P ) ht,P,i and ht|X∗
P
are mutually bounded for any P ∈D. Hence, Tr(st) is

bounded. We also note the following vanishing (see Lemma [Moc21, Lemma 4.7]):∫
X
ΔXTr(st) dvolgX = 0. (53)

We set bt = supX\D Tr(st). Note that bt � rank(E), and bt = rank(E) if and only if st = idE .

We set ut = b−1
t · st. There exists C > 0, which is independent of t such that |ut|˜ht

�C. By (51),
(52) and (53) we obtain ∫

X

(
|∂ut|2

˜ht
+ |[tθ, ut]|2

˜ht

)
→ 0,

as t→∞.
Let t(i)> 0 be a sequence such that t(i)→∞ as i→∞. By going to a subsequence, ut(i)

is weakly convergent in L2
1 locally on X \D. In particular, it is convergent in Lq for any q� 1

locally on X \D. Let u∞ denote the limit which satisfies ∂u∞ = [θ, u∞] = 0.

Lemma 7.11. We have u∞ �= 0.

Proof. Note that supX Tr(ut(i)) = 1 for any i. Let 0< ε< 1. Let Pi ∈X be points such that
Tr(ut)(Pi)� ε. By going to a subsequence, we may assume that the sequence is convergent to a
point P∞. Let us consider the case where

P∞ �∈
⋃
P∈D

{|zP |� 4/5}=:W.

Let (XP∞ , z) be a holomorphic coordinate neighbourhood around P∞, which does not intersect

with W . Because F (h̃t) = 0 on XP∞ , we obtain ΔgXTr(ut)� 0. By the mean value property of
the subharmonic functions, there exists C > 0 such that

Cε�
∫
XP∞

Tr(ut(i)).

Because ut(i) is convergent to u∞ in Lp for any p� 1 on XP∞ , we obtain that u∞ �= 0.
Let us consider the case where P∞ ∈ {|zP |< 4/5} for some P ∈D. Let (XP , zP ) be a

holomorphic coordinate neighbourhood around P as above. By [Sim88, Lemma 3.1], we have

ΔgX log Tr(ut(i))�
∣∣∣R(h̃t(i)) + [tθ, (tθ)†

˜ht(i)

]
∣∣∣
˜ht(i),gX

.

There exist C∞-functions αi on XP such that (i) ΔgXαi =
∣∣∣R(h̃t(i)) + [tθ, (tθ)†

˜ht(i)

]
∣∣∣
˜ht(i),gX

, (ii)

αi|∂XP
= 0 and (iii) there exists C > 0 such that |αi|�C for any i. Because log Tr(ut(i))− αi is

a subharmonic function on XP , the maximum principle allows us to obtain

log ε−C � max
P∈∂XP

{log Tr(ut(i))− αi}= max
P∈∂XP

{log Tr(ut(i))}.

Hence, there exists a sequence P ′
i ∈ ∂XP such that Tr(ut(i))(P

′
i )� εe−C . By going to a subse-

quence, we may assume that the sequence P ′
i is convergent to P

′∞ ∈X \W . Then, we can apply
the result in the first part of this proof. �

37

https://doi.org/10.1112/mod.2024.9 Published online by Cambridge University Press

https://doi.org/10.1112/mod.2024.9


Takuro Mochizuki and Szilárd Szabó

Recall that u∞ �= 0 is an endomorphism of (V, θ) such that ∂u∞ = [θ, u∞] = 0. At each point
of X \D, an eigenspace of θ is also an eigenspace of u∞. Because each ut(i) is self-adjoint

with respect to h̃t, u∞ is self-adjoint with respect to h∞. We obtain ∂h∞u∞ = 0. Hence, the

eigenvalues of u∞ are constant. Because h̃t(ut(i)v, v)� 0 for any local section v of V , we obtain
h∞(u∞v, v)� 0, which implies that the eigenvalues of u∞ are non-negative. We also note that
ΣV,θ is connected. Hence, u∞ is a positive constant multiplication. This implies that the sequence
bt is bounded, and that the subsequence st(i) is convergent to a positive constant multiplication.
Because det(st) = 1, the limit is the identity. Because this is independent of the choice of a
subsequence, we obtain the desired convergence.

7.2 Order of convergence in a smooth case

7.2.1 Rough statement Let us study the order of the convergence in the situation of §7.1.2
assuming the following stronger condition.

Condition 7.12. Let ρ : Σ̃E,θ →ΣE,θ be the normalization. There exists a line bundle L on

Σ̃E,θ with an isomorphism (π ◦ ρ)∗L	E such that θ is induced by the OT ∗X -action on ρ∗L.

Let g(Σ̃E,θ) and g(X) denote the genus of Σ̃E,θ and X, respectively. Then, we have deg(L) =

g(Σ̃E,θ)− rg(X) + r− 1.

Remark 7.13. If Condition 7.12 is satisfied, Condition 7.6 is also satisfied. Condition 7.12 is
satisfied if ΣE,θ is smooth and connected.

We set (V, θ) = (E, θ)|X\D. Let s(h∞, ht) be the automorphism of V determined by ht =
h∞ · s(h∞, ht). Let gX be a Kähler metric of X.

Theorem 7.14. For any relatively compact open subset K of X \D and a non-negative integer
�, there exist positive constants C(K, �) and ε(K, �) such that the L2

� -norms of s(h∞, ht)− idE
onK with respect to h∞, gX and the Chern connection of h∞ are dominated by C(K, �)e−ε(K,�)t.

7.2.2 Refined statement We shall prove a refined statement. For that purpose, we refine the
construction of h̃t in the proof of Theorem 7.5. Let P ∈D and i∈ S(P ).
Lemma 7.15. The metric det((h∞)P,i) induces a flat metric of det(EP,i).

Proof. The lemma follows from the condition that det((h∞)P,i) is adapted to

detP�∗ (EP,i(∗D)P ) = detP(0)
∗ (EP,i(∗D)P ). �

According to Proposition 6.11, there exists a non-degenerate symmetric pairing CP,i of
(EP,i, θP,i) such that CP,i|X∗

P
is compatible with (h∞)P,i. For t > 0, there exists a harmonic

metric ht,P,i of (EP,i, θP,i) which is compatible with CP,i such that its boundary value at ∂XP is

equal to that of h∞|EP,i
. We construct the metric h̃t by using ht,P,i as in the proof of Theorem 7.5

(see §7.1.3). By Proposition 6.7, the following holds.

Lemma 7.16. Let s(h∞, h̃t) be the automorphism of E|X\D determined by h̃t = h∞ · s(h∞, h̃t).
For any relatively compact open subset K of X∗

P and for any �∈Z�0, there exist constants

C(K, �), ε(K, �), t(K)> 0 such that the L2
� -norms of s(h∞, h̃t)− id on K with respect to h∞

and gX are dominated by C(K, �) exp(−ε(K, �)t) for any t > t(K).
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By Lemma 7.16, we obtain

|R(h̃t) + [tθ, (tθ)†
˜ht

]|
˜ht,gX

�Ce−εt. (54)

for some ε, C > 0. Moreover, by the construction, the support of (54) is contained in⋃
P∈D

{(1/4)rank(E) � |zP |� 4/5}.

Let st be the automorphism of E determined by ht = h̃t · st. We obtain Theorem 7.14 from
Lemma 7.16 and the following theorem.

Theorem 7.17. For any � > 0, there exist C(�), ε(�)> 0 such that the L2
� -norms of st − id on

X with respect to h̃t, gX and the Chern connection of h̃t are dominated by C(�) exp(−ε(�)t).
Proof. By [Sim88, Lemma 3.1] and (54), there exist C1, ε1 > 0 such that∫

X

(
|s−1/2

t ∂
E,˜ht

(st)|2˜ht
+ |[θ, st]s−1/2

t |2
˜ht

)
�C1 exp(−ε1t).

By Corollary 7.7, |st|˜ht
and |s−1

t |
˜ht

are uniformly bounded. There exist C2, ε2 > 0 such that∫
X

(
|∂

E,˜ht
(st)|2˜ht

+ |[θ, st]|2˜ht

)
�C2 exp(−ε2t). (55)

Let K be a relatively compact open subset of X \D. By the variant of Simpson’s main
estimate ([Moc16, Theorem 2.9]) and Lemma 7.16, there exist C3(K), ε3(K)> 0 such that the
following holds on K:

|∂E(s−1
t ∂

E,˜ht
(st))|2˜ht

�C3(K) exp(−ε3(K)t).

Together with (55), we obtain that there exist C4(K), ε4(K)> 0 such that the following holds
on K:

|∂
E,˜ht

(st)|˜ht
�C4(K) exp(−ε4(K)t). (56)

Because st is self-adjoint with respect to h̃t, we obtain the following on K:

|∂(st)|˜ht
�C4(K) exp(−ε4(K)t). (57)

Lemma 7.18. There exist C(K), ε(K)> 0 such that the following holds on K:

|st − id|
˜ht
�C(K) exp(−ε(K)t).

Proof. Let P be any point of X \D. Let XP be a simply connected neighbourhood of P in
X \D. There exists a decomposition into Higgs bundles of rank 1:

(E, θ)|XP
=

rank(E)⊕
i=1

(EP,i, θP,i).

We obtain the decomposition st =
∑

(st)j,i, where (st)j,i :EP,i →EP,j . By [Moc16,
Proposition 2.3], there exist C5(P ), ε5(P )> 0 such that the following for i �= j on XP :

|(st)j,i|˜ht
�C5(P ) exp(−ε5(P )t). (58)

By (56) and (57), there exist C6(P ), ε6(P )> 0 such that

|d(st)i,i|�C6(P ) exp(−ε6(P )t).
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Hence, there exist C7(P ), ε7(P )> 0 such that the following holds for any P1, P2 ∈XP :

|(st)i,i(P1)− (st)i,i(P2)|�C7(P ) exp(−ε7(P )t).
Let i �= j. There exists a loop γ in X \D such that the monodromy of ΣE,θ along γ exchanges
Ei and Ej . By taking a finite covering of γ by relatively compact open subsets and by applying
the above consideration, we obtain that there exist C8(P ), ε8(P )> 0 such that the following
holds for any P1 ∈XP :

|(st)i,i(P1)− (st)j,j(P1)|�C8(P ) exp(−ε8(P )t). (59)

By (58), there exist C9(P ), ε9(P )> 0 such that the following holds on XP :∣∣∣∣∣∣
rank(E)∏

i=1

(st)i,i − 1

∣∣∣∣∣∣�C9(P ) exp(−ε9(P )t). (60)

By (59) and (60), there exist C10(P ), ε10(P )> 0 such that

|(st)i,i − 1|�C10(P ) exp(−ε10(P )t).
Then, we obtain the claim of Lemma 7.18. �

We obtain the estimate of |st − id|
˜ht

around D by using Theorem 4.3. We can also obtain
the estimate for the higher derivatives by using Theorem 4.3. �

7.3 A family case

7.3.1 Setting Let S be a connected complex manifold. Let Y be a complex manifold with a
proper smooth morphism p1 :Y →S. Let p2 : S ×X→S and π2 : S × T ∗X→S ×X denote the
projections. Let Φ0 :Y →S × T ∗X be a holomorphic map such that p1 = p2 ◦ π2 ◦Φ0. We set
Φ1 = π2 ◦Φ0. We assume the following conditions:

– each fiber of p1 is connected and one1-dimensional;

– Φ1 is proper and finite;

– there exists a closed complex analytic hypersurface D⊂S ×X such that (i) D is finite
over S, (ii) the induced map Y \Φ−1

1 (D)→ (S ×X) \ D is a covering map and (iii) Φ0

induces an injection Y \Φ−1
1 (D)−→S × T ∗X.

We set r := |Φ−1
1 (P )| for any P ∈ (S ×X) \ D. We set D̃ := Φ−1

1 (D). For any x∈ S, we set Yx :=

p−1
1 (x), D̃x :=Yx ∩ D̃ and Dx := p−1

2 (x)∩D. Let g(X) denote the genus of X. Let g̃ denote the
genus of Yx, which is independent of x∈ S.

Let L be a line bundle on Y such that

deg(L|Yx
) = g̃− rg(X) + r− 1.

We obtain the locally free OS×X -module E =Φ1∗L. It is equipped with the relative Higgs field

θ : E → E ⊗Ω1
S×X/S ,

induced by the OS×T ∗X -action on Φ0∗L. For any x∈ S, let (Ex, θx) be the induced Higgs bundle
on X 	 {x} ×X. We obtain the following lemma by the construction.

Lemma 7.19. Each (Ex, θx) is stable of degree 0.
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7.3.2 Statement We obtain the holomorphic line bundle det(E) on S ×X. There exists a
C∞-Hermitian metric hdet(E) of det(E) such that hdet(E),x := hdet(E)|{x}×X is flat for any x∈ S.

We have the decomposable filtered Higgs bundle (P�∗Ex, θx) on (X,Dx). Let h∞,x be the
decoupled harmonic metric of (Ex, θx)|X\Dx

such that det(h∞,x) = hdet(E),x.

Lemma 7.20. The metrics h∞,x (x∈ S) induce a C∞-metric of E|(S×X)\D.

Proof. It is enough to study locally around any point x0 ∈ S. By using the examples in §6.3.3,
we can construct a C∞-Hermitian metric h0 of L|Y\ ˜D such that (i) h0 is flat around D̃ and (ii)

h0|Yx\ ˜Dx
is adapted to P�∗ (L|Yx

). By using Lemma 7.23 below, we can construct a C∞-function

f on Y such that h1,x = efh0,x (x∈ S) is a family of flat metrics L|Yx\ ˜Dx
. It induces a family of

decoupled harmonic metrics h2,x of (Ex, θx)|X\Dx
such that they give a C∞-Hermitian metric h2

of E|(S×X)\D. Note that det(h2,x) induces a flat metric of det(Ex, θx). For each x∈ S, because
both det(h2,x) and hdet(E),x are flat metrics of det(Ex), we obtain that αx > 0 determined by
det(h2,x) = αxhdet(E),x. Because det(h2,x) (x∈ S) give a C∞-metric of det(E)|(S×X)\D, we obtain
that αx (x∈ S) give a C∞-function on S. Because h∞,x = e−αx/rh2,x, we obtain that h∞,x induces
a C∞-metric of E(S×X)\D. �

Let ht,x be a harmonic metric of (Ex, tθx) such that det(ht,x) = hdet(E),x. Let (Vx, θx) :=
(Ex, θx)|X\Dx

. We obtain the automorphism s(h∞,x, ht,x) of Vx determined by ht,x = h∞,x ·
s(h∞,x, ht,x).

Theorem 7.21. Let x0 ∈ S. Let K be any relatively compact open subset in X \ Dx0
. Let S0 be

a neighbourhood of x0 such that S0 ×K is relatively compact in (S ×X) \ D. For any �∈Z�0,
there exist positive constants C(�, K) and ε(�, K) such that the L2

� -norms of s(h∞,x, ht,x)− id
(x∈ S0, t� 1) on K with respect to h∞,x, gX and the Chern connection of h∞,x are dominated
by C(�, K) exp(−ε(�, K)t).

7.3.3 Refined statement Let x0 ∈ S. For any P ∈Dx0
, let (UP , zP ) be a simply connected

holomorphic coordinate neighbourhood of P in X such that UP ∩Dx0
= {P} and that zP

induces (UP , P )	 (B(2), 0). Moreover, we assume that zP induces a holomorphic isomorphism
between neighbourhoods of the closures of UP and B(2). Let S1,P be a relatively compact open
neighbourhood of x0 in S such that

D ∩ (S1,P ×UP )⊂S1,P × {|zP |� (1/4)rankE}.
Let S1 be a connected open neighbourhood of x0 in

⋂
P∈Dx0

S1,P .

For P ∈Dx0
and x∈ S1, let ht,P,x be the harmonic metric of (Ex, θx)|{|zP |<1} such that

ht,P,x|{|zP |=1} = h∞,x|{|zP |=1}. We note that Condition 6.17 is satisfied for h∞,x|UP
by Lemma 7.15,

and we can apply Proposition 6.18 to ht,P,x. We construct Hermitian metrics h̃t,x of Ex (x∈ S1)

from h∞,x and ht,P,x (P ∈Dx0
) as in §7.1.3. Let s(h̃t,x, ht,x) be the automorphism of Ex deter-

mined by ht,x = h̃t,x · s(h̃t,x, ht,x). By using Proposition 6.18, we obtain the following theorem in
the same way as Theorem 7.14, which implies Theorem 7.21.

Theorem 7.22. For any �∈Z�0, there exist positive constants C(�) and ε(�) such that the
L2
� -norms of

s(h̃t,x, ht,x)− id (x∈ S1, t� 1),

with respect to h̃t,x, gX and h̃t,x are dominated by C(�) exp(−ε(�)t).
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7.3.4 Appendix Let M be a compact oriented C∞-manifold. Let S be a C∞-manifold. Let
gS×M be a Riemannian metric of S ×M . For each x∈ S, we set Mx := {x} ×M . Let gx and Δx

denote the induced Riemannian metric and the associated Laplacian of Mx.

Lemma 7.23. Let f1 be a C∞-function on S ×M such that
∫
Mx

f1 dvolgx = 0. Let f2 be a

function on S ×M determined by the conditions Δx(f2|Mx
) = f1|Mx

and
∫
Mx

f2|Mx
dvolgx = 0.

Then, f2 is C∞.

Proof. We explain only a sketch of a proof. For any x∈ S, let fi,x := fi|Mx
. Let S0 be a relatively

compact open subset in S. There exists a uniform lower bound of the first non-zero eigenvalue of
the operators Δx (x∈ S0) (see [Li12, Theorem 5.7]). There exists C0 > 0 such that ‖f1,x‖L2 �C0

(x∈ S0). By Δx(f1,x) = f2,x, for any �∈Z�0 there exists C1(�)> 0 such that ‖f1,x‖L2
�
�C1(�) for

any x∈ S0. Let x(i)∈ S0 be a sequence convergent to x(∞)∈ S0. There exists a subsequence x′(j)
convergent to x(∞) such that the sequence f1,x′(j) is weakly convergent in L2

� for any �∈Z�0. The
limit f∞ satisfies Δ(f∞) = f2,x(∞) and

∫
Mx(∞)

f∞ dvolgx(∞)
= 0. We obtain f∞ = f1,x(∞). Hence,

f1,x and their derivatives in the M -direction are continuous with respect to x∈ S.
Let S1 be a relatively compact open subset of S equipped with a real coordinate sys-

tem (x1, . . . , xn). Let [∂j ,Δx] be the differential operator on S1 ×M defined by [∂j ,Δx](f) =
∂j(Δx(f))−Δx(∂jf). It does not contain a derivative in the S1-direction. Note that [∂j ,Δx](f1,x)

and their derivative in the M -direction are continuous with respect to x∈ S1. Let f
(j)
1,x be

the solution of the conditions Δx(f
(j)
1,x) = ∂jf2,x − [∂j ,Δx]f1,x and

∫
Mx

f
(j)
1,x dvolgx = 0. Choose

y= (y1, . . . , yn)∈ S1. We define functions F
(j)
x onMx by F

(j)
x = (xj − yj)

−1(f1,x − f1,y) if xj �= yj ,

and F
(j)
x = f

(j)
1,x if xj = yj . They satisfy Δx(F

(j)
x ) = (xj − yj)

−1(f2,x − f2,y − (Δx −Δy)f1,y) if

xj �= yj and Δx(F
(j)
x ) = ∂jf2,x − [∂j ,Δx]f1,x if xj = yj . Then, by an argument in the previous

paragraph, we can prove that F
(j)
x and their derivatives in the M -direction are continuous with

respect to x. This implies that f1,x is C1-with respect to x and that ∂jf1,x = f
(j)
1,x. By a similar

argument, we can prove that f1,x and their derivatives in the M -direction are C∞ with respect
to x. �
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