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Rationality problems and conjectures of

Milnor and Bloch–Kato

Aravind Asok

Abstract

We show how the techniques of Voevodsky’s proof of the Milnor conjecture and the
Voevodsky–Rost proof of its generalization the Bloch–Kato conjecture can be used
to study counterexamples to the classical Lüroth problem. By generalizing a method
due to Peyre, we produce for any prime number ` and any integer n> 2, a rationally
connected, non-rational variety for which non-rationality is detected by a non-trivial
degree n unramified étale cohomology class with `-torsion coefficients. When `= 2, the
varieties that are constructed are furthermore unirational and non-rationality cannot
be detected by a torsion unramified étale cohomology class of lower degree.

1. Introduction

Suppose n is an integer coprime to the characteristic of k, and L/k is a finitely generated
separable field extension. Consider the functor on k-algebras defined by A 7→H i

ét(A, µ
⊗j
n )

(we abuse terminology and write A instead of SpecA for notational convenience). Given a discrete
valuation ν of L/k with associated valuation ring A, one says that a class α ∈H i

ét(L, µ
⊗j
n ) is

unramified at ν if α lies in the image of the restriction map H i
ét(A, µ

⊗j
n )→H i

ét(L, µ
⊗j
n ). For any

integers i, j, Colliot-Thélène and Ojanguren [CO89] defined the unramified cohomology group
H i

ur(L/k, µ
⊗j
n ) as the subgroup of H i

ét(L, µ
⊗j
n ) consisting of those classes α that are unramified

at every discrete valuation of L trivial on k. Colliot-Thélène and Ojanguren also proved that
the groups H i

ur(X/k, µ
⊗j
n ) are stable k-birational invariants [CO89, Proposition 1.2]. If X is any

smooth proper k-variety, we write H i
ur(X/k, µ

⊗j
n ) for H i

ur(k(X)/k, µ⊗jn ). For another point of
view on these statements see [Col95, Theorem 4.1.1].

The unramified cohomology groups can be used to detect counterexamples to the Lüroth
problem (over C). To set the stage, recall that in their celebrated work [AM72], building on
a suggestion of C.P. Ramanujam, Artin and Mumford showed that the torsion subgroup of
the singular cohomology group H3(X, Z) is a birational invariant for smooth proper complex
varieties X. By explicitly exhibiting a conic bundle over a rational surface and a 2-torsion class
in this group, they produced an ‘elementary’ example of a unirational non-rational variety.

When i= 2, j = 1, and L is the function field of a smooth proper k-variety X, the group
H2

ur(L/k, µn) admits a geometrically appealing interpretation. In this case, one can identify the
group H2

ur(L/k, µn) with the n-torsion in the cohomological Brauer group of X using results
of Auslander–Goldman and Grothendieck (cf. [Gro68, §§ 6 and 7]). In this context, it was
Saltman who first applied the unramified Brauer group to rationality problems [Sal84, Sal85],
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Rationality problems and conjectures of Milnor and Bloch–Kato

and Saltman mentions a relationship between the Artin–Mumford example and the unramified
Brauer group. In fact, as Colliot-Thélène and Ojanguren [CO89, § 2] make explicit, the 2-torsion
class constructed by Artin and Mumford is a 2-torsion class in the cohomological Brauer group
(see [Oja90, § 8] for a nice overview of this circle of ideas).

Colliot-Thélène and Ojanguren went further and produced an example of a unirational
non-rational variety where non-rationality was detected by means of a degree 3 unramified
cohomology class in the function field of a quadric over a transcendence degree 3 extension of C.
Furthermore, they proved that the cohomological Brauer group of their example was trivial.
They also suggested that it should be possible to produce higher dimensional varieties that were
unirational, not-stably rational, where non-rationality is detected by a class of degree n, yet
could not be detected by lower degree classes.

A key algebraic input in the construction of [CO89] was a result of Arason [Ara75, p. 489]
describing the kernel of the restriction map H3

ét(k, µ
⊗2
2 )→H3

ur(L/k, µ
⊗2
2 ) for L the function

field of a special quadratic form: a (neighbor of a) Pfister 3-form. Using this result, the degree
3 unramified invariant was constructed by an intricate geometric argument. Later, using a
generalization of Arason’s theorem due to Jacob and Rost [JR89, p. 559], Peyre [Pey93] produced
examples of fields where non-rationality was detected by a degree 4 unramified cohomology class.
While he showed that the Brauer group was trivial for his examples, he did not establish vanishing
of degree 3 unramified cohomology.

The main result of this paper shows that the construction of Colliot-Thélène–Ojanguren,
as generalized by Peyre, extends to all degrees. The examples fit naturally into the study of
A1-connectedness undertaken in [AM11, Aso12]. Indeed, unramified cohomology can be viewed as
providing a cohomological measure of deviation from connectedness in the sense of A1-homotopy
theory [Aso12]. For the purposes of this paper, rather than repeat the precise definition of
A1-connectedness, we will recall that, in [AM11, Corollary 2.4.4], it was established that a smooth
proper variety over a field k is A1-connected if and only if for every finitely generated separable
extension L/k, the set of R-equivalence classes X(L)/R consists of a single element. If k has
characteristic 0, then stably k-rational varieties are A1-connected by [AM11, Corollary 2.3.7].

Theorem 1 (See Theorem 4.2). For every integer n > 0, there exists a smooth projective
complex variety X that is unirational, for which H i

ur(X, µ
⊗i
2 ) vanishes for each i < n, yet

Hn
ur(X, µ

⊗n
2 ) 6= 0, and so X is not A1-connected (nor stably k-rational).

The fields used to construct the examples are function fields of products of quadrics
defined by Pfister n-forms over rational function fields in many variables. The result of Arason
used by Colliot-Thélène–Ojanguren (and the subsequent generalization by Jacob–Rost) was
extended to Pfister n-forms by Orlov–Vishik–Voevodsky [OVV07, Theorem 2.1] as a consequence
of Voevodsky’s spectacular affirmation of Milnor’s conjecture that the mod 2 norm residue
homomorphism is an isomorphism [Voe03]; these results provide the main new ingredient in
construction of our examples.

Remark 2. As was pointed out to the author by the referee of a previous version of this paper,
examples of the sort produced here can also be produced by combining results of Izhboldin [Izh01]
with [OVV07]; see [Izh01, Lemma 9.5], which makes reference to [Izh01, Lemmas 6.4 and 8.12].
Nevertheless, our approach, following Peyre, is different. Moreover, examples such as the above
have not (to the best of the author’s knowledge) appeared explicitly anywhere in print.

Peyre also observed that for ` a prime different from 2, it was possible to construct unirational
non-rational varieties whose non-rationality was detected by degree n unramified cohomology
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classes when n was small. Indeed, he observed [Pey93, Proposition 5] that the Brauer–Severi
varieties attached to cyclic algebras can be used to construct unirational varieties with a non-
trivial degree 2 unramified `-torsion class. He also observed [Pey93, Proposition 5] that it
is possible to construct unirational varieties where non-rationality is detected by a degree 3
unramified `-torsion class, yet for which the (unramified) Brauer group is trivial. Again, each
example relied on a variant of the result of Arason mentioned above (in the first case, the
necessary result was provided by Amitsur and in the second case by Suslin; see [Pey93] for
precise references). As a partial generalization of these results, we establish the following.

Theorem 3 (See Theorem 4.4). For any prime number ` and any integer n> 2, there exists
a smooth projective rationally connected complex variety X such that Hn

ur(X/C, µ⊗n` ) is non-
trivial. In particular, X is not A1-connected (nor stably k-rational).

If ` is a prime number different from 2, in the course of the proof of the Bloch–Kato
conjecture certain new varieties, `-generic splitting varieties, were introduced to assume the
role played by Pfister quadrics in the proof of the Milnor conjecture. The varieties used by Peyre
in his constructions are precisely of this form. Theorem 3 relies on the explicit constructions of
`-generic splitting varieties due to Voevodsky and Rost [Ros02, SJ06], and results of [MS10] that
provide partial analogs for the results of Orlov–Vishik–Voevodsky, Amitsur or Suslin mentioned
above. We prove rational connectivity of some explicit `-generic splitting varieties and again
apply the method of Peyre to construct non-trivial unramified classes.

The paper closes with a discussion of the unramified cohomology of smooth proper rationally
connected varieties. After recalling some vanishing statements, we ask some questions about
when unramified cohomology can be non-trivial. Even for smooth proper rationally connected
3-folds, the answer to these questions seems to be unknown in general.

2. Unramified cohomology and splitting varieties

Throughout this work, the letters F, k, or K will be used to denote fields containing C as
subfields; while this restriction is not necessary everywhere, it simplifies the presentation in a
number of places. In particular, if ` is a prime number, we will fix, once and for all, a primitive
`th root of unity τ and consequently an isomorphism Z/`∼= µ`. Throughout the paper KM

∗ (F )
denotes the graded Milnor K-theory ring of the field F and KM

∗ (F )/n denotes the mod n Milnor
K-theory ring of F .

We write Smk for the category of schemes separated, smooth, and finite type over k; we
will also refer to elements of Smk as varieties. We view Smk as a site by equipping it with the
Nisnevich topology; the word sheaf will, unless otherwise mentioned, mean Nisnevich sheaf on
Smk.

The norm residue isomorphism theorem and consequences

Kummer theory gives a canonical identification k∗/(k∗)n ∼→H1
ét(Spec k, µn). Given a sequence of

elements a1, . . . , am ∈ k∗, we write (ai) for the image of ai ∈H1
ét(Spec k, µn), and (a1, . . . , am)

or a (depending on context) for the cup product (a1) ∪ · · · ∪ (am) ∈Hm
ét (Spec k, µ⊗mn ).

By definition, there is an induced identification KM
1 (k)/n ∼−→ k∗/(k∗)n. Combining this

identification with the canonical isomorphism given by Kummer theory in the previous
paragraph, there is a canonical isomorphism KM

1 (k)/n ∼→H1
ét(Spec k, µn). Bass and Tate showed
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that the previous identification extends to a morphism of graded rings

ψn,∗ :KM
∗ /n(k) ∼−→H∗ét(Spec k, µ⊗∗n ),

and ψn,∗ or its graded components, are referred to as the norm residue homomorphism.
The norm residue homomorphism is functorial in k, but also satisfies additional compatibility

conditions. If k is a field equipped with a discrete valuation ν and associated residue field κν ,
Milnor constructed in [Mil70, Lemma 2.1] residue maps

∂ν :KM
i /n(k)−→KM

i−1/n(κν).

Using cohomological purity, there are corresponding residue maps in étale cohomology and the
norm residue homomorphism is compatible with residue maps. Furthermore, both Milnor K-
theory and étale cohomology admit transfers, and the norm residue homomorphism is compatible
with transfers as well. These compatibilities lead to a sheafification of the norm residue
homomorphism; this circle of ideas is closely connected with the results of Bloch–Ogus (see,
e.g., [CHK97] for discussion of this point of view).

For a smooth irreducible k-scheme V with function field k(V ), one defines the unramified
Milnor K-group KM

i /n(V ) as the intersection of kernels of residue maps coming from the
geometric discrete valuations of k(V ). One defines KM

i /n(U) on a not necessarily irreducible
smooth k-scheme as a sum. The functor U 7→KM

i /n(U) then defines a Nisnevich sheaf KM
i /n

on Smk that is often called the ith unramified mod n Milnor K-theory sheaf. Furthermore,
KM
i /n is actually a homotopy invariant Nisnevich sheaf with transfers and therefore is strictly

A1-invariant (recall that a Nisnevich sheaf of abelian groups A is strictly A1-invariant if its
cohomology presheaves V 7→H i

Nis(V,A) are A1-invariant for any smooth k-scheme V ; this notion
is studied in great detail in [Mor05, § 6]).

Similarly, the Nisnevich sheafification of the functor on smooth k-schemes defined by
U 7→H i

ét(U, µ
⊗j
n ) will be denoted Hiét(µ

⊗j
n ), and the sections of this sheaf over a smooth scheme

X can be identified by a remark of Gabber with H i
ur(X, µ

⊗j
n ); this sheaf is called the ith mod n

weight j unramified étale cohomology sheaf. Again, the sheaf Hiét(µ
⊗j
n ) is strictly A1-invariant.

Compatibility of the norm residue isomorphism with residues gives a morphism of sheaves

ψn,∗ : KM
i /n−→Hiét(µ

⊗i
n ). (2.1)

Since strictly A1-invariant sheaves have Gersten resolutions (see, e.g., [CHK97]), one deduces
immediately from this fact that a morphism of strictly A1-invariant sheaves (with transfers) is
an isomorphism if and only if it is an isomorphism on sections over finitely generated separable
extensions L/k. Therefore, the morphism ψn,∗ is an isomorphism if and only if the norm residue
isomorphism conjecture holds for all extensions L/k.

Voevodsky’s proof of the Milnor conjecture and the subsequent Voevodsky–Rost proof of the
Bloch–Kato conjecture imply the following result.

Theorem 2.1 ([Voe03, Corollary 7.5], [Voe11, Theorem 6.1]). The morphism ψn,∗ from (2.1)
is an isomorphism of sheaves.

One immediate consequence of this form of the theorem is that unramified mod n
Milnor K-theory can be canonically identified with unramified étale cohomology. As usual,
let Z/`(n) denote the mod n motivic complex (see, e.g., [MVW06]). Our choice of an `th
root of unity determines a morphism of motivic complexes τ : Z/`(n− 1)→ Z/`(n). Suslin
and Voevodsky showed that the Beilinson–Lichtenbaum conjecture was equivalent to the
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Bloch–Kato conjecture [SV00]. As a consequence, one deduces the existence of the following
triangle in Voevodsky’s derived category of motives.

Lemma 2.2 [OVV07, Lemma 2.4]. The morphism τ extends to a distinguished triangle in
DMeff

k,− of the form

Z/`(n− 1) τ−→ Z/`(n)−→Hn(Z/`(n))[−n].

The sheaf Hn(Z/`(n)) is strictly A1-invariant and is therefore determined by its sections
over fields. The computation of the (n, n)-motivic cohomology of fields (see, e.g., [MVW06, § 4])
together with Theorem 2.1 allows us to identify Hn(Z/`(n)) ∼→Hnét(µ

⊗n
` ).

If X is any smooth k-scheme, the C̆ech object associated with X, denoted C̆(X), is the
simplicial scheme whose nth term is the n+ 1-fold fiber product of X with itself over Spec k;
the relevant simplicial structures are induced by diagonal maps and partial projections. The
canonical morphism C̆(X)→ Spec k is an isomorphism in the (Nisnevich) simplicial homotopy
category if it is an epimorphism of Nisnevich sheaves [MV99, § 2 Lemma 1.15], i.e., if X has a
k-rational point. Whether or not X has a k-rational point, the map C̆(X)→ Spec k induces an
isomorphism Hn,n(Spec k, Z/`) ∼→Hn,n(C̆(X), Z/`) (see, e.g., [OVV07, Lemma 2.2]).

The diagonal map X → C̆(X) induces a morphism

H0(C̆(X),Hnét(µ
⊗n
` ))−→H0(X,Hnét(µ

⊗n
` )) =Hn

ur(X/k, µ
⊗n
` ).

Applying the functor HomDMeff
k,−

(M(C̆(X)),−) to the triangle in Lemma 2.2, one can deduce
the following result.

Lemma 2.3 [Voe11, Proof of Lemma 6.5]. There is an exact sequence of the form

0−→Hn,n−1(C̆(X), Z/`)−→Hn
ét(Spec k, Z/`)−→Hn

ur(X/k, µ
⊗n
` ).

Pfister quadrics and the results of Orlov–Vishik–Voevodsky
We use standard notation from the theory of quadratic forms. For elements a1, . . . , am ∈
k∗ write 〈a1〉 for the 1-dimensional quadratic form a1x

2, 〈a1, . . . , am〉 for the orthogonal
sum 〈a1〉 ⊕ · · · ⊕ 〈am〉, 〈〈a1〉〉 for the form 〈1,−a〉 and 〈〈a1, . . . , am〉〉 for the tensor product
〈〈a1〉〉 ⊗ · · · ⊗ 〈〈am〉〉.

Definition 2.4. Given an n-tuple a1, . . . , an ∈ k∗, the Pfister quadric attached to the symbol
a is the projective variety Pa defined by the homogeneous equation

〈〈a1, . . . , an〉〉= 0 and

the small Pfister quadric attached to the symbol a is the projective variety Qa defined by the
homogeneous equation

〈〈a1, . . . , an−1〉〉= 〈an〉.
We write Xa for C̆(Qa).

Orlov–Vishik–Voevodsky give a strengthening of Lemma 2.3, which we summarize in the
following statement (this form of the result, which was perhaps contained in a preprint version
of [OVV07], has apparently been relegated to the status of mathematical folklore).

Theorem 2.5 [OVV07, Theorem 2.1]. If a is a non-trivial symbol of length n, the restriction
map

ηi :H i
ét(Spec k, Z/2)−→H i

ur(Qa/k, µ
⊗i
2 )

is an isomorphism for i < n and has kernel Z/2 generated by the class of a if i= n.
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Remarks on the proof. Any quadric that has a k-rational point is in fact k-rational. The quadrics
Qa are therefore generically rational in the sense that they are rational over their generic point.
From Lemma 2.2, and the argument of [Kah99, Theorem A.1] we get a description of both the
kernel and cokernel of the restriction map in unramified cohomology.

The description of the kernel (and triviality when i < n) is an immediate consequence of
[OVV07, Theorem 2.1]. The vanishing of the cokernel is proven by means of the same techniques.
See, e.g., [KS00, § 3 Proof of Theorem 3] for a detailed explanation of the triviality of the
cokernel. 2

Constructing Rost varieties
We now discuss partial analogs of these constructions adapted to primes other than 2. We start
by outlining a construction given in [SJ06, § 2], which is due originally to Voevodsky. Start with
any smooth projective k-variety Y . Write Y m for the m-fold fiber product of Y with itself over
Spec k. Let Symm(Y ) be the mth symmetric product of Y , i.e., the (singular in general) quotient
Y m/Sm, where the symmetric group Sm acts by permuting the factors. The symmetric group
Sm acts freely on the open subscheme Y m\∆ where ∆ is the union of the diagonals, which is
the locus corresponding to m distinct points in Y . A geometric quotient Cm(Y ) := (Y m\∆)/Sm
exists as a smooth scheme, and the notation is chosen to indicate that Cm(Y ) is the configuration
space of m points on Y .

There is an addition map p : Y × Symm−1Y → Symm(Y ); this morphism is finite surjective
of degree m. The preimage of Cm(Y ) under p gives rise to a morphism

Y × Sm−1(Y )⊃ p−1(Cm(Y ))−→ Cm(Y )

that is a finite étale morphism of degree m. In particular, p−1(Cm(Y )) is itself a smooth scheme.
The sheaf A := p∗(OY×Symm−1(Y ))|Cm(Y ) is a locally free sheaf of OCm(Y )-algebras of rank m.

We let V(A)→ Cm(Y ) be the associated geometric vector bundle (given by taking the spectrum
of the symmetric algebra of the dual of A). Since A is a locally free sheaf of algebras, there is a
well-defined norm morphism

N :A−→OCm(Y ),

which can be identified as a section of SymmA∨.
Now, take an element a ∈ k∗ and view this as a section of OCm(Y ). Then, consider the closed

subscheme of W ⊂ V(A) defined by the equation N − a= 0. By [SJ06, Lemma 2.1], the variety
W is smooth over Cm(Y ) and therefore smooth over k (and also geometrically irreducible). Let
N(Y, a, m) be a non-singular compactification of W , which exists since k has characteristic 0;
by resolving indeterminacy, we can even assume N(Y, a, m) is proper and surjective over a non-
singular compactification of Cm(Y ). Note that dimk N(Y, a, m) =m dim Y +m− 1.

Proposition 2.6. If k is any algebraically closed field containing C, and Y is a smooth
projective unirational (respectively rationally connected) variety, then the compactification
N(Y, a, m) is also a smooth projective unirational (respectively rationally connected) variety.

Proof. If Y is any unirational (respectively rationally connected) smooth proper variety, then
Y m is again unirational (respectively rationally connected). Let Ea be the subvariety of Am

defined by the equation
∏
i zi = a, which is itself rational; this equation is precisely N = a for a

split étale algebra of dimension m. Note that there is an obvious action of the symmetric group
Sm on Ea by permuting the coordinates in Am.
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The morphism Y m\∆→ Cm(Y ) is an Sm-torsor: this morphism sends a sequence of distinct
points in Y m\∆ to the corresponding 0-cycle. The pullback of the étale OCm(Y )-algebra A along
the morphism Y m\∆→ Cm(Y ), is a split étale OY m\∆-algebra by construction. Consequently,
the pullback of W along the morphism Y m\∆→ Cm(Y ) is precisely Y m\∆× Ea. Moreover,
the group Sm acts diagonally on the product Y m\∆× Ea, and the quotient is precisely W . In
particular, the quotient map gives a dominant morphism Y m\∆× Ea→W that has degree m
(see [KM13, 5c–d] for a more general version of this construction).

Since Ea is rational, any smooth proper compactification Ea is again rational. By resolving
indeterminacy of the rational map Y m × Ea→N(Y, a, m), we obtain a dominant morphism
from a unirational (respectively rationally connected) variety to N(Y, a, m), which means that
N(Y, a, m) is unirational (respectively rationally connected) as well. 2

Corollary 2.7. Suppose k is the function field of a smooth complex rationally connected
variety, a ∈ k∗, Y is a smooth projective k-variety, and K = k(N(Y, a, m)). If X is any smooth
proper model of K/C, then X is rationally connected.

Proof. Suppose Z is any smooth projective variety with C(Z) = k. By assumption Z is rationally
connected. By construction, there is a dominant rational map from X to Z, so by resolving
indeterminacy, there exist a smooth proper variety X ′, a morphism X ′→X that is a birational
equivalence, and a projective morphism X ′→ Z. Since Z is rationally connected it suffices by
[GHS03, Corollary 1.3] to establish that the general fibers of X ′→ Z are rationally connected.

By clearing the denominators, the k-variety N(Y, a, m) gives rise to a variety Y ′ and a smooth
and proper morphism Y ′→ U for an open subscheme U ⊂ Z. Tracing through the constructions,
one observes that the fiber over any closed point u ∈ U of Y ′→ U is a smooth compactification
of N(Yu, au, m) where au is the specialization of a to u. Thus, by Proposition 2.6, over any closed
point u ∈ U the fiber of Y ′→ U is rationally connected, so by [Kol96, Theorem IV.3.11] every
fiber of this morphism is rationally connected. It follows immediately that the general fiber of
X ′→ Z is rationally connected as well. Therefore, X is rationally connected. 2

Rost varieties and their motivic cohomology
Now, suppose ` is a prime number. Given elements a1, . . . , am ∈ k∗, we can also consider the
symbol a ∈KM

m (k)/`. An extension L/k is called a splitting field for a if a becomes trivial in
KM
m (L)/`. An irreducible smooth k-variety X is a splitting variety for a symbol a modulo ` if

k(X) is a splitting field for a. An irreducible smooth k-variety X is called a generic splitting
variety for a modulo ` if X is a splitting variety, and for any splitting field L of a, X(L) is
non-empty. Unfortunately, generic splitting varieties are only known to exist for `= 2 (Pfister
quadrics) or n6 3 (when n= 2, the Brauer–Severi varieties attached to cyclic algebras provide
models, and when n= 3, the Merkurjev–Suslin varieties provide models).

An irreducible smooth k-variety X is an `-generic splitting variety for a non-zero symbol
a ∈KM

m (k)/` if X is a splitting variety for a, and for any splitting field L of a, there is a finite
extension L′/L of degree prime to ` such that X(L′) is non-empty. An `-generic splitting variety
for a non-zero symbol a ∈KM

m (k)/` is a Rost variety for the symbol a if it satisfies the conditions
of [HW09, Definition 0.5].

For ` 6= 2, Rost varieties for a symbol of length m can be constructed inductively assuming
the Bloch–Kato conjecture in weights <m. For the symbol {a1, a2}, the Severi–Brauer variety
associated with the cyclic algebra attached to {a1, a2} is even a generic splitting variety. Given an
arbitrary symbol a= {a1, . . . , am}, one defines inductively Ya = Y(a1,...,an) :=N(Ya1,...,an−1 , an, l).
Note that dimk Ya = `n−1 − 1.
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Theorem 2.8 (Voevodsky, Rost [SJ06, Theorem 1.21]). If ` is a prime number, and a ∈
KM
n (k)/` is a non-trivial symbol, the variety Ya is a Rost variety for the symbol a.

Remark 2.9. Repeatedly applying Proposition 2.6, one sees that the varieties Ya are, after passing
to an algebraic closure of the base field, rationally connected. However, it is to the best of the
author’s knowledge not known whether the varieties Ya inherit any finer rationality properties
from the construction. For example, it is not known in general whether Ya is a retract k-rational
variety for an arbitrary prime ` and symbol in a ∈KM

n (k)/`.

By [Voe11, Lemma 6.4], if the symbol a is non-trivial in KM
n (k)/`, then its image in

Hn
ét(k, µ

⊗n
` ) under ψn,` remains non-zero. If Ya is a Rost variety attached to a symbol a, it follows

from this observation that the class of a defines a non-trivial element in Hn,n−1(C̆(Ya), Z/`),
which by Lemma 2.3 is precisely equal to the kernel of the map Hn

ét(Spec k, Z/`)→
Hn

ur(Ya/k, µ
⊗n
` ). Merkurjev and Suslin computed the motivic cohomology of C̆(Ya). We

summarize one consequence of their main result, which provides a partial analog of Theorem 2.5
in the case where ` 6= 2.

Theorem 2.10 [MS10, Proposition 1.4 and Theorem 1.15]. If a is a non-trivial symbol, and Ya
is a corresponding Rost variety, the kernel of the restriction map

Hn
ét(Spec k, Z/`)−→Hn

ur(Ya/k, µ
⊗n
` )

is isomorphic to Z/`, generated by the class of the symbol a.

3. Vanishing results

The goal of this section is to prove some vanishing results for unramified cohomology.

Theorem 3.1. Fix an integer n > 1. Let k be the function field of any variety Y over C such
that H i

ur(Y/C, µ⊗i2 ) = 0 for i < n. If a is a symbol of length n, the group H i
ur(k(Qa)/C, µ⊗i2 ) is

trivial for i6 n− 1.

The proof of Theorem 3.1 will require us to understand residue maps attached to discrete
valuations on k(Qa). To this end, we will use the following lemma, which is a direct consequence
of [EKM08, Corollary 6.13].

Lemma 3.2. Suppose K is a field (assumed again to have characteristic 0), and ν is a discrete
valuation of K with associated local ring Oν and residue field κν . If a1, . . . , an are elements
of K∗, there are elements b1, . . . , bn such that b2, . . . , bn are elements of O∗ν and such that,
over K, the quadratic forms 〈〈a1, . . . , an〉〉 and 〈〈b1, . . . , bn〉〉 are K-isomorphic.

Proof of Theorem 3.1. Let K = k(Qa) and suppose X is a smooth proper model of K over C.
The group H i

ur(X/C, µ⊗i2 ) is a subgroup of H i
ur(K/k, µ

⊗i
2 ) by its very definition. By Theorem 2.5,

the inclusion map

H i
ét(k, µ

⊗i
2 )−→H i

ur(Qa/k, µ
⊗i
2 )

is injective for i6 n− 1.
Suppose ν is a geometric discrete valuation of k with associated valuation ring Oν , residue

field κν , and suppose π is a local parameter. If a= (a1, . . . , an) is a symbol of length n as in the
theorem statement, Lemma 3.2 allows us to assume the associated Pfister quadric over Oν has
a2, . . . , an ∈ O∗ν ; it follows that we can assume the same thing regarding the symbol of Qa.
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The resulting model of Qa can be viewed as a subscheme of PNOν , and reducing the resulting
equation modulo the maximal ideal of Oν gives rise to a geometric discrete valuation ν ′ of K
with residue field κν′ . Moreover, the local homomorphism Oν →Oν′ is necessarily unramified,
and there is a commutative diagram of the following form.

H i
ét(k, µ

⊗i
2 ) //

��

H i−1
ét (κν , µ⊗i−1

2 )

��
H i

ét(K, µ
⊗i
2 ) // H i−1

ét (κν′ , µ⊗i−1
2 )

If i < n, the vertical morphism on the left is injective by Theorem 2.5. We claim the vertical
morphism on the right is injective as well.

There are two possibilities depending on whether or not π divides a1. Indeed, if π does not
divide a1, then κν′ is a function field of a small Pfister n-form over κν , and if π does divide a1, κν′
is a purely transcendental extension of the function field of a small Pfister (n− 1)-form over κν .
In the first case, since i− 1< n− 1< n, injectivity of the vertical morphism on the right follows
by another application of Theorem 2.5. In the second case, injectivity for a purely transcendental
extension is clear, and injectivity of the right-hand arrow then follows by yet another application
of Theorem 2.5.

Suppose we take a class in H i
ur(X/C, µ⊗i2 ) and view it as an element of H i

ét(k, µ
⊗i
2 ) by means

of the isomorphism of Theorem 2.5. A diagram chase shows that such a class is unramified at
every discrete valuation ν ′ of K of the form in the previous paragraph and therefore comes from
a class in H i

ur(k/C, µ⊗2
i ). Because of the hypothesis on k, the group H i

ur(k/C, µ⊗2
i ) is trivial for

i < n, and therefore the original class is trivial as well. 2

Remark 3.3. The hypotheses of the theorem are satisfied for Y any A1-connected smooth complex
variety by [Aso12, Proposition 3.5 and Lemma 4.7]. In what follows, we will only use the case
where Y is a projective space, but as shown in [AM11, Theorem 2.3.6.ii], any stably rational (or,
more generally, retract rational) smooth proper complex variety is A1-connected. Inductively
applying the theorem, one deduces the following result.

Corollary 3.4. Fix an integer n > 1. Let k be the function field of an A1-connected variety Y .
Suppose a1, . . . , ar are a sequence of symbols of length r in k. Let K be the function field of
the product k(Qa1

× · · · ×Qar), and let X be any smooth proper model of K over C. For any

integer i < n, H i
ur(X/C, µ⊗i2 ) = 0.

Remark 3.5. There are (at least) two immediate problems with attempting to adapt the proof of
Theorem 3.1 to study lower degree unramified cohomology of Rost varieties. First, as observed in
Remark 2.9, we do not know if Ya is retract rational, which makes description of the cokernel of
the restriction map in unramified cohomology more difficult. Second, the author is (perhaps due
to his own ignorance) unaware of any simple result like Lemma 3.2 that can be used to obtain
‘normal forms’ for Rost varieties over discrete valuation rings, though certainly Rost’s chain
lemma [HW09] comes to mind. As was pointed out by a referee, it suffices to understand how
Ya changes when, given a symbol a= (a1, . . . , an), the subsequence ai, ai+1 is replaced either by
ai+1, ai, or ai,−aiai+1.
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4. A non-vanishing result

In this section, for simplicity, we work over C. We combine the Orlov–Vishik–Voevodsky theorem
together with Peyre’s method to show that if k is the function field of a well-chosen complex
variety, and K is a suitable product of small Pfister quadrics attached to symbols of length n,
the non-trivial class in Hn

ur(K/k, µ
⊗n
2 ) guaranteed by Theorem 2.5 is actually contained in the

subgroup Hn
ur(K/C, µ⊗n2 ).

Peyre’s results
Suppose F is the function field of a variety over C. Let ` be a prime number. Following
Peyre, we fix a finite-dimensional F`-vector space V , and a morphism φ1 : V ∨→H1

ét(F, µ`).
Write Λ∗V for the usual exterior algebra of V , i.e., the quotient of the tensor algebra T (V )
by the ideal generated by expressions of the form x⊗ x. Because C contains 4th roots of
unity, [Pey93, Lemma 1] implies that the homomorphism φ1 extends to a morphism of graded
F`-algebras

φ : Λ∗(V ∨)−→H∗ét(F, µ
⊗∗
` ).

We fix an identification Λi(V ∨)→ (ΛiV )∨ by means of the map

f1 ∧ · · · ∧ fi 7−→
{
v1 ∧ · · · ∧ vi 7→

∑
σ∈Si

sgn(σ)f1(vσ(1)) · · · fi(vσ(i))
}
.

Having fixed this identification, for any basis v1, . . . , vn of V , with dual basis of V ∨ given by
v∨1 , . . . , v

∨
n , the dual basis of (vj1 ∧ · · · ∧ vji)j1<···<ji is given by (v∨j1 ∧ · · · ∧ v

∨
jn

). With these
choices, we get a morphism

φi : (ΛiV )∨ −→H i
ét(F, µ

⊗i
` )

(even for `= 2).
Let Si = ker(φi)⊥ ⊂ ΛiV . There is an induced morphism

φ̂i : Hom(Si, F`)−→H i
ét(F, µ

⊗i
` ),

which is necessarily injective. We define Sidec ⊂ Si to be the subgroup of Si generated by elements
of the form v ∧ v′ with v ∈ V and v′ ∈ Λi−1V . With this notation, the next result is a special
case of Peyre’s results (again, as Peyre remarks, ` is permitted to take the value 2).

Theorem 4.1 [Pey93, Theorem 2 and Corollary 3]. If f is an element of Hom(Si, F`) such that
f |Sidec

is zero, then φ̂i(f) ∈H i
ur(F/C, µ⊗i` ). Furthermore, if Sidec 6= Si, then H i

ur(F/C, µ⊗i` ) 6= 0.

A construction
Fix an integer n > 0. Let k′ = C(t1, . . . , t2n) and k = C(t`1, . . . , t

`
2n) and consider the inclusion

k ↪→ k′. Let V be an F`-vector space of dimension 2n with a chosen basis v1, . . . , v2n; there is an
isomorphism V

∼→Gal(k′/k) and an injection φ1 : V ∨ ↪→H1
ét(k, µ`) that sends v∨j to the class of

t`j .
If K is a function field over C that contains k, we set φ1

K to be the composite map

φ1
K : V ∨ −→H1

ét(k, µ`)−→H1
ét(K, µ`).

and set

φiK : (ΛiV )∨ −→H i
ét(K, µ

⊗i
` )

to be the map induced by exterior product on the left and cup product on the right.
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As Peyre explains, the problem of finding a non-rational field with non-rationality detected
by an unramified `-torsion class in the above setup translates into the following problem: find a
subspace S ⊂ ΛiV and an extension K/k of function fields satisfying:

(i) the kernel of the map φiK : (ΛiV )∨→H i
ét(K, µ

⊗i
` ) is S⊥; and

(ii) S 6= Sdec.

Define a degree n unramified class as follows. In terms of the basis v1, . . . , v2n described
above, take a subspace S of ΛnV spanned by the vector v1 ∧ · · · ∧ vn + vn+1 ∧ · · · ∧ v2n. The
vector v1 ∧ · · · ∧ vn + vn+1 ∧ · · · ∧ v2n is not contained in Sdec. Furthermore, we can explicitly
compute

S⊥ = Span

〈v∨j1 ∧ · · · ∧ v∨jn for 1 6 j1 < · · ·< jn 6 2n, with
(j1, . . . , jn) /∈ {(1, . . . , n), (n+ 1, . . . , 2n)},

and v∨1 ∧ · · · ∧ v∨n − v∨n+1 ∧ · · · ∧ v∨2n

〉

= Span

〈v∨j1 ∧ · · · ∧ v∨jn for 1 6 j1 < · · ·< jn 6 2n, with
(j1, . . . , jn) /∈ {(1, . . . , n), (n+ 1, . . . , 2n)},

and (v∨1 − v∨n+1) ∧ · · · ∧ (v∨n + v∨2n)

〉
.

Thus, there exists a basis for S⊥ where each element is of the form wj1 ∧ · · · ∧ wjn for
wj1 , . . . , wjn ∈ V ∨. Fix such a basis, and call it I. Each element s of I defines a symbol

s := φ̂n(s) ∈Hn
ét(k, µ

⊗n
` ).

We now use these symbols to provide the examples mentioned in the introduction. First, we
deal with the case `= 2. The next result gives a more precise version of Theorem 1 from the
Introduction.

Theorem 4.2. If K = k(
∏
s∈I Qs) (see Definition 2.4), X is any smooth proper model of K

over C, thenH i
ur(X/C, µ⊗i2 ) = 0 for i < n,Hn

ur(X/C, µ⊗n2 ) 6= 0, andX is unirational. In particular,
X is not A1-connected.

Proof. The vanishing of H i
ur(X/C, µ⊗i2 ) for i < n is an immediate consequence of Corollary 3.4.

Since K = k(
∏
s∈I Qs), induction on the number of symbols together with Theorem 2.5 shows

that the kernel of the restriction map

Hn
ét(k, µ

⊗n
2 )−→Hn

ur(K/k, µ
⊗n
2 )

is Z/2×I generated by the classes of the symbols s. The construction of I given above then
implies that the kernel of φnK : (ΛnV )∨→Hn

ét(K, µ
⊗n
2 ) is S⊥, and the construction of S shows

S 6= Sdec, so the non-triviality of Hn
ur(X/C, µ⊗n2 ) is a consequence of Theorem 4.1.

By definition, the image of any symbol s ∈ I in Hn
ét(k, µ

⊗n
2 ) in Hn

ét(k
′, µ⊗n2 ) is zero (see just

after Theorem 4.1 for this notation). Thus, the Qs have a k′-rational point and are therefore
k′-rational. It follows that there is a degree 2n extension ofK that is purely transcendental over C.
That X is not A1-connected is then a consequence of [Aso12, Proposition 3.5 and Lemma 4.7]. 2

Remark 4.3. A product of smooth quadrics splits after an extension of 2-primary degree. Transfer
techniques can then be used to show that the unramified cohomology (of any degree) with
µm-coefficients of such a product is trivial if m is odd. For i < n, the vanishing of degree i
unramified cohomology with µ2 coefficients can be used inductively to show that unramified
cohomology of µ2r coefficients also vanishes.
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The following result provides a precise version of Theorem 3 from the introduction.

Theorem 4.4. Suppose ` 6= 2 is a prime. Let K = k(
∏
s∈I Ys), where Ys is the Rost variety

attached to the symbol s (see Theorem 2.8). If X is a smooth projective model of K/C, then X
is rationally connected, and Hn

ur(X/C, µ⊗n` ) 6= 0. In particular, X is not A1-connected.

Proof. In this case, the rational connectivity of X follows from the statement of Proposition 2.7.
Since K = k(

∏
s∈I Ys), an induction argument using Theorem 2.10 shows that the kernel of the

restriction map

Hn
ét(k, µ

⊗n
` )−→Hn

ur(K/k, µ
⊗n
` )

is Z/`I generated by the classes of the symbols s. Again, the construction of I given above then
implies that the kernel of φnK : (ΛnV )∨→Hn

ét(K, µ
⊗n
` ) is S⊥, and the construction of S shows

S 6= Sdec, so the non-triviality of the unramified cohomology group in question is an immediate
consequence of 4.1. That X is not A1-connected is then a consequence of [Aso12, Proposition
3.5 and Lemma 4.7]. 2

Unramified cohomology of rationally connected varieties
If we fix a prime number ` and an integer n, the rationally connected varietyX with an unramified
degree n cohomology class modulo ` constructed in the previous section has dimension at least
`n − 1 + 2n over C: indeed, a Rost variety has dimension at least `n − 1 (see the discussion just
before Theorem 2.8), and the construction of the previous section considered a product of Rost
varieties over a rational function field in 2n variables over the complex numbers. In particular,
this number grows rapidly with n for a fixed `.

Question 4.5. If X is a rationally connected smooth proper complex variety of fixed dimension d,
are there restrictions on the integers n and primes ` for which Hn

ur(X/C, µ⊗n` ) can be non-zero?

Two restrictions on the possible values of n are presented in the following remarks.

Remark 4.6. The unramified cohomology of an irreducible smooth proper complex variety of
dimension d vanishes in degrees greater than d. Indeed, if k is a field, write Gk for the absolute
Galois group of k, cdp(Gk) for the p-cohomological dimension of Gk and cd(Gk) for supp cdp(Gk)
(see [Ser02, I.3]). Combining [Ser02, II 4.1 Proposition 10’ and II 4.2 Proposition 11], one observes
that if X is an irreducible smooth complex algebraic variety of dimension d, then cd(GC(X)) = d.
Since H i

ur(X/C, µ⊗n` ) is by definition a subgroup of H i
ét(C(X), µ⊗nj ) the stated vanishing follows.

Remark 4.7. For arbitrary `, if X is a rationally connected smooth proper complex variety, we
know that Hn

ur(X/C, µ⊗n` ) is non-zero only if n > 1. Indeed, if X is a rationally connected smooth
proper complex variety, then H1

ur(X/C, µn) =H1
ét(X, µn) = 0 for arbitrary n since such varieties

are (topologically or étale) simply connected.

Since all rationally connected complex curves and surfaces are rational, the first interesting
case of the question is that where X is a smooth proper rationally connected 3-fold. In that case,
the question can be given a much more precise form.

Remark 4.8. If X is a rationally connected smooth proper complex 3-fold, then a result of Colliot-
Thélène-Voisin [CV12, Corollaire 6.2], which uses Voisin’s affirmation of the integral Hodge
conjecture for rationally connected 3-folds, implies that H3

ur(X/C, µ⊗3
` ) is trivial for arbitrary `.

Thus, if X is a smooth proper rationally connected complex 3-fold, then only the second degree
unramified cohomology can be non-trivial.
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Question 4.9. If X is a smooth proper rationally connected complex 3-fold, for which primes `
can H2

ur(X/C, µ`) be non-trivial?

Remark 4.10. A natural way to attack the previous problem is to use the minimal model
program. The output of the minimal model program is a Fano fibration, which under the
rational connectivity assumption must have rationally connected base. If the fiber dimension
is 1, since rationally connected surfaces are rational, the varieties in question are conic bundles
over rational surfaces. In this case, the Artin–Mumford example shows that 2-torsion can appear
in the unramified Brauer group. Moreover, in such examples, only 2-torsion can appear by
[AM72, Proposition 3] (see also [IP99, Theorem 8.3.3]). If the fiber dimension is 2, the varieties
in question are models of geometrically rational surfaces X over C(t). The Brauer group of a
model over C of such a variety injects into the Brauer group of X over C(t). In the latter case,
results of Manin [Man86] can be used to show that only 2, 3 and 5 torsion can appear. Using
a cubic surface over C(t), is it possible to produce a rationally connected 3-fold with 3-torsion
in the Brauer group? Likewise, using a del Pezzo surface of degree 1 over C(t), is it possible
to produce a rationally connected 3-fold with 5-torsion in the Brauer group? Brauer groups
of non-singular Fano 3-folds are apparently trivial [IP99, p. 168], but for rationally connected
smooth proper varieties whose minimal models are singular Fano 3-folds, the Brauer group can
be non-trivial.
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Cohomologie des Schémas (North-Holland, Amsterdam, 1968), 88–188.

HW09 C. Haesemeyer and C. Weibel, Norm varieties and the chain lemma (after Markus Rost), in
Algebraic Topology, Abel Symposia, vol. 4 (Springer, Berlin, 2009), 95–130.

IP99 V. A. Iskovskikh and Yu. G. Prokhorov, Fano varieties, in Algebraic Geometry, V,
Encyclopaedia of Mathematical Sciences, vol. 47 (Springer, Berlin, 1999), 1–247.

Izh01 O. T. Izhboldin, Fields of u-invariant 9, Ann. of Math. (2) 154 (2001), 529–587.
JR89 B. Jacob and M. Rost, Degree four cohomological invariants for quadratic forms, Invent. Math.

96 (1989), 551–570.
Kah99 B. Kahn, Motivic cohomology of smooth geometrically cellular varieties, in Algebraic K-

theory, Seattle, WA, 1997, Proceedings of Symposia in Pure Mathematics, vol. 67 (American
Mathematical Society, Providence, RI, 1999), 149–174.

KM13 N. Karpenko and A. Merkurjev, On standard Norm varieties, Ann. Sci. Éc. Norm. Supér. (4)
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