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COMPLETELY MONOTONE FADING MEMORY RELAXATION
MODULII

R.S. ANDERSSEN AND R.J. LOY

In linear viscoelasticity, the fundamental model is the Boltzmann causal integral
equation

a(t) = f G(t- T)j(r)dr
J—oo

which defines how the stress a(t) at time t depends on the earlier history of the shear
rate j(r) via the relaxation modulus (kernel) G(t). Physical reality is achieved by
requiring that the form of the relaxation modulus G(t) gives the Boltzmann equation
fading memory, so that changes in the distant past have less effect now than the
same changes in the more recent past. A popular choice, though others have previ-
ously been proposed and investigated, is the assumption that G(t) be a completely
monotone function. This assumption has much deeper ramifications than have been
identified, discussed or exploited in the rheological literature. The purpose of this pa-
per is to review the key mathematical properties of completely monotone functions,
and to illustrate how these properties impact on the theory and application of linear
viscoelasticity and polymer dynamics. A more general representation of a completely
monotone function, known in the mathematical literature, but not the rheological, is
formulated and discussed. This representation is used to derive new rheological rela-
tionships. In particular, explicit inversion formulas are derived for the relationships
that are obtained when the relaxation spectrum model and a mixing rule are linked
through a common relaxation modulus.

1. INTRODUCTION

The stress-strain behaviour of a material, such as a synthetic or a manufactured poly-
mer (for example, plastics, rubbers and food doughs) or a naturally occurring biopoly-
mer (for example, wood, bone and muscle), is modelled using a constitutive relationship.
Because of the complex ways in which many materials respond when deformed, the for-
mulation of constitutive relationships involves quite deep and challenging mathematical
manipulations (see [12]).
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For a linear viscoelastic material, such as a synthetic polymer subjected to small
deformations, the Boltzmann causal integral equation

= f
J — oc

(1) °{t)= G(t-T)j(T)dT
J — 00

is the accepted constitutive relationship. It models how, in such materials, the stress a(t),

at time t, depends on the earlier history of the shear rate j(r). For a given material, the
essence of its viscoelasticity is encapsulated in the form and structure of the relaxation

modulus G(t). On physical grounds, this kernel cannot be an arbitrary function. In
particular, through the choice of G(t), equation (1) must be such that changes in the
shear rate in the distant past must have less effect now than the same changes in the
more recent past. The regularity imposed on G(t) to achieve this is called fading memory.

Various definitions for the concept of fading memory have been proposed and in-
vestigated (for example, [1, 9]). A popular choice ([7, 5]) is to assume that G(t) is
completely monotone ([10, 18]); namely,

(2) ( - 1

Rheologically, the popularity of this definition relates directly to the fact that G(t)

can be characterised in terms of the concept of a relaxation spectrum H(r) by

(3) G(t) = r e x p ( - i / r ) ^ dr, H(r) >0, t> 0.
Jo T

Such G(t) are automatically completely monotone, and the simple change of variable
s = 1/T yields

(4) G(t)= r
Joo

which fits the Laplace transform definition for completely monotone functions ([18,
p. 160]). As noted below, it follows from this result that any completely monotone func-
tion is the restriction to the positive half-line [0, oo) of a function analytic in the right
half plane.

Pragmatically, the importance of the choice of complete monotonicity as the defini-
tion of fading memory is that one only needs to derive a positive estimate of H(T), from
given rheological measurements, in order to guarantee that G(t), determined by (3), is
completely monotone. In addition, equation (3) yields a formal characterisation of the
concept of a relaxation spectrum H(T) of a polymer in terms of the kernel G(t).

The paper has been organised in the following manner. The relevant properties of
completely monotone functions are reviewed, and, where appropriate, derived in Section
2. The equivalencing of the relaxation spectrum and mixing rule representations of G(t)

is examined in Section 3. Explicit inversion formulas are constructed in Section 4 for the
resulting relationships. These results extend and complement similar results derived by
[16, 17].
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2. MATHEMATICAL PROPERTIES OF COMPLETELY MONOTONE FADING MEMORY

FUNCTIONS

The need to guarantee that equation (1) induces fading memory, in terms of how
the stress responds to different shear rates, was first recognised by Boltzmann [6]. A
popular choice, for both practical and theoretical reasons, is to define G(t) to have fading
memory, if it is completely monotone. We make the following definition.

DEFINITION 1: A function G(t) on [0, oo) has fading memory, if and only if it has
the form

(5) G{t) = / exp(-t/T)dfi(T), t > 0,
Jo

for some positive finite measure /x on [0, oo). Equivalently, by introducing the change of
variable s = 1/r,

(6)
/•oo

G(t) = / exp(-ts)dv(s),
Jo

where du{s) = s 2d/j,(s 1 ) .

Let M+ [0, oo) denote the wedge of finite positive Borel measures on [0, oo) under
convolution product, and T the set of completely monotone functions on [0, oo).

PROPOSITION 1 . The Laplace transform (6) is an isomorphism from M+[0,oo)
onto T taken with pointwise product.

P R O O F : It is standard that the Laplace transform is an isomorphism from M+[0, oo)
into T. Bernstein's theorem ([18, Theorem 12a, p.160]) establishes that it is surjective. D

It is an immediate consequence of this that any completely monotone function is the
restriction to the positive half-line [0, oo) of a function analytic in the right half plane. It
is this fact which gives the concept of complete monotonicity its specialised structure, and
explains why the definition (2) is not as innocuous as it initially appears. For example,
a non-constant completely monotone function must be strictly decreasing on [0, oo) -
otherwise it will be constant on some interval, and hence everywhere by analyticity. We
also emphasise that T is a wedge; that is, it is closed under positive linear combinations
and products. That it is closed under products can also be established directly. For
supposing G\ and G% have fading memory, Leibnitz's formula yields

<T(GlG2){t)_
I L> dtn - 2 ^ l> dti { l> dtj *u-

i+j=n

One result, that can be found in the mathematics literature ([11]), but has not
yet been exploited in the study of the polymer dynamics of linear viscoelastic materials
having completely monotone fading memories, is given by
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LEMMA . Let f : [0, oo) —> [0, oo) be strictly monotonically increasing and infinitely

differentiable, with /(0) > 0. For the function

(7) G(t)= I™ exp(-f(t)/r)driT),
Jo

to have fading memory, it is sufficient that f'(i) has fading memory.

PROOF: Suppose that t > 0. Then the n-th derivative of the integrand with respect
to t is a sum of terms of the form r~m/im(i)exp(—/(t)/r) for 1 ^ m ^ n, for some
functions hm. Since /(£) > 0, this is bounded as r —> 0, hence integrable with respect to
/i. It follows that differentiation through the integral is allowable. The same reasoning
(using /(0) > 0) shows that for each n ^ 0, limG("'(£) exists. It follows that G is

infinitely differentiable on [0,oo) with the expected derivative.

Let
/ •oo

( 8 ) (/>{x) = I e x p ( - x / T ) d f i { T ) , x ^ 0 .
Jo

Then,

(9) G(t) = (4>of)(t),

where the symbol "o" denotes composition. Thus, sufficiency follows from [10, Criterion
2 (p.441)], where it is established that such compositions are completely monotone. 0

The hypothesis that /(0) > 0 was only required to ensure suitable behaviour of the
differentiated integrand near r = 0. In rheological applications, because one does not
have infinitely small molecular weights, the support of \i will not contain zero. In such
situations, the extra hypothesis is no longer required. Indeed, without loss of generality,
in order to ensure that /(0) = 0, one can apply the transformation

(10) exp( - / ( t ) / r ) - exp(-[/( t) - / (0)] / r) exp(-/(0)/r)

where the factor exp(—/(0)/r) can be asborbed into the definition of/x(r) to give a new
measure that dies off sufficiently rapidly near r = 0 to guarantee that differentiation
through the integral sign remains valid.

As an immediate consequence of the fact that T is a wedge, any non-negative integer
power of a fading memory function will have fading memory. On the other hand, a
fractional power of a fading memory function does not necessarily have fading memory.
Indeed, if it is assumed that F(t) has fading memory, then

for all non-negative integers n, and for all t ^ 0. Consider Fr(t) = [F(t)]r, where

0 < r < 1. Then
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Because r < 1, the first term on the right hand side of this last equation is negative
while the second is positive. Consequently, the conditions for completely monotonoc-
ity fail for the second derivative of FT(t) for any F(t) for which dF/dt(0) ^ 0 and
(PF/dt2{0) = 0.

As is implicit in this simple example, the fractional power of a completely monotone
function will only be completely monotone under special circumstances. In fact, all
fractional powers of a completely monotone function will be completely monotone, if
attention is limited to the very special subset of completely monotone functions that
have infinitely divisible measures (see [10]). If the fading memory of G(t) is generated by
an infinitely divisible measure, then ([10, p.450]) there is a function / : [0,oo) -¥ [0, oo)
such that

(11) G(i) = G(0)exp(-/(*))> /(0) = 0, ft£T.

In terms of the above Lemma, this corresponds to the measure being a point mass.
More generally, an infinitely divisible measure is either a point mass or has unbounded
support ([10, p.177]).

N O T E . The above discussion relates to functions defined on the half-line (an assumption
implicit in the discussion about infinite divisibility in [11]). The normal (Gaussian) dis-
tribution is infinitely divisible on the whole line, but does not satisfy the above condition
of equation (11).

Another consequence of the wedge property of J-, that will be exploited below, is
that one can start with a subfamily GT(t), r = 1, 2, . . . , N, of functions in T and build
new elements G(i) G T such as

N

(12) G(t) = £V r [G r ( i ) ] r , Wr > 0.
r = l

It follows from the above results that, for a given G(t) £ T, there are various ways
in which it could be constructed to take the form (7) including

(13)

Though, at first sight, this appears to be a quite innocuous result, it has major
ramifications for the modelling of the dynamics of a linear viscoelastic material, if it
can be assumed that the relaxation modulus of that material G(t) € J- • In particular,
this result suggests that the dynamics of a polymer may be decomposable into a linear
combination of more fundamental dynamics. The actual characterisation of these more
fundamental dynamics becomes a rheological matter that will be discussed below and
pursued independently.

T(t) = rexp(-gr(t)/r)^^-dT, gr(t) > 0, ^ e F, HT(T) > 0.
Jo T "•<•
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3. EQUIVALENCING OF RELAXATION SPECTRUM AND MIXING RULE

REPRESENTATIONS FOR G(t)

It is clear from the rheological literature that, for much industrial decision-making,
the molecular weight distribution w(m) of a polymer represents a suitable and adequate
molecular characterisation ([14, 15]). Consequently, there is great interest in its deter-
mination. A wide variety of methods, ranging from the direct experimental (HPLC, size
exclusion and triple F) to the inversion of indirect rheological measurement, are available
and applied on a regular basis ([4]). Though the direct methods are quite appropri-
ate in the study of the structure of DNA and proteins, it is the inversion of rheological
measurements which are normally applied in the study of synthetic polymers.

Of these methods, the most natural and popular are mixing rules which take the
form

CO T 7

(14) G(t) = G°N\ k{t,m)w(m)dm\ , G°N = constant,

where G(t) denotes the relaxation modulus, w(m) the molecular weight distribution of
the polymer, and 7 some real value which reflects the nature of the polymer dynamics
under consideration ([2, 3, 16, 17]). The classical choices are 7 = 1 and 7 = 2, which
correspond, respectively, to single and double reptation. The kernel k{t,m) is chosen to
reflect how the various components of w(m) contribute to G(t). There is an extensive
literature on the subject, see also [15, 13].

On the other hand, a completely monotone relaxation modulus G(t) has a relaxation
spectrum H(T) characterisation given by equation (3). In [16], the idea has been exploited
of using G(t) as the link concept which allows one to construct the following types of
relationship between w(m) and H(T)

(15) fXeM-tM^-dr = G%\ rk(t,m)Mm)drnV', T = T(m),

where the dependence of the relaxation time T on the molecular weight m must be made
explicit in order to establish the coupling between both sides of this equation. This
equivalencing has allowed [16, 17] to derive various analytic expressions between w(m)

and H(T) and to put the study of mixing rules on a more rigorous footing.

However, this equivalencing imposes strong constraints on the structure of the kernel
k(t,m) and the value of the exponent 7. In particular, consistency demands that, as for
G(t), the right hand side of equation (15) must have a form that guarantees its complete
monotonicity. If 7 is constrained to be an integer r, then, on the basis of the Lemma and
the related discussion, a general form that the mixing rule counterpart of Gr(t) of (13)
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could have is

Gr(t) = G°N\f kr(m)exp(-fr(t)/Tr(m))wr(m)dm] ,

kr{m) > 0, wr(m) ^ 0,

(16) % e ^ ' rr(m)>0.
at

This leads naturally to the following general form for a mixing rule proposed by [2]

(17) G{t) = G°Nf2WT\ [ kr(m)exp(-fr{t)/Tr(m))wr(m)dm] , kr(m)^0.
r=i Uo -I

On the other hand, for a given r = Tr(m), the functions Gr(t) of equation (13) can
be rewritten in terms of functions of m with the following form

Gr(t) = ^ H ^ < ^ exp(-fr(t)/TrM) dm,
Tm)

(18)

On equating these last two expressions for Gr(t), one obtains

(19) T H^<W exp(-gr(t)/rr(m))dm
JQ Tr{m)

= c d / kr(m)exp(-fr{t)/Tr{m))wr(m)dm\ .

The importance of this last expression is that it yields an equivalencing between
the components of a decomposition of the relaxation spectrum of a polymer and the
molecular weight distribution contributing to those components.

4. CONSTRUCTION OF INVERSION FORMULAS

Using special cases of the above equivalencing (19), various authors, including [16,
17] and [19], have derived explicit inversion formulas for the molecular weight distribution
as a function of the relaxation spectrum and vice versa. The formulas derived by [16, 17]
exploit the fact that the /? power of any definite integral fa f(x) dx has the following
decompositions

/

b j r pb ~\P r pb T0 pb r pb T/5—1

J - | j /(i)<ej dx=y j(x)dx^ =pj f{x)yj /(x)dxj dx.
However, in this earlier work, it was not explicitly assumed that 0 was an integer.

A key advantage of the new mixing rule (17) is that the values of r are constrained to be
integers. Taking this into account allows one to construct the following inversion formulas
from equation (19).
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SINGLE REPTATION. When r = 1, which corresponds to classical single reptation dy-
namics, equation (19) can be reorganised to yield

(21) /
Jo

= 0.

For given H^m), Ti(m), gx(t) and f\{t) and non-zero fci(m), this expression uniquely
determines Wj(m). For suppose that Wi(m) and wt(m) both satisfy (21). Subtraction
yields

/ •oo

(22) / k1(m)exp(-f1(t)/T1(m))[w1(m)-wt(m))dm = O, t > 0.
Jo

On the one hand, the function
/•OO

(23) F(z)= ki(m)e^p(-z/Ti(m))[wi(m)-wt{m)]dm,
Jo

is an analytic function of z defined on Re z > 0. Equation (22) asserts that this analytic
function is zero on the non-trivial interval {fi(t), t ^ 0}. Since this interval includes an
infinity of points in the complex plane with a limit point, it follows from a standard result
in complex variable theory that F(z) is identically zero for Re z ^ 0; and, in particular,
F(t) = 0 for all real values of t ^ 0.

Introducing the change of variable p = l /r i (m) into (23), with m = (j>i(p) denoting
the inverse relation, yields

(24)

where lx{p) = fci(<h(p)), fi(p) = ^ ( ^ ( p ) ) , wx(p) = w^ip)) and wt(p) = wt(

The invertibility of the Laplace transform shows that w\{p) — wt(p), whence W\(m)

= wt(m), which establishes the required uniqueness.
When fi(t) = 5i(f) for all t ^ 0, (21) gives

(25) /exp(-ff lW/r1(m)) [gi("0^(m) _ a<>fk1{m)Wl{m)]dm = 0.
J I T{m) j

N O T E . This result will also hold under the (apparently) weaker hypothesis that f\(s)

= gi(s) for an infinite set of points s which is not too sparse (see (10, Chapter XIII,

Section 1, p.430]).

On applying the same argument used above to prove that Wi(m) = wt(m), it follows

that

(26) ' g ' (
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is the only expression which relates wi(m) to Hi(m), Ti(m) and ki(m).

We'remark that it is easily demonstrated that there are solutions to (21) when
fi(t) ^ 9i(t)- Simply consider (19) with r = 1, ki(m) - 1, fi(t) = t. Settingp = l / r i (m),
one obtains, similar to equation (25),

(27) rexp{-tP)§^Ldp= r £ i
Jo r r iW Jo

where Hx(p) = i?i(^1(p))) tu^p) = t«i(^i(p)), and r[(p) = n(4>l(p)). The left hand
side is the Laplace transform of Wi(p)/(p2:r[(p)), which is determined to be the inverse
Laplace transform of the right hand side, at least for suitable gi(t).

Rheologically, the consequences of this observation are quite important as it shows
that it is not necessary to assume the fading memory associated with the relaxation
spectrum is the same as the fading memory of the molecular weight distribution in terms
of how both these quantities determine the corresponding relaxation modulus Gi(t). In
fact, this result holds for all values of the reptation parameter r.

INTERPRETATION OF THE SINGLE REPTATION INVERSION FORMULA. AS an immediate
consequence of (26), one has the following explicit dual formulas for the single reptation
components of the molecular weight distribution

ffi(m)r((rn) —
( 2 8 ) Mm) = G^WTMY l ( ) =

Though an interesting expression theoretically, this illustrates, from a practical per-
spective, the magnitude of the problem involved before an estimate of w\(m) can be
obtained. It is necessary to determine, from an appropriate estimate of the relaxation
spectrum H(r), the single reptation component H\(r). Independently, it is necessary to
determine the single reptation form of Ti(ra), as well as the form of ki(m).

Setting ki(m) = l/m and Ti(m) = Kimai, one obtains

which correspond, up to constant factors, to the [16] formulas with P = 1.
Rheologically, this result implies that, if the dominant polymer dynamics is sin-

gle reptation and the relaxation time dependence on the molecular weight is defined by
T\(m) — Kimai, then the molecular distribution is proportional to the relaxation spec-
trum after being rescaled by the change of variable from relaxation time to molecular
weight. In many ways, this conclusion identifies both the strength and the weakness of the
single reptation model of polymer dynamics; namely, it allows one to make some precise
conclusions about the associated molecular dynamics at the expense of oversimplifying
the nature of the underlying polymer dynamics.
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DOUBLE REPTATION. The situation r = 2 corresponds to double reptation polymer
dynamics. Setting r = 2 in equation (19), introducing the change of variable p = l/r2(m)
and writing m = 4>2(p) for the inverse relation, one finds that

(29) r ^ exp(-<fc(t)p) dp = G°N \ r 4 # T exP(-f2(t)p)w2(p) dp]\
J0 P U0 P T2\P) J

where H2(p) = TJ2(<h(p)), ^ ( P ) = T2(<j>2(v)), M P ) = k2((f>2(p)), and w2(p) = w2(fa(p)).

Applying the Laplace convolution theorem to the right hand side of (29), one obtains

f°° ^ ^ exp(-5s(t)p) dp = G% H exp(-/2(t)p)
Jo P Jo

V 1
F(q,p~ q)w2(q)w2{p -q)dq\ dp,

0

(30) F(q,p-q) =
q2(p ~ q^Tiii^iip ~ q)

For given H2(p), T2{p), g2(t) and f2(t), this last expression uniquely determines

fv ~
I F{q,p-q)w2(q)w2(p-q)dq=(Q*e)(p), ©(?) = •

Jo

where the star (*) denotes convolution. This follows by the same argument used above to
establish the uniqueness of Wi(m). Now, if 9 i and 0 2 are the corresponding expressions
for two possible wi and w2, then it follows that

0 ! * Gj = G2 * ©2,

where

(©i - ©2) * (©1 + ©2) = 0.

Since the second factor is clearly non-zero when k2(p) > 0, it follows from the

Titchmarsh convolution theorem (an elementary proof is given in [8]) that the first factor

vanishes, and, hence, that w\ = w2.

On assuming that f2(t) = g2(t), one obtains as a corollary

(31) ^ ^ = G% f F(q,p- q)w2(q)w2(p - q) dq.
P Jo

This leaves open the question of the existence of solutions of (29) when f2(t) ^ g2(t).

However, one can repeat the argument in the previous section, which was applied to

equation (27), to equation (29).
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INTERPRETATION OF THE DOUBLE REPTATION INVERSION FORMULAS. In the special

situation where }2{t) = 52W — t> r2(w) = ^ w 0 1 and k2(m) = 1, the above expression

(31) becomes, on setting p — \/{K2ma2) and dp/p = -a2dm/m,

I" f
[Jo

" ^MMP-«) .dq\dp!

which, by the uniqueness of the Laplace transform, yields

H2{p) ^ G% If w2{q)w2{p-q)

If the change of variables from m to p is now reversed, one obtains, with

q = l/(K2m?*),

(34) H2[m) = — / -.— 77 rr-.—W"i)w2 h m

Since the mapping between relaxation times and their corresponding molecular

weights is a proportional relationship, the values of H2(m) for large m correspond to

the values of H(T) for large r. Consequently, the convolutional structure of the above

formula indicates that the contribution of a longer relaxation time T( to the spectrum

depends on the interaction of all the molecules with a molecular weight greater than

mi = (T(/K2)
xla'i, which corresponds to the larger molecules with a molecular weight

greater than mf. Interestingly, this formula indicates that the shorter relaxation times

depend on a greater range of molecular weight polymer chain interactions than the longer

times. Among other things, this shows the deeper aspects of polymer dynamics hidden

within their double reptation behaviour.

TRIPLE REPTATION. Setting r — 3 in equation (19), introducing the change of variable

p = l/r3(m) and writing m = foip) for the inverse relation, one finds that

(35) /°° ̂ ^ exp(-53(«)p) * = Gw f / 3 ^ r exp(-/3(t)p)i«3(p) dp]
Jo V L̂ o yT3\P) J

where H3{p) = 7?3(03(p)). ^ ( P ) = ^ (^ (p ) ) , M P ) = k3(fa(p))> and w3(p) = w3(4>3(p)).
The Laplace convolution theorem allows the cube to be replaced by the transform

of a triple convolution, which brings one back to a situation similar to that for double

reptation.

HIGHER LEVELS OF REPTATION. The process of constructing analytic relationships for

higher and higher levels of reptation continues inductively.
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