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Abstract

Dependence between coordinate extremes is a key factor in any multivariate risk
assessment. Hence, it is of interest to know whether the components of a given
multivariate random vector exhibit asymptotic independence or asymptotic dependence.
In the latter case the structure of the asymptotic dependence has to be clarified. In the
multivariate setting it is common to have an explicit form of the density rather than the
distribution function. In this paper we therefore give criteria for asymptotic dependence
in terms of the density. We consider distributions with light tails and restrict attention to
continuous unimodal densities defined on the whole space or on an open convex cone.
For simplicity, the density is assumed to be homothetic: all level sets have the same shape.
Balkema and Nolde (2010) contains conditions on the shape which guarantee asymptotic
independence. The situation for asymptotic dependence, treated in the present paper, is
more delicate.
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1. Introduction

In many real-world applications involving multivariate data, dependence between extreme
observations in marginal components plays an important role in risk assessment and risk
management. It is often the simultaneous occurrence of (unfavourable) extremes in several
components that results in the failure of systems in the context of, for example, civil and
reliability engineering, and leads to insolvency of financial institutions. In the latter context,
the presence of joint extremes undermines benefits of risk diversification. Mathematically, we
interpret asymptotic dependence in the context of max-stable limit laws; see, e.g. [3] for details.
A max-stable limit law which is a product measure corresponds to asymptotic independence,
and implies that large values in the marginal components of the data are unlikely to occur
simultaneously.

The present paper gives a simple geometric condition on the density which guarantees
asymptotic dependence. Assuming that the stochastic behaviour of the data may be described by
a multivariate probability density, we exploit the geometric structure of the (asymptotic) shape
of the level sets of the density in order to obtain information on dependence between coordinate-
wise extremes. This geometric approach recognizes the role that graphical visualization of the
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Asymptotic dependence for light-tailed homothetic densities 507

data plays in statistical analysis and gives insight into complicated analytical expressions. We
restrict attention to densities with light tails. The case of heavy-tailed densities is less delicate
and has been described in [2, Theorem 3.3]. For simplicity, we assume that level sets of the
density are all scaled copies of some given set D. The set D describes the common shape of
the level sets of the density. Densities with this property are called homothetic. It is possible
to relax this condition of homothetic densities slightly, as will be discussed in Section 5.

The asymptotic behaviour of the scaled random samples, or sample clouds, from light-tailed
homothetic densities is determined by the shape of the level sets of the underlying density
(cf. Proposition 4.2 of [2] and see also Figure 2 below). A well-known result, going back
to [4], says that the components of a random vector with the multivariate normal density are
asymptotically independent. The same holds for spherical and elliptical densities, but also for
homothetic densities for which the common shape of the level sets is determined by a convex
set with a smooth boundary, a set with a unique tangent plane at every boundary point (see
Theorem 1.1 of [2]). As above, let D ⊂ R

d be the common shape of the level sets of a light-
tailed homothetic density on R

d . Assume that D is a bounded open star-shaped set. Precise
conditions are given below. Without loss of generality, let supD = e = (1, . . . , 1). Here
the sup is taken coordinatewise. The projection Di of D on the ith coordinate is an open
interval with upper endpoint 1. The assumption on the upper endpoints of the projections Di
is a matter of convenience. It can be achieved by a proper scaling of the axes. The bivariate
projection Dij is blunt if (1, 1) is not a boundary point of Dij . The coordinates Xi and Xj
of a vector X with a light-tailed homothetic density are asymptotically independent if Dij is
blunt. See [2, Theorem 3.2]. From multivariate extreme value theory, it is known that, for
light-tailed distributions, asymptotic independence implies that the exponent measure lives on
the d coordinate lines at minus infinity and has an exponential density on each of these lines.
The corresponding Poisson point process on these lines describes the asymptotic behaviour of
the sample clouds.

Here our focus is on asymptotic dependence. Since bluntness implies asymptotic indepen-
dence, for asymptotic dependence, we want e = supD to be a boundary point of D. We want
the setD to be sharp. We shall impose two conditions on the translated setD−e ⊂ (−∞, 0)d :
a local condition which says thatD−e should be asymptotic to an open coneC ⊂ (−∞, 0)d at
the origin, and a global condition which says that D − e should be contained in a convex open
cone whose closure, apart from the origin, lies in the open negative orthant. If the shape set D
is convex, these two cones may be chosen equal; for star-shaped sets, the local and the global
conditions are different. Consider Figure 1. Asymptotic dependence holds for homothetic
densities with exponential radial rate of decay and with level sets shaped like the triangle T
in Figure 1(a), but not for the shapes in Figure 1(b) and (c). For the shape in Figure 1(b), we
can show that the high risk scenarios (see [1]) converge to a Gauss-exponential limit since the

T

(a) (b) (c)

Figure 1: Examples of sets used in the introduction to discuss sharp sets and asymptotic dependence.

https://doi.org/10.1239/aap/1339878722 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1339878722


508 A. A. BALKEMA AND N. NOLDE

contribution of the triangle becomes negligible compared to the contribution of the disk for
horizontal half-planes high up. This example motivates the global condition above. The shape
in Figure 1(c) generates a cone C bounded by rays (−t, 0), t > 0, and (−t,−2t). This implies
asymptotic independence (by Theorem 4.2 below) even though the closure clD intersects the
lines x = 1 and y = 1 in one point only, the point (1, 1). The latter example explains the need
of the rather stringent conditions in our definition of a sharp set.

If the shape setD satisfies the two conditions above and if the density along the ray through
the point e decreases at the right exponential rate asymptotically, then the coordinatewise
maxima have a nondegenerate limit law. The exponent measure associated with the max-stable
limit distribution has a density of a simple form. This density is the intensity of the Poisson
point process which describes the asymptotic behaviour of the sample clouds in the direction
of the diagonal. We shall now first describe a simple bivariate example.

1.1. An example

The example in this section is intended to illustrate the main ideas of the results to be
developed in the later sections.

Consider a homothetic function f on R
2 with level sets Dt = {f > e−t } = tD, t > 0.

Suppose that D is the triangle T with vertices (1, 1), (−1, 0), and (0,−1); see Figure 1(a). In
order to give an analytic expression for the function f , let nT denote the gauge function of the
shape set T ; nT : R

2 → [0,∞) is a homogeneous function such that T = {nT < 1}. Then f
can be written as f = e−nT . For the triangle above, we can write down nT explicitly as the
maximum of three linear functions:

nT (x, y) = max(−x − y, 2x − y, 2y − x), (x, y) ∈ R
2.

Set e := (1, 1). Then the set Dt = tT translated over −te = (−t,−t) increases to the cone

C = {
(x, y) ∈ (−∞, 0)2

∣∣ 2x < y < 1
2x

}
,

and Ds+t − te converges to the shifted cone C + se for s ∈ R as t → ∞. Define a function h
on R

2 with conic level sets:

{h > e−t } = C + te, t ∈ R.

Since e = (1, 1) lies on the boundary of T , f (te) = e−t , and we obtain the limit relation

ht (u) = f (te + u)

f (te)
→ h(u) as t → ∞, u ∈ R

2. (1.1)

In fact, here ht and h are equal outside a shifted quadrant, i.e.

ht (u) = exp(− max(2u1−u2, 2u2−u1)) ≡ h(u), u = (u1, u2) ∈ R
2\(−∞,−t)2, t ≥ 0,

since tT ≡ C + te on the complement of (−∞,−t)2.
The convergence in (1.1) is uniform on compact sets. Hence, the measures ρt with density

ht converge vaguely on the plane to the measure ρ with density h. Note that ρH is finite
for all half-planes H = {ξ ≥ c}, with ξ a linear functional and c ∈ R, for which {ξ ≥ −1}
intersects the cone C in a bounded set, in particular for the horizontal half-planes {y ≥ c}
and the vertical half-planes {x ≥ c}. Observe that the function h above satisfies the stability
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relation h(u + te) = e−t h(u), t ∈ R. This implies that the measure ρ is an excess measure
(see [1]) with the one-parameter group of symmetries:

ρ(A+ te) = e−t ρ(A), t ∈ R,

for all Borel sets A in the plane. Applied to the sets A = {x ≥ t} and {y ≥ t} this shows that
the margins ρ(1) and ρ(2) of the measure ρ satisfy the same symmetry relations:

ρ(i)[t,∞) = e−t ρ(i)[0,∞), i = 1, 2, t ∈ R.

This implies thatρ(i) is the exponential measure on R with density cie−t , where ci = ρ(i)[0,∞),

i = 1, 2.
The above results for a general star-shaped setD with a continuous boundary are formalized

later in Theorem 3.1.
Observe that∫

R2
e−nT (x) dx =

∫ ∞

0
e−s d|sT | = 2|T |

∫ ∞

0
se−s ds = 2|T | = 3,

where |T | denotes the area of the triangle T . Hence, f/3 is a probability density. Then so is
f (te+u)/3. The factor 1

3 drops out in the quotient in (1.1). Choose tn such thatf (tne)/3 = 1/n,
i.e. tn = log(n/3). Then ρtn , the measure with density htn , has mass n, and if X1,X2, . . . are
independent observations from the density f/3, then ρtn is the mean measure of the sample
cloud

Nn = {X1 − tne, . . . ,Xn − tne},
and these sample clouds converge in distribution to the Poisson point process N with intensity
h vaguely on R

d .
The monotone convergence ht ↑ h implies L1-convergence on all half-planes on which h

is integrable, in particular on the horizontal and vertical half-planes. Hence, ρt → ρ weakly
on these half-planes, and Nn ⇒ N weakly. In particular, the coordinatewise maximum of the
points inNn will converge in distribution to the coordinatewise maximum W of the points inN .
In terms of distribution functions (DFs) we have

Gn(u) := Fn(tne + u) → G(u) weakly on R
2,

where F denotes the DF with density f/3. If we write R(w) for the mass ρ(E) of the
complement E of the shifted negative quadrant (−∞,w] and N(E) for the number of points
of N in the set E, then

G(w) = Pr{W ≤ w} = Pr{N(E) = 0} = e−ρ(E) = e−R(w).

This tells us that ρ is the exponent measure of the max-stable limit distribution G. The
margins Gi of G are determined by the margins ρ(i), i.e.

Gi(t) = exp(−ρ(i)(t,∞)) = exp(−cie−t ) = �(t − log ci), i = 1, 2,

where � is the standard Gumbel distribution. Integrating h over half-planes {ui ≥ 0} for
i = 1, 2 gives the normalizing constants c1 = c2 = 2.

Figure 2(b) illustrates a bivariate random sample of 10 000 points drawn from the density
f = e−nT /3. To do the simulation, first pick a point from the triangle T , uniformly, and then
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Figure 2: Simulated samples of 10 000 points from the bivariate standard normal density (panel (a)) and
the density f = e−nT /3 on R

2 discussed in Section 1.1 (panel (b)).

simulate a positive random variable R to determine the size of the triangle. Since the area
increases quadratically, the variable R has a gamma density r2e−r/2, r > 0.

The components of the vector X with the density e−nT /3 above are asymptotically dependent.
There is a max-stable limit vector W with dependent components since the exponent measure ρ
charges the plane R

2. (It does not live on the two lines through −∞.) The Poisson point
process N with mean measure ρ gives a good impression of what the largest observations in a
sample of size n (for large values of n) from the density e−nT /3 will look like (after a translation
over −tne).

In this example we could use explicit computations for the constants, the trivial convergence
ht → h on bounded sets, and the monotone convergence ht ↑ h. Everything is easy if D is
a convex set which contains the origin and for which q = supD is a boundary point of D.
The set D − q is asymptotic to an open convex cone C, C = ∪n(D − q) and C ⊃ D − q.
If cl(C) \ {0} ⊂ (−∞, 0)d then D is sharp (the concept to be formally defined below), and
h = e−nC is continuous and positive.

1.2. The setting

Asymptotic dependence is a more complex concept than asymptotic independence. In order
to obtain results which do justice to this complexity without being overwhelmed by asymptotic
conditions, the discussion of the present paper focuses on homothetic densities. We now
introduce the definitions and notation which will be used in the sequel. More details can be
found in [2, Section 3.1].

Consider an open bounded setD ⊂ R
d , containing the origin. There exists a unique function,

nD : R
d → [0,∞), such that D = {x ∈ R

d | nD(x) < 1} and nD(tx) = tnD(x) for t > 0
and x ∈ R

d . The function nD is called the gauge function of the set D. It is a norm with the
open unit ballD ifD is convex and if −D = D. It is continuous precisely if each ray intersects
the boundary of D in exactly one point; see [2, Proposition 3.2].

In order to incorporate homothetic densities which live on the open half-space {xd > 0} or
on the positive orthant, we introduce the following definition.
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Definition 1.1. A setD is star shaped if x ∈ D implies that tx ∈ D for all 0 < t < 1. The class
Dd consists of all bounded open star-shaped sets D ⊂ R

d for which the cone D∞ = ⋃
n nD

is convex and for which the gauge function nD is continuous on D∞.

Homothetic densities on R
d generalize spherically symmetric densities. They have level

sets which are scaled copies of a given bounded set D ⊂ R
d rather than the open unit ball B.

These densities have a simple structure, and can be written down explicitly in the form f (x) =
f0(nD(x)) for x ∈ R

d , where nD is the gauge function of the shape set D, and f0 : [0,∞) →
(0,∞) is the density generator. We take the setD to be in the class Dd . The density generator
f0 is assumed to be asymptotic to a von Mises function. Recall that von Mises functions have
the asymptotics of exponential functions. A function e−ψ on [0,∞) is a von Mises function
with scale function a(t) = 1/ψ ′(t) if

ψ is a C2 function with ψ ′ > 0, and a′(t) → 0 for t → ∞. (1.2)

For a von Mises function f0 with scale function a, the following limit relation holds (see, e.g. [3,
p. 42]):

ft (u) := f0(t + a(t)u)

f0(t)
→ e−u weakly on R as t → ∞.

This limit relation also holds in L1 on [c,∞) for all c ∈ R.

1.3. Outline of the paper

In Section 2 we introduce the definitions and the notation related to the notions of sharp
sets and cones, which will be used in the sequel. Section 3 contains the key technical results.
Inspired by the example of the triangle in Section 1.1, we shall ask the following questions.
Let f = f0(nD) be a density as described in Section 1.2. What conditions on the shape of
the setD will ensure convergence of the functions ht in (1.1) and of the associated normalized
sample clouds from density f ? This is investigated in Section 3. Asymptotic dependence is
described in Section 4. Finally, we discuss extensions outside the class of homothetic densities
in Section 5 with some concluding remarks in Section 6 . Appendix A contains a number of
counterexamples and supplementary results referred to in the main body of the paper.

2. Preliminaries

Definition 2.1. A nonempty open setC is an open cone if x ∈ C implies that tx ∈ C for t > 0.
The cone is convex if x, y ∈ C implies that ax + by ∈ C for a, b > 0.

In [2] it was shown that, for a continuous positive light-tailed homothetic density, for
asymptotic independence, it suffices that its level sets are blunt. In order to state conditions for
asymptotic dependence, we need the notion of a sharp set, which we will introduce next.

Let us consider the bivariate situation first. Intuitively, the setD ∈ D2 is sharp if supD = q

is a boundary point of D, and if there exist constants a1, a2 with 0 < a1 < a2 < ∞ such that
the translate D − q is contained in the open cone {(x, y) ∈ (−∞, 0)2 | a2x < y < a1x}. The
condition on the values of the constants a1, a2 ensures that the enclosing cone is sharp. Its
closure has no points with zero coordinates apart from the origin. In analogy with this bivariate
case, we can define sharp cones and sharp sets in R

d .

Definition 2.2. Suppose that C is an open cone in (−∞, 0)d . Let

C∗ = C ∩ {x1 + · · · + xd = −1}.
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The cone C is sharp if the closure cl(C∗) is contained in the open simplex (−∞, 0)d ∩ {x1 +
· · · + xd = −1}. Let D ∈ Dd . The set D is sharp if supD = q is a boundary point of D, and
if the translate D − q is contained in a sharp open cone in (−∞, 0)d .

Example 2.1. For the cube D = (−1, 1)3, the bivariate projections Dij are neither blunt nor
sharp. This remains true if we remove the part {x + y + z ≥ 1} containing the vertex (1, 1, 1).

For an open cone in (−∞, 0)d to be sharp, it suffices to check that some of its bivariate
projections on coordinate planes are sharp. If d is even then we need only check d/2 projections,
for example, C12, C34, . . . , C(d−1)d .

Proposition 2.1. Let C be an open cone in (−∞, 0)d . If the bivariate projections Cikjk are
sharp, and if the two-point sets {ik, jk} cover {1, . . . , d}, then C is also sharp.

Proof. All points in the closure of C have nonzero coordinates with the exception of the
origin.

Sharpness alone does not suffice for asymptotic dependence. Even if D ∈ D2 is sharp,
the uniform density on D, c11D , may be asymptotically independent, and so too the densities
cf0(nD) for von Mises functions f0, as will be shown in Example A.4 in Appendix A. In
addition to the global property of sharpness, we need good local behaviour. We shall assume
that D behaves asymptotically like a cone in the boundary point q.

Definition 2.3. Let O be a bounded open set in R
d , q be a boundary point of O, and C be

an open cone in R
d . The set O is asymptotic to the cone C in the point q if the translate

O0 = O − q has the following properties.

1. If zn → z ∈ C and rn > 0 tends to 0, then rnzn ∈ O0 eventually.

2. If zn → z ∈ (clC)c and rn > 0 tends to 0, then rnzn ∈ (clO0)
c eventually.

Example 2.2. Suppose thatO is a bounded convex set and that the origin is a boundary point.
Then rO ⊂ tO for 0 < r < t , andO is asymptotic to the convex cone C = ∪nO in the origin.

IfD ∈ Dd is convex and asymptotic to C in q ∈ ∂D, then C is convex. IfD− q ⊂ {ξ < 0}
for a linear functional ξ then (C + q) ∩ {ξ > 0} is a bounded convex set. This remains
true if we replace ‘convex’ by ‘star shaped’; see Proposition A.2 in Section A.2.2. However,
(C + q) ∩ {ξ > 0} need not have a continuous boundary; see Example A.2.

Definition 2.4. The open coneC belongs to the class C(q) for a nonzero vector q if −q ∈ cl(C)
and if there exists a linear functional ξ such that the intersection (C + q) ∩ {ξ = 0} lies in
Dd−1 (it is a nonempty open subset of the hyperplane {ξ = 0}, bounded, star shaped, with a
continuous boundary, and the cone generated by it is convex).

Remark 2.1. Definition 2.4 does not depend on the choice of the linear functional ξ . Let C0

be the interior of the convex cone of all linear functionals ξ which are negative on C. Any
ξ ∈ C0 has the property that C intersects the hyperplane {ξ = −ξq} in a bounded set Cξ . The
sets Cξ for different ξ are related by a central projection, and, hence, are homeomorphic. If
one of these sets, translated to {ξ = 0}, is star shaped with a continuous boundary then all are.
Since the projection maps intervals into intervals, the cone generated by Cξ − q is convex for
all ξ ∈ C0 if this holds for one such ξ .

Remark 2.2. It is possible thatC+Rq is a proper cone even whenD∞ = R
d , even for d = 2.
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The nonnegative function h with level sets {h > e−t } = C + tq is continuous and positive
on C+Rq, and zero on the complement of this open set. The condition C ∈ C(q) ensures that
the intersection of C+ q and the hyperplane {ξ = 0} for ξ ∈ C0 generates a convex open cone
in this hyperplane, and, hence, C + Rq is a convex open cone. If −q ∈ C then C + Rq = R

d ,
and h is continuous and positive on R

d .

3. Convergence

3.1. Almost everywhere convergence

Let f = f0(nD) be a light-tailed homothetic density as described in Section 1.2, where f0
is asymptotic to a von Mises function on [0,∞)with scale function a(t) andD ∈ Dd . Assume
that D is asymptotic to the cone C ∈ C(q) in a boundary point q of D. Let h ≥ 0 have level
sets {h > e−t } = C + tq, t ∈ R. Define

ht (u) := f (tq + a(t)u)

f (tq)
, u ∈ R

d . (3.1)

The almost everywhere (a.e.) convergence ht → h follows from the convergence of the level
sets, as will be shown below. If −q lies in the coneC then the translatesC+nq cover the whole
space, and h is continuous and positive on R

d . The convergence ht → h then holds uniformly
on compact sets. If −q is a boundary point of C, the situation is less simple. The function h is
now continuous and positive on C + Rq, and vanishes outside the closure of this convex cone.
Its behaviour on the boundary is discussed in Appendix A. The convergence ht → h holds
uniformly on compact sets which do not intersect the boundary of the cone C + Rq.

Proposition 3.1. Let h ≥ 0 have level sets {h > e−t } = C + tq with −q a nonzero vector in
the closure of the open cone C. If C lies in C(q) then h is continuous on C + Rq.

Proof. Let C ∈ C(q). Write z = (x, y) ∈ R
d . Assume that q = ed is the vertical unit

vector in R
d and C + q intersects {y = 0} in a set D ∈ Dd−1. The gauge function nD is

continuous on D∞ by Definition 1.1, and, hence, so is ñD(x, y) = nD(x)+ y. Conclude that
h = e−ñD since the level sets of ñD are translates of {ñD < 0} = {(x, y) | y < −nD(x)}.

The level sets of ht in (3.1) are affine copies of D. They have the form

{ht > c} = rt (D − q)+ vtq. (3.2)

Set at = a(t). For c = 1, by construction, vt = 0 and rt = t/at ; for general c > 0,

rt = t

a t
+ vt , f0(t + vtat ) = cf0(t).

The quotient t/at diverges since at � t for scale functions, and vt → − log c. By assumption,
D is asymptotic to the open cone C in q ∈ ∂D. Hence, the bounded open set in (3.2) is an
approximation to {h > c} = C − (log c)q.

Proposition 3.2. If zn → z ∈ {h > 0} and tn → ∞, then htn(zn) → h(z). If z is an interior
point of {h = 0} then htn(zn) → 0.

Proof. First assume that −q ∈ C. Then h is continuous and positive on the whole space. Let
zn → z. If h(z) > e−s then z − sq ∈ C and zn − sq ∈ rn(D− q) eventually for any sequence
rn → ∞ by statement 1 of Definition 2.3. Hence, for s0 > s eventually, htn(zn) > e−s0 .
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Similarly, h(z) < e−s implies that z − sq lies outside the closure of C by continuity of h, and,
hence, by statement 2 of Definition 2.3, zn−sq eventually lies outside the closure of rn(D−q),
and htn(zn) < c for any c > e−s .

Now assume thatC+Rq is a proper cone. If z lies in this cone, the argument above remains
valid, and htn(zn) → h(z) whenever zn → z ∈ C + Rq and tn → ∞. So let zn → z, where z

lies in the interior of the complement of this cone. Let s > 1. There is an open cone C∗ which
contains cl(C) \ {0} such that z − sq �∈ cl(C∗). This then also holds for zn for n ≥ n0. Let
C∗ ⊂ {ξ < 0} for some linear functional ξ , and let z ∈ {ξ > −M} for someM > 1. This then
also holds for zn for n ≥ n1. For r > r0,

r(D − q) ⊂ C∗ on {ξ > −M} − sq.

Hence, for r > r0, the points z and zn, n ≥ n0 ∨n1, do not lie in r(D−q)+ sq, which implies
that ht (zn) ≤ e−s/2 for t ≥ t0.

3.2. An inequality

The L1-convergence ht → h on a half-space H follows if we have appropriate bounds on
the level setsH ∩{ht > e−n}, n ≥ 0, which are uniform in t ≥ t0. Sharpness ofD implies that
D − q is contained in a proper open convex cone Q. The level sets in (3.2) are then contained
in translates of Q. We shall derive a bound on the size of the intersections H ∩ (Q + tnq).
The vector q is nonzero and −q lies in the closure of Q. This ensures that the sequence
Qn = Q+ snq is increasing if we assume that

sn = S1 + · · · + Sn, 0 < Sn+1 < eεSn, n ≥ 1. (3.3)

Our bound depends on ε > 0. The bound allows us to show that the integral of min(ht , e−m)
is small uniformly in t ≥ t0. For simplicity, we may assume below that ξ = y, the vertical
coordinate. Then Q lies in the lower half-space {y ≤ 0}.
Proposition 3.3. Let ε ∈ (0, 1/2d], where d ≥ 1 is the dimension of our space. Let C be a
convex open cone, and let q be a nonzero vector such that −q ∈ cl(C). Define a sequence
of cones Cn = C + snq, where the sn satisfy (3.3). Then sm/s1 ≤ mem/2d for m ≥ 1. Let
g ≥ 0 be a measurable function on R

d whose level sets satisfy {g > e−n} ⊂ Cn for n ≥ 0. Let
H := {ξ ≥ −M} intersect C in a bounded nonempty set. Then c0 := ξq is positive and the
volume b1 := |{ξ ≥ −1} ∩ C| is finite. There exists an integer md such that

Jm :=
∫
H\Cm

g(z) dz ≤ ce−m/3, m ≥ md,

where c = eb1(c0s1 +M)d , and md depends only on the dimension d.

Proof. Since {g > e−n} ⊂ Cn, n ≥ 0, we have g ≤ e1−n on the complement of Cn−1 and,
hence, also on Cn \ Cn−1 and on (Cn \ Cn−1) ∩H . This gives (see Figure 3)

Jm ≤ e
∑
n>m

e−n|Cn ∩H | = e
∑
n>m

e−n(c0sn +M)db1.

From the condition on the points sn, we obtain the crude bounds

sn ≤ (1 + eε + e2ε + · · · + e(n−1)ε)s1 ≤ nenεs1 and c0sn +M ≤ (c0s1 +M)nenε,
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q
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qM c0−

Figure 3: An illustrative plot used in the proof of Proposition 3.3.

from which we obtain the bound for sm/s1 in the proposition, and shows that Jm ≤ eb1(c0s1 +
M)d

∑
n>m e−nndenεd . Since εd ≤ 1

2 by assumption, the series in the previous expression can
be bounded by

∑
n>m n

de−n/2, which is bounded by e−m/3 for m ≥ md as may be seen by
comparing the sum with an integral.

Given the open convex cone C, a nonzero vector −q in the closure of C and a half-space
H intersecting C in a bounded nonempty set, and ε ∈ (0, 1/2d] for any δ > 0, we can find a
bounded set Cm ∩H such that the integral Jm overH \Cm is bounded by δ. This bound holds
uniformly for all nonnegative measurable functions g whose level sets satisfy the inclusions
{g > e−n} ⊂ Cn for n ≥ 0. Actually, the inclusion need only hold for n ≥ m. If a sequence of
such functions g converges a.e. on H and is uniformly bounded on H , then it converges in L1

on H . This follows by uniform integrability; see Lemma A.1 in Appendix A.

3.3. L1-convergence

For a boundary point q of a bounded open star-shaped set D, there are two open cones
associated with D. The cone C describes the asymptotic behaviour of the set D − q at the
origin. It may not exist in every boundary point. The larger coneQ enclosesD−q. ForQ, we
take the interior of the closed convex cone which is the intersection of all half-spaces {ξ ≥ 0}
which containD. Large sample clouds from the homothetic density f0(nD)will have the shape
ofD if f0 decreases rapidly. We are interested in the trace of such sample clouds on half-spaces
H = {ξ ≥ c} which cut off a tip of this sample cloud around the extreme point on the ray
through q, but which contain no other points. The proper condition here is that {ξ ≥ −1}
intersects Q in a bounded nonempty set. This condition implies that the origin is the only
boundary point of D − q in the hyperplane {ξ = 0}.

Theorem 3.1. Let D ∈ Dd , q ∈ ∂D, and C ∈ C(q). Assume that D is asymptotic to the cone
C in q, and letQ denote the interior of the intersection of all closed half-spaces {ξ ≥ 0} which
contain D − q. Let h ≥ 0 be the function with level sets

{h > e−t } = C + tq, t ∈ R.
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Let f = f0(nD) be a density where f0 is a von Mises function with scale function a(t). Then

ht (u) = f (tq + a(t)u)

f (tq)
→ h(u) a.e. on R

d . (3.4)

Let � denote the set of nonzero linear functionals ξ which satisfy

(∗) {ξ = −1} intersects Q in a bounded set.

Then � is a convex open cone, and ht → h holds in L1 on all half-spaces {ξ ≥ c} with ξ ∈ �
and c ∈ R.

Proof. The a.e. convergence ht → h follows from Proposition 3.1 since the boundary of
the convex cone (C + Rq) is a null set.

The set � is a convex open cone. It is a convex cone: if the half-spaces {ξi ≥ −1} intersect
Q in a bounded set then this holds for their union, and, hence, for all half-spaces aξ1 + bξ2
with a, b > 0. It is open: let p �= 0 and write ξx = p�x. The vector p is normal to the planes
determined by ξ . Then ξ satisfies (∗) precisely if −p ∈ Q, and Q is open.

L1-convergence now follows from the inequality in Proposition 3.3. First note that the graph
of the function ht is obtained from that of f by translating it over −tq then scaling it by 1/at
with at = a(t) and, finally, multiplying the function by 1/f0(t). This means that ht has its
maximum in the point −rtq, where rt = t/at → ∞. It assumes the value 1 in the origin, and
the level set {ht > 1} = rt (D − q) supports the half-space H0 = {ξ ≥ 0} in 0 if ξ ∈ �. The
function h∗

t (s) = f0(t + at s)/f0(t) satisfies

h∗
t (s) → e−s as t → ∞. (3.5)

If D contains the origin then h∗
t (s) = ht (sq).

Let ξ ∈ �. ForM > 0, the half-spaceH = {ξ ≥ −M} intersectsQ in a bounded nonempty
set. Then, for some multiple N , −Nq ∈ ∂H and Nξq = M . Let ct := h∗(−N). The level
set {ht > ct } supports H in the point −Nq, i.e. {ht > ct } is disjoint from H but −Nq is a
common boundary point. This level set of ht has the form r(D − q) − Nq for some r > 0,
and, hence, is contained in the shifted convex cone Q− Nq, which also supports H in −Nq.
Since h∗

t (−N) < 2eN eventually, h1 < 2eN on H for t ≥ t (H).
The function h∗

t satisfies h∗
t (0) = 1. It assumes the values 1/en in sn = S1 +· · ·+Sn, where

0 < Sn+1 < eεSn for t ≥ t (ε); see Lemma 3.1 below. Moreover, s1 ≤ 2 eventually by (3.5).
Hence, we may apply the inequality with C = Q. Lemma A.1 then gives the L1-convergence
ht → h on H .

Lemma 3.1. Let f0 be a continuous positive function on [0,∞) which is asymptotic to a von
Mises function e−ψ with scale function a; see (1.2). Given t ≥ 0, choose t < t ′ < t ′′
such that f0(t

′) = f0(t)/e and f0(t
′′) = f0(t

′)/e. For any ε > 0, there exists t0 such that
t ′′ − t ′ < eε(t ′ − t) for t ≥ t0.

Proof. The function f0 satisfies f0(t + xa(t))/f0(t) → e−x weakly on R and, hence,
uniformly on [c,∞) for any c ∈ R. This implies that t ′ − t and t ′′ − t are asymptotic to a(t)
and 2a(t), respectively.

3.4. Consequences

This section contains three corollaries of Theorem 3.1. For half-spaces Ht = {ξ ≥ t}
with ξ ∈ �, there exists a simple asymptotic expression for Pr{X ∈ Ht } for t → ∞.
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The L1-convergence ht → h implies convergence of the corresponding measures, and this
implies convergence of the sample clouds to a Poisson point process N with intensity h.
The conditions of the theorem are quite general. If we go back to the original setting where
supD = e and D was supposed to be sharp in e, then we obtain results about the convergence
of coordinatewise maxima and the max-stable limit distribution, or rather the exponent measure
associated with this limit distribution.

Corollary 3.1. For ξ ∈ �, let c(ξ) be the volume of (C + q) ∩H , where H = {ξ ≥ 0}. Then

Pr{X ∈ tq +H } ∼ f0(t)a(t)
d�(d + 1)c(ξ) as t → ∞.

Proof. The L1-convergence of ht → h on H implies that
∫
H

ht (u) du →
∫
H

h(u) du =
∫ ∞

0
c(ξ)rd de−r = �(d + 1)c(ξ).

Hence,
∫
H+tq

f (x) dx = a(t)d
∫
H

f (tq + a(t)u) du = a(t)df0(t)

∫
H

ht (u) du

gives the desired expression.

Corollary 3.2. Let N be the Poisson point process on R
d with intensity h. This point process

lives on the convex open cone C + Rq. Set an = a(tn), where tn satisfies

nadnf0(tn) → 1 as n → ∞.

Let X1,X2, . . . be independent observations from the density f . Then, for ξ ∈ � and c ∈ R,

Nn :=
{

X1 − tnq

an
, . . . ,

Xn − tnq

an

}
⇒ N weakly on H = {ξ ≥ c}.

Corollary 3.3. Suppose thatDij is sharp for 1 ≤ i < j ≤ d. Then� contains the d coordinate
functions. The coordinatewise maxima converge:

Wn := maxNn = (X1 ∨ · · · ∨ Xn)− tne

an
⇒ W := maxN.

The exponent measure of W lives on R
d and has density h. It does not charge the boundary

at −∞.

4. Asymptotic dependence

If the set D ∈ Dd in the boundary point q is asymptotic to a cone C ∈ C(q) then the
sample clouds from a homothetic density f = f0(nD) have a simple asymptotic description
in the direction q provided the density generator f0 is asymptotic to a von Mises function.
This description sometimes makes it possible to decide whether coordinates are asymptotically
independent.

Theorem 4.1. Let D ∈ Dd in the boundary point q be asymptotic to the cone C ∈ C(q).
Let N be the Poisson point process with mean measure ρ, where ρ has density h with level
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sets {h > e−t } = C + tq, t ∈ R. Let � be the convex open cone of linear functionals
determined by the open coneQ in Theorem 3.1. Let f0 be a von Mises function on [0,∞) with
scale function a(t). There exist positive numbers tn ↑ ∞ such that nf0(tn)a(tn)

d → 1. The
function f0(nD) is integrable. Let X1,X2, . . . be independent observations from the density
f = cf0(nD). The sample clouds converge weakly on all half-spaces {ξ ≥ c}, ξ ∈ �, c ∈ R:

Nn =
{

X1 − tnq

an
, . . . ,

Xn − tnq

an

}
⇒ N, an = a(tn).

1. If � contains the coordinate functions x1, . . . , xm then the coordinates X1, . . . , Xm are
asymptotically dependent. The exponent measure of the max-stable limit distribution
lives on R

m. It is the projection of the measure ρ.

2. If ρ{x1 ≥ 0} = ∞ and � contains a functional x2 + ax1 for some a ≥ 0, then X1 and
X2 are asymptotically independent.

Proof. Statement 1 follows from the continuous mapping theorem (see, e.g. [3, p. 152])
applied to the projection (x1, . . . , xd) �→ (x1, . . . , xm). For statement 2, first assume that
ρ{x2 ≥ 0} = ∞. Then a is positive and ρ{x1 > 0, x2 > 0} = c < ∞. Let ρt have density ht
in (3.4), and let ρ̃ and ρ̃t be the projections of ρ and ρt on the (x1, x2)-plane. LetQ = (0,∞)2

be the positive quadrant. Then, for i = 1, 2,

Pr{X1 > tq1, X2 > tq2} = f0(t)ρ̃t (Q) � f0(t)ρ̃t {xi > 0} = Pr{Xi > tqi} as t → ∞.

Asymptotic independence follows from Proposition A.1 with the continuous curve t �→ (tq1,

tq2). If ρ̃{x2 > 0} = c2 is finite then c2 is positive since ρ is a nonzero excess measure, ρ̃Q =
c0 ≤ c2, and ρ̃t (x1 > M, x2 > 0} → ρ̃{x1 > M, x2 > 0} = e−Mc0. Hence, for any ε > 0,
there exists a continuous curve (x1(t), x2(t)) such that Pr{X1 > x1(t), X2 > x2(t)} < εpi(t)

eventually in the terminology of Proposition A.1. By the same proposition, this suffices for
asymptotic independence.

Example 4.1. Let C be a convex open cone whose closure lies in (−∞, 0)d ∪ {0}. Let D ⊂
(−1, 1)d be asymptotic to C in the boundary point e = (1, . . . , 1). Assume thatD has no other
boundary points on any of the coordinate planes {xi = 1}. Let f0 be a von Mises function.
Then the function f0(nD) is integrable, and the components of the vector X with density
f = cf0(nD) are asymptotically dependent. The exponent measure has density h with level
sets {h > e−t } = C + te for t ∈ R.

We can give exact conditions for asymptotic independence in the bivariate case if D is
convex. If D is blunt, the coordinates are asymptotically independent as shown in [2]. So we
may assume that supD is a boundary point of D.

Theorem 4.2. Let (X1, X2) have density f0(nD), where D is a bounded open convex set and
f0 is a von Mises function. Suppose that supD is a boundary point ofD. Then X1 and X2 are
asymptotically independent if and only if D has a horizontal or vertical tangent at this point.

Proof. Convexity implies that � consists of all linear functionals ξ for which {ξ ≥ −1} ∩C
is bounded. In particular, u + v ∈ �. If the tangent lines in q = supD are not horizontal or
vertical thenD is sharp andX1 andX2 are asymptotically dependent. The exponent measure has
density h with level curves C+ q, where C is the cone ax < y < bx with 0 < b < a < ∞ the
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slopes of the tangent lines. If one of the tangent lines is horizontal or vertical, we may assume
that there is a horizontal tangent by symmetry. Then h(u, v) = e−v on (−∞, 0)× (0,∞), and,
hence, ρ{v ≥ 0} = ∞. On the other hand, ρ(0,∞)2 is finite. So statement 2 of Theorem 4.1
applies.

Example 4.2. LetD be the intersection of the open disk of radius 2 centred in (1,−1) and the
open half-plane above the diagonal. The vector (X, Y ) with density ce−nD has asymptotically
independent components. This is similar to the set depicted in Figure 1(c).

Example 4.3. IfD is the square (−1, 1)2 and f0 is a von Mises function, then the vector (X, Y )
with density f = cf0(nD) has asymptotically independent components.

Example 4.4. The cube (−1, 1)3 determines two open tetrahedra D1 and D2. Let D1 have
the vertices (1, 1, 1), (1,−1,−1), (−1, 1,−1), and (−1,−1, 1), and let D2 have the other
four vertices of the cube. The bivariate projections are squares. The two vectors with density
f = c0e−nDi have asymptotically independent coordinates. The vertex e = (1, 1, 1) is a
boundary point of D1, but D2 is disjoint from the unit ball centred in e.

Example 4.5. Let T be the open triangle with vertices (1, 1), (−1, 0), and (0,−1), and let D
be the intersection of T × (−1, 1) with the half-spaces {z > x + y − 2} and {z < 2 − x − y}.
The set D is asymptotic to a cone C in (1, 1, 0). Let (X, Y, Z) have density ce−nD . Then X
and Z are asymptotically independent, and so are Y and Z, but X and Y are asymptotically
dependent. There is a three-dimensional limit distribution for the coordinatewise maxima. The
exponent measure lives on the union of the vertical line in −∞ and the horizontal plane in −∞.
On the vertical line it has an exponential density; on the horizontal plane the density h has level
sets {h > e−t } = C + (t, t), where C is the cone {2x < y < x/2}.

5. Extensions

In this section we extend our results to certain light-tailed densities whose level sets are not
homothetic.

Suppose that we have a continuous homothetic function f = f0(nD) which vanishes off
the convex cone D∞ = ∪nD for some D ∈ Dd and some continuous decreasing function f0
asymptotic to a von Mises function e−ψ . The only difference with the standard setup in the
previous pages is that we do not assume that f integrates to 1. We assume that there exists a
continuous function f̃ ≤ f which is a probability density. The level sets {f̃ > e−s} are then
contained in the corresponding level sets {f > e−s} of f . If the level sets of f̃ are asymptotic
to those of f and the coordinates of the vector with density f are asymptotically dependent,
this does not imply asymptotic dependence for the coordinates of the vector with density f̃ .

Example 5.1. Let f = e−nT for the triangle T in Figure 1(a), as in Section 1.1. Then {f >
e−s} = sT for s > 0. Let f̃ have level sets T̃s = {f̃ > e−s} which, for large s, are the
triangle sT from which a small triangle at the vertex (s, s) has been removed. Suppose that
T̃s = Ts ∩ {(x, y) | x + y < 2s − 2

√
s}. Then T̃s/s converges to T , but the translates T̃s − se

do not converge to the coneC but to the empty set. The random vector with a probability density
which has the level sets T̃s for s ≥ s0 has components which are asymptotically independent;
see [2, Example A.5].

Asymptotic equality of level sets does not preserve asymptotic dependence, but asymptotic
equality of densities does.
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Proposition 5.1. Let f and f̃ be continuous positive densities, and let f̃ (zn)/f (zn) → 1 for
any sequence zn for which ‖zn‖ → ∞. Suppose that f has bounded level sets {f > e−s}
for s > 0. Then so has f̃ . If ht := f (a(t)w + tq)/f (tq) → h(w) a.e. and in L1 on a
half-space H , and h is bounded on H , then h̃t := f̃ (a(t)w + tq)/f̃ (tq) → h(w) a.e. and in
L1 on H .

Proof. The conditions ensure that f̃ (tq) ∼ f (tq). The maximum of f over the half-space
Ht := a(t)H + tq vanishes for t → ∞. Hence, for any r > 1 eventually, Ht ∩ rB is empty
and, hence, f̃ /f → 1 uniformly on Ht . This implies that h̃t /ht → 1 uniformly on H for
t → ∞, which ensures the a.e. and L1-convergence of h̃t .

The limit function h has the property that h(z + tq) = e−t h(z), reflecting the well-known
symmetry of the exponent measure ρ(A + tq) = e−t ρ(A) in the light-tailed case. It suffices
to know h on the horizontal coordinate plane {y = 0}. Write z = (x, y). The restriction
h0(x) = h(x, 0) is a multivariate exponential function. It has the form

h0 = e−nE , E = (C + q) ∩ {y = 0}.

The assumption that C ∈ C(q) ensures that nE is continuous on the convex open cone E∞ =
∪nE. Any function which is positive and continuous on a convex open cone and vanishes
outside this cone, and which is exponential along each ray, with negative exponent depending
on the direction of the ray, has this form provided that it vanishes at ∞: h0(xn) → 0 whenever
‖xn‖ → ∞. This last condition ensures that the level sets are scaled copies of a set in Dd−1.
If the set E is convex then h0 is log-concave or strongly unimodal. The measure ρ0 with
density h0, scaled by its integral, may be thought of as the spectral probability measure for the
exponent measure ρ.

Instead of the horizontal coordinate plane we may use the restriction to one of the other
coordinate planes to describe h. Actually, we may take any hyperplane {ξ = c} in R

d as long
as ξq �= 0. If ξ lies in the open cone � in Theorem 3.1 then h is integrable over the hyperplane.
The condition that ξ0 ∈ � is equivalent to the condition that the exponential function h0 on the
hyperplane {ξ0 = 0} is bounded away from 1 outside the unit ball. Thus, we have a simple
correspondence: the exponent measure has a density h with level sets {h > e−t } = C+ tq and
the spectral measure has a multivariate exponential density. The description of the restriction of
h to a hyperplane will depend on the hyperplane and on the coordinates used. The description
of the cone C = {h > 1} is purely geometric and does not depend on coordinates.

Now let us return to the restriction h0 of h to the horizontal coordinate plane. Let h̃0 be
a continuous function such that 0 ≤ h̃0 ≤ h0. There is a unique extension to a continuous
function h̃ on R

d which satisfies the symmetry relation h̃(z + tq) = e−t h̃(z). Simply define
h̃((x, 0) + tq) = e−t h̃0(x). Let ρ̃ be the measure with density h̃, and let Ñ be the Poisson
point process with intensity h̃. The intensity of the points of Ñ increases exponentially as one
moves away in the direction of −q, just as in the case of the original Poisson point process
with intensity h. One may regard Ñ as a thinning of N . Each point z of N is retained with
probability π = π(z) depending on z, independent of what happens to the other points. Here
π(z) = h̃(z)/h(z). If the function h̃0 vanishes on an open ball P in {y = 0} then h̃ vanishes
on the cylinder P + Rq. All points of N in this cylinder are deleted.

Now return to the situation above where f̃ ≤ f . If f satisfies the conditions of Theo-
rem 3.1, except for being a probability density, and if f̃ satisfies the limit relation below (with
denominator f0(t)), then this convergence holds in L1 on the same half-spaces as for f .
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Proposition 5.2. Suppose that f = f0(nD) satisfies (3.4), where f0 is a von Mises function
on [0,∞) with scale function a(t) and D ∈ Dd is asymptotic to the cone C ∈ C(q) in the
boundary point q �= 0 of D. Let Q be the smallest convex cone which contains D − q. Let
f̃ be a density and 0 ≤ f̃ ≤ f , and assume that there exists a function h̃ continuous on the
convex cone C + Rq and 0 on the complement of the cone such that

h̃tn (wn) = f̃ (a(tn)wn + tnq)

f0(tn)
→ h̃(w) as tn → ∞,wn → w ∈ C + Rq.

Then h̃(w + tq) = e−t h̃(w) for t ∈ R, w ∈ R
d , and the convergence h̃t → h̃ holds in L1 on

all half-spaces {ξ ≥ c} with ξq > 0 for which {ξ ≥ −1} ∩Q is bounded.

Proof. Set t ′n = tn+ sna(tn). Let wn → w ∈ C+Rq and sn → s ∈ R. Then a(t ′n)/a(tn) =
cn → 1 and

h̃t ′n(wn) = f̃ (tnq + sna(tn)q + a(tn)(cnwn))

f0(tn)

f0(tn)

f0(t ′n)
→ h̃(w + sq)

e−s .

This proves the symmetry. The L1-convergence follows from a version of Lebesgue’s domi-
nated convergence theorem: if fn is measurable and |fn| ≤ gn for n ≥ 1, and if fn → f a.e.
and gn → g in L1, then fn → f in L1.

6. Concluding remarks

In this paper we investigated the asymptotic dependence of the coordinates for vectors
with light-tailed distributions. The distribution was assumed to be specified in terms of a
multivariate density. For simplicity, we first developed the theory for continuous homothetic
densities. The light-tailed homothetic densities of this paper were determined by a bounded
open star-shaped setD which describes the shape of the level sets, and a decreasing light-tailed
function f0 on [0,∞)which describes the rate of decrease. In analogy to spherically symmetric
densities f (x) = f0(‖x‖)we wrote f (x) = f0(nD(x)) for homothetic densities. The densities
considered in this paper are continuous and positive on the whole space or on a convex cone.

If D is a convex set which contains the origin and whose boundary has a unique tangent
plane in each point, then the coordinates of the random vector with density f are asymptotically
independent. In this paper we treated the case of asymptotic dependence and we assumed that
the set D has a vertex q �= 0. It is then often possible to give a simple description of extremes
in the direction of q. This description is in terms of a Poisson point process N on R

d . The
asymptotic behaviour of the extremes is determined by the rate of decrease of f0 and by two
open cones, C ⊂ Q, associated with the setD. The coneC describes the asymptotic behaviour
ofD at the vertex q; the coneQ is the smallest convex open cone containing the translateD−q.
The intensity h of the Poisson point process N is determined by the cone C. The intensity is
positive and continuous on the convex cone C + Rq; its level sets are translates of C.

The Poisson point processN describes the asymptotic behaviour of the sample clouds in the
direction q. The normalized sample clouds have the form

Nn = {Wn1, . . . ,Wnn}, Wni = Xi − bnq

an
, i = 1, . . . , n,

where X1, . . . ,Xn are independent observations from f and the coefficients an > 0 and bn
depend on the function f0. Weak convergence Nn ⇒ N holds on certain half-spaces. It holds
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on all half-spaces {ξ ≥ c}, c ∈ R, for which ξq is positive and for which the intersection of
the half-space {ξ ≥ −1} and the cone Q is bounded. These linear functionals ξ form an open
convex cone � in the dual space.

The conditions on the set D and on the density generating function f0 are minimal. The
condition that the density f is homothetic is severe. It may be relaxed slightly. The results
remain valid for any density which is asymptotic to f for ‖x‖ → ∞, and f (x) > 0. The
weaker assumption that the level sets of the density asymptotically have the shapeD will ensure
that the sample clouds properly scaled converge onto the closure of the setD, but this condition
is too weak to handle the asymptotic behaviour of the sample clouds under the normalization
w = (z − bnq)/an above; see Example 5.1. The sensitivity of the limit to asymptotically
negligible variations in the shape of the level sets in the case of asymptotic dependence is
related to the scale function associated with the density generator.

If we assume asymptotic dependence with an exponent measure which does not charge
points at −∞ and which has a continuous density on R

d , and if we assume that the associated
normalizations are scalar, of the form u = (x − tnq)/an for an > 0 and tn → ∞, as in (3.4),
then it is not unreasonable to assume a continuous density f̃ for the vector, and convergence of
the normalized densities as in (3.4). In order to prevent sample points from wandering off to
infinity after normalization, we need L1-convergence on the d coordinate half-spaces {xi ≥ 0}.
This means that the density f̃ has to be well behaved in any sequence of points xn for which
one of the coordinates tends to +∞, even if the other coordinates all diverge to −∞. A simple
way to achieve this is by imposing the condition

{f̃ > e−t } ⊂ {f > e−t }, t ≥ 0,

on the level sets, where f has homothetic level sets and its density generator f0 is a von Mises
function to ensure that the size of its level sets does not increase too fast. These conditions ensure
that our results for homothetic densities carry over to the density f̃ ; compare Theorem 3.1 and
Proposition 5.2.

Although geometric arguments often provide a better insight into complex analytic
expressions, the geometry is not always simple and, as the counterexamples in Appendix A
demonstrate, our intuition for star-shaped sets is not well developed, even in dimension d = 2.
(Example A.4 exhibits a fern-like set D whose convex hull is the triangle in Figure 1(a).
The set D is sharp, but the components of the vector U uniformly distributed on D are
asymptotically independent, as are the components of the vector X with density c0e−nD .)
There are many open problems here. Does asymptotic independence of the components of
U uniformly distributed on D imply asymptotic independence of the vector X with density
ce−nD? Does asymptotic independence of the components of the vector X with this density
imply asymptotic independence for all densities f0(nD) with a von Mises function f0? The
theory developed above enriches our understanding of multivariate extremes. For applications,
the most pressing questions seem to be of a more statistical nature. How does one decide from
a given sample whether the underlying distribution, assuming a homothetic density, has a shape
D with a sharp vertex? How does one estimate the vertex q and the associated cone C? For
samples from a homothetic light-tailed density f = f0(nD), the scaled sample clouds converge
onto the closure ofD. Given a finite sample sequence, how does one test whether the underlying
density is homothetic?
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Appendix A

A.1. Counterexamples

Example A.1. Let q be the vertical unit vector in R
3. Let h have level sets

{h > e−t } = (−∞, 0)3 + te3 = C + tq, t ∈ R.

Then {h > 0} = (−∞, 0)2 × R = C + Rq and h is discontinuous in all boundary points.

Example A.2. LetE be a bounded open set in the plane given by the union of the unit ballB and
the open triangles T and −T , where T has its top in the origin and base vertices (±1,−1); see
Figure 4(a). The setE is star shaped and contains the origin, but its boundary is not continuous.
No proper translation of E is star shaped. Let C denote the open cone in R

3 which intersects
the plane {z = −1} in E × {−1}. There exists a set D ∈ D3 having e3 as a boundary point,
such that D − e3 generates C.

The setD is a subset ofD1 = (C+e3)∩{z > −1}, but its base is the open diskR of radius 2 in
{z = −1} rather than 2E×{−1}. The boundary ofD1 contains the open triangle T1, with top e3
and base vertices (±2,−2,−1), and its reflection T̃1, with top e3 and base vertices (±2, 2,−1).
Define S ⊂ T1 to be the intersection of two open disks centred in (±s,−1, 0) whose boundary
circles intersect in e3 and (0,−2,−1), and are tangent to the sides of the triangle T1 in e3.
The set S̃ ⊂ T̃1 is defined similarly. We describe D in terms of its intersections D(a) with the
planes H(a) = {y = ax}. For |a| ≤ 1, the intersection is an open triangle. The top is e3; the
base is the intersection of the disk R and H(a). For |a| > 1, the intersection D(a) is the open
convex subset of H(a) generated by the intervals R ∩ H(a), S ∩ H(a), and S̃ ∩ H(a). Now
observe that the setD(a) varies continuously with a ∈ [−∞,∞] and thatD(a)− e3 generates
the cone C ∩H(a) for any a.

Example A.3. LetC be the open cone in R
3 generated by the unionE of a disk and two triangles

with a common vertex at the origin in the horizontal plane {y = −1}, as in Example A.2.

E

R nt )(

S nt )(

(0,0) 0n
t2
,( )

0 n
t

,( )

,( )nt−n
t

n
t

y x= 2−

(a) (b)

Figure 4: (a) The set E used in Examples A.2 and A.3. (b) The triangles St (n) (dashed lines) and Rt (n)
(solid lines); St (n) ⊂ Rt (n) (see Example A.4).
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Suppose that the function h with level sets {h > e−t } = C + te3 is continuous. Then the
set {h = 1} restricted to {y = −1} is ∂E; the set {h = e−ε} is the boundary of the same set
enlarged by the factor 1 + ε. For small ε > 0, there are points which lie on both boundaries.
At these points the function values are equal, so 1 = 1 + ε, a contradiction.

Example A.4. For the open triangle T with vertices (1, 1), (−1, 0), and (0,−1) (see Fig-
ure 4(a)), the components of the vector (X, Y )with density ce−nT are asymptotically dependent.
There is a limit vector (U, V ) for the coordinatewise maxima. The components have a Gumbel
distribution, but they are dependent. The exponent measure has a continuous density h on R

2

with level sets which are translates over (t, t) of a cone in the negative quadrant. The density h
has the form h(u, v) = 2

3 (e
u−2v ∧ ev−2u) with exponential margins e−u and e−v . One might

expect the continuous densities ce−nD to be asymptotically dependent for any open star-shaped
set D whose convex hull is the triangle T .

Asymptotic independence may occur even if the shape set D has a sharp vertex in the
point supD.

Below we construct a star-shaped open set D which lies in the open triangle T above. The
setD contains the origin, it is symmetric around the diagonal, it has a continuous boundary, and
T is its convex hull. Yet the random vector with density ce−nD has asymptotically independent
components.

We shall first construct a simpler setD0 which satisfies the conditions above, except for the
continuity of the boundary. The set D0 is the union of T0 = T \ [ 1

2 ,∞)2 with a sequence of
open sets which are the intersection of the triangleT with disjoint thin open conesCn converging
to the positive diagonal from below, and a similar sequence of cones converging from above.
The set D0 looks like an arrangement of grasses thinning out towards the top in the vase T0.
We shall treat the part below the diagonal.

Choose a decreasing sequence of disjoint intervals Jn = (an, bn) in (0, 1) with

a0 = 1 > b1 > a1 > b2 > · · · , an+1 ∼ an → 0, bn − an � an − bn+1.

Define Cn to be the open cone spanned by the interval (1 + an, 1 + bn) on the horizontal line
y = 1. With the union J of the intervals Jn we associate a DFG on (0,∞) with density 1J on
(0, 1) and G(0) = 0. Then G(1) = |J | is the total length of the intervals Jn. We choose the
intervals Jn such that

G(x) ∼ F(x) := e−(log x)2 as x → 0.

The function F is a DF on (0, 1), continuous, and strictly increasing. It goes to 0 faster than
any power for x → 0. The set J thus has a very low density in the neighbourhood of 0. This
also holds for the density of the set D0 in the neighbourhood of the vertex (1, 1) since D0 is
the union of the sets Cn ∩T on T ∩ { 1

2 ≤ y < x}. It explains why the density c0e−nD0 behaves
asymptotically as if D0 were blunt.

Here are the details. Expand the setD0 by the factor t + n with large t , let pt (n) denote the
area of (t + n)D0 in the shifted quadrant (t,∞)2 below the diagonal, and let qt (n) denote the
area in {x > t} below the diagonal. Obviously,

pt (n) ≤ qt (n), pt (n) ≤ pt (n+ 1), qt (n) ≤ qt (n+ 1), n = 1, 2, . . . , t ≥ 0.

A closer look at the density, see below, will show that pt (n) � qt (n) for t → ∞, provided that
n ≤ √

t . (Thus, Sibuya’s condition holds for the uniform distribution on D0.) Introduce the
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sums

P(t) =
∞∑
n=1

pt (n)

en
, Q(t) =

∞∑
n=1

qt (n)

en
, t > 1.

We shall prove that P(t)/Q(t) vanishes for t → ∞. This is Sibuya’s condition for asymptotic
independence of the density c0e−nD0 . Indeed, nonnegative functions may be approximated by
step functions, writing g/e ≤ (1 − 1/e)

∑
e−n 1{g>e−n} ≤ g. On the complement of (−∞, t]2,

e−nD0

e
≤

(
1 − 1

e

)
e−t

∞∑
n=1

e−n 1(t+n)D0 ≤ e−nD0 .

The integral of the step function (without the additional factor (1 − 1/e)/et ) over the shifted
quadrant (t,∞)2 is 2P(t); the integral over the half-plane {x > t} is Q(t) + P(t). The
condition P(t)/Q(t) → 0 implies that the quotient of the integrals of e−nD0 over these two
sets also vanishes, which is Sibuya’s condition.

In order to handle these infinite series, we show that

pt (n)

qt (n)
→ 0 as t → ∞, uniformly in n for 1 ≤ n ≤ √

t . (A.1)

For n ≥ √
t , the terms of the series for P(t)may be bounded by n2/4en, where n2/4 is just the

area of the triangle (t + n)T ∩ {t ≤ y < x} with vertices (t, t), (t + n, t + n), and (t + n/2, t).
Hence, the tail, n ≥ √

t , of the series forP(t) is bounded by te−√
t for t > 0. We shall show that

te−√
t /qt (1) vanishes for t → ∞. The bound is valid for any open set D ⊂ T containing D0.

To see why pt (n)/qt (n) vanishes for 1 ≤ n ≤ √
t , we introduce new coordinates. Make the

diagonal the new vertical axis, but retain the horizontal axis. The point (t, t) has now moved
to (0, t). We make this point our new origin by a vertical translation of the coordinates. Now
pt (n) is the weight of the triangle St (n) with vertices (0, 0), (0, n), and (n/2, 0) with respect
to the measure µ with density 1(t+n)D0 , and qt (n) is the weight of the triangle Rt(n) with
vertices (0, 0), (0, n), and (n,−n). Define µ∗ as the measure with density 1tJ×R. In the new
coordinates the coneCm has top (0,−t) and intersects the horizontal axis in the interval tJm. It
is replaced by the strip tJm× R to obtain the density of µ∗. For n = o(t), the masses µ(St (n))
and µ∗(St (n)) are asymptotic, and, hence, pt (n) = µ(St (n)) ≤ 2p∗

t (n) := µ∗(St (n)) for
t ≥ t0 and 1 ≤ n ≤ √

t . Similarly, when tJm ⊂ (0, n), the area of tJm × R in Rt(n) is
asymptotic to the area in Rt(n) due to the cone Cm, and, hence, qt (n) ≥ q∗

t (n)/2 for t ≥ t1.
It is clear why (A.1) holds. The density of the set tJ × R increases as one moves away from

the vertical axis. The triangleRt(n) extends twice as far to the right asSt (n). Both triangles have
the same base on the vertical axis. The fraction F(n/2t)/F (n/t) gives an indication of the size
of pt (n)/qt (n), as we show next. Set F1(x) = ∫ x

0 F(t) dt . Then F1(x) ∼ xF(x)/2 log(1/x)
for x → 0. By partial integration,

p∗
t (n)

t2
=

∫ n/2t

0

(
n

t
− 2x

)
dG(x) = 2

∫ n/2t

0
G(x) dx ∼ 2

∫ n/2t

0
F(x) dx = 2F1

(
n

2t

)
,

and, similarly, q∗
t (n)/t

2 ∼ F1(n/t) for n/t → 0. Hence,

p∗
t (n)

q∗
t (n)

∼ 2F1(n/2t)

F1(n/t)
∼ F(n/2t)

F (n/t)
= c

(
n

t

)log 4

as
n

t
→ 0, c = F

(
1

2

)
,
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and (A.1) holds. The relation q∗
t (n) ∼ t2F1(n/t) above for n = 1 gives qt (1) � tF (1/t) �

te−√
t for t → ∞. This shows that the tail, n ≥ √

t , of the series for P(t) does not contribute
to the fraction P(t)/Q(t). Asymptotic independence for the density c0e−nD0 follows from
P(t)/Q(t) → 0.

We still have to replace D0 by a star-shaped set D with a continuous boundary without
changing the asymptotics of (A.1). This is done in two steps: D0 ⊂ D1 ⊂ D, increasing pt (n)
and qt (n) each step. It suffices to check that pt (n) for 1 ≤ n ≤ √

t and t > t2 increases by no
more than a factor of 2 in either step.

First, replace the cones Cn in the construction of D0 by strips Ln which intersect the
horizontal line y = 1 in the interval (1 + an, 1 + bn) and the horizontal axis in the interval
(−dn/2, dn/2), where dn = bn − an. This yields an open set D1 ⊂ T whose boundary is
continuous outside the vertex (1, 1). Second, add an open spike S ⊂ T , symmetric around
the diagonal, whose upper boundary is given by the equation y = x + F((1 − x)/3),
1
2 ≤ x < 1. The set D = D1 ∪ S has a continuous boundary. In the new coordinates the
spike ends at (0, n) and the right boundary is x = (t + n)F ((n − y)/3(t + n)). Now use∫ ε

0 F(v/3) dv = 3F1(ε/3) with ε = n/(t + n) and scale. The quantities pt (n) increase by less
than (t + n)23F1(ε/3) � 2t2F1(n/2t). Hence, (A.1) holds for the quantities pt (n) and qt (n)
associated with the setD, and Sibuya’s condition applied to the continuous homothetic density
ce−nD yields asymptotic independence.

A.2. Supplementary results

A.2.1. Asymptotic independence. To keep the paper self-contained, this section gives two
criteria for asymptotic independence. For a detailed discussion of the notion of asymptotic
independence and proofs, the reader is referred to [2].

Consider a random vector (X1, X2) with the joint DF F and marginal DFs F1 and F2.
Define a function P by P(F1(x1), F2(x2)) = Pr{X1 > x1, X2 > x2}. Sibuya’s condition (see
[4, Theorem 2]) says that the components X1 and X2 are asymptotically independent if the
function P satisfies the following limit relation:

P(1 − s, 1 − s) = o(s) as s → 0, s > 0.

The following criterion for asymptotic independence is expressed in terms of a continuous
curve, x(t) = (x1(t), x2(t)), t ≥ 0, for which F1(x1(t)) and F2(x2(t)) tend to 1 as t → ∞.
See Proposition 2.3 of [2].

Proposition A.1. Let (X1, X2) have DF F with continuous marginals F1 and F2. The com-
ponents X1 and X2 are asymptotically independent if and only if, for any ε > 0, there exists a
continuous curve x(t), t ≥ 0, such that pi(t) = Pr{Xi > xi(t)} is positive and vanishes for
t → ∞ and i = 1, 2, and such that

Pr{X1 > x1(t), X2 > x2(t)}
pi(t)

< ε, t > t0, i = 1, 2.

A.2.2. Miscellaneous.

Proposition A.2. Suppose that D ∈ Dd and the half-space H = {ξ ≥ c} is disjoint from D

and contains the boundary point q of D. Let D be asymptotic to the open cone C in q. Then
C lies in the open half-space {ξ < 0} and C1 = C + q is star shaped.

Proof. Suppose that q �= 0. (Otherwise, C = D∞ and the cone C is convex.) Suppose
that z ∈ C1. The set D contains all points on the interval (q, z) sufficiently close to q by
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Definition 2.3. Let it contain the interval (p, q). The set D is star shaped. So it contains
the triangle with vertices p, q, and 0, apart perhaps from the segment [0, q] (if q lies on the
boundary of the cone D∞). By Definition 2.3, C contains this set, translated over −q, and,
hence, the cone generated by the translated set. The shifted cone contains the interval (0, z].
Lemma A.1. Suppose that the gn are measurable functions on the half-space H ⊂ R

d which
satisfy 0 ≤ gn ≤ M0 for n ≥ n0 and some constant M0. Let gn → g a.e. on H . If, for any
ε > 0, there exists a compact set E such that

∫
H\E gn(x) dx < ε for n ≥ n1 then gn → g in

L1 on H .
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