
Glasgow Math. J. 49 (2007) 127–131. C© 2007 Glasgow Mathematical Journal Trust.
doi:10.1017/S0017089507003485. Printed in the United Kingdom
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Abstract. In this paper we prove that if R is a Prüfer domain, then the R-module
R ⊕ R satisfies the radical formula.

2000 Mathematics Subject Classification. 13A15, 13C99, 13F05, 13F30.

1. Introduction. Let M be a module over a commutative ring R and N be a
submodule of M. The prime radical of N in M, radM(N), is defined to be the intersection
of all prime submodules of M containing N. If there is no prime submodule containing
N, then radM(N) = M. In particular radM(M) = M.

Let M be an R-module and N a submodule of M. The envelope of N in M which
is denoted by EM(N) is defined to be the set

{rm : r ∈ R, m ∈ M such that rnm ∈ N for some n ∈ �+}.
We say that the submodule N satisfies the radical formula in M (N s.t.r.f. in M)

if radM(N) = 〈EM(N)〉. A module M s.t.r.f. if for every submodule N of M, the prime
radical of N is the submodule generated by its envelope, that is, radM(N) = 〈EM(N)〉.
A ring R s.t.r.f. provided that for every R-module M, M s.t.r.f..

The question of what kind of rings and modules s.t.r.f. has drawn the attention of
many authors. In [2], Jenkins and Smith proved that Dedekind domains s.t.r.f.. In [3],
Leung and Man proved that the only Noetherian rings which s.t.r.f. are of dimension
at most one and they gave a complete characterization of Noetherian rings which
s.t.r.f.. Now we are looking for non-Noetherian rings which s.t.r.f.. For that reason we
investigate whether modules over Prüfer domains s.t.r.f.. We prove in Theorem 2.4 that
if R is a Prüfer domain, then the R-module R ⊕ R s.t.r.f. Throughout R ⊕ R will be
denoted by R2. The following is given in [6].

PROPOSITION 1.1. Let R be a ring. If the RM-module RM ⊕ RM s.t.r.f. for any
maximal ideal M of R, then the R-module R2 s.t.r.f..

2. Results.

LEMMA 2.1. Let R be a commutative ring, and N be a submodule of R2. If N = I ⊕ J
for some ideals I, J of R, then N s.t.r.f. in R2.
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Proof. Clearly, for any prime ideal P of R containing I , P⊕R is a prime submodule
of R2 containing N. Thus, radR2 (N) ⊆ √

I ⊕ R. Similarly, radR2 (N) ⊆ R ⊕ √
J. Hence

radR2 (N) ⊆ √
I ⊕ √

J. Now take (x, y) ∈ √
I ⊕ √

J. That is xk ∈ I and yt ∈ J for
some k, t ∈ �+ and xk(1, 0), yt(0, 1) ∈ N. Then (x, y) = x(1, 0) + y(0, 1) ∈ 〈ER2 (N)〉.
Since we always have the other inclusion, radR2 (N) = √

I ⊕ √
J = 〈ER2 (N)〉 and N

s.t.r.f. in R2. �
LEMMA 2.2. Let D be a valuation domain and let N be a D-submodule of D2. If

(m, n) is an element of N such that (mk, 0) ∈ N or (0, nk′
) ∈ N for some k, k′ ∈ �+, then√

Dm ⊕ √
Dn ⊆ 〈ED2 (N)〉.

Proof. Suppose (mk, 0) ∈ N for some k ∈ �+. Then for any x ∈ √
Dm there

exists d ∈ D, l ∈ �+ such that xl = dm. Hence xkl(1, 0) = dkmk(1, 0) ∈ N implies that√
Dm(1, 0) ⊆ 〈ED2 (N)〉.

If Dm ⊆ Dn, then m/n ∈ D. Take a nonzero s ∈ √
Dn that is st = rn for some

nonzero r ∈ D and t ∈ �+. Since st((m/n), 1) = (rm, rn) ∈ N, and (s(m/n))tk(1, 0) =
rk(m/n)tk−k(mk, 0) ∈ N we have

(0, s) = s((m/n), 1) − s(m/n)(1, 0) ∈ 〈ED2 (N)〉.

Therefore
√

Dn(0, 1) ⊂ 〈ED2 (N)〉.
If Dn ⊆ Dm, then n/m ∈ D and (0, nk) = nk−1(m, n) − (n/m)k−1(mk, 0) ∈ N. Thus√

Dn(0, 1) ∈ 〈ED2 (N)〉.
In any case,

√
Dm ⊕ √

Dn ⊆ 〈ED2 (N)〉.
If (0, nk′

) ∈ N, then the proof can be carried out in a similar way. �
THEOREM 2.3. Let D be a valuation domain with unique maximal ideal M. Then D2

s.t.r.f.

Proof. Let N be a nonzero submodule of D2 where N is generated by S =
{(ai, bi)i∈I}. Consider the canonical projections πλ : D2 → D given by πλ(d1, d2) = dλ

where d1, d2 ∈ D, λ = 1, 2. We have π1(N) = 〈{ai}i∈I〉 and π2(N) = 〈{bi}i∈I 〉.
Case 1. If N = π1(N) ⊕ π2(N), then N satisfies the radical formula in D2 by

Lemma 2.1.
Case 2. If π1(N) + π2(N) is a finitely generated ideal of D, then π1(N) + π2(N) =∑

f inite Dai + ∑
f inite Dbi. Since D is a valuation ring and the ideals of D are totally

ordered, we may assume π1(N) + π2(N) = Dbk for some k ∈ I . Then Dak ⊆ Dbk, hence
ak/bk ∈ D. Note that {(ak/bk, 1), (1, 0)} forms a basis for D2.

Define

φ : D ⊕ D → D ⊕ D
(ak/bk, 1) → (0, 1)

(1, 0) → (1, 0).

Clearly φ is an isomorphism and φ(N) = B ⊕ Dbk where B is an ideal of D and
B ∼= N ∩ (D ⊕ 0). By case 1, φ(N) s.t.r.f. in D2. Then by [5, Theorem 1.5], N s.t.r.f.
in D2.

Case 3. Suppose π1(N) + π2(N) is not a finitely generated ideal, but π1(N) or π2(N)
is finitely generated. We may assume that π1(N) is finitely generated. Clearly π1(N) is
nonzero. (If it is zero then N satisfies Case 1 and result is clear.) Then π1(N) = Dat

for some t ∈ I . Since π1(N) + π2(N) is not finitely generated there are infinitely many
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principal ideals generated by elements of π2(N) containing Dat. Then there exists an
element (as, bs) ∈ S such that Da1 + Db1 � Dbs, s ∈ I . Hence Dasb1 ⊆ Da1b1 � Da1bs,
that is asb1/a1bs ∈ M and 1 − asbt/atbs is a unit in D. Then

bs(at, bt) − bt(as, bs) = (1 − asbt/atbs)(atbs, 0) ∈ N, so (atbs, 0) ∈ N.

Note that a2
t (1, 0) ∈ D(atbs, 0) ⊆ N, and hence (a2

i , 0) ∈ N for any i ∈ I . By Lemma 2.2,√
Dai ⊕ √

Dbi ⊆ 〈ED2 (N)〉 for all i ∈ I .
Hence,

rad(N) ⊆
√

π1(N) ⊕
√

π2(N) =
⋃
i∈I

√
Dai ⊕

⋃
i∈I

√
Dbi ⊆ 〈ED2 (N)〉.

Case 4. Let N be a submodule of D ⊕ D where π1(N) and π2(N) are not finitely
generated. Recall that S = {(ai, bi)i∈I} is the set of generators of N. We order the index
set I as follows: i � j if and only if Dai ⊆ Daj. Define P i =

√
Dai and Qi=

√
Dbi then√

π1(N) = ⋃
P i and

√
π2(N) = ⋃

Qi.
Subcase 1. For any i ∈ I , if one of the following is satisfied, thenPi ⊕ Qi⊆ 〈ED2 (N)〉

and N s.t.r.f. in D2.
(a) There exists j > i such that Dbj � Dbi.
(b) There exists k < i such that Dbi � Dbk.
(c) There exists j0 > i such that Daibj0 
= Daj0 bi while Dbi ⊆ Dbj for all j > i,
(d) There exists j1 > i such that Daibj1 ⊆ D(uj1 − 1) while for all indices j > i, Dbi ⊆

Dbj, and aibj = ujajbi for some unit uj.

Proof of Subcase 1. It is enough to prove for any i, P i ⊕ Qi⊆ 〈ED2 (N)〉. Assume
both ai and bi are nonzero, otherwise the result is clear.

Let condition (a) be satisfied. Then by assumption we have (aj, bj) ∈ S such that

Daibj � Daibi ⊆ Dajbi and aibj/ajbi ∈ M.

• if Daj ⊆ Dbi, then bj(ai, bi) − bi(aj, bj) = ajbi(aibj/ajbi − 1)(1, 0) ∈ N. Since
aibj/ajbi − 1 is a unit, (ajbi, 0) ∈ N and so (a2

i , 0) ∈ Dajbi(1, 0) ⊆ N. Hence by
Lemma 2.2, P i ⊕ Qi ⊆ 〈ED2 (N)〉.

• If Dbi ⊆ Daj, then aj(ai, bi) − ai(aj, bj) = ajbi(1 − aibj/ajbi)(0, 1) ∈ N and 1 −
aibj/ajbi is a unit implies ajbi(0, 1) ∈ N, that is (0, b2

i ) ∈ Dajbi(0, 1) ⊆ N and
Qi(0, 1) ⊆ 〈ED2 (N)〉. By Lemma 2.2, P j ⊕ Qj ⊆ 〈ED2 (N)〉. Hence,

Pi ⊕ Qi ⊆ Pj ⊕ Qj ⊆ 〈ED2 (N)〉.
Let condition (b) be satisfied. That is there is a k < i such that Dbk � Dbi. Assume

ak 
= 0 (otherwise result is clear), then

Dakbi � Dakbk ⊆ Daibk and akbi/aibk ∈ M.

• if Dai ⊆ Dbk, then bk(ai, bi) − bi(ak, bk) = aibk(1 − akbi/aibk)(1, 0) ∈ N. Since
1 − akbi/aibk is a unit, (aibk, 0) ∈ N. Then (a2

i , 0) ∈ Daibk(1, 0) ⊆ N and
P i(1, 0) ∈ 〈ED2 (N)〉. By Lemma 2.2, Pk ⊕ Qk ⊆ 〈ED2 (N)〉 and hence P i ⊕ Qi ⊆
P i ⊕ Qk ⊆ 〈ED2 (N)〉.

• If Dbk ⊆ Dai, then ak(ai, bi) − ai(ak, bk) = aibk(akbi/aibk − 1)(0, 1) ∈ N and
1 − akbi/aibk is a unit implies aibk(0, 1) ∈ N and (0, b2

i ) ∈ Daibk(0, 1) ⊆ N.
Hence we have P i ⊕ Qi ⊆ 〈ED2 (N)〉 by Lemma 2.2.
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Let (c) be satisfied. That is there exists j0 ∈ I such that j0 > i and Daibj0 
= Daj0 bi.
Then one of these ideals of D is contained in the other. Let Daibj0 � Daj0 bi that
is aibj0/aj0 bi ∈ M and (aj0 bi, 0) ∈ N; again we have two cases, such that Daj0 ⊆ Dbi

or Dbi ⊆ Daj0 . Daj0 ⊆ Dbi implies (a2
i , 0) ∈ Daj0 bi(1, 0) ⊆ N and Dbi ⊆ Daj0 implies

(0, b2
i ) ∈ N. Using Lemma 2.2, we have P i ⊕ Qi ∈ 〈ED2 (N)〉.
Let (d) be satisfied. That is, ai/aj = uj(bi/bj) for some unit uj for all j > i.

By the above argument, aibj(1 − uj)(1, 0) and aibj(1 − uj)(0, 1) ∈ N for all j > i. By
assumption, there is j1 ∈ I with j1 > i such that Daibj1 ⊆ D(1 − uj1 ) for some j1 > i.
Then (a4

i , 0) or (0, b4
i ) ∈ N. By Lemma 2.2, we have P i ⊕ Qi ⊆ 〈ED2 (N)〉 Since this

equality holds for all i ∈ I , we have

rad(N) =
√

π1(N) ⊕
√

π2(N) =
⋃

Pi ⊕
⋃

Qi ⊆ 〈ED2 (N)〉.

Subcase 2. Suppose the possibilities in subcase 1 do not occur for some i ∈ I , then
there exists j > i such that Dbi � Dbj, aibj = ujajbi for some unit uj and D(1 − uj) ⊆
Daibj. In this case N s.t.r.f. in D2.

Proof of Subcase 2. Similar to the proof of subcase 1, we have aibj(1 − uj)(1, 0) and
aibj(1 − uj)(0, 1) ∈ N that is ((1 − uj)2, 0) ∈ N for all j > i. Now we may assume that
Dai ⊆ Dbi then define

φ : D ⊕ D → D ⊕ D
( ai

bi
, 1) → (0, 1)

(1, 0) → (1, 0)

Consider N = N1 + N2 where N1 = 〈{(ak, bk)}k�i〉 and N2 = 〈{(ak, bk)}k>i〉. If
k � i, then φ(ak, bk) = φ(ak − (bk/bi)ai, 0) + φ((bk/bi)ai, bk) = (ak − (bk/bi)ai, 0) +
bk(0, 1), and φ(ai, bi) = biφ(ai/bi, 1) = bi(0, 1) = (0, bi) ∈ φ(N1) that implies 0 ⊕
Dbi ⊆ φ(N1) and (0, bk) = (bk/bi)(0, bi) ∈ φ(N1) where k � i and (ak − (bk/bi)ai, 0) =
φ(ak, bk) − bk(0, 1) ∈ φ(N1). Thus

φ(N1) = B ⊕ Dbi

where B is an ideal of D such that B ∼= (D ⊕ 0) ∩ 〈(as, bs)s�i〉 by case 2. If
k > i, then φ(ak, bk) = φ(ak − ukak, 0) + φ(ukak, bk) = (ak − ukak, 0) + bkφ(ai/bi, 1) =
(ak − ukak, bk). Hence

φ(N2) = 〈(ak(1 − uk), bk)}i<k〉.
So φ(N) = (B ⊕ Dbi) + 〈(ak(1 − uk), bk)k>i〉. Since ((1 − uj)2, 0) ∈ N we have
(aj(1 − uj)2, 0) = φ(aj(1 − uj)2, 0) ∈ φ(N). By Lemma 2.2,

√
Daj(1 − uj) ⊕

√
Dbj ⊆ 〈ED2 (φ(N))〉,

for all j > i. Combining this result by Lemma 2.1, we have

rad(φ(N)) =
√

π1(φ(N)) ⊕
√

π2(φ(N)) ⊆ 〈ED2 (φ(N))〉.
Thus φ(N) s.t.r.f. in D2 and by [5, Theorem 1.5], N s.t.r.f. in D2. �

THEOREM 2.4. Let R be a Prüfer domain, then the R-module R2 satisfies the radical
formula.
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Proof. For any maximal idealMof R, RM is a valuation ring. Then by Theorem 2.3,
the RM-module RM ⊕ RM satisfies the radical formula. By Proposition 1.1, R2 satisfies
the radical formula. �
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