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Abstract. In this paper we prove that if R is a Priifer domain, then the R-module

R @ R satisfies the radical formula.
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1. Introduction. Let M be a module over a commutative ring R and N be a
submodule of M. The prime radical of N in M, rady;(N), is defined to be the intersection
of all prime submodules of M containing N. If there is no prime submodule containing

N, then rady(N) = M. In particular rady (M) = M.

Let M be an R-module and N a submodule of M. The envelope of N in M which

is denoted by Ej;(N) is defined to be the set

{rm:re R, me M such that ¥"m € N for somen € Z}.

We say that the submodule N satisfies the radical formula in M (N s.t.r.f. in M)
if rady (N) = (Ey(N)). A module M s.t.r.f. if for every submodule N of M, the prime
radical of N is the submodule generated by its envelope, that is, rady;(N) = (Ey(N)).

A ring R s.t.r.f. provided that for every R-module M, M s.t.r.f..

The question of what kind of rings and modules s.t.r.f. has drawn the attention of
many authors. In [2], Jenkins and Smith proved that Dedekind domains s.t.r.f.. In [3],
Leung and Man proved that the only Noetherian rings which s.t.r.f. are of dimension
at most one and they gave a complete characterization of Noetherian rings which
s.t.r.f.. Now we are looking for non-Noetherian rings which s.t.r.f.. For that reason we
investigate whether modules over Priifer domains s.t.r.f.. We prove in Theorem 2.4 that
if R is a Priifer domain, then the R-module R & R s.t.r.f. Throughout R & R will be

denoted by R”. The following is given in [6].

PROPOSITION 1.1. Let R be a ring. If the Ry-module Ryi @ Ry s.t.1.f. for any

maximal ideal M of R, then the R-module R s.t.r.f..

2. Results.

LEMMA 2.1. Let R be a commutative ring, and N be a submodule of R>. IfN =1 & J

for some ideals I, J of R, then N s.t.r.f. in R*.
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Proof. Clearly, for any prime ideal P of R containing /, P®R is a prime submodule
of R? containing N. Thus, radg:(N) € /I ® R. Similarly, radg:(N) € R & +/J. Hence
radg:(N) € VT ® ~/J. Now take (x,y) € VI ®+/J. That is x* €I and y' € J for
some k, t € Z*+ and x*(1,0), »'(0, 1) € N. Then (x, y) = x(1, 0) + (0, 1) € (Eg(N)).
Since we always have the other inclusion, radg(N) = /I ® /J = (Eg(N)) and N
s.t.r.f in R%. O

LEMMA 2.2. Let D be a valuation domain and let N be a D-submodule of D*. If
(m, n) is an element of N such that (m*,0) € N or (0, ") € N for some k, k' € Z*, then

V' Dm & /Dn C (Ep(N)).

Proof. Suppose (n*,0) e N for some k € Z+. Then for any x € ~/Dm there
exists d € D, € Z+ such that x' = dm. Hence x*/(1, 0) = d*m*(1, 0) € N implies that
VDm(1,0) € (Ep:(N)).

If Dm C Dn, then m/n € D. Take a nonzero s € +/Dn that is s’ = rn for some
nonzero r € D and t € Z*. Since s'((m/n), 1) = (rm, rn) € N, and (s(m/n))’*(1,0) =
*(m/n)*=*m*, 0) € N we have

(0,5) = s((m/n), 1) — s(m/n)(1, 0) € (Ep:(N)).

Therefore /Dn(0, 1) C (Ep(N)).

If Dn € Dm, then n/m € D and (0, n*) = v*~'(m, n) — (n/m)*~'(m*, 0) € N. Thus
VDn(0, 1) € (Ep(N)).

In any case, v/Dm @ ~/Dn C (Ep(N)).

If (0, n¥) € N, then the proof can be carried out in a similar way. O

THEOREM 2.3. Let D be a valuation domain with unique maximal ideal M. Then D?
s.t.rf.

Proof. Let N be a nonzero submodule of D> where N is generated by S =
{(ai, by)icr}. Consider the canonical projections m; : D> — D given by m,(d, d») = d,,
where dy,d, € D, . = 1,2. We have n;(N) = ({a;}ie;) and mo(N) = ({bi}icr)-

Case 1. If N = m(N) @ m2(N), then N satisfies the radical formula in D> by
Lemma 2.1.

Case 2. If m{(N) + m»(N) is a finitely generated ideal of D, then 7;(N) + mo(N) =
> sinite Dai + 2 sinire Dbi. Since D is a valuation ring and the ideals of D are totally
ordered, we may assume 1(N) + 7m2(N) = Dby forsome k € 1. Then Da, € Dby, hence
a /by € D. Note that {(a; /by, 1), (1, 0)} forms a basis for D?.

Define

¢:DeD — D@D
(a/be, 1) = (0,1)
(1,o) — (1,0).

Clearly ¢ is an isomorphism and ¢(N) = B @® Db, where B is an ideal of D and
B=NN(D®O0). By case 1, ¢(N) s.t.r.f. in D?. Then by [5, Theorem 1.5], N s.t.r.f.
in D?.

Case 3. Suppose 71 (N) + m>(N) is not a finitely generated ideal, but 71 (N) or m2(N)
is finitely generated. We may assume that 71(N) is finitely generated. Clearly 7r1(N) is
nonzero. (If it is zero then N satisfies Case 1 and result is clear.) Then 7;(N) = Da,
for some ¢ € I. Since 71 (N) 4 m2(N) is not finitely generated there are infinitely many
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principal ideals generated by elements of m»(/N) containing Da,. Then there exists an
element (as, by) € Ssuch that Day + Dby & Db, s € I. Hence Dashy € Daiby G Dayby,
that is a;by/a;by € M and 1 — a;b,/a;b, is a unit in D. Then

bs(at» bt) - bt(am bv) = (1 - axbt/atbs)(atbm 0) € N, SO (arbm 0) € N

Note thata?(1, 0) € D(a;bs, 0) € N, and hence (a?, 0) € N foranyi € 1. By Lemma 2.2,
~Da; ® /Db; C (Ep2(N)) foralli € I

Hence,

rad(N) € Va1(N) & VmN) = | Jv/Da; & | vDb; € (Ep2(N)).

iel iel

Case 4. Let N be a submodule of D & D where 71(N) and 7;(N) are not finitely
generated. Recall that S = {(a;, b;);cs} is the set of generators of N. We order the index
set  as follows: i < jif and only if Da; C Da;. Define P; = /Da; and Q;= +/Db; then
,/7‘[1(N UP and \/7T2(N UQ,

Subcase 1. For any i € I, if one of the following is satisfied, then P; & Q,C (Ep:(N))
and N s.t.r.f. in D?.

(a) There exists j > i such that Db; & Db;.

(b) There exists k < i such that Db S Dby.

(c) There exists jy > i such that Da, # Da;,b; while Db; C Db, for allj > i,

(d) Thereexistsj; > isuch that Da;b; € D(u;, — 1) while for all mdlces j > 1,Db; C
Db;, and a;b; = u;ja;b; for some unit u;.

Proof of Subcase 1. It is enough to prove for any i, P; ® Q;C (Ep2(N)). Assume
both a; and b; are nonzero, otherwise the result is clear.
Let condition (a) be satisfied. Then by assumption we have (a;, b;) € S such that

Daib_,- ; Da,‘bi - Dajb[ and a,-b_,»/a,-bi e M.

o if Daj C Db;, then bj(a,«, b)) — b,‘(aj, bj) = ajb[(aibj/ajb[ —1)(1,0) € N. Since
aib;/a;ib; — 1 is a unit, (a;b;, 0) € N and so (af, 0) € Da;b;(1,0) € N. Hence by
Lemma 2.2, P; @ Q; C (Ep2(N)).

o If Db, - Daj, then Clj(d,’, bl) — (ll'((lj, b]) = ajb,-(l — a,-bj/ajb,-)(O, 1) e Nand 1 —
a;b;/a;b; is a unit implies a;b;(0, 1) € N, that is (0, b?) € Da;b;(0,1) € N and
Q,(0,1) € (Ep2(N)). By Lemma 2.2, P; @ Q; € (Ep2(N)). Hence,

Pi®Qi CP®Q; C(En(N)).

Let condition (b) be satisfied. That is there is a k < i such that Dby 2 Db;. Assume
ar # 0 (otherwise result is clear), then

Day.b; ; Dayby < Da;b; and akbi/aibk e M.

o if Da; C Dby, then b(ar, by) — bi(ar, b) = aibp(1 — axb;/aibi)(1, 0) € N. Since
1 — agbi/aby is a unit, (a;br,0) € N. Then (a?,0) € Da;bi(1,0) € N and
Pi(1,0) € (Ep2(N)). By Lemma 2.2, Py, @ Qr € (Ep2(N)) and hence P; @ Q; C
Pi® Qk S (Ep:(N)).

e If Dby C Da;, then ai(a;, b;) — ai(ay, by) = a;bi(axb;/a;by — 1)(0,1) € N and
1 — aib;/a;by is a unit implies a;b,(0,1) € N and (0, b7) € Da;bi(0,1) C N.
Hence we have P; @ Q; C (Ep:(N)) by Lemma 2.2.
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Let (c) be satisfied. That is there exists jo € I such that jy > i and Da;b;, # Daj,b;.
Then one of these ideals of D is contained in the other. Let Dabj, & Dajb; that
is a;bj,/a;,b; € M and (a;,b;, 0) € N; again we have two cases, such that Da;, € Db;
or Db; C Daj,. Daj, € Db; implies (a?, 0) € Daj,b;(1,0) € N and Db; C Daj, implies
(0, 5?) € N. Using Lemma 2.2, we have P; & Q; € (Ep:(N)).

Let (d) be satisfied. That is, a;/a; = u;(b;/b;) for some unit u; for all j > i.
By the above argument, a;b;(1 — u;)(1, 0) and a;b;(1 — u;)(0,1) € N for all j > i. By
assumption, there is j; € I with j; > i such that Da;b;, € D(1 — u;,) for some j; > i.
Then (a?, 0) or (0, 5}) € N. By Lemma 2.2, we have P; & Q; € (Ep:(N)) Since this
equality holds for all i € I, we have

rad(N) = ym(N) @ Vm(N) = [ P e @ € (Ep(V)).

Subcase 2. Suppose the possibilities in subcase 1 do not occur for some i € I, then
there exists j > i such that Dbi§ Db, a;b; = uja;b; for some unit ; and D(1 —u;) C
Da;b;. In this case N s.t.r.f. in D~

Proof of Subcase 2. Similar to the proof of subcase 1, we have a;b;(1 — ;)(1, 0) and
a;bj(1 —u;)(0,1) € N that is (1 — uj)z, 0) € N for all j > i. Now we may assume that
Da; C Db, then define

¢:D®D — D@D
1) - (0.1
(1,0) —  (1,0)
Consider N = N; + N, where Ny = ({(ak, bi)lr<i) and No = ({(ax, bi)}isi). If
k <i, then ¢(ax, br) = ¢p(ax — (bk/bi)ai, 0) + ¢((br/biai, br) = (ax — (br/bi)ai, 0) +
bi(0,1), and ¢(a;, b;) = big(a;/b;, 1) = bi(0,1) = (0, b;) € p(Ny) that implies 0D
Db; € ¢(Ny) and (0, b) = (bi/bi)(0, b;) € ¢(N1) where k < i and (ax — (br/bi)ai, 0) =
¢>(ak, bk) — bk(O, 1) € ¢)(N1) Thus

#(N1) = B® Db;

where B is an ideal of D such that B = (D & 0)N ((ay, bs)s<i) by case 2. If
k > i, then ¢(ax, bi) = ¢p(ar — ura, 0) + ¢p(urak, br) = (ax — ukay, 0) + brd(ai/bi, 1) =
(ak — Updy, bk) Hence

d(N2) = ((ar(1 — ug), br)}ick)-

So @¢(N)=(B& Db;) + {((ap(1 — uy), bp)x>i). Since ((1— uj)z, 0)e N we have
(a;(1 —uj)*, 0) = ¢(a;(1 — u;)?, 0) € $(N). By Lemma 2.2,

JDa(1 —w) @ /Dby < (Epe(s(V)),

for all j > i. Combining this result by Lemma 2.1, we have

rad(¢(N)) = Vr1(p(N) ® Vm(p(N)) S (Ep(¢(N))).
Thus ¢(N) s.t.r.f. in D? and by [5, Theorem 1.5], N s.t.r.f. in D?. O

THEOREM 2.4. Let R be a Priifer domain, then the R-module R® satisfies the radical
Sformula.
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Proof. For any maximal ideal M of R, R is a valuation ring. Then by Theorem 2.3,
the Ry-module Ry @ Ry satisfies the radical formula. By Proposition 1.1, R? satisfies
the radical formula. ]
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