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Abstract
We study the Hodge filtration on the local cohomology sheaves of a smooth complex algebraic variety along a closed
subscheme Z in terms of log resolutions and derive applications regarding the local cohomological dimension, the
Du Bois complex, local vanishing and reflexive differentials associated to Z.
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1. Introduction

In this paper, we prove several results about basic invariants of a closed subscheme Z of a smooth,
irreducible complex n-dimensional algebraic variety X. We give a characterisation of the local coho-
mological dimension lcd(𝑋, 𝑍) in terms of coherent sheaf data associated to a log resolution of (𝑋, 𝑍),
complementing the celebrated topological criterion in [43]. We also obtain local vanishing results for
sheaves of forms with log poles associated to such a resolution, generalising Nakano-type results in [52]
and [36]. We prove a vanishing result for cohomologies of the graded pieces of the Du Bois complex
when Z is a local complete intersection, extending the study of higher Du Bois singularities of hypersur-
faces in [41] and [24]. When Z has isolated singularities, we refine a result in [25] on the coincidence of
h-differentials and reflexive differentials, for forms of low degree. As a byproduct, we also obtain new
proofs of various results in the literature, for instance, an injectivity theorem in [29] or various cases of
results related to local cohomology in [8] and [33].

The common theme leading to the proof of all these results is the study of the Hodge filtration on
local cohomology. The local cohomology sheaves of 𝒪𝑋 along Z are important and subtle invariants of
the pair (𝑋, 𝑍); while they are not coherent over 𝒪𝑋 , they are well-behaved modules over the sheaf 𝒟𝑋

of differential operators. Exploiting this fact has been the key to important developments, especially in
commutative algebra, starting with the foundational paper of Lyubeznik [32]. Our focus in this paper is
the fact that they have an even more refined structure, namely, that of mixed Hodge modules; as such,
they come endowed with a canonical Hodge filtration. We study this filtration on local cohomology and
relate it to various invariants of Z mentioned above.

Local cohomology sheaves as mixed Hodge modules. We consider the local cohomology sheaves
H𝑞
𝑍 (𝒪𝑋 ), where q is a positive integer (for a review of these objects, see §2.2).1 It is well understood that

all H𝑞
𝑍 (𝒪𝑋 ) carry the structure of (regular, holonomic) filtered 𝒟𝑋 -modules underlying mixed Hodge

modules on X, with support in Z (see §2.3). In particular, they come endowed with a good filtration
𝐹𝑘H𝑞

𝑍 (𝒪𝑋 ) by coherent subsheaves, with 𝑘 ≥ 0, called the Hodge filtration. These data depend only on
the reduced structure of Z.

When Z is a hypersurface, only H1
𝑍 (𝒪𝑋 ) is nontrivial, and, in fact,

H1
𝑍 (𝒪𝑋 ) � 𝒪𝑋 (∗𝑍)/𝒪𝑋 ,

where 𝒪𝑋 (∗𝑍) is the sheaf of rational functions on X with poles along Z. Hence, the study of the
Hodge filtration on H1

𝑍 (𝒪𝑋 ) reduces to that of the Hodge filtration on 𝒪𝑋 (∗𝑍), or equivalently, to that
of the Hodge ideals treated in [36]. As in that paper, for concrete applications, one essential point is to
provide an alternative description of the Hodge filtration in terms of log resolutions. We discuss this next.

Suppose that 𝑓 : 𝑌 → 𝑋 is a log resolution of the pair (𝑋, 𝑍), assumed to be an isomorphism over
the complement of Z in X. We denote 𝐸 = 𝑓 −1(𝑍)red, which is a simple normal crossing (SNC) divisor
on Y. We observe in §2.4 that there is a filtered complex of right 𝑓 −1𝒟𝑋 -modules

𝐴• : 0 → 𝑓 ∗𝒟𝑋 → Ω1
𝑌 (log 𝐸) ⊗𝒪𝑌 𝑓 ∗𝒟𝑋 → · · · → 𝜔𝑌 (𝐸) ⊗𝒪𝑌 𝑓 ∗𝒟𝑋 → 0,

such that, restricting the discussion to 𝑞 ≥ 2 for simplicity, we have an isomorphism

𝑅𝑞−1 𝑓∗𝐴
• � H𝑞

𝑍 (𝜔𝑋 ) � H𝑞
𝑍 (𝒪𝑋 ) ⊗ 𝜔𝑋 .

Moreover, the Hodge filtration 𝐹•H𝑞
𝑍 (𝜔𝑋 ) is obtained as the image of the pushforward of a natural

filtration 𝐹•𝐴•, also described in §2.4. This description parallels the birational definition of Hodge
ideals of hypersurfaces in [36].

Once this birational description has been established, the main engine towards applications is
the strictness property of the Hodge filtration on direct images of Hodge modules via projective

1Most of our results are local, hence, while we will usually use the geometric language, they can also be seen as results about
the modules 𝐻𝑞

𝐼 (𝐴) , where A is a regular C-algebra of finite type.
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morphisms. This is a vast generalisation of the 𝐸1-degeneration of the Hodge-to-de Rham spectral
sequence, established by Saito [48], [49]. Its main consequence to local cohomology is described in
Proposition 2.9; here, we start by mentioning the most immediate application, namely, an injectivity
theorem.

Note first that, with the notation above, there is a natural morphism 𝒪𝑍 → R 𝑓∗𝒪𝐸 in D𝑏
(
Coh(𝑋)

)
,

which by duality gives rise to a morphism

𝛼 : R 𝑓∗𝜔•
𝐸 → 𝜔•

𝑍 ,

where the notation refers to the respective dualising complexes (for E, we of course have𝜔•
𝐸 = 𝜔𝐸 [𝑛−1]).

On the other hand, there is a morphism

𝛽 : 𝜔•
𝑍 → RΓ𝑍 (𝜔𝑋 ) [𝑛]

to the total (derived) local cohomology of 𝜔𝑋 , arising from the natural morphism RH𝑜𝑚𝑋 (𝒪𝑍 , 𝜔𝑋 ) →
RΓ𝑍 (𝜔𝑋 ). Here, Γ𝑍 (−) denotes the sheaf version of the functor of sections with support in Z.

Theorem A. The morphism obtained as the composition

𝛽 ◦ 𝛼 : R 𝑓∗𝜔•
𝐸 → RΓ𝑍 (𝜔𝑋 ) [𝑛]

is injective on cohomology, that is, the induced morphisms on cohomology give for each q an injection

𝑅𝑞−1 𝑓∗𝜔𝐸 → H𝑞
𝑍 (𝜔𝑋 ).

Since the morphism in the theorem factors through𝜔•
𝑍 via 𝛼, this recovers, in particular, the following

very useful result of Kovács and Schwede:

Corollary B [29, Theorem 3.3]. For each i, the natural homomorphism

H𝑖 (R 𝑓∗𝜔•
𝐸 ) → H𝑖 (𝜔•

𝑍 )

is injective.

As the authors explain in loc. cit., this can be thought of as a Grauert-Riemenschneider type result.
To be more explicit, it says that for each 𝑞 ≥ 1, the natural morphism

𝛼𝑞 : 𝑅𝑞−1 𝑓∗𝜔𝐸 → E𝑥𝑡𝑞
𝒪𝑋

(𝒪𝑍 , 𝜔𝑋 )

is injective (in particular, if Z is Cohen-Macaulay of pure codimension r, then 𝑅𝑞 𝑓∗𝜔𝐸 = 0 for 𝑞 ≠ 𝑟−1).
We make use of this when studying the local cohomological dimension of Z in terms of depth.

For a hypersurface Z, one of the key tools in the study of the Hodge filtration 𝐹𝑘𝒪𝑋 (∗𝑍) is its
containment in the pole order filtration 𝑃𝑘𝒪𝑋 (∗𝑍) = 𝒪𝑋

(
(𝑘 + 1)𝑍

)
, as noted in [50]. In arbitrary

codimension, it is still the case that

𝐹𝑘H𝑞
𝑍 (𝒪𝑋 ) ⊆ 𝑂𝑘H

𝑞
𝑍 (𝒪𝑋 ) := {𝑢 ∈ H𝑞

𝑍 (𝒪𝑋 ) | I
𝑘+1
𝑍 𝑢 = 0}

for all k, where 𝑂𝑘 is an order filtration analogous to 𝑃𝑘 . Unless 𝑞 = codim𝑋 (𝑍), however, work of
Lyubeznik [32] implies that the sheaves 𝑂𝑘H𝑞

𝑍 (𝒪𝑋 ) are not coherent. A natural replacement seems to
be an Ext filtration defined as

𝐸𝑘H𝑞
𝑍 (𝒪𝑋 ) := Im

[
ℰ𝑥𝑡𝑞

𝒪𝑋

(
𝒪𝑋/I𝑘+1

𝑍 ,𝒪𝑋
)
→ H𝑞

𝑍 (𝒪𝑋 )
]
, 𝑘 ≥ 0

and satisfying 𝐸𝑘 ⊆ 𝑂𝑘 . Note that both 𝑂𝑘H𝑞
𝑍 (𝒪𝑋 ) and 𝐸𝑘H𝑞

𝑍 (𝒪𝑋 ) depend on the scheme-theoretic
structure of Z (we get the smallest version by taking Z to be reduced). When Z is a local complete
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intersection of pure codimension r, then the two filtrations on H𝑟
𝑍 (𝒪𝑋 ) coincide; we show that, in this

case, they also coincide with the Hodge filtration if and only if Z is smooth (see Corollary 3.26).
In general, Theorem A and the birational interpretation of the Hodge filtration in §2.4 imply that

𝐹0H𝑞
𝑍 (𝒪𝑋 ) ⊆ 𝐸0H𝑞

𝑍 (𝒪𝑋 )

for all q. Furthermore, as a combination of our results with a well-known characterisation of Du Bois
singularities (see [59], [55]), we obtain:

Theorem C. Let 𝑍 ⊆ 𝑋 be a closed reduced subscheme of codimension r. If Z is Du Bois, then

𝐹0H𝑞
𝑍 (𝒪𝑋 ) = 𝐸0H𝑞

𝑍 (𝒪𝑋 ) for all 𝑞.

If we assume that Z is Cohen-Macaulay, of pure dimension, then 𝐹0H𝑞
𝑍 (𝒪𝑋 ) = 0 for all 𝑞 ≠ 𝑟 and

𝑍 is Du Bois ⇐⇒ 𝐹0H𝑟
𝑍 (𝒪𝑋 ) = 𝐸0H𝑟

𝑍 (𝒪𝑋 ).

It is a very interesting question whether 𝐹𝑘 ⊆ 𝐸𝑘 for all 𝑘 ≥ 1, as the difference between the two
should be a subtle measure of the singularities of Z by analogy with the case of hypersurfaces. This does
happen when Z is a local complete intersection, in which case, Theorem F provides a vast generalisation
of the last equivalence in the theorem above. Under this assumption, we also expect that the equality
𝐹1 = 𝐸1 implies that Z has rational singularities and an even stronger statement regarding the equality
𝐹𝑘 = 𝐸𝑘 for higher k (see Conjectures 3.20 and 3.31).

Local vanishing and local cohomological dimension. Since the ambient space X is smooth, it is well
known that the lowest index q for which H𝑞

𝑍 (𝒪𝑋 ) ≠ 0 is equal to the codimension of Z. On the other
hand, the highest such index is a more mysterious and much studied invariant, the local cohomological
dimension of Z in X:

lcd(𝑋, 𝑍) = max {𝑞 | H𝑞
𝑍 (𝒪𝑋 ) ≠ 0}. (1.1)

Note that lcd(𝑋, 𝑍) is more commonly defined as the minimal integer q, such that H𝑖
𝑍 (ℱ) = 0 for all

𝑖 > 𝑞 and all quasi-coherent sheaves ℱ on X, but the two definitions agree (see e.g. [43, Proposition
2.1].) Our study of the Hodge filtration allows us to provide a new perspective on lcd(𝑋, 𝑍), by relating
it to invariants arising from log resolutions.

Note, to begin with, that thanks to the Grauert-Riemenschneider theorem, we have

𝑓∗𝜔𝐸 � 𝑓∗𝜔𝑌 (𝐸)/𝜔𝑋 and 𝑅𝑞 𝑓∗𝜔𝐸 � 𝑅𝑞 𝑓∗𝜔𝑌 (𝐸) for 𝑞 ≥ 1,

hence, we can alternatively think of Theorem A as a result about the higher direct images 𝑅𝑞 𝑓∗𝜔𝑌 (𝐸).
For instance, they must vanish when H𝑞+1

𝑍 (𝒪𝑋 ) = 0 and 𝑞 ≥ 1. Using the same circle of ideas, based on
the strictness property and the birational description of the Hodge filtration, this can be extended to a
Nakano-type vanishing result for the higher direct images of all bundles of forms with log poles along E.

Theorem D. Let 𝑍 ⊆ 𝑋 be a closed subscheme of codimension r, and let 𝑐 := lcd(𝑋, 𝑍). If 𝑓 : 𝑌 → 𝑋
is a log resolution of (𝑋, 𝑍), which is an isomorphism away from Z, and 𝐸 = 𝑓 −1(𝑍)red, then

𝑅𝑞 𝑓∗Ω
𝑝
𝑌 (log 𝐸) = 0

in either of the following two cases:

1. 𝑝 + 𝑞 ≥ 𝑛 + 1 and 𝑞 ≤ 𝑟 − 2;
2. 𝑝 + 𝑞 ≥ 𝑛 + 𝑐.

In the case when Z is a hypersurface (so that 𝑐 = 1), this is a result of Saito [52, Corollary 3] (cf. also
[36, Theorem 32.1]). We remark that the part of the statement saying that vanishing holds whenever
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𝑝 + 𝑞 ≥ 𝑛 + 𝑐 can also be obtained as a consequence of Theorem E below. Various bounds on the
local cohomological dimension that are relevant to this theorem can be found in §2.6. At least for local
complete intersections, the range of vanishing in Theorem D could perhaps be further improved by
analogy with [39, Theorem D], though this will rely on connections with the Bernstein-Sato polynomial
of Z not known at the moment (cf. Remark 3.30).

As one of the most important applications of the techniques in this paper, we go in the opposite
direction and obtain a characterisation of the local cohomological dimension lcd(𝑋, 𝑍) in terms of the
vanishing of sheaves of the form 𝑅𝑞 𝑓∗Ω

𝑝
𝑌 (log 𝐸) associated to a log resolution.

Theorem E. Let Z be a closed subscheme of X and c a positive integer. Then the following are equivalent:

1. lcd(𝑋, 𝑍) ≤ 𝑐;
2. For any (some) log resolution 𝑓 : 𝑌 → 𝑋 of the pair (𝑋, 𝑍), assumed to be an isomorphism over the

complement of Z in X, if 𝐸 = 𝑓 −1(𝑍)red, we have

𝑅 𝑗+𝑖 𝑓∗Ω
𝑛−𝑖
𝑌 (log 𝐸) = 0, for all 𝑗 ≥ 𝑐, 𝑖 ≥ 0.

Over our base field C, this provides an alternative algebraic criterion in terms of finitely many coherent
sheaves, complementing Ogus’ celebrated topological criterion [43, Theorem 2.13], and answering, in
particular, a problem raised there. The equivalence between Ogus’ criterion and ours seems unclear at
the moment and is an intriguing topic of study (see Remark 4.12 for further discussion). In §4.2, we
also give concrete applications of this characterisation; more on this below as well.

Note: While throughout this paper we focus on the case of algebraic varieties, it is worth noting that
the criterion in Theorem E holds in the analytic setting as well, that is, when Z is an analytic subspace
of a complex manifold X. The same holds for Theorem D. This is due to the fact that our constructions
and arguments based on the theory of mixed Hodge modules apply equally well in this setting (see
Remarks 2.11 and 4.14).

The proof of the theorem relies on a simple strategy involving the Hodge filtration, namely, showing,
under the appropriate hypotheses, that:

1. 𝐹0H𝑞
𝑍 (𝒪𝑋 ) = 0 and

2. 𝐹•H𝑞
𝑍 (𝒪𝑋 ) is generated at level 0.

The second condition essentially means that the entire Hodge filtration is determined by the initial term
𝐹0H𝑞

𝑍 (𝒪𝑋 ), up to applying differential operators. The key technical tool is, therefore, a local vanishing
criterion for the generation level of the Hodge filtration, in the style of [36, Theorem 17.1] in the case
of hypersurfaces. This is stated as Theorem 4.2 below.

Numerous works have studied bounds on the local cohomological dimension in terms of the depth of
the local rings at points of Z. Theorem E leads to a unified approach to previously known such bounds
(for example, some of the statements in [16], [43], [61], [8]), as well as to new results. Among the latter,
we show in Corollary 4.29 that if Z has quotient singularities and codimension r, then

lcd(𝑋, 𝑍) = 𝑛 − depth(𝒪𝑍 ) = 𝑟.

Due to results of Ogus, this, in turn, implies that subvarieties 𝑍 ⊆ P𝑛 with quotient singularities behave
like local complete intersections in other respects as well, for instance, satisfying a Barth-Lefschetz-
type result (see Corollary 4.30). We refrain from including more material here (for further details and
examples, see §4.2).

The Du Bois complex and differentials on singular spaces. Our results regarding the Hodge filtration
on local cohomology, and perhaps somewhat surprisingly, the characterisation of local cohomological
dimension in Theorem E, can be applied to the study of the Du Bois complex and of various types of
differentials on a reduced closed subscheme 𝑍 ⊆ 𝑋 .
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Recall that the Du Bois complex Ω•
𝑍 is an object in the derived category of filtered complexes on Z.

The shifted graded pieces Ω𝑝
𝑍 := Gr𝑝𝐹Ω

•
𝑍 [𝑝] are objects in the derived category of coherent sheaves on

Z, playing a role similar to that of the bundles of holomorphic forms Ω𝑝
𝑍 on a smooth Z. There are, in

fact, canonical morphisms Ω𝑝
𝑍 → Ω𝑝

𝑍 that are isomorphisms over the smooth locus of Z. By definition,
the one for 𝑝 = 0 is an isomorphism precisely when Z has Du Bois singularities (see Chapter 5 for more
details).

Following the terminology from [24], we say that Z has only higher p-Du Bois singularities if the
canonical morphisms Ω𝑘

𝑍 → Ω𝑘
𝑍 are isomorphisms for all 0 ≤ 𝑘 ≤ 𝑝. The first result concerning

varieties with this property was obtained in [41], where is was shown that if Z is a hypersurface whose
minimal exponent is ≥ 𝑝 + 1, then Z has only higher p-Du Bois singularities; recall that the minimal
exponent of Z, which can be defined via the Bernstein-Sato polynomial of Z, roughly describes how
close the Hodge filtration and pole order filtration are on the localisation 𝒪𝑋 (∗𝑍). The converse to this
result was obtained in [24]. The Hodge filtration on local cohomology allows us to extend these results
to all local complete intersections.

Concretely, if Z is reduced and a local complete intersection of pure codimension r, then the
singularity level of the Hodge filtration on H𝑟

𝑍𝒪𝑋 is

𝑝(𝑍) := sup{𝑘 | 𝐹𝑘H𝑟
𝑍𝒪𝑋 = 𝑂𝑘H𝑟

𝑍𝒪𝑋 },

with the convention that 𝑝(𝑍) = −1 if there are no such k. We show that this invariant only depends
on Z and not on its embedding in a smooth variety. It is easy to check that 𝑝(𝑍) = ∞ if and only if Z
is smooth (see Corollary 3.26). In fact, we have the following explicit upper bound for singular Z (see
Theorem 3.39):

𝑝(𝑍) ≤
dim(𝑍) − 1

2
. (1.2)

By a result of Saito [53], if Z is a hypersurface in X, then 𝑝(𝑍) = [�̃�(𝑍)] − 1, where �̃�(𝑍) is the
minimal exponent of Z. We expect that, in general, 𝑝(𝑍) can be described in terms of the Bernstein-Sato
polynomial of Z studied in [6] (see Conjecture 3.31 for the statement). An interpretation of 𝑝(𝑍) in
terms of the Hodge ideals associated to products of equations defining Z is given by Proposition 3.34,
leading to restriction and semicontinuity results for this invariant (see Theorems 3.36 and 3.37). The
proof of (1.2) makes use of this semicontinuity property of 𝑝(𝑍).

The following is our main result, relating 𝑝(𝑍) to the behavior of the Du Bois complex of Z. The
proof builds on the case of hypersurfaces, which, as already mentioned, is treated in [41] and [24].

Theorem F. If Z is a reduced, local complete intersection closed subscheme of the smooth, irreducible
variety X, then for every nonnegative integer p, we have 𝑝(𝑍) ≥ 𝑝 if and only if Z has only higher p-Du
Bois singularities.

We also prove a related result concerning the vanishing of individual cohomology sheavesH𝑖Ω𝑝
𝑍 , with

𝑖 > 0, in terms of the size of the locus in Z, where 𝑝(𝑍) < 𝑝 (see Theorem 5.7 for the precise statement).
A consequence is that if the singular locus of the local complete intersection Z has dimension s, then
for all 𝑝 ≥ 0 we have

H𝑖 (Ω𝑝
𝑍 ) = 0 for 1 ≤ 𝑖 < dim 𝑍 − 𝑠 − 𝑝 − 1.

In a different direction, the criterion in Theorem E can be rephrased in terms of the Du Bois complex
(see Corollary 5.3), thanks to a result of Steenbrink [59]. This allows us to obtain in §5.4 results on
differentials on the singular variety Z as consequences of bounds on lcd(𝑋, 𝑍). We state here one result
regarding h-differentials; their theory is one of the possible approaches to differential forms on singular
spaces, as explained in [19], where it is also shown that they are isomorphic to H0Ω𝑘

𝑍 .
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In the ideal situation, h-differentials coincide with the reflexive differentials Ω[𝑘 ]
𝑍 := (Ω𝑘

𝑍 )
∨∨, and a

recent result of Kebekus-Schnell [25, Corollary 1.12] states that this is indeed the case for all k if Z is a
variety with rational singularities. We show the following improvement for low k when Z has isolated
singularities, using, in addition, input from mixed Hodge theory:

Theorem G. If Z is a variety with isolated singularities and depth(𝒪𝑍 ) ≥ 𝑘 + 2, then the h-differentials
and reflexive differentials of degree k on Z coincide.

Further applications of results on local cohomological dimension to h-differentials are obtained in
§5.4, including a statement analogous to Theorem G but depending only on the codimension of Z.

There are numerous conjectures and open problems suggested by this work that are scattered through-
out the text and that we believe are important for further developments. Here is an informal sample: the
connection between the Hodge filtration on local cohomology and the Bernstein-Sato polynomial (and
perhaps a version of the V-filtration) for local complete intersections, including applications to rational
singularities; the equivalence between our and Ogus’ characterisation of local cohomological dimension;
further local vanishing with applications to local cohomological dimension and reflexive differentials.

Notation. We collect, here, some notation that appears throughout the paper, with references to where
each item is described. Note that X will always be a smooth, irreducible complex variety of dimension
n and Z a closed subscheme of X.

1. lcd(𝑋, 𝑍), the local cohomological dimension of Z in X (see Formula (1.1));
2. 𝒟𝑋 , the sheaf of differential operators on X;
3. Q𝐻

𝑋 [𝑛], the trivial pure Hodge module on X (see §2.1);
4. (M, 𝐹) (𝑞), the Tate twist by q of the filtered 𝒟𝑋 -module (M, 𝐹) (see §2.1);
5. Gr𝐹𝑘 DR𝑋 (M, 𝐹), the 𝑘 th graded piece of the de Rham complex of the filtered 𝒟𝑋 -module (M, 𝐹)

(see §2.1);
6. H𝑞

𝑍 (M), the 𝑞th local cohomology of M with support in Z (see §2.2);
7. 𝒪𝑋 (∗𝑍), the sheaf of rational functions on X with poles along Z, when Z is a hypersurface (see

Example 2.1);
8. 𝐹𝑘H𝑞

𝑍 (𝒪𝑋 ), the 𝑘 th term of the Hodge filtration on H𝑞
𝑍 (𝒪𝑋 ) (see §2.3);

9. 𝑂𝑘H𝑞
𝑍 (𝒪𝑋 ), the 𝑘 th term of the order filtration on H𝑞

𝑍 (𝒪𝑋 ) (see Definition 3.3);
10. 𝐸𝑘H𝑞 (𝒪𝑋 ), the 𝑘 th term of the Ext filtration on H𝑞

𝑍 (𝒪𝑋 ) (see Definition 3.6);
11. 𝑝(𝑍), the singularity level of the Hodge filtration on H𝑟

𝑍 (𝒪𝑋 ), when Z is a local complete intersec-
tion of codimension r (see Definition 3.27);

12. Ω𝑝
𝑍 , the sheaf of p-Kähler differentials on Z;

13. Ω[𝑘 ]
𝑍 = (Ω𝑘

𝑍 )
∨∨, the sheaf of reflexive p-Kähler differentials on Z;

14. Ω𝑝
𝑍 , the (shifted) 𝑝th truncation of the Du Bois complex (see §5).

2. Background and study of the Hodge filtration

2.1. 𝓓-modules and mixed Hodge modules

Given a smooth, irreducible, n-dimensional complex algebraic variety X, we denote by 𝒟𝑋 the sheaf of
differential operators on X. For basic facts in the theory of 𝒟𝑋 -modules, we refer to [18].

We only recall here a couple of things: first, an exhaustive filtration 𝐹• on a left 𝒟𝑋 -module M
(always assumed to be compatible with the filtration 𝐹•𝒟𝑋 by the order of differential operators) is
good if 𝐹𝑝M is coherent for all p and there is q, such that

𝐹𝑞+𝑘M = 𝐹𝑘𝒟𝑋 · 𝐹𝑞M for all 𝑘 ≥ 0.

In this case, we say that the filtration is generated at level q.
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Next, there is an equivalence of categories between left and right 𝒟𝑋 -modules, such that, if M𝑟 is
the right 𝒟𝑋 -module corresponding to the left 𝒟𝑋 -module M, we have an isomorphism of underlying
𝒪𝑋 -modules M𝑟 � 𝜔𝑋 ⊗𝒪𝑋 M. We will mostly work with left 𝒟𝑋 -modules, but it will sometimes be
convenient to work with their right counterparts. We note that if they are endowed with a good filtration
as above, then the left-right rule for the filtration is by convention

𝐹𝑝−𝑛M𝑟 = 𝜔𝑋 ⊗𝒪𝑋 𝐹𝑝M for all 𝑝 ∈ Z. (2.1)

For the basic notions and results on mixed Hodge modules, we refer to [48] and [49]. In what follows,
we refer to a mixed Hodge module on X simply as a Hodge module. Recall that such an object consists
of a 𝒟𝑋 -module on X (always assumed to be holonomic and with regular singularities), endowed with
a good filtration called the Hodge filtration, and with several other pieces of data satisfying an involved
set of conditions that we will not be directly concerned with in this paper. We will say that this filtered
𝒟𝑋 -module underlies the respective Hodge module. An important fact is that every morphism of Hodge
modules is strict with respect to the Hodge filtrations (see also [36, Chapter C] and [37, §1] for further
review).

An important example of (pure) Hodge module is the trivial Hodge module Q𝐻
𝑋 [𝑛]. The underlying

𝒟𝑋 -module is 𝒪𝑋 , while the Hodge filtration is defined by the condition Gr𝐹𝑝 (𝒪𝑋 ) = 0 for all 𝑝 ≠ 0.
Given a filtered 𝒟𝑋 -module (M, 𝐹) and 𝑞 ∈ Z, the Tate twist (M, 𝐹) (𝑞) is the filtered 𝒟𝑋 -module(

M, 𝐹 [𝑞]
)
, where

𝐹 [𝑞]𝑝M = 𝐹𝑝−𝑞M for all 𝑝 ∈ Z.

For every left 𝒟𝑋 -module M, the de Rham complex DR𝑋 (M) is the complex

0 → M → Ω1
𝑋 ⊗𝒪𝑋 M → · · · → 𝜔𝑋 ⊗𝒪𝑋 M → 0,

placed in cohomological degrees −𝑛, . . . , 0. If M carries a good filtration F, the de Rham complex has
an induced filtration, such that, for every integer k, the graded piece Gr𝐹𝑘 DR𝑋 (M, 𝐹) is given by

0 → Gr𝐹𝑘 M → Ω1
𝑋 ⊗𝒪𝑋 Gr𝐹𝑘+1M → · · · → 𝜔𝑋 ⊗𝒪𝑋 Gr𝐹𝑘+𝑛M → 0,

where Gr𝐹𝑖 M = 𝐹𝑖M/𝐹𝑖−1M for all 𝑖 ∈ Z. Note that this is a complex of coherent 𝒪𝑋 -modules.
The filtered de Rham complex of a filtered right 𝒟𝑋 -module is the filtered de Rham complex of
the corresponding left 𝒟𝑋 -module. When (M, 𝐹) underlies a Hodge module M, we sometimes use,
alternatively, the notation DR𝑋 (𝑀) and Gr𝐹𝑝DR𝑋 (𝑀).

Since morphisms of Hodge modules are strict with respect to the Hodge filtration, Gr𝐹𝑘 DR𝑋 (−) gives
an exact functor from the abelian category of Hodge modules on X to the abelian category of bounded
complexes of coherent sheaves on X. This induces an exact functor, also denoted Gr𝐹𝑘 DR𝑋 (−), from
the derived category D𝑏

(
MHM(𝑋)

)
of Hodge modules on X to the derived category D𝑏

(
Coh(𝑋)

)
. By

considering the truncation functors associated to the standard t-structure on D𝑏
(
MHM(𝑋)

)
, one obtains

for every 𝑢 ∈ D𝑏
(
MHM(𝑋)

)
and every 𝑘 ∈ Z a spectral sequence

𝐸 𝑝𝑝
′

2 = H𝑝Gr𝐹𝑘 DR𝑋
(
H𝑝′ (𝑢)

)
⇒ H𝑝+𝑝′Gr𝐹𝑘 DR𝑋 (𝑢). (2.2)

Given a morphism 𝑓 : 𝑌 → 𝑋 of smooth complex varieties, we use the notation 𝑓∗ for the pushforward
of Hodge modules. Note that at the level of underlying 𝒟-modules, this corresponds to the usual
pushforward 𝑓+, defined for right 𝒟-modules as

𝑓+M := R 𝑓∗
(
M

L
⊗𝒟𝑌 𝒟𝑌→𝑋

)
,
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where the object on the right is in the derived category of right 𝒟𝑋 -modules. Here,

𝒟𝑌→𝑋 := 𝒪𝑌 ⊗ 𝑓 −1𝒪𝑋
𝑓 −1𝒟𝑋

is the associated transfer (𝒟𝑌 , 𝑓
−1𝒟𝑋 )-bimodule, which is isomorphic to 𝑓 ∗𝒟𝑋 as an 𝒪𝑌 -module, and

is filtered by 𝑓 ∗𝐹𝑘𝒟𝑋 (see [18, §1.5] for more details). In general, 𝑓+ is different from the pushforward
R 𝑓∗ on quasi-coherent 𝒪-modules, but the two definitions agree if f is an open immersion, and, in this
case, we also use the R 𝑓∗ notation.

Moreover, if f is proper and if we denote by FM(𝒟𝑋 ) the category of filtered 𝒟-modules on X, then
there is a functor

𝑓+ : D𝑏 (FM(𝒟𝑌 )
)
→ D𝑏 (FM(𝒟𝑋 )

)
defined in [48], which is compatible with the functor 𝑓+ above. If (M, 𝐹) underlies a Hodge module M
on X, we write 𝑓+(M, 𝐹) for the object in D𝑏

(
FM(𝒟𝑌 )

)
underlying 𝑓∗𝑀 .

An important feature of the pushforward of Hodge modules under projective morphisms is the
strictness property of the Hodge filtration (see [49, Theorem 2.14]). This says that if 𝑓 : 𝑌 → 𝑋
is projective and (M, 𝐹) underlies a Hodge module on Y, then 𝑓+(M, 𝐹) is strict as an object in
D𝑏

(
FM(𝒟𝑋 )

)
(and moreover, each H𝑖 𝑓+(M, 𝐹) underlies a Hodge module). Concretely, this means

that the natural mapping

𝑅𝑖 𝑓∗
(
𝐹𝑘 (M

L
⊗𝒟𝑌 𝒟𝑌→𝑋 )

)
−→ 𝑅𝑖 𝑓∗(M

L
⊗𝒟𝑌 𝒟𝑌→𝑋 ) (2.3)

is injective for every 𝑖, 𝑘 ∈ Z. The filtration on H𝑖 𝑓+(M, 𝐹) is obtained by taking 𝐹𝑘H𝑖 𝑓+(M, 𝐹) to be
the image of this map. Note that this strictness property is a vast generalisation of the degeneration at
𝐸1 of the Hodge-to-de Rham spectral sequence (cf., e.g. [36, §4]).

2.2. Brief review of local cohomology

Let X be a smooth, irreducible n-dimensional complex algebraic variety and Z a proper closed subscheme
of X defined by the coherent ideal sheaf I𝑍 . For a quasi-coherent 𝒪𝑋 -module M and 𝑗 ≥ 0, we denote
by H𝑞

𝑍 (M) the 𝑞th local cohomology sheaf of M, with support in Z. This is the 𝑞th derived functor of
the functor Γ𝑍 (−) given by the subsheaf of local sections with support in Z. The sheaves H𝑞

𝑍 (M) only
depend on the support of Z, so in many situations, it is convenient to assume that Z is reduced. For the
basic facts on local cohomology, see [15].

The sheaf H𝑞
𝑍 (M) is a quasi-coherent sheaf, whose local sections are annihilated by suitable powers

of I𝑍 . For every affine open subset𝑈 ⊆ 𝑋 , if

𝐴 = 𝒪𝑋 (𝑈), 𝐼 = I𝑍 (𝑈), and 𝑀 = M(𝑈),

then H𝑞
𝑍 (M) |𝑈 is the sheaf associated to the local cohomology module 𝐻𝑞𝐼 (𝑀). This can be computed

as follows: if 𝐼 = ( 𝑓1, . . . , 𝑓𝑟 ) (or, more generally, if I and ( 𝑓1, . . . , 𝑓𝑟 ) have the same radical) and for a
subset 𝐽 ⊆ {1, . . . , 𝑟}, we put 𝑓𝐽 :=

∏
𝑖∈𝐽 𝑓𝑖 , then we have the Čech-type complex

𝐶• : 0 → 𝐶0 → 𝐶1 → · · · → 𝐶𝑟 → 0, (2.4)

with

𝐶 𝑝 =
⊕
|𝐽 |=𝑝

𝐴 𝑓𝐽 ,
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and with the maps given (up to suitable signs) by the localisation homomorphisms. With this notation,
we have functorial isomorphisms

𝐻𝑞𝐼 (𝑀) � 𝐻𝑞 (𝐶• ⊗𝐴 𝑀). (2.5)

The two main cases we will be interested in are those when M is either 𝒪𝑋 or 𝜔𝑋 . Note that we have
H0
𝑍 (𝒪𝑋 ) = H0

𝑍 (𝜔𝑋 ) = 0.
In general, given X and Z as above, we write𝑈 = 𝑋 \ 𝑍 and let 𝑗 : 𝑈 ↩→ 𝑋 be the inclusion map. For

every M, we have a functorial exact sequence

0 → H0
𝑍 (M) → M → 𝑗∗(M|𝑈 ) → H1

𝑍 (M) → 0 (2.6)

and functorial isomorphisms

𝑅𝑞 𝑗∗(M|𝑈 ) � H𝑞+1
𝑍 (M) for all 𝑞 ≥ 1. (2.7)

Example 2.1. If Z has pure codimension 1 (that is, it is an effective divisor on X), then H1
𝑍 (𝒪𝑋 ) �

𝒪𝑋 (∗𝑍)/𝒪𝑋 and H𝑞
𝑍 (𝒪𝑋 ) = 0 for all 𝑞 ≠ 1. Here, 𝒪𝑋 (∗𝑍) denotes the sheaf of rational functions on X

with poles along Z.

Remark 2.2. Since X is smooth, hence, Cohen-Macaulay, the usual description of depth in terms of
local cohomology (see [15, Theorem 3.8]) implies that

codim𝑋 (𝑍) = min{𝑞 | H𝑞
𝑍 (𝒪𝑋 ) ≠ 0}.

Moreover, from the description via the Čech complex in (2.5), it follows that if Z is locally cut out set-
theoretically by ≤ 𝑁 equations, then H𝑞

𝑍 (𝒪𝑋 ) = 0 for 𝑞 > 𝑁 . In particular, we conclude that if Z is a
local complete intersection of pure codimension r, then H𝑞

𝑍 (𝒪𝑋 ) = 0 for all 𝑞 ≠ 𝑟 .

If 𝑍 ′ ⊆ 𝑍 is another closed subset of X, then for every quasi-coherent sheaf M, we have natural maps

H𝑞
𝑍 ′ (M) → H𝑞

𝑍 (M).

These are induced by the natural transformation of functors H0
𝑍 ′ (−) → H0

𝑍 (−).
It is a standard fact that if M is a left 𝒟𝑋 -module, then each H𝑞

𝑍 (M) has a canonical structure of
left 𝒟𝑋 -module. Locally, this can be seen by using the description in (2.5). Indeed, each localisation
𝑀 𝑓𝐽 has an induced 𝒟𝑋 (𝑈)-module structure, such that the morphisms in the complex 𝐶• ⊗𝐴 𝑀 are
morphisms of 𝒟𝑋 (𝑈)-modules. Therefore, each cohomology module 𝐻𝑞𝐼 (𝑀) has an induced 𝒟𝑋 (𝑈)-
module structure and one can easily check that this is independent of the choice of generators for I.
Hence, these structures glue to a 𝒟𝑋 -module structure on H𝑞

𝑍 (M).
Note also that if M is a left 𝒟𝑋 -module, then the sheaves 𝑅𝑞 𝑗∗(M|𝑈 ) are left 𝒟𝑋 -modules as well;

they are the cohomology sheaves of the 𝒟-module pushforward of M via j. Moreover, in this case, the
exact sequence (2.6) and the isomorphism (2.7) also hold at the level of 𝒟𝑋 -modules.

Similar considerations apply for right 𝒟𝑋 -modules. It is easy to see, using the local description, that
for every 𝑞 ≥ 0, we have a canonical isomorphism

H𝑞
𝑍 (M)𝑟 � H𝑞

𝑍 (M
𝑟 ).

In particular, we have a canonical isomorphism of right 𝒟𝑋 -modules

H𝑞
𝑍 (𝒪𝑋 )

𝑟 � H𝑞
𝑍 (𝜔𝑋 ).
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2.3. The Hodge filtration on local cohomology

We continue to use the notation introduced in the previous sections. Denoting by 𝑖 : 𝑍 ↩→ 𝑋 the
inclusion, there are objects 𝑗∗Q𝐻

𝑈 [𝑛] and 𝑖∗𝑖!Q𝐻
𝑋 [𝑛] in the derived category of Hodge modules and an

exact triangle

𝑖∗𝑖
!Q𝐻

𝑋 [𝑛] −→ Q𝐻
𝑋 [𝑛] −→ 𝑗∗Q𝐻

𝑈 [𝑛]
+1
−→, (2.8)

as shown in [49, §4]. The cohomologies of these objects are Hodge modules whose underlying 𝒟𝑋 -
modules we have already seen:

H𝑞 (𝑖∗𝑖!Q𝐻
𝑋 [𝑛]

)
= H𝑞

𝑍 (𝒪𝑋 ) and H𝑞 ( 𝑗∗Q𝐻
𝑈 [𝑛]

)
= 𝑅𝑞 𝑗∗𝒪𝑈 .

In particular, these 𝒟𝑋 -modules carry canonical Hodge filtrations; note that these only depend on the
reduced subscheme 𝑍red. Moreover, the long exact sequence of cohomology corresponding to (2.8) gives
the counterparts of (2.6) and (2.7) in this setting: an exact sequence of filtered 𝒟𝑋 -modules

0 → 𝒪𝑋 → 𝑗∗𝒪𝑈 → H1
𝑍 (𝒪𝑋 ) → 0 (2.9)

and an isomorphism of filtered 𝒟𝑋 -modules

𝑅𝑞 𝑗∗𝒪𝑈 � H𝑞+1
𝑍 (𝒪𝑈 ) for all 𝑞 ≥ 1. (2.10)

For example, when 𝑍 = 𝐷 is a reduced effective divisor, we have a canonical Hodge filtration on
𝒪𝑋 (∗𝐷) = 𝑗∗𝒪𝑈 , which underlies the Hodge module 𝑗∗Q𝐻

𝑈 [𝑛]; this is analysed in [36]. Up to taking
the quotient by 𝒪𝑋 , this is therefore equivalent to the Hodge filtration on the local cohomology sheaf
H1
𝐷 (𝒪𝑋 ). It turns out that for arbitrary Z, the Hodge filtration on the local cohomology sheaves H𝑞

𝑍 (𝒪𝑋 )

can be defined using the one on sheaves of the form 𝒪𝑋 (∗𝐷). Note first that it is enough to describe the
Hodge filtration in each affine chart U. In this case, if we consider 𝑓1, . . . , 𝑓𝑟 ∈ 𝐴 = 𝒪𝑋 (𝑈) that generate
an ideal having the same radical as I𝑍 (𝑈), then each localisation 𝐴 𝑓𝐽 carries a Hodge filtration, such that
the corresponding Čech-type complex (2.4) is a complex of filtered 𝒟-modules. In fact, the maps come
from morphisms of mixed Hodge modules: each component is, up to sign, induced by the canonical map

𝑗𝑈 ∗Q𝐻
𝑈 [𝑛] → 𝑗𝑉 ∗Q𝐻

𝑉 [𝑛],

where 𝑉 ⊆ 𝑈 are complements of suitable hypersurfaces and 𝑗𝑈 : 𝑈 ↩→ 𝑋 and 𝑗𝑉 : 𝑉 ↩→ 𝑋 are the
inclusion maps. Therefore, the maps in the complex (2.4) are strict and the Hodge filtration on the
cohomology sheaves H𝑞

𝑍 (𝒪𝑋 ) is the induced filtration.

Remark 2.3. We have

𝐹𝑝H𝑞
𝑍 (𝒪𝑋 ) = 0 for all 𝑝 < 0 and 𝑞 ≥ 0.

Indeed, arguing locally and using the computation of local cohomology via the Čech-type complex (2.4),
we deduce this assertion from the fact that if D is a reduced effective divisor on X, then 𝐹𝑝𝒪𝑋 (∗𝐷) = 0
for 𝑝 < 0 (see, for example, [36, §9]).

Remark 2.4. Suppose that 𝑍 ′ ⊆ 𝑍 is another closed subset. If𝑈 ′ = 𝑋 \ 𝑍 ′, then j factors as

𝑈
𝑘
↩→ 𝑈 ′

𝑗′

↩→ 𝑋.

In the derived category of Hodge modules on X, we have an isomorphism

𝑗∗Q𝐻
𝑈 [𝑛] � 𝑗 ′∗

(
𝑘∗Q𝐻

𝑈 [𝑛]
)
.
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The canonical morphism Q𝐻
𝑈 ′ [𝑛] → 𝑘∗Q𝐻

𝑈 [𝑛] induces therefore

𝑗 ′∗Q𝐻
𝑈 ′ [𝑛] → 𝑗∗Q𝐻

𝑈 [𝑛],

so that after passing to cohomology, we get morphisms of Hodge modules

𝑅𝑞 𝑗 ′∗Q𝐻
𝑈 ′ [𝑛] → 𝑅𝑞 𝑗∗Q𝐻

𝑈 [𝑛] .

We deduce using (2.9) and (2.10) that the canonical morphisms(
H𝑞
𝑍 ′ (𝒪𝑋 ), 𝐹

)
→

(
H𝑞
𝑍 (𝒪𝑋 ), 𝐹

)
are (strict) morphisms of filtered 𝒟𝑋 -modules.

Remark 2.5. It is not hard to compare the Hodge filtrations on the local cohomology sheaves along Z
with respect to two different embeddings in smooth varieties. Indeed, suppose that 𝑘 : 𝑋 ↩→ 𝑋 ′ is a
closed embedding, with 𝑋 ′ smooth, and dim(𝑋) = 𝑛 and dim(𝑋 ′) = 𝑛 + 𝑑. In this case, if 𝑖 : 𝑍 ↩→ 𝑋
and 𝑖′ : 𝑍 ↩→ 𝑋 ′ are the two embeddings, we have an isomorphism

𝑖′∗𝑖
′!Q𝑋 ′ [𝑛 + 𝑑] �

(
𝑘∗𝑖∗𝑖

!Q𝐻
𝑋 [𝑛]

)
[−𝑑] (−𝑑),

where we recall that (−𝑑) denotes the Tate twist defined in §2.1. By taking cohomology, we see that for
every q, we have an isomorphism of filtered 𝒟𝑋 ′-modules(

H𝑞+𝑑
𝑍 (𝒪𝑋 ′ ), 𝐹

)
�
(
𝑘+H𝑞

𝑍 (𝒪𝑋 ) (−𝑑), 𝐹
)
.

Explicitly, if 𝑦1, . . . , 𝑦𝑛+𝑑 are local coordinates on 𝑋 ′, such that X is defined by (𝑦1, . . . , 𝑦𝑑), then we
have an isomorphism

H𝑞+𝑑
𝑍 (𝒪𝑋 ′ ) �

⊕
𝛼1 ,...,𝛼𝑑≥0

H𝑞
𝑍 (𝒪𝑋 ) ⊗ 𝜕

𝛼1
𝑦1 · · · 𝜕𝛼𝑑

𝑦𝑑 ,

such that the Hodge filtrations are related by

𝐹𝑝H𝑞+𝑑
𝑍 (𝒪𝑋 ′ ) �

⊕
𝛼1 ,...,𝛼𝑟 ≥0

𝐹𝑝−
∑

𝑖 𝛼𝑖H
𝑞
𝑍 (𝒪𝑋 ) ⊗ 𝜕

𝛼1
𝑦1 · · · 𝜕𝛼𝑑

𝑦𝑑 .

Remark 2.6. For simplicity, we only considered the local cohomology of 𝒪𝑋 . More generally, one can
consider an arbitrary Hodge module M on X, with underlying filtered 𝒟𝑋 -module M. In this case,
the local cohomology sheaves H𝑞

𝑍 (M) continue to underlie Hodge modules and, thus, carry canonical
Hodge filtrations.

We end this section with two examples: the case of a smooth subvariety and that of subsets defined
by monomial ideals. We note, in addition, that the Hodge filtration on the local cohomology Hodge
modules with support in generic determinantal ideals is studied extensively in [45] and [44].

Example 2.7 (Smooth subvarieties). If Z is a smooth, irreducible subvariety of X of codimension r,
then H𝑞

𝑍 (𝒪𝑋 ) = 0 for 𝑞 ≠ 𝑟 (see Remark 2.2). We claim that

𝐹𝑝H𝑟
𝑍 (𝒪𝑋 ) = {𝑢 ∈ H𝑟

𝑍 (𝒪𝑋 ) | I
𝑝+1
𝑍 𝑢 = 0}. (2.11)

In order to see this, we may assume that X is affine with 𝐴 = 𝒪𝑋 (𝑋) and we have global algebraic
coordinates 𝑥1, . . . , 𝑥𝑛 on X, such that Z is defined by 𝐼 = (𝑥1, . . . , 𝑥𝑟 ). In this case, as we have previously
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discussed, 𝐻𝑟𝐼 (𝐴) is filtered isomorphic to the cokernel of the map

𝑟⊕
𝑖=1

𝐴𝑥1 · · ·𝑥𝑖 · · ·𝑥𝑟 → 𝐴𝑥1 · · ·𝑥𝑟 .

Moreover, since 𝑥1 · · · 𝑥𝑟 defines a SNC divisor on X, the Hodge filtration on 𝐴𝑥1 · · ·𝑥𝑟 is given by

𝐹𝑝𝐴𝑥1 · · ·𝑥𝑟 = 𝐹𝑝𝒟𝑋 ·
1

𝑥1 · · · 𝑥𝑟

(see [36, §8]). This is generated over A by the classes of 1
𝑥
𝑎1
1 · · ·𝑥𝑎𝑟𝑟

, with 𝑎1, . . . , 𝑎𝑟 ≥ 1, such that
𝑎1 + · · · + 𝑎𝑟 = 𝑝 + 𝑟 . The fact that this is equal to the right-hand side of (2.11) follows easily from the
fact that 𝑥1, . . . , 𝑥𝑟 form a regular sequence in A (for example, by reducing to the case when A is the
polynomial ring C[𝑥1, . . . , 𝑥𝑟 ]).

Another way to obtain this description, relying on the formalism of mixed Hodge modules, is the
following. If 𝑖 : 𝑍 ↩→ 𝑋 is the inclusion, then

𝑖!Q𝐻
𝑋 [𝑛] =

(
Q𝐻
𝑍 [𝑛 − 𝑟]

)
[−𝑟] (−𝑟).

Applying 𝑖∗ and taking cohomology, we get an isomorphism of filtered 𝒟𝑋 -modules

H𝑟
𝑍 (𝒪𝑋 ) � 𝑖+𝒪𝑍 (−𝑟). (2.12)

Explicitly, if 𝑥1, . . . , 𝑥𝑛 are local coordinates on X, such that Z is defined by (𝑥1, . . . , 𝑥𝑟 ), then we have
an isomorphism

H𝑟
𝑍 (𝒪𝑋 ) �

⊕
𝛼1 ,...,𝛼𝑟 ≥0

𝒪𝑍 ⊗ 𝜕𝛼1
𝑥1 · · · 𝜕𝛼𝑟𝑥𝑟 ,

such that the Hodge filtration is given by

𝐹𝑝H𝑟
𝑍 (𝒪𝑋 ) �

⊕
𝛼1+···+𝛼𝑟 ≤𝑝

𝒪𝑍 ⊗ 𝜕𝛼1
𝑥1 · · · 𝜕𝛼𝑟𝑥𝑟 .

Note that the element 1⊗1 corresponds to the class of 1
𝑥1 · · ·𝑥𝑟

in the Čech description of local cohomology,
hence, we obtain the same description of the Hodge filtration as in (2.11). For completeness, we note
that it also follows from (2.12) that H𝑟

𝑍 (𝒪𝑋 ) underlies a pure Hodge module of weight 𝑛 + 𝑟 .
Example 2.8 (Monomial ideals). We now consider the case when 𝑋 = A𝑛 and 𝐼 ⊆ 𝐴 = C[𝑥1, . . . , 𝑥𝑛]
is a monomial ideal. The (C∗)𝑛-action on A𝑛 induces a (C∗)𝑛-action on each 𝐻𝑞𝐼 (𝐴), which translates
into a Z𝑛-grading on 𝐻𝑞𝐼 (𝐴). The action of every element of (C∗)𝑛 induces an isomorphism of filtered
𝒟𝑋 -modules 𝐻𝑞𝐼 (𝐴) → 𝐻𝑞𝐼 (𝐴), hence, every 𝐹𝑝𝐻𝑞𝐼 (𝐴) is a graded A-submodule of 𝐻𝑞𝐼 (𝐴).

Let us denote by 𝑒1, . . . , 𝑒𝑛 the standard basis of Z𝑛. It is easy to see that multiplication by 𝑥𝑖 induces
an isomorphism

𝐻𝑞𝐼 (𝐴)𝑢 → 𝐻𝑞𝐼 (𝐴)𝑢+𝑒𝑖

for every 𝑢 ∈ Z𝑛, unless 𝑢𝑖 = −1. This follows, for example, by computing the local cohomology via
the Čech-type complex associated to a system of reduced monomial generators of Rad(𝐼) (see [10,
Theorem 1.1]). Similarly, multiplication by 𝜕𝑖 induces an isomorphism

𝐻𝑞𝐼 (𝐴)𝑢 → 𝐻𝑞𝐼 (𝐴)𝑢−𝑒𝑖 (2.13)

for every 𝑢 ∈ Z𝑛, unless 𝑢𝑖 = 0.
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For every 𝑢 ∈ Z𝑛, we write 𝑥𝑢 for the corresponding Laurent monomial. Given 𝐽 ⊆ {1, . . . , 𝑛},
let 𝑢𝐽 =

∑
𝑖∈𝐽 𝑒𝑖 and 𝑥𝐽 = 𝑥𝑢𝐽 . If for 𝑢 = (𝑢1, . . . , 𝑢𝑛) ∈ Z𝑛, we put neg(𝑢) := {𝑖 | 𝑢𝑖 < 0}, then

𝐴𝑥𝐽 =
⊕

neg(𝑢) ⊆𝐽 C𝑥𝑢 . Furthermore, the explicit description of the Hodge filtration on 𝐴𝑥𝐽 that we
have seen in Example 2.7 can be rewritten as

𝐹𝑝𝐴𝑥𝐽 =
⊕
𝑢

C𝑥𝑢 ,

where the direct sum is over those u with neg(𝑢) ⊆ 𝐽 and, such that,
∑
𝑖∈neg(𝑢) (−𝑢𝑖−1) ≤ 𝑝. Computing

the local cohomology via the Čech-type complex, thus, gives

𝐹𝑝𝐻
𝑞
𝐼 (𝐴) =

⊕
𝑢

𝐻𝑞𝐼 (𝐴)𝑢 ,

where the sum is over those 𝑢 ∈ Z𝑛, such that
∑
𝑖∈neg(𝑢) (−𝑢𝑖 − 1) ≤ 𝑝. In particular, we see that

𝐹0𝐻
𝑞
𝐼 (𝐴) =

⊕
𝑢

𝐻𝑞𝐼 (𝐴)𝑢 ,

where the sum is over all 𝑢 ∈ Z𝑛, such that 𝑢𝑖 ≥ −1 for all i.

2.4. Birational description and strictness

For us, it will be important to have a description of the Hodge filtration on H𝑞
𝑍 (𝒪𝑋 ) via a log resolution

of the pair (𝑋, 𝑍). To this end, it is more convenient to use the corresponding right Hodge modules,
with corresponding 𝒟𝑋 -modules H𝑞

𝑍 (𝜔𝑋 ).
Suppose that 𝑓 : 𝑌 → 𝑋 is such a resolution; more precisely, we require f to be a projective morphism

that is an isomorphism over 𝑈 = 𝑋 \ 𝑍 , such that Y is a smooth variety and the reduced inverse image
𝑓 −1(𝑍)red is a SNC divisor E. If 𝑗 ′ : 𝑉 = 𝑌 \ 𝐸 ↩→ 𝑌 is the inclusion map, then we have a commutative
diagram

𝑉 𝑌

𝑈 𝑋,

𝑗′

𝑓

𝑗

(2.14)

in which the left vertical map is an isomorphism. We, thus, have an isomorphism

𝑗∗Q𝐻
𝑈 [𝑛] � 𝑓∗ 𝑗

′
∗Q𝐻

𝑉 [𝑛]

in the derived category of Hodge modules. As indicated in the paragraph after (2.10), since E is a
divisor, the underlying filtered right 𝒟𝑌 -module of the Hodge module 𝑗 ′∗Q𝐻

𝑉 [𝑛] is
(
𝜔𝑌 (∗𝐸), 𝐹

)
, where

F is the Hodge filtration (see [36, §8] for a more precise description in the present SNC setting). Taking
cohomology in the isomorphism above, we, therefore, obtain isomorphisms of filtered right𝒟𝑋 -modules

H𝑞 𝑓+𝜔𝑌 (∗𝐸) � 𝑅
𝑞 𝑗∗𝜔𝑈 �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
H𝑞+1
𝑍 (𝜔𝑋 ) for 𝑞 ≥ 1

𝑗∗𝜔𝑈 →→ H1
𝑍 (𝜔𝑋 ) � 𝑗∗𝜔𝑈/𝜔𝑋 for 𝑞 = 0,

(2.15)

where for the last isomorphism, we use (2.9) and (2.10).
On the other hand, we have a filtered resolution of 𝜔𝑌 (∗𝐸) by induced right 𝒟𝑌 -modules, given by

the complex

0 → 𝒟𝑌 → Ω1
𝑌 (log 𝐸) ⊗𝒪𝑌 𝒟𝑌 → · · · → 𝜔𝑌 (𝐸) ⊗𝒪𝑌 𝒟𝑌 → 0, (2.16)
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placed in degrees −𝑛, . . . , 0 (see [36, Proposition 3.1]). Using the notation and discussion in §2.1, by
tensoring with 𝒟𝑌→𝑋 over 𝒟𝑌 , we, thus, obtain a filtered complex

𝐴• : 0 → 𝑓 ∗𝒟𝑋 → Ω1
𝑌 (log 𝐸) ⊗𝒪𝑌 𝑓 ∗𝒟𝑋 → · · · → 𝜔𝑌 (𝐸) ⊗𝒪𝑌 𝑓 ∗𝒟𝑋 → 0,

which is filtered quasi-isomorphic to 𝜔𝑌 (∗𝐸)
L
⊗𝒟𝑌 𝒟𝑌→𝑋 and, therefore, can be used to compute

𝑓+𝜔𝑌 (∗𝐸). Note that the filtration on 𝐴• is, such that, 𝐹𝑝−𝑛𝐴•, for 𝑝 ≥ 0, is the subcomplex

0 → 𝑓 ∗𝐹𝑝−𝑛𝒟𝑋 → Ω1
𝑌 (log 𝐸) ⊗𝒪𝑌 𝑓 ∗𝐹𝑝−𝑛+1𝒟𝑋 → · · · → 𝜔𝑌 (𝐸) ⊗𝒪𝑌 𝑓 ∗𝐹𝑝𝒟𝑋 → 0.

A detailed exposition of all this can be found in [36, §2 and 3].
Now by (2.15) and the definition of 𝒟-module pushforward, for all 𝑞 ≥ 0, we have

𝑅𝑞 𝑗∗𝜔𝑈 � 𝑅𝑞 𝑓∗𝐴
•

as right 𝒟𝑋 -modules. The filtration on the right-hand side is described at the end of §2.1, and since
these filtered 𝒟-modules underlie Hodge modules, the strictness property of the Hodge filtration in (2.3)
leads to the following key Hodge-theoretic consequence for this birational interpretation:
Proposition 2.9. With the above notation, for every 𝑝, 𝑞 ≥ 0, the inclusion 𝐹𝑝−𝑛𝐴• ↩→ 𝐴• induces an
injective map

𝑅𝑞 𝑓∗𝐹𝑝−𝑛𝐴
• ↩→ 𝑅𝑞 𝑓∗𝐴

• � 𝑅𝑞 𝑗∗𝜔𝑈 ,

whose image is 𝐹𝑝−𝑛𝑅𝑞 𝑗∗𝜔𝑈 . Moreover, via (2.15), this image coincides with 𝐹𝑝−𝑛H𝑞+1
𝑍 (𝜔𝑋 ) for 𝑞 ≥ 1,

while for 𝑞 = 0, its quotient by 𝒪𝑋 gives 𝐹𝑝−𝑛H1
𝑍 (𝜔𝑋 ).

As a concrete example, we obtain the following description of the lowest term of the filtration (note
that by (2.1) and Remark 2.3, we have 𝐹𝑝H𝑞

𝑍 (𝜔𝑋 ) = 0 for all q and all 𝑝 < −𝑛):
Corollary 2.10. For every 𝑞 ≥ 2, we have a canonical isomorphism

𝐹−𝑛H𝑞
𝑍 (𝜔𝑋 ) � 𝑅

𝑞−1 𝑓∗𝜔𝑌 (𝐸).

Moreover, we have a short exact sequence

0 → 𝜔𝑋 → 𝑓∗𝜔𝑌 (𝐸) → 𝐹−𝑛H1
𝑍 (𝜔𝑋 ) → 0.

Proof. The assertion follows from Proposition 2.9 and the fact that 𝐹−𝑛𝐴• = 𝜔𝑌 (𝐸). �

Remark 2.11 (Analytic setting). The results in this section also apply when Z is an analytic subspace
of a complex manifold X, due to the study of open direct images in the analytic category (see [49,
Proposition 2.11 and Corollary 2.20]) and the fact that the strictness theorem [49, Theorem 2.14] holds
for any projective morphism between analytic spaces, for example, a resolution of singularities (cf. also
[23, §2.1]).

2.5. An injectivity theorem

We continue to use the notation in the previous section. Using the exact sequence

0 → 𝜔𝑌 → 𝜔𝑌 (𝐸) → 𝜔𝐸 → 0

and the Grauert-Riemenschneider vanishing theorem, Corollary 2.10 tells us that for all 𝑞 ≥ 1, as a
consequence of strictness for the Hodge filtration, we have an isomorphism

𝛾𝑞 : 𝑅𝑞−1 𝑓∗𝜔𝐸 → 𝐹−𝑛H𝑞
𝑍 (𝜔𝑋 ).
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We also consider the inclusion maps

𝑖𝑞 : 𝐹−𝑛H𝑞
𝑍 (𝜔𝑋 ) ↩→ H𝑞

𝑍 (𝜔𝑋 ).

Theorem A in the Introduction follows, therefore, once the following compatibility is established:

Proposition 2.12. For each q, the composition

𝑖𝑞 ◦ 𝛾𝑞 : 𝑅𝑞−1 𝑓∗𝜔𝐸 → H𝑞
𝑍 (𝜔𝑋 )

coincides with the morphism on cohomology described in the statement of Theorem A.

Proof. For simplicity, we write down the argument for 𝑞 ≥ 2, when 𝑅𝑞−1 𝑓∗𝜔𝐸 � 𝑅𝑞−1 𝑓∗𝜔𝑌 (𝐸). The
argument for 𝑞 = 1 is similar, only this time, by definition, one needs to consider 𝑓∗𝜔𝑌 (𝐸)/𝜔𝑌 (as
opposed to 𝑓∗𝜔𝑌 (𝐸)).

Step 1. We consider the commutative diagram (2.14), and we identify U and V via the left vertical
map. Applying R 𝑓∗ to the canonical inclusion 𝜔𝑌 (𝐸) ↩→ 𝑗 ′∗𝜔𝑈 � 𝜔𝑌 (∗𝐸) and passing to cohomology,
we obtain morphisms

𝑅𝑞−1 𝑓∗𝜔𝑌 (𝐸) → 𝑅𝑞−1 𝑗∗𝜔𝑈 � H𝑞
𝑍 (𝜔𝑋 ) (2.17)

for each q, where the last isomorphism is the canonical isomorphism in (2.7). We claim that these
morphisms can be identified with the compositions 𝑖𝑞 ◦ 𝛾𝑞 .

To see this, recall that we have identified

H𝑞
𝑍 (𝜔𝑋 ) � H𝑞−1 𝑓+𝜔𝑌 (∗𝐸) := 𝑅𝑞−1 𝑓∗

(
𝜔𝑌 (∗𝐸)

L
⊗𝒟𝑌 𝒟𝑌→𝑋

)
.

The transfer module admits a canonical morphism 𝒟𝑌 → 𝒟𝑌→𝑋 of left 𝒟𝑌 -modules (induced by
𝑇𝑌 → 𝑓 ∗𝑇𝑋 ), which, in turn, induces a morphism

𝜌𝑞 : 𝑅𝑞−1 𝑓∗𝜔𝑌 (∗𝐸) → H𝑞−1 𝑓+𝜔𝑌 (∗𝐸).

Now the morphism 𝑖𝑞 ◦ 𝛾𝑞 , defined using the resolution (2.16) of 𝜔𝑌 (∗𝐸), is obtained more precisely
by pushing forward the inclusion 𝜔𝑌 (𝐸) ↩→ 𝜔𝑌 (∗𝐸), and then considering the composition

𝑅𝑞−1 𝑓∗𝜔𝑌 (𝐸) −→ 𝑅𝑞−1 𝑓∗𝜔𝑌 (∗𝐸)
𝜌𝑞
−→ H𝑞−1 𝑓+𝜔𝑌 (∗𝐸).

But since 𝑓 ◦ 𝑗 ′ = 𝑗 , 𝜌𝑞 can also be identified canonically with the isomorphism 𝑅𝑞−1 𝑗∗𝜔𝑈 →

H𝑞−1 𝑗+𝜔𝑈 appearing above, and we are done.
Step 2. In this step, we discuss the following general situation: assume that W is a closed subscheme

in X, with ideal sheaf J . If 𝑗 : 𝑉 ↩→ 𝑋 is the inclusion map of the complement 𝑉 = 𝑋 \𝑊 , we have a
diagram of exact triangles

𝜔𝑋 RH𝑜𝑚𝒪𝑋 (J , 𝜔𝑋 ) RH𝑜𝑚𝒪𝑋 (𝒪𝑊 , 𝜔𝑋 ) [1]
+1
−→

𝜔𝑋 R 𝑗∗𝜔𝑉 RΓ𝑊 (𝜔𝑋 ) [1]
+1
−→,

=

where the vertical map on the right is the canonical morphism, and where the middle vertical map can
be described as the canonical morphism

RH𝑜𝑚𝒪𝑋 (J , 𝜔𝑋 ) → R 𝑗∗ 𝑗∗RH𝑜𝑚𝒪𝑋 (J , 𝜔𝑋 ) = R 𝑗∗𝜔𝑉 , (2.18)

since J |𝑉 � 𝒪𝑉 .
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Moreover, in the presence of a proper morphism 𝑓 : 𝑌 → 𝑋 , assumed to be an isomorphism over V,
we can consider the ideal J𝑌 := J ·𝒪𝑌 defining 𝑓 −1(𝑊), and, similarly, we have a canonical morphism

RH𝑜𝑚𝒪𝑌 (J𝑌 , 𝑓 !𝜔𝑋 ) → R 𝑗 ′∗ (( 𝑓 !𝜔𝑋 )|𝑉 ) = R 𝑗 ′∗𝜔𝑉 ,

where 𝑗 ′ is the inclusion of V in Y. Applying R 𝑓∗ to this morphism, and Grothendieck duality to the
first term, we obtain a diagram

R 𝑓∗RH𝑜𝑚𝒪𝑌 (J𝑌 , 𝑓 !𝜔𝑋 ) R 𝑓∗R 𝑗 ′∗𝜔𝑉 R 𝑓∗R 𝑗 ′∗𝜔𝑉

RH𝑜𝑚𝒪𝑋 (R 𝑓∗J𝑌 , 𝜔𝑋 ) RH𝑜𝑚𝒪𝑋 (J , 𝜔𝑋 ) R 𝑗∗𝜔𝑉 ,

�

=

�

where we included the natural factorisation of the bottom morphism through the object
RH𝑜𝑚𝒪𝑋 (J , 𝜔𝑋 ), induced by the canonical morphism J → R 𝑓∗J𝑌 ; this factorisation holds due
to the description of the morphism in (2.18) and the fact that Grothendieck duality is compatible with
restriction to open subsets.

Step 3. In this step, we apply the constructions in Step 2 to give another description of the morphism
(2.17), which will finish the proof. First, (2.17) can be rewritten as the composition

𝑅𝑞−1 𝑓∗RH𝑜𝑚𝒪𝑌

(
𝒪𝑌 (−𝐸), 𝜔𝑌

)
→ 𝑅𝑞−1 𝑓∗RH𝑜𝑚𝒪𝑌

(
I 𝑓 −1 (𝑍 ) , 𝜔𝑌

)
→ 𝑅𝑞−1 𝑗∗𝜔𝑈 ,

where the factorisation through the middle term holds since E is the reduced structure on 𝑓 −1(𝑍).
Applying Grothendieck duality, this composition can be rewritten as

ℰ𝑥𝑡𝑞−1
𝒪𝑋

(
R 𝑓∗𝒪𝑌 (−𝐸), 𝜔𝑋

)
→ℰ𝑥𝑡𝑞−1

𝒪𝑋

(
R 𝑓∗I 𝑓 −1 (𝑍 ) , 𝜔𝑋

)
→ 𝑅𝑞−1 𝑗∗𝜔𝑈 ,

and the map on the right factors further through ℰ𝑥𝑡𝑞−1 (I𝑍 , 𝜔𝑋 ) , as described in the last diagram in
Step 2. Moreover, it is straightforward to see that for 𝑞 ≥ 2, we have canonical isomorphisms

ℰ𝑥𝑡𝑞−1
𝒪𝑋

(
R 𝑓∗𝒪𝑌 (−𝐸), 𝜔𝑋

)
�ℰ𝑥𝑡𝑞

𝒪𝑋

(
R 𝑓∗𝒪𝐸 , 𝜔𝑋

)
and

ℰ𝑥𝑡𝑞−1
𝒪𝑋

(
I𝑍 , 𝜔𝑋

)
�ℰ𝑥𝑡𝑞

𝒪𝑋

(
𝒪𝑍 , 𝜔𝑋

)
.

Altogether, the morphism (2.17) can be identified with the natural composition

ℰ𝑥𝑡𝑞
𝒪𝑋

(
R 𝑓∗𝒪𝐸 , 𝜔𝑋

)
→ℰ𝑥𝑡𝑞

𝒪𝑋

(
𝒪𝑍 , 𝜔𝑋

)
→ H𝑞

𝑍 (𝜔𝑋 ),

which is the same as the map on cohomology described in the statement of Theorem A (note that
Grothendieck duality gives R 𝑓∗𝜔•

𝐸 � RH𝑜𝑚𝒪𝑋 (R 𝑓∗𝒪𝐸 , 𝜔𝑋 [𝑛]), while 𝜔•
𝑍 � RH𝑜𝑚𝒪𝑋 (𝒪𝑍 , 𝜔𝑋 [𝑛])).

�

The upshot of Theorem A (and Proposition 2.12) is that for each 𝑞 ≥ 1, we have a commutative
diagram

𝑅𝑞−1 𝑓∗𝜔𝐸 E𝑥𝑡𝑞
(
𝒪𝑍 , 𝜔𝑋

)
𝐹−𝑛H𝑞

𝑍𝜔𝑋 H𝑞
𝑍𝜔𝑋 ,

𝛼𝑞

�
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where the left vertical map is the isomorphism in Corollary 2.10, the bottom horizontal map is the
inclusion, the right vertical map is the natural map to local cohomology, while 𝛼𝑞 is the morphism on
cohomology induced by

𝛼 : R 𝑓∗𝜔•
𝐸 → 𝜔•

𝑍

in D𝑏
(
Coh(𝑋)

)
, obtained, in turn, by dualising the natural morphism 𝒪𝑍 → R 𝑓∗𝒪𝐸 (here, 𝜔•

𝐸 =
𝜔𝐸 [𝑛 − 1] since E is Gorenstein).

As a consequence, the top horizontal map is injective. In other words, this gives another proof of the
injectivity result of Kovács and Schwede, Corollary B in the Introduction, applied in [29] to the study
of deformations of Du Bois singularities.

2.6. A local vanishing theorem

We use the constructions in §2.4 to prove a Nakano-type vanishing result for log resolutions of arbitrary
closed subsets. This generalises a result for hypersurfaces due to Saito [52, Corollary 3] (cf. also [36,
Theorem 32.1]).

Proof of Theorem D. We note that by the definition of c and by Remark 2.2, we have

H 𝑗
𝑍 (𝜔𝑋 ) = 0 if either 𝑗 < 𝑟 or 𝑗 > 𝑐. (2.19)

The vanishing in the statement holds trivially for 𝑝 > 𝑛, hence, we may assume 𝑝 ≤ 𝑛. Note that, in
this case, the conditions in both 1 and 2 imply 𝑞 ≥ 1. We first check the case 𝑝 = 𝑛.2 This follows in
both cases 1 and 2 from (2.19) and Corollary 2.10.

We next prove the theorem by descending induction on p. Let 𝑝 < 𝑛, and consider the complex

𝐶• := 𝐹−𝑝𝐴• [𝑝 − 𝑛],

placed in cohomological degrees 0, . . . , 𝑛 − 𝑝, where 𝐴• is as in §2.4. Note that since 𝑝 + 𝑞 ≥ 𝑛 + 1, we
deduce from Proposition 2.9 that

𝑅𝑝+𝑞−𝑛 𝑓∗𝐹−𝑝𝐴
• ↩→ 𝑅𝑝+𝑞−𝑛 𝑓∗𝐴

• � H𝑝+𝑞−𝑛+1
𝑍 (𝜔𝑋 ) for all 𝑞,

hence, using again (2.19), we see that in both cases 1 and 2, we have

𝑅𝑞 𝑓∗𝐶
• = 𝑅𝑝+𝑞−𝑛 𝑓∗𝐹−𝑝𝐴

• = 0. (2.20)

Consider now the hypercohomology spectral sequence

𝐸
𝑖, 𝑗
1 = 𝑅 𝑗 𝑓∗𝐶

𝑖 ⇒ 𝑅𝑖+ 𝑗 𝑓∗𝐶
•.

By definition, we have

𝐶𝑖 = Ω𝑝+𝑖
𝑌 (log 𝐸) ⊗𝒪𝑌 𝑓 ∗𝐹𝑖𝒟𝑋 for 0 ≤ 𝑖 ≤ 𝑛 − 𝑝,

hence, we want to show that 𝐸0,𝑞
1 = 0. First, (2.20) implies that in both cases 1 and 2, we have 𝐸0,𝑞

∞ = 0.
Now for every 𝑘 ≥ 1, we clearly have 𝐸−𝑘,𝑞+𝑘−1

𝑘 = 0, since this is a first-quadrant spectral sequence.
On the other hand, we also have 𝐸 𝑘,𝑞−𝑘+1

𝑘 = 0 by induction. Indeed, this is a subquotient of

𝐸 𝑘,𝑞−𝑘+1
1 = 𝑅𝑞−𝑘+1 𝑓∗𝐶

𝑘 = 𝑅𝑞−𝑘+1 𝑓∗Ω
𝑝+𝑘
𝑌 (log 𝐸) ⊗𝒪𝑋 𝐹𝑘𝒟𝑋 ,

2Note that when Z is a hypersurface, in which case 𝑟 = 𝑐 = 1, this is the well-known fact that 𝑅𝑞 𝑓∗𝜔𝑌 (𝐸) = 0 for 𝑞 > 0, a
special case of the local vanishing theorem for multiplier ideals.
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and the right-hand side vanishes by induction. We, thus, conclude that 𝐸0,𝑞
1 = 𝐸0,𝑞

∞ = 0, completing the
proof. �

Remark 2.13. (1) In the statement of the theorem, we may replace 𝑐 = lcd(𝑍, 𝑋) by any s, such that Z
is locally cut out by s equations. Indeed, the fact that 𝑐 ≤ 𝑠 follows from Remark 2.2.

(2) There exist further useful upper bounds on c that depend only on the codimension r of Z. We only
list a couple here. In complete generality, Faltings [13] showed that

𝑐 ≤ 𝑛 −

[
𝑛 − 1
𝑟

]
.

Among many other improvements, Huneke and Lyubeznik [21] showed that if Z is normal, then

𝑐 ≤ 𝑛 −
[ 𝑛

𝑟 + 1

]
−

[
𝑛 − 1
𝑟 + 1

]
.

Further results along these lines, assuming 𝑆𝑘 conditions on Z, appear in [8]. We obtain, in particular:

Corollary 2.14. Let Z be a closed subscheme of codimension r in a smooth, irreducible n-dimensional
variety X. If 𝑓 : 𝑌 → 𝑋 is a log resolution of (𝑋, 𝑍), which is an isomorphism away from Z, and
𝐸 = 𝑓 −1(𝑍)red, then

𝑅𝑞 𝑓∗Ω
𝑝
𝑌 (log 𝐸) = 0 for 𝑝 + 𝑞 ≥ 2𝑛 −

[
𝑛 − 1
𝑟

]
.

If, moreover, Z is assumed to be normal, then the same holds for

𝑝 + 𝑞 ≥ 2𝑛 −
[ 𝑛

𝑟 + 1

]
−

[
𝑛 − 1
𝑟 + 1

]
.

We conclude by noting that in [36, Theorem 32.1], it is shown that when Z is a Cartier divisor, in
order to have local vanishing as in Theorem D, it is enough to assume only that X is smooth away from
Z. It is, therefore, natural to ask:

Question 2.21. Is there an appropriate generalisation of Theorem D that does not assume X to be
smooth?

3. Order and Ext filtrations, and some comparisons

3.1. Order and Ext filtration

We now aim to define analogues of the pole order filtration associated to hypersurfaces and compare
them with the Hodge filtration. We thank C. Raicu, whose answers to our questions have helped shape
the material in this section. We start by recording the following basic property of the Hodge filtration:

Proposition 3.1. For every 𝑝, 𝑞 ≥ 0, we have

I𝑍 · 𝐹𝑝H𝑞
𝑍 (𝒪𝑋 ) ⊆ 𝐹𝑝−1H𝑞

𝑍 (𝒪𝑋 ).

In particular, we have

I 𝑝+1
𝑍 𝐹𝑝H𝑞

𝑍 (𝒪𝑋 ) = 0 for every 𝑝 ≥ 0.

Proof. The first assertion is a general property of filtered 𝒟𝑋 -modules underlying Hodge modules
whose support is contained in Z (see [48, Lemma 3.2.6]). The second assertion then follows from the
fact that 𝐹−1H𝑞

𝑍 (𝒪𝑋 ) = 0 (see Remark 2.3). �
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Remark 3.2. If Z is a reduced divisor, the second assertion in the above proposition is equivalent with
the fact that 𝐹𝑝𝒪𝑋 (∗𝑍) ⊆ 𝒪𝑋

(
(𝑝 + 1)𝑍

)
, that is, the Hodge filtration is contained in the pole order

filtration (see [50, Proposition 0.9] and also [36, Lemma 9.2]). Moreover, in terms of Hodge ideals, the
first assertion says that 𝐼𝑝 (𝑍) ⊆ 𝐼𝑝−1(𝑍) (see [36, Proposition 13.1]).

Definition 3.3. The order filtration on H𝑞
𝑍 (𝒪𝑋 ) is the increasing filtration given by

𝑂𝑘H𝑞
𝑍 (𝒪𝑋 ) := {𝑢 ∈ H𝑞

𝑍 (𝒪𝑋 ) | I
𝑘+1
𝑍 𝑢 = 0}, 𝑘 ≥ 0.

Note that we have a canonical isomorphism

𝑂𝑘H𝑞
𝑍 (𝒪𝑋 ) � H𝑜𝑚𝒪𝑋

(
𝒪𝑋/I𝑘+1

𝑍 ,H𝑞
𝑍 (𝒪𝑋 )

)
.

If Z is a reduced divisor, then

𝑂𝑘H1
𝑍 (𝒪𝑋 ) = 𝒪𝑋

(
(𝑘 + 1)𝑍

)
/𝒪𝑋 ,

and the inclusions 𝐹𝑘𝒪𝑋 (∗𝑍) ⊆ 𝒪𝑋
(
(𝑘 + 1)𝑍

)
in Remark 3.2 say that

𝐹𝑘H1
𝑍 (𝒪𝑋 ) ⊆ 𝑂𝑘H1

𝑍 (𝒪𝑋 ) for all 𝑘 ≥ 0.

This last fact continues to be true, in general:

Proposition 3.4. For arbitrary Z, and for every k and q, we have

𝐹𝑘H𝑞
𝑍 (𝒪𝑋 ) ⊆ 𝑂𝑘H

𝑞
𝑍 (𝒪𝑋 ).

Proof. The statement is equivalent to the second assertion in Proposition 3.1. �

Remark 3.5. The order filtration on H𝑞
𝑍 (𝒪𝑋 ) is compatible with the filtration on 𝒟𝑋 by order of

differential operators:

𝐹ℓ𝒟𝑋 · 𝑂𝑘H𝑞
𝑍 (𝒪𝑋 ) ⊆ 𝑂𝑘+ℓH

𝑞
𝑍 (𝒪𝑋 ) for all 𝑘, ℓ ≥ 0.

However, unless 𝑞 = 𝑟 = codim𝑋 (𝑍), the sheaves𝑂𝑘H𝑞
𝑍 (𝒪𝑋 ) are not coherent as long as H𝑞

𝑍 (𝒪𝑋 ) ≠ 0.
This makes the order filtration less suitable for 𝑞 > 𝑟; this is a rather deep result of Lyubeznik [32,
Corollary 3.5].3 For 𝑞 = 𝑟 , the situation is better (see Proposition 3.11 below).

We also consider a related filtration. Recall that a well-known characterisation of local cohomology
(see [15, Theorem 2.8]) is

H𝑞
𝑍 (𝒪𝑋 ) = lim

−→
𝑘

ℰ𝑥𝑡𝑞
𝒪𝑋

(
𝒪𝑋/I𝑘𝑍 ,𝒪𝑋

)
,

where the morphisms

ℰ𝑥𝑡𝑞
𝒪𝑋

(
𝒪𝑋/I𝑘𝑍 ,𝒪𝑋

)
−→ℰ𝑥𝑡𝑞

𝒪𝑋

(
𝒪𝑋/I𝑘+1

𝑍 ,𝒪𝑋
)

(3.1)

between the terms in the direct limit are induced from the short exact sequence

0 −→ I𝑘𝑍/I𝑘+1
𝑍 −→ 𝒪𝑋/I𝑘+1

𝑍 −→ 𝒪𝑋/I𝑘𝑍 −→ 0.

Definition 3.6. The Ext filtration on H𝑞
𝑍 (𝒪𝑋 ) is the increasing filtration given by

𝐸𝑘H𝑞
𝑍 (𝒪𝑋 ) := Im

[
ℰ𝑥𝑡𝑞

𝒪𝑋

(
𝒪𝑋/I𝑘+1

𝑍 ,𝒪𝑋
)
→ H𝑞

𝑍 (𝒪𝑋 )
]
, 𝑘 ≥ 0.

3The same statement was proved by Huneke-Koh [20] in positive characteristic.
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Remark 3.7. It is clear from the definitions of the order and Ext filtrations that they depend on the
scheme-theoretic structure of Z and not just on the underlying set. A natural choice, which gives the
deepest such filtrations, is to take Z to be reduced. However, it can be convenient to have the flexibility of
allowing filtrations associated to nonreduced schemes (for example, in the case of set-theoretic complete
intersections).

Remark 3.8. If 𝑞 = 𝑟 = codim𝑋 (𝑍), then

𝐸𝑘H𝑞
𝑍 (𝒪𝑋 ) =ℰ𝑥𝑡𝑟𝒪𝑋

(
𝒪𝑋/I𝑘+1

𝑍 ,𝒪𝑋
)
,

that is, the maps in the above definition are injective. Indeed, in this case, the maps in (3.1) are all
injective, since

ℰ𝑥𝑡𝑟−1
𝒪𝑋

(
I𝑘𝑍/I𝑘+1

𝑍 ,𝒪𝑋
)
= 0.

This last fact follows from the following well known (see, e.g. [3, Proposition 1.17]):

Lemma 3.9. If ℱ is a coherent sheaf on a smooth variety, then

ℰ𝑥𝑡𝑖𝒪𝑋
(ℱ,𝒪𝑋 ) = 0, for all 𝑖 < codim Supp(ℱ).

In terms of comparing these two natural filtrations, we clearly have

𝐸𝑘H𝑞
𝑍 (𝒪𝑋 ) ⊆ 𝑂𝑘H

𝑞
𝑍 (𝒪𝑋 ), for all 𝑘 ≥ 0. (3.2)

Remark 3.10. This time, we obviously have that 𝐸𝑘H𝑞
𝑍 (𝒪𝑋 ) are coherent sheaves; by Remark 3.5, this

means, in particular, that 𝐸𝑘 ≠ 𝑂𝑘 when 𝑞 > 𝑟 and H𝑞
𝑍 (𝒪𝑋 ) ≠ 0. On the other hand, in general, it is

not clear any more whether the Ext filtration is compatible with the filtration on 𝒟𝑋 .

Let’s try to understand the inclusion (3.2) more canonically. According to the proof of [20, Proposition
3.1(i)], for any ideal sheaf J ⊆ 𝒪𝑋 , such that Supp (𝒪𝑋/J ) = 𝑍 , there is a spectral sequence

𝐸 𝑝,𝑞2 =ℰ𝑥𝑡 𝑝
𝒪𝑋

(
𝒪𝑋/J ,H𝑞

𝑍 (𝒪𝑋 )
)
=⇒ 𝐻 𝑝+𝑞 =ℰ𝑥𝑡 𝑝+𝑞

𝒪𝑋

(
𝒪𝑋/J ,𝒪𝑋

)
, (3.3)

which is simply the spectral sequence of the composition of the functors H0
𝑍 (−) and H𝑜𝑚𝒪𝑋 (𝒪𝑋/J , ·),

since

H𝑜𝑚𝒪𝑋

(
𝒪𝑋/J ,H0

𝑍 (M)
)
� H𝑜𝑚𝒪𝑋 (𝒪𝑋/J ,M),

for every 𝒪𝑋 -module M, and H0
𝑍 (−) takes injective objects to injective objects.

Hence, taking J = I𝑘+1
𝑍 , in general, the picture is this: 𝑂𝑘H𝑞

𝑍 (𝒪𝑋 ) is the 𝐸0,𝑞
2 -term of this spectral

sequence, we have 𝐸0,𝑞
∞ ↩→ 𝐸0,𝑞

2 (as there are no nontrivial differentials coming into 𝐸0,𝑞
𝑟 ), while 𝐸0,𝑞

∞

is a quotient of 𝐻𝑞 =ℰ𝑥𝑡𝑞
𝒪𝑋

(
𝒪𝑋/I𝑘+1

𝑍 ,𝒪𝑋
)
, which is identified with 𝐸𝑘H𝑞

𝑍 (𝒪𝑋 ).
The drawbacks for both the order and the Ext filtration disappear when 𝑞 = 𝑟 = codim𝑋 (𝑍) due to

the following:

Proposition 3.11. We have 𝐸𝑘H𝑟
𝑍 (𝒪𝑋 ) = 𝑂𝑘H𝑟

𝑍 (𝒪𝑋 ) for all 𝑘 ≥ 0.

Proof. Using the spectral sequence (3.3), since H𝑞
𝑍 (𝒪𝑋 ) = 0 for 𝑞 < 𝑟 , for any ideal sheaf J ⊆ 𝒪𝑋 ,

such that Supp (𝒪𝑋/J ) = 𝑍 , we have

H𝑜𝑚𝒪𝑋

(
𝒪𝑋/J ,H𝑟

𝑍 (𝒪𝑋 )
)
�ℰ𝑥𝑡𝑟𝒪𝑋

(
𝒪𝑋/J ,𝒪𝑋

)
.

The statement follows again by taking J = I𝑘+1
𝑍 (see also Remark 3.8). �
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In particular, for 𝑞 = 𝑟 , Proposition 3.4 can be reinterpreted as saying that

𝐹𝑘H𝑟
𝑍 (𝒪𝑋 ) ⊆ 𝐸𝑘H𝑟

𝑍 (𝒪𝑋 ) for all 𝑘 ≥ 0. (3.4)

A natural question, potentially interesting for the study of the singularities of Z, is whether this extends
to higher values of q as well.

Question 3.5. (When) do we have inclusions 𝐹𝑘H𝑞
𝑍 (𝒪𝑋 ) ⊆ 𝐸𝑘H

𝑞
𝑍 (𝒪𝑋 ) for 𝑞 > 𝑟?

We will answer this question positively for 𝑘 = 0 and all q in Proposition 3.15 below. However, we
first note that in the smooth case, we, indeed, have equality between all three filtrations, as expected. If
Z is a smooth, irreducible subvariety of X of codimension r, then H𝑞

𝑍 (𝒪𝑋 ) = 0 for 𝑞 ≠ 𝑟 (just as for any
local complete intersection; see Remark 2.2).

Example 3.12. If Z is a smooth, irreducible subvariety of X of codimension r, then

𝐹𝑘H𝑟
𝑍 (𝒪𝑋 ) = 𝑂𝑘H𝑟

𝑍 (𝒪𝑋 ) = 𝐸𝑘H𝑟
𝑍 (𝒪𝑋 ) for all 𝑘 ≥ 0.

Indeed, we have seen the first equality in Example 2.7 and the second equality follows from
Proposition 3.11.

Remark 3.13. We will see in Corollary 3.26 below that if Z is a singular local complete intersection in
X, of pure codimension r, then 𝐹𝑘H𝑟

𝑍 (𝒪𝑋 ) ≠ 𝑂𝑘H𝑟
𝑍 (𝒪𝑋 ) for 𝑘 � 0. However, this can fail beyond the

local complete intersection case, even for nice varieties. For example, C. Raicu pointed out to us that if
X is the variety of 𝑚 × 𝑛 matrices, with 𝑚 > 𝑛, and Z is the subset consisting of matrices of rank ≤ 𝑝
(so that codim𝑋 (𝑍) = 𝑟 = (𝑚 − 𝑝) (𝑛 − 𝑝), then one can show using [44, Corollary 1.6] that

𝐹𝑘H𝑟
𝑍 (𝒪𝑋 ) = 𝑂𝑘H𝑟

𝑍 (𝒪𝑋 ) for all 𝑘 ∈ Z.

Remark 3.14. Another way of thinking about the isomorphism

𝐹0H𝑟
𝑍 (𝒪𝑋 ) �ℰ𝑥𝑡𝑟𝒪𝑋

(𝒪𝑍 ,𝒪𝑋 ) � 𝜔𝑍 ⊗ 𝜔−1
𝑋

when Z is smooth is in terms of the description in Corollary 2.10. Indeed, considering the log resolution
of (𝑋, 𝑍) to be the blow up of X along Z, it translates into the isomorphism 𝑅𝑟−1 𝑓∗𝜔𝐸 � 𝜔𝑍 , which is
well known.

As promised, in general, we have a positive answer to Question 3.5 for the lowest piece of the Hodge
filtration.

Proposition 3.15. For every 𝑞 ≥ 0, we have an inclusion 𝐹0H𝑞
𝑍 (𝒪𝑋 ) ⊆ 𝐸0H𝑞

𝑍 (𝒪𝑋 ).

Proof. Equivalently, the statement says that there is an inclusion

𝐹−𝑛H𝑞
𝑍 (𝜔𝑋 ) ⊆ 𝐸0H𝑞

𝑍 (𝒪𝑋 ) ⊗𝒪𝑋 𝜔𝑋 = Im
[
ℰ𝑥𝑡𝑞

𝒪𝑋

(
𝒪𝑍 , 𝜔𝑋

)
→ H𝑞

𝑍 (𝜔𝑋 )
]
.

This is an immediate consequence of Theorem A, in which we established the existence of commutative
diagrams

𝑅𝑞−1 𝑓∗𝜔𝐸 ℰ𝑥𝑡𝑞
𝒪𝑋

(𝒪𝑍 , 𝜔𝑋 )

H𝑞
𝑍 (𝜔𝑋 ),

(3.6)

where the diagonal map is injective, identified with the inclusion 𝐹−𝑛H𝑞
𝑍 (𝜔𝑋 ) ↩→ H𝑞

𝑍 (𝜔𝑋 ) via Corol-
lary 2.10. �
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Remark 3.16 (Normal schemes). If Z is normal of codimension r, then the inclusion

𝐹0H𝑟
𝑍 (𝒪𝑋 ) ⊆ 𝐸0H𝑟

𝑍 (𝒪𝑋 ) � 𝜔𝑍 ⊗ 𝜔−1
𝑋

has an alternative interpretation: since Z is normal, the dualising sheaf

𝜔𝑍 =ℰ𝑥𝑡𝑟𝒪𝑋
(𝒪𝑍 ,𝒪𝑋 ) ⊗ 𝜔𝑋

and the canonical sheaf 𝑖∗𝜔𝑈 , where 𝑖 : 𝑈 ↩→ 𝑍 is the inclusion of the smooth locus of Z, are isomorphic.
Since 𝜔𝑍 ⊗ 𝜔−1

𝑋 is reflexive, and coincides with 𝐹0H𝑟
𝑍 (𝒪𝑋 ) on U, the conclusion follows.

3.2. The lowest term and Du Bois singularities

When Z is a reduced divisor, it is known that the pair (𝑋, 𝑍) is log canonical if and only if Z has du
Bois singularities (see [28, Corollary 6.6]). On the other hand, the condition of being log canonical
is equivalent to the equality 𝐹0𝒪𝑋 (∗𝑍) = 𝑃0𝒪𝑋 (∗𝑍), where 𝑃• is the pole order filtration or, in other
words, 𝐼0(𝑍) = 𝒪𝑋 in the language of Hodge ideals (see [36, Corollary 10.3]).

We now show that Theorem A (and the discussion in §2.5), together with a criterion for Du Bois
singularities due to Steenbrink and Schwede, imply that, in general, if Z has Du Bois singularities, then
𝐹0H𝑞

𝑍 (𝒪𝑋 ) = 𝐸0H𝑞
𝑍 (𝒪𝑋 ) for all q; moreover, the converse holds if Z is Cohen-Macaulay.

Proof of Theorem C. It follows from work of Steenbrink [59] (see Theorem 5.1 below) that Z has Du
Bois singularities if and only if the canonical morphism 𝒪𝑍 → R 𝑓∗𝒪𝐸 is an isomorphism (see also
Schwede’s [55, Theorem 4.6] for a more general criterion). Via duality, this is equivalent to the map

𝛼 : R 𝑓∗𝜔•
𝐸 → 𝜔•

𝑍

in the statement of Theorem A being an isomorphism, hence, to the horizontal map in (3.6) being an
isomorphism for each q. This shows the first assertion.

Under the extra assumption of Z being Cohen-Macaulay of pure codimension r, we have

ℰ𝑥𝑡𝑞
𝒪𝑋

(𝒪𝑍 , 𝜔𝑋 ) = 0 for 𝑞 ≠ 𝑟,

so by Proposition 3.15, we also have 𝐹0H𝑞
𝑍 (𝒪𝑋 ) = 0 for all 𝑞 ≠ 𝑟 . Now as explained in Remark 3.8, for

𝑞 = 𝑟 , the vertical map in (3.6) is injective, so 𝐹−𝑛H𝑟
𝑍 (𝜔𝑋 ) = 𝐸−𝑛H𝑟

𝑍 (𝜔𝑋 ) is equivalent (cf. Proposition
2.12) to the canonical map

ℰ𝑥𝑡𝑟𝒪𝑋
(R 𝑓∗𝒪𝐸 , 𝜔𝑋 ) →ℰ𝑥𝑡𝑟𝒪𝑋

(𝒪𝑍 , 𝜔𝑋 )

being an isomorphism. Since all the otherℰ𝑥𝑡 sheaves are zero, it follows (using Grothendieck duality)
that the morphism 𝛼 is an isomorphism, which, as noted, is equivalent to Z being Du Bois. �

Remark 3.17 (Non-Cohen-Macaulay case). L. Ma has pointed out that when Z is not Cohen-Macaulay,
it can happen that Z is not Du Bois, but 𝐹0H𝑞

𝑍 (𝒪𝑋 ) = 𝐸0H𝑞
𝑍 (𝒪𝑋 ) for all q. For example, this is the case

if 𝑍 = Spec
(
C[𝑠4, 𝑠3𝑡, 𝑠𝑡3, 𝑡4]

)
↩→ A4. We leave the argument for Chapter 5, in which we discuss some

basic facts about Du Bois complexes (see Example 5.4).

On a related note, the following corollary of Theorem A recovers [33, Theorem B] in the case when
the ambient space X is smooth (see also Remark 3.19 below for the general case of this result).

Corollary 3.18. If 𝑍 ⊆ 𝑋 is a closed subscheme with Du Bois singularities, then the natural maps

E𝑥𝑡𝑞
𝒪𝑋

(𝒪𝑍 ,𝒪𝑋 ) → H𝑞
𝑍 (𝒪𝑋 )

are injective for all q.
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Proof. As above, if Z is Du Bois, the natural morphism𝒪𝑍 → R 𝑓∗𝒪𝐸 is an isomorphism, and, therefore,
the canonical maps

ℰ𝑥𝑡𝑞
𝒪𝑋

(R 𝑓∗𝒪𝐸 , 𝜔𝑋 ) →ℰ𝑥𝑡𝑞
𝒪𝑋

(𝒪𝑍 , 𝜔𝑋 )

are isomorphisms for each q. The result then follows from Theorem A. �

Remark 3.19. The question of when this injectivity holds is asked in [10] (see [33] for further discussion
and applications). In fact, as L. Ma has pointed out, one can deduce from Corollary 3.18 the full statement
of [33, Theorem B] (in which the ambient variety X is only assumed to be Gorenstein). Indeed, we may
assume that 𝑋 = Spec(𝑅) and 𝑍 = Spec(𝑆) are affine, with 𝑆 = 𝑅/𝐼. The assertion in the corollary
implies via [7, Proposition 2.1] that S is i-cohomologically full for every i (equivalently, in the language
of [26], S has liftable local cohomology). This implies that for every maximal ideal 𝔪 of R and every i
and k, the natural map 𝐻𝑖𝔪 (𝑅/𝐼𝑘 ) → 𝐻𝑖𝔪 (𝑅/𝐼) is surjective. If R is Gorenstein, then 𝜔𝑅𝔪 � 𝑅𝔪, and
local duality implies that the natural map

Ext𝑛−𝑖𝑅 (𝑅/𝐼, 𝑅) → Ext𝑛−𝑖𝑅 (𝑅/𝐼𝑘 , 𝑅)

is injective, where 𝑛 = dim(𝑅𝔪). By taking the direct limit over k, we obtain the injectivity of

Ext𝑛−𝑖𝑅 (𝑅/𝐼, 𝑅) → 𝐻𝑛−𝑖𝐼 (𝑅).

We conclude this section by noting that a study of the equality 𝐹1H𝑞
𝑍 (𝒪𝑋 ) = 𝐸1H𝑞

𝑍 (𝒪𝑋 ) should
also be very interesting. Recall that in [36, Theorem C], it is shown that for a reduced hypersurface
D, the equality 𝐹1𝒪𝑋 (∗𝐷) = 𝑃1𝒪𝑋 (∗𝐷) (or, equivalently, 𝐼1(𝐷) = 𝒪𝑋 ) implies that D has rational
singularities. By analogy we make the following:

Conjecture 3.20. If Z is a local complete intersection of pure codimension r in X and if 𝐹1H𝑟
𝑍 (𝒪𝑋 ) =

𝐸1H𝑟
𝑍 (𝒪𝑋 ), then Z has rational singularities.

We will show in Lemma 3.23 below that in the setting of the conjecture, the condition 𝐹1 = 𝐸1
implies that 𝐹0 = 𝐸0 also holds. We also note that the assertion in the conjecture follows from the
stronger Conjecture 3.31 below. It is an interesting question whether a similar condition on the Hodge
filtration on all local cohomology sheaves H𝑞

𝑍 (𝒪𝑋 ) would imply the fact that Z has rational singularities
for any reduced Z.

3.3. The case of local complete intersections

All throughout this section, Z is assumed to be a local complete intersection subscheme of X, of pure
codimension r, defined by the ideal I𝑍 . In this case, we have H𝑞

𝑍 (𝒪𝑋 ) = 0 for 𝑞 ≠ 𝑟 by Remark 2.2. We
have seen in Propositions 3.4 and 3.11 that

𝐹𝑘H𝑟
𝑍 (𝒪𝑋 ) ⊆ 𝐸𝑘H𝑟

𝑍 (𝒪𝑋 ) = 𝑂𝑘H𝑟
𝑍 (𝒪𝑋 )

for all 𝑘 ≥ 0.
We start by giving more precise descriptions of the order and Ext filtrations; even though they

coincide, each of the two filtration provides interesting information. We denote by 𝒩𝑍/𝑋 the normal
sheaf (I𝑍/I2

𝑍 )
∨.

Lemma 3.21. For every 𝑘 ≥ 0, the quotient

Gr𝐸𝑘H𝑟
𝑍 (𝒪𝑋 ) = 𝐸𝑘H𝑟

𝑍 (𝒪𝑋 )/𝐸𝑘−1H𝑟
𝑍 (𝒪𝑋 )

is a locally free 𝒪𝑍 -module; in fact, it is isomorphic to Sym𝑘 (𝒩𝑍/𝑋 ) ⊗ 𝜔𝑍 ⊗ 𝜔−1
𝑋 .
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Proof. By Remark 3.8, we have 𝐸𝑘H𝑟
𝑍 (𝒪𝑋 ) = E𝑥𝑡𝑟𝒪𝑋

(𝒪𝑋/I𝑘+1
𝑍 ,𝒪𝑋 ), and, moreover, each exact

sequence

0 → I𝑘𝑍/I𝑘+1
𝑍 → 𝒪𝑋/I𝑘+1

𝑍 → 𝒪𝑋/I𝑘𝑍 → 0

induces an exact sequence

0 → E𝑥𝑡𝑟𝒪𝑋
(𝒪𝑋/I𝑘𝑍 ,𝒪𝑋 ) → E𝑥𝑡𝑟𝒪𝑋

(𝒪𝑋/I𝑘+1
𝑍 ,𝒪𝑋 ) → E𝑥𝑡𝑟𝒪𝑋

(I𝑘𝑍/I𝑘+1
𝑍 ,𝒪𝑋 ) → 0.

We, thus, see that

Gr𝐸𝑘H𝑟
𝑍 (𝒪𝑋 ) � E𝑥𝑡𝑟𝒪𝑋

(I𝑘𝑍/I𝑘+1
𝑍 ,𝒪𝑋 )

� Sym𝑘 (𝒩∨
𝑍/𝑋 )

∨ ⊗ E𝑥𝑡𝑟𝒪𝑋
(𝒪𝑍 , 𝜔𝑋 ) ⊗ 𝜔

−1
𝑋 � Sym𝑘 (𝒩𝑍/𝑋 ) ⊗ 𝜔𝑍 ⊗ 𝜔−1

𝑋 . �

Furthermore, working locally, we may assume that Z is the closed subscheme of X defined by
𝑓1, . . . , 𝑓𝑟 ∈ 𝒪𝑋 (𝑋), with 𝑓1, . . . , 𝑓𝑟 forming a regular sequence at every point of Z. Given this, an easy
computation shows that as in the case of smooth subvarieties in Example 2.7, we have:

Lemma 3.22. The sheaf 𝑂𝑘H𝑟
𝑍 (𝒪𝑋 ) is generated over 𝒪𝑋 by the classes of 1

𝑓
𝑎1

1 · · · 𝑓 𝑎𝑟
𝑟

, where
𝑎1, . . . , 𝑎𝑟 ≥ 1, with

∑
𝑖 𝑎𝑖 ≤ 𝑘 + 𝑟 .

By analogy with the case of hypersurfaces [36], one of the main questions to understand is when,
given 𝑝 ≥ 0, we have

𝐹𝑘H𝑟
𝑍 (𝒪𝑋 ) = 𝑂𝑘H𝑟

𝑍 (𝒪𝑋 ) for 𝑘 ≤ 𝑝.

We first note that it suffices to check the equality for 𝑘 = 𝑝:

Lemma 3.23. If 𝐹𝑝H𝑟
𝑍 (𝒪𝑋 ) = 𝑂 𝑝H𝑟

𝑍 (𝒪𝑋 ), then

𝐹𝑘H𝑟
𝑍 (𝒪𝑋 ) = 𝑂𝑘H𝑟

𝑍 (𝒪𝑋 ) for all 𝑘 ≤ 𝑝.

Proof. It suffices to check this for 𝑘 = 𝑝 − 1. We use the notation 𝐹𝑘 and 𝑂𝑘 for simplicity. Note first
that by Propositions 3.1 and 3.4, we have

𝐼𝑍 · 𝑂 𝑝 = 𝐼𝑍 · 𝐹𝑝 ⊆ 𝐹𝑝−1 ⊆ 𝑂 𝑝−1.

On the other hand, a brief inspection of the concrete description of 𝑂𝑘 given in Lemma 3.22 shows that
I𝑍 · 𝑂 𝑝 = 𝑂 𝑝−1. We conclude by combining these two facts. �

The next lemma shows that this question regarding the comparison between the Hodge and order
filtration is interesting only if we assume that Z is reduced.

Lemma 3.24. If Z is nonreduced, then 𝐹0H𝑟
𝑍 (𝒪𝑋 ) ≠ 𝑂0H𝑟

𝑍 (𝒪𝑋 ).

Proof. Let 𝑂 ′
𝑘H𝑟

𝑍 (𝒪𝑋 ) be the order filtration on H𝑟
𝑍 (𝒪𝑋 ) corresponding to 𝑍red. Since we have the

inclusions

𝐹0H𝑟
𝑍 (𝒪𝑋 ) ⊆ 𝑂

′
0H𝑟

𝑍 (𝒪𝑋 ) ⊆ 𝑂0H𝑟
𝑍 (𝒪𝑋 ),

it is enough to show that 𝑂 ′
0H𝑟

𝑍 (𝒪𝑋 ) ≠ 𝑂0H𝑟
𝑍 (𝒪𝑋 ).

Note that Z is Cohen-Macaulay, being a local complete intersection; since it is not reduced, it is not
generically reduced. After restricting to a suitable open subset, we may, thus, assume that X is affine,
with coordinates 𝑥1, . . . , 𝑥𝑛, such that the ideal of 𝑍red is generated by 𝑥1, . . . , 𝑥𝑟 , and if we denote by
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𝑓1, . . . , 𝑓𝑟 the generators of I𝑍 , and write 𝑓𝑖 =
∑𝑟
𝑗=1 𝑎𝑖, 𝑗𝑥 𝑗 , then det(𝑎𝑖, 𝑗 ) ∈ (𝑥1, . . . , 𝑥𝑟 ). The assertion

in the lemma follows from the fact that via the isomorphisms

H𝑟
𝑍 (𝒪𝑋 ) � 𝒪(𝑋) 𝑓1 · · · 𝑓𝑟 /

𝑟∑
𝑖=1

𝒪(𝑋) 𝑓1 · · · �̂�𝑖 · · · 𝑓𝑟 � 𝒪(𝑋)𝑥1 · · ·𝑥𝑟 /

𝑟∑
𝑖=1

𝒪(𝑋)𝑥1 · · ·𝑥𝑖 · · ·𝑥𝑟

given by the Čech-complex description in §2.2, the class of 1
𝑥1 · · ·𝑥𝑟

, which generates 𝑂 ′
0H𝑟

𝑍 (𝒪𝑋 ),
corresponds to det(𝑎𝑖, 𝑗 ) 1

𝑓1 · · · 𝑓𝑟
. On the other hand,𝑂0H𝑟

𝑍 (𝒪𝑋 ) is generated by the class of 1
𝑓1 · · · 𝑓𝑟

, hence,
it is different from 𝑂 ′

0H𝑟
𝑍 (𝒪𝑋 ). �

Before stating the next result, we note that a stronger bound will be obtained in Theorem 3.39,
however, with much more work; the simple argument here is sufficient for establishing Corollary 3.26.

Proposition 3.25. If Z is not smooth, then

𝐹𝑘H𝑟
𝑍 (𝒪𝑋 ) � 𝑂𝑘H𝑟

𝑍 (𝒪𝑋 ) for every 𝑘 ≥ 𝑛 − 𝑟 + 1.

Proof. We may assume that X is affine and I𝑍 is generated by 𝑓1, . . . , 𝑓𝑟 . Since Z is not smooth, it
follows that there is a point 𝑄 ∈ 𝑍 defined by the ideal I𝑄, such that, after possibly renumbering and
replacing 𝑓1 by a linear combination of 𝑓1, . . . , 𝑓𝑟 , we have 𝑓1 ∈ I2

𝑄. We now need to appeal to a result
that will be proved later, Theorem 4.2, saying that the Hodge filtration on H𝑟

𝑍 (𝒪𝑋 ) is generated at level
𝑛 − 𝑟 . If 𝑘 ≥ 𝑛 − 𝑟 + 1, we, thus, have

𝐹𝑘H𝑟
𝑍 (𝒪𝑋 ) ⊆ 𝐹1𝒟𝑋 · 𝐹𝑘−1H𝑟

𝑍 (𝒪𝑋 ).

Recall that 𝑂𝑘−1H𝑟
𝑍 (𝒪𝑋 ) is generated by the classes of 1

𝑓
𝑎1

1 · · · 𝑓 𝑎𝑟
𝑟

, with 𝑎𝑖 ≥ 1 for all i and
∑
𝑖 𝑎𝑖 ≤

𝑘 − 1 + 𝑟 . Moreover, using the fact that 𝑓1, . . . , 𝑓𝑟 form a regular sequence in 𝒪𝑋,𝑄, it is easy to see that
these elements form a minimal system of generators of 𝑂𝑘−1H𝑟

𝑍 (𝒪𝑋 ) at Q. A similar assertion holds
for 𝑂𝑘H𝑟

𝑍 (𝒪𝑋 ).
Since 𝑓1 ∈ I2

𝑄, a straightforward calculation shows that

𝐹𝑘H𝑟
𝑍 (𝒪𝑋 ) ⊆ 𝐹1𝒟𝑋 · 𝑂𝑘−1H𝑟

𝑍 (𝒪𝑋 ) ⊆ I𝑄 ·
1

𝑓 𝑘+1
1 𝑓2 · · · 𝑓𝑟

+
∑

𝑎1 ,...,𝑎𝑟

𝒪𝑋 ·
1

𝑓 𝑎1
1 · · · 𝑓 𝑎𝑟𝑟

,

where the last sum is over those 𝑎1, . . . , 𝑎𝑟 , such that 𝑎𝑖 ≥ 1 for all i, with the inequality being strict for
some 𝑖 ≥ 2, and, such that,

∑
𝑖 𝑎𝑖 = 𝑘 + 𝑟 . This shows that 𝐹𝑘H𝑟

𝑍 (𝒪𝑋 ) is a proper subset of 𝑂𝑘H𝑟
𝑍 (𝒪𝑋 )

at Q. �

In particular, the coincidence of the two filtrations characterises smoothness, similar to [36, Theorem
A] for hypersurfaces (for another approach to the same result, see Theorem 3.39 below).

Corollary 3.26. Z is smooth if and only if 𝐹𝑘H𝑟
𝑍 (𝒪𝑋 ) = 𝑂𝑘H𝑟

𝑍 (𝒪𝑋 ) for all k.

We formalise the discussion above by introducing a measure of singularities that will figure promi-
nently in the study of the Du Bois complex of Z.

Definition 3.27. The singularity level of the Hodge filtration on H𝑟
𝑍𝒪𝑋 is

𝑝(𝑍) := sup{ 𝑘 | 𝐹𝑘H𝑟
𝑍𝒪𝑋 = 𝑂𝑘H𝑟

𝑍𝒪𝑋 },

with the convention that 𝑝(𝑍) = −1 if equality never holds.

Remark 3.28. The invariant 𝑝(𝑍) only depends on Z and not on the embedding in a smooth, ambient
variety. In order to see this, let us temporarily denote by 𝑝(𝑍 ↩→ 𝑋) the invariant corresponding to a
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closed embedding in a smooth variety X. Given a closed immersion of smooth varieties 𝑋 ↩→ 𝑌 , by
Remark 2.5, we have

𝑝(𝑍 ↩→ 𝑋) = 𝑝(𝑍 ↩→ 𝑋 ↩→ 𝑌 ).

Suppose next that Z is affine, and consider closed immersions 𝑖 : 𝑍 ↩→ 𝑋 and 𝑖′ : 𝑍 ↩→ 𝑋 ′, with X and 𝑋 ′

smooth and affine. In order to show that 𝑝(𝑍 ↩→ 𝑋) = 𝑝(𝑍 ↩→ 𝑋 ′), by the identity above, we may assume
that 𝑋 = A𝑚 and 𝑋 ′ = A𝑛. There is a morphism 𝑓 : A𝑚 → A𝑛, such that 𝑓 ◦ 𝑖 = 𝑖′. Since (idA𝑚 , 𝑓 ) is a
closed immersion with (idA𝑚 , 𝑓 ) ◦ 𝑖 = (𝑖, 𝑖′) : 𝑋 → A𝑚 ×A𝑛, it follows from what we have already seen
that 𝑝(𝑋 ↩→ A𝑚) = 𝑝(𝑋 ↩→ A𝑚 × A𝑛), and we similarly see that 𝑝(𝑋 ↩→ A𝑚 × A𝑛) = 𝑝(𝑋 ↩→ A𝑛).
Noting that given an open cover 𝑍 =

⋃
𝑉𝑖 , we have 𝑝(𝑍) = min𝑖 𝑝(𝑉𝑖), we leave it as an exercise for

the reader to deduce the general case of our assertion.

Remark 3.29. (1) By Lemma 3.23, we have 𝐹𝑘H𝑟
𝑍𝒪𝑋 = 𝑂𝑘H𝑟

𝑍𝒪𝑋 for all 𝑘 ≤ 𝑝(𝑍).
(2) Corollary 3.26 says that Z is smooth if and only if 𝑝(𝑍) = ∞, while Lemma 3.24 says that if Z is

not reduced, then 𝑝(𝑍) = −1.
(3) We have seen in Theorem C that 𝑝(𝑍) ≥ 0 if and only if Z has Du Bois singularities. Moreover,

Conjecture 3.20 states that if 𝑝(𝑍) ≥ 1, then Z has rational singularities. Conjecture 3.31 predicts an
explicit formula for 𝑝(𝑍) in terms of the Bernstein-Sato polynomial of Z.

(4) Another interpretation of the singularity level 𝑝(𝑍), in terms of the Hodge ideals associated
to products of equations defining Z, is given by Proposition 3.34 below. Note that an algorithm for
computing Hodge ideals is provided in [2].

Remark 3.30 (Bernstein-Sato polynomial). For a reduced hypersurface 𝐷 ⊆ 𝑋 , we have

𝑝(𝐷) = [�̃�(𝐷)] − 1,

where �̃�(𝐷) is the minimal exponent of D, that is, the negative of the largest root of the reduced
Bernstein-Sato polynomial 𝑏𝐷 (𝑠)/(𝑠 + 1) (see [53, Corollary 1]). This interpretation and its extension
to Q-divisors have proven to be very useful for studying both the Hodge filtration and the minimal
exponent (see [38], [39]).

When Z is a reduced local complete intersection, it would similarly be interesting to translate the
condition 𝐹𝑘H𝑟

𝑍 (𝒪𝑋 ) = 𝑂𝑘H𝑟
𝑍 (𝒪𝑋 ) for 𝑘 ≤ 𝑝 in terms of the Bernstein-Sato polynomial 𝑏𝑍 (𝑠) (see

[6] for its definition). Note that by [6, Theorem 1], the largest root of 𝑏𝑍 (𝑠) is −lct(𝑋, 𝑍), the negative
of the log canonical threshold of the pair (𝑋, 𝑍). Since Z is reduced, −𝑟 is a root of 𝑏𝑍 (𝑠), and it is
natural to consider the reduced version �̃�𝑍 (𝑠) = 𝑏𝑍 (𝑠)/(𝑠 + 𝑟). If we write �̃�(𝑍) for the negative of the
largest root of �̃�𝑍 (𝑠), then we see that lct(𝑋, 𝑍) = min{𝑟, �̃�(𝑍)}, and it follows from [6, Theorem 4]
that �̃�(𝑍) > 𝑟 if and only if Z has rational singularities.

Conjecture 3.31. If Z is a reduced local complete intersection of codimension r, then

𝑝(𝑍) = max{[�̃�(𝑍)] − 𝑟,−1}.

Note that this conjecture implies Conjecture 3.20.

We next give a criterion for the coincidence between the Hodge filtration and the order filtration in
terms of Hodge ideals of hypersurfaces and deduce some applications to the behavior of the singularity
level. We continue to work locally, assuming that 𝑋 = Spec(𝐴) is affine and Z is defined by equations
𝑓1, . . . , 𝑓𝑟 ∈ 𝐴, which form a regular sequence at every point of Z. We define the ideal

𝐽𝑘 ( 𝑓1, . . . , 𝑓𝑟 ) :=
(
𝑓 𝑏1
1 · · · 𝑓 𝑏𝑟𝑟 | 0 ≤ 𝑏𝑖 ≤ 𝑘,

∑
𝑖

𝑏𝑖 = 𝑘 (𝑟 − 1)
)
⊆ 𝐴.

We will assume that 𝑓 := 𝑓1 · · · 𝑓𝑟 defines a reduced divisor D. This is a harmless assumption: we are
interested in understanding 𝑝(𝑍), and in light of Lemma 3.24, this is only interesting when Z is reduced;
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in this case, the assumption on f is always satisfied after possibly replacing 𝑓1, . . . , 𝑓𝑟 by general linear
combinations. We use the notation 𝐼𝑘 ( 𝑓 ) for the Hodge ideals 𝐼𝑘 (𝐷) of [36].

Example 3.32. When 𝑥1, . . . , 𝑥𝑟 are part of a system of algebraic coordinates, so that 𝑓 = 𝑥1 · · · 𝑥𝑟
defines a divisor with SNCs, we have

𝐼𝑘 ( 𝑓 ) = 𝐽𝑘 (𝑥1, . . . , 𝑥𝑟 ) for all 𝑘 ≥ 0,

by [36, Proposition 8.2].

Lemma 3.33. If f defines a reduced divisor, then 𝐼𝑘 ( 𝑓 ) ⊆ 𝐽𝑘 ( 𝑓1, . . . , 𝑓𝑟 ) for all 𝑘 ≥ 0.

Proof. This follows from the restriction theorem for Hodge ideals, applied to the morphism 𝜑 : 𝑋 → A𝑟

defined by ( 𝑓1, . . . , 𝑓𝑟 ) and the divisor (𝑥1 · · · 𝑥𝑟 = 0) ⊆ A𝑟 , in combination with Example 3.32. We note
that the key case of the restriction theorem is for closed immersions, for which we refer to [35, Corollary
3.4]. The case of an arbitrary morphism between smooth varieties is an immediate consequence (see
[40, Corollary 3.17] for this assertion, in a more general setting). �

The criterion we are after is the following:

Proposition 3.34. If f defines a reduced divisor, then for a nonnegative integer k, we have 𝐹𝑘H𝑟
𝑍 (𝒪𝑋 ) =

𝑂𝑘H𝑟
𝑍 (𝒪𝑋 ) if and only if

𝐽𝑘 ( 𝑓1, . . . , 𝑓𝑟 ) ⊆ 𝐼𝑘 ( 𝑓 ) + ( 𝑓 𝑘+1
1 , . . . , 𝑓 𝑘+1

𝑟 )

in a neighbourhood of Z.

Proof. Let 𝐼 = ( 𝑓1, . . . , 𝑓𝑟 ) ⊆ 𝐴. Recall that we have an exact sequence

𝑟⊕
𝑖=1

𝐴 𝑓1 · · · �̂�𝑖 · · · 𝑓𝑟 → 𝐴 𝑓 → 𝐻𝑟𝐼 (𝐴) → 0,

with the maps being strict with respect to the Hodge filtration. We also recall from Lemma 3.22 that

𝑂𝑘𝐻
𝑟
𝐼 (𝐴) =

⊕
𝑎1 ,...,𝑎𝑟

𝐴 ·

[
1

𝑓 𝑎1
1 · · · 𝑓 𝑎𝑟𝑟

]
,

where the sum is over those 𝑎1, . . . , 𝑎𝑟 , such that 𝑎𝑖 ≥ 1 for all i and
∑
𝑖 𝑎𝑖 ≤ 𝑟 + 𝑘 , while by the

definition of Hodge ideals, the Hodge filtration on 𝐴 𝑓 can be written as

𝐹𝑘𝐴 𝑓 =
1
𝑓 𝑘+1 · 𝐼𝑘 ( 𝑓 ).

We, thus, have 𝑂𝑘𝐻𝑟𝐼 (𝐴) ⊆ 𝐹𝑘𝐻
𝑟
𝐼 (𝐴) if and only if for every 𝑎1, . . . , 𝑎𝑟 as above, we have

1
𝑓 𝑎1
1 · · · 𝑓 𝑎𝑟𝑟

∈
1
𝑓 𝑘+1 · 𝐼𝑘 ( 𝑓 ) +

𝑟∑
𝑖=1
𝐴 𝑓1 · · · �̂�𝑖 · · · 𝑓𝑟 .

Let us first prove the ‘if’ part of the assertion. Given 𝑎1, . . . , 𝑎𝑟 as above, let 𝑏𝑖 = 𝑘 + 1 − 𝑎𝑖 . Note
that we have 𝑏𝑖 ≥ 0 for all i and

∑
𝑖 𝑏𝑖 ≥ 𝑘 (𝑟 − 1). We, thus, have∏

𝑖

𝑓 𝑏𝑖𝑖 ∈ 𝐽𝑘 ( 𝑓1, . . . , 𝑓𝑟 ) ⊆ 𝐼𝑘 ( 𝑓 ) + ( 𝑓 𝑘+1
1 , . . . , 𝑓 𝑘+1

𝑟 ).
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If we write
∏
𝑖 𝑓

𝑏𝑖
𝑖 = ℎ +

∑𝑟
𝑖=1 𝑓

𝑘+1
𝑖 𝑢𝑖 , with ℎ ∈ 𝐼𝑘 ( 𝑓 ) and 𝑢𝑖 ∈ 𝐴, it follows that

1
𝑓 𝑎1
1 · · · 𝑓 𝑎𝑟𝑟

−
ℎ

𝑓 𝑘+1 ∈

𝑟∑
𝑖=1
𝐴 𝑓1 · · · �̂�𝑖 · · · 𝑓𝑟 .

For the proof of the ‘only if’ part, we simply reverse the above arguments, using the fact that if
𝑢 ∈ 𝐴 · 1

𝑓 𝑘+1
1 · · · 𝑓 𝑘+1

𝑟
lies in

∑𝑟
𝑖=1 𝐴 𝑓1 · · · �̂�𝑖 · · · 𝑓𝑟 , then

𝑢 ∈

𝑟∑
𝑖=1
𝐴 ·

1

𝑓 𝑘+1
1 · · ·�𝑓 𝑘+1

𝑖 · · · 𝑓 𝑘+1
𝑟

in a neighbourhood of 𝑍.

This follows from the lemma below. �

Lemma 3.35. Let (𝑅,𝔪) be a local Noetherian C-algebra and 𝑓1, . . . , 𝑓𝑟 a regular sequence of elements
in 𝔪. If p is a positive integer and 𝑢 ∈ 𝑅 · 1

𝑓
𝑝

1 · · · 𝑓
𝑝

𝑟
lies in

∑𝑟
𝑖=1 𝑅 𝑓1 · · · �̂�𝑖 · · · 𝑓𝑟 , then 𝑢 ∈

∑𝑟
𝑖=1 𝑅 ·

1
𝑓
𝑝

1 · · · �̂�
𝑝

𝑖 · · · 𝑓
𝑝

𝑟

.

Proof. After replacing 𝑓1, . . . , 𝑓𝑟 by 𝑓 𝑝1 , . . . , 𝑓
𝑝
𝑟 , we may assume that 𝑝 = 1. By assumption, we can

write

𝑢 =
ℎ

𝑓1 · · · 𝑓𝑟
=

𝑟∑
𝑖=1

𝑔𝑖

( 𝑓1 · · · �̂�𝑖 · · · 𝑓𝑟 )𝑁

for some nonnegative integer N and some ℎ, 𝑔1, . . . , 𝑔𝑟 ∈ 𝑅. In this case, we have

ℎ ∈
(
( 𝑓 𝑁1 , . . . , 𝑓

𝑁
𝑟 ) : ( 𝑓1 · · · 𝑓𝑟 )𝑁−1) ,

and the assertion in the lemma follows if we have the inclusion(
( 𝑓 𝑁1 , . . . , 𝑓

𝑁
𝑟 ) : ( 𝑓1 · · · 𝑓𝑟 )𝑁−1) ⊆ ( 𝑓1, . . . , 𝑓𝑟 ). (3.7)

This follows from the fact that 𝑓1, . . . , 𝑓𝑟 forms a regular sequence: indeed, this implies that the local
ring homomorphism

𝜑 : 𝑆 = C[𝑥1, . . . , 𝑥𝑟 ](𝑥1 ,...,𝑥𝑟 ) → 𝑅, 𝜑(𝑥𝑖) = 𝑓𝑖

is flat, and, thus, the inclusion (3.7) follows from the corresponding inclusion in S, with the 𝑓𝑖 replaced
by the 𝑥𝑖 . �

Due to the fact that the behavior of Hodge ideals under restriction and deformation is quite well
understood, the criterion in Proposition 3.34 leads to similar behavior for the singularity level of the
Hodge filtration on the local cohomology of local complete intersections.

Theorem 3.36 (Restriction theorem for the singularity level). Let X be a smooth, irreducible variety, Z
a local complete intersection subscheme of X of pure codimension r and H a smooth hypersurface in X,
such that 𝑍 |𝐻 = 𝑍 ∩ 𝐻 is a nonempty subscheme of H, also of pure codimension r. Then:

i) after possibly restricting to a neighbourhood of H, we have 𝑝(𝑍) ≥ 𝑝(𝑍 |𝐻 );
ii) if H is general (for example, a general element of a base-point free linear system), then we also have

𝑝(𝑍) ≤ 𝑝(𝑍 |𝐻 ).

Proof. By taking an affine open cover of X, we may assume that 𝑋 = Spec(𝐴) is affine and let ℎ ∈ 𝐴 be
an equation of H. We begin by proving i). We assume that 𝑝(𝑍 |𝐻 ) ≥ 0, since, otherwise, the inequality
in i) is trivial. In particular, it follows from Lemma 3.24 that 𝑍 |𝐻 is reduced, hence, after replacing Z
by a neighbourhood of H, we have that Z is reduced too.
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We choose general generators 𝑓1, . . . , 𝑓𝑟 for the ideal of Z in A, such that, if 𝑔𝑖 = 𝑓𝑖 |𝐻 , and we put as
before 𝑓 = 𝑓1 · · · 𝑓𝑟 and 𝑔 = 𝑔1 · · · 𝑔𝑟 , then the divisors defined by f and g in X and H, respectively, are
reduced. In this case, the restriction theorem for Hodge ideals [35, Theorem A] gives

𝐼𝑞 (𝑔) ⊆ 𝐼𝑞 ( 𝑓 ) · (𝐴/ℎ) for all 𝑞 ≥ 0. (3.8)

Let 𝑞 = 𝑝(𝑍 |𝐻 ). By Proposition 3.34, we then have

𝐽𝑞 (𝑔1, . . . , 𝑔𝑟 ) ⊆ 𝐼𝑞 (𝑔) + (𝑔𝑞+1
1 , . . . , 𝑔𝑞+1

𝑟 ). (3.9)

Since 𝐽𝑞 (𝑔1, . . . , 𝑔𝑟 ) = 𝐽𝑞 ( 𝑓1, . . . , 𝑓𝑟 ) · (𝐴/ℎ), it follows from (3.8) and (3.9) that

𝐽𝑞 ( 𝑓1, . . . , 𝑓𝑟 ) ⊆ 𝐼𝑞 ( 𝑓 ) + ( 𝑓 𝑞+1
1 , . . . , 𝑓 𝑞+1

𝑟 ) + (ℎ). (3.10)

We claim that in some neighbourhood of 𝑍 |𝐻 , we have, in fact,

𝐽𝑞 ( 𝑓1, . . . , 𝑓𝑟 ) ⊆ 𝐼𝑞 ( 𝑓 ) + ( 𝑓 𝑞+1
1 , . . . , 𝑓 𝑞+1

𝑟 ) + ℎ ·
(
𝐽𝑞 ( 𝑓1, . . . , 𝑓𝑟 ) + ( 𝑓 𝑞+1

1 , . . . , 𝑓 𝑞+1
𝑟 )

)
. (3.11)

Indeed, if 𝑢 ∈ 𝐽𝑞 ( 𝑓1, . . . , 𝑓𝑟 ), then it follows from (3.10) that we can write 𝑢 = 𝑣 + 𝑤 + ℎ𝑄, where
𝑣 ∈ 𝐼𝑞 ( 𝑓 ), 𝑤 ∈ ( 𝑓 𝑞+1

1 , . . . , 𝑓 𝑞+1
𝑟 ) and 𝑄 ∈ 𝐴. Since 𝐼𝑞 ( 𝑓 ) ⊆ 𝐽𝑞 ( 𝑓1, . . . , 𝑓𝑟 ) by (3.33), we conclude that

ℎ𝑄 ∈ 𝐽𝑞 ( 𝑓1, . . . , 𝑓𝑟 ) + ( 𝑓 𝑞+1
1 , . . . , 𝑓 𝑞+1

𝑟 ). Moreover, ℎ, 𝑓1, . . . , 𝑓𝑟 form a regular sequence at every point
of 𝑍 |𝐻 , so we conclude that 𝑄 ∈ 𝐽𝑞 ( 𝑓1, . . . , 𝑓𝑟 ) + ( 𝑓 𝑞+1

1 , . . . , 𝑓 𝑞+1
𝑟 ) in a neighbourhood of 𝑍 |𝐻 (for

example, we could argue as in the proof of Lemma 3.35 to reduce this to the case when 𝑓1, . . . , 𝑓𝑟 , ℎ are
variables 𝑥1, . . . , 𝑥𝑟 , 𝑥𝑟+1 in a polynomial ring).

The inclusion (3.11) gives by Nakayama’s lemma

𝐽𝑘 ( 𝑓1, . . . , 𝑓𝑟 ) ⊆ 𝐼𝑘 ( 𝑓 ) + ( 𝑓 𝑞+1
1 , . . . , 𝑓 𝑞+1

𝑟 ) in an open neighbourhood 𝑉 of 𝑍 |𝐻 .

Proposition 3.34 then implies that if we consider the neighbourhood 𝑈 = 𝑉 ∪ (𝑋 \ 𝑍) of H, then
𝑝(𝑍 ∩𝑈) ≥ 𝑞. This completes the proof of i).

The proof of ii) is easier: note first that we may assume that Z is reduced, since, otherwise, the
inequality to prove is trivial. Since H is general, it follows that 𝑍 |𝐻 is reduced too. Using the previous
notation, the inequality, thus, follows from Proposition 3.34 and the fact that if H is general, then
𝐼𝑞 (𝑔) = 𝐼𝑞 ( 𝑓 ) · (𝐴/ℎ) (see again [35, Theorem A]). �

Theorem 3.37 (Semicontinuity theorem for the singularity level). Let 𝜋 : X → 𝑇 be a smooth morphism
of complex algebraic varieties, and for every 𝑡 ∈ 𝑇 , let X𝑡 = 𝜋−1(𝑡). Suppose that 𝑓1, . . . , 𝑓𝑟 ∈ 𝒪X (X )

define a closed subscheme Z of X , such that, for every 𝑡 ∈ 𝑇 , the restriction Z𝑡 = Z ∩ X𝑡 is a closed
subscheme of X𝑡 of pure codimension r. Let 𝑠 : 𝑇 → X be a section of 𝜋, such that 𝑠(𝑇) ⊆ 𝑉 ( 𝑓1, . . . , 𝑓𝑟 ).
For every 𝑡0 ∈ 𝑇 , there is an open neighbourhood U of 𝑡0, such that, for all 𝑡 ∈ 𝑈, we have

𝑝(Z𝑡 ) ≥ 𝑝(Z𝑡0 ),

where each 𝑝(Z𝑡 ) is considered in a small neighbourhood of 𝑠(𝑡).

Proof. Step 1. We show that if T is smooth, then there is a nonempty open subset W of T, such that, for
all 𝑡 ∈ 𝑊 , the equalities

𝐹𝑞H𝑟
Z𝑡
(𝒪X𝑡 ) = 𝑂𝑞H𝑟

Z𝑡
(𝒪X𝑡 ) for all 𝑞 ≤ 𝑝(Z𝑡0 ) (3.12)

hold in a neighbourhood of 𝑠(𝑡). Note to begin with, that after applying the first assertion in Theorem
3.36 dim(𝑇)-times, we deduce from the hypothesis that

𝐹𝑞H𝑟
Z (𝒪X ) = 𝑂𝑞H𝑟

Z (𝒪X ) for all 𝑞 ≤ 𝑝(Z𝑡0 )
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in some open neighbourhood V of 𝑠(𝑡0). Using now the second assertion in Theorem 3.36, we can
choose an open subset 𝑇0 ⊆ 𝑇 , such that, for every 𝑡 ∈ 𝑇0, we have 𝑝(Z𝑡 ∩𝑉) ≥ 𝑝(Z ∩𝑉). This implies
that if we take𝑊 = 𝑇0 ∩ 𝑠

−1(𝑉), then the equalities (3.12) hold on 𝑉 ∩X𝑡 for all 𝑡 ∈ 𝑊 . This completes
the proof of Step 1.
Step 2. We next show that the assertion in Step 1 holds for every (irreducible) variety T. Given such T,
consider a resolution of singularities 𝑇 ′ → 𝑇 and the induced family 𝜋′ : X ′ = X ×𝑇 𝑇

′ → 𝑇 ′, as well
as the induced section 𝑠′ : 𝑇 ′ → X ′. If 𝑡 ′0 ∈ 𝑇 ′ lies over 𝑡0, applying Step 1, we can find an open subset
𝑊 ′ ⊆ 𝑇 ′, such that, for all 𝑡 ′ ∈ 𝑊 ′, the equalities (3.12) hold in a neighbourhood of 𝑠′(𝑡 ′). We can then
simply take W to be any open subset of T contained in the image of𝑊 ′.
Step 3. We now prove the general statement by induction on dim(𝑇). If dim(𝑇) = 1, then we are done:
if W is an open subset as in Step 2, then 𝑈 = 𝑊 ∪ {𝑡0} is an open neighbourhood of 𝑡0 that satisfies
the assertion. Suppose now that dim(𝑇) ≥ 2, and let 𝑊 ⊆ 𝑇 be an open subset as in Step 2. If 𝑡0 ∈ 𝑊 ,
then we are done by taking 𝑈 = 𝑊 . Suppose now that 𝑡0 ∉ 𝑊 . After possibly removing from T the
irreducible components of 𝑍 = 𝑇 \ 𝑊 that do not contain 𝑡0, we may assume that the irreducible
components 𝑍1, . . . , 𝑍𝑚 of Z satisfy 𝑡0 ∈ 𝑍𝑖 for all i. Applying the inductive hypothesis for every
morphism 𝜋−1 (𝑍𝑖) → 𝑍𝑖 , we find open neighbourhoods𝑊𝑖 of 𝑡0 in 𝑍𝑖 , such that, for every 𝑡 ∈ 𝑊𝑖 , the
equalities (3.12) hold in a neighbourhood of 𝑠(𝑡). In this case,𝑈 = 𝑊 ∪

(
𝑍 \

⋃𝑚
𝑖=1(𝑍𝑖 \𝑊𝑖)

)
is an open

neighbourhood of 𝑡0 that satisfies the assertion in the theorem. �

We next use our results on the behavior of 𝑝(𝑍) to give an upper bound for this invariant when Z is
singular; this can be seen as a generalisation of [36, Theorem A]. We begin with the following:

Definition 3.38. Suppose that Z is a closed subscheme of a smooth variety X, defined by the ideal I𝑍 ,
and let 𝑥 ∈ 𝑍 . For a nonzero regular function f defined in an open neighbourhood of x, we denote by
mult𝑥 ( 𝑓 ) the multiplicity at x of the hypersurface defined by f. We denote by 𝛽𝑥 (𝑍) the largest mult𝑥 ( 𝑓 ),
where f is part of a minimal system of generators of I𝑍,𝑥 ⊆ 𝒪𝑋,𝑥 . It is straightforward to see that this
only depends on the pair (𝑍, 𝑥) and not on X. Note that Z is smooth at x if and only if 𝛽𝑥 (𝑍) = 1.

Theorem 3.39. If Z is a reduced closed subscheme of X, which is a local complete intersection, and if
𝑥 ∈ 𝑍 is a singular point with 𝛽𝑥 (𝑍) = 𝑑, then

𝑝(𝑍) ≤
dim(𝑍) − 𝑑 + 1

𝑑
.

In particular, for every singular Z, we have 𝑝(𝑍) ≤ dim(𝑍 )−1
2 .

Proof. After possibly replacing X by a suitable neighbourhood of x, we may assume that X is affine and
that we have a system of coordinates 𝑥1, . . . , 𝑥𝑛, centred at x and defined globally on X. We may also
assume that Z is defined by a regular sequence 𝑓1, . . . , 𝑓𝑟 ∈ 𝒪𝑋 (𝑋) and mult𝑥 ( 𝑓1) = 𝑑. After a suitable
change of coordinates, we may assume that 𝑓1, 𝑥2, . . . , 𝑥𝑟 form a regular sequence in a neighbourhood
of x. Let 𝑇 = A2, with coordinates 𝑠, 𝑡, and let 𝐹2, . . . , 𝐹𝑟 be the regular functions on 𝑋 × 𝑇 given
by 𝐹𝑖 = 𝑠 𝑓𝑖 + 𝑡𝑥𝑖 . Let X = 𝑋 × 𝑇 and Z the closed subscheme of X defined by 𝑓1, 𝐹2, . . . , 𝐹𝑟 . We
consider the open subset 𝑇0 ⊆ 𝑇 consisting of those (𝑠0, 𝑡0) ∈ 𝑇 , such that the fibre of Z over (𝑠0, 𝑡0)
has codimension r in X in a neighbourhood of x. Note that (1, 0), (0, 1) ∈ 𝑇0. We can find an open
neighbourhood X0 of {𝑥} × 𝑇0 in 𝑋 × 𝑇0, such that we can apply Theorem 3.37 to the restriction
𝜋 : X0 → 𝑇0 of the projection and to Z0 = Z ∩X0. Note that for a general (𝑠0, 𝑡0) ∈ 𝑇0, the fibre Z(𝑠0 ,𝑡0)

is cut out in X by one equation of multiplicity d and 𝑟 − 1 equations of multiplicity 1.
It follows that in order to prove the first bound in the theorem, we may assume that mult𝑥 ( 𝑓𝑖) = 1 for

every 𝑖 ≥ 2. In this case, after possibly replacing Z by an open neighbourhood of x, we have a closed
embedding as a hypersurface 𝑍 ↩→ 𝑋 ′ of multiplicity d at x, where 𝑋 ′ is smooth. In this case, we
have 𝑝(𝑍) = [�̃�(𝑍)] − 1 (see Remark 3.30), and the first bound in the theorem follows from the upper
bound
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�̃�(𝑍) ≤
dim(𝑋 ′)

𝑑
=

dim(𝑍) + 1
𝑑

for the minimal exponent (see [38, Theorem E]). The second bound follows since 𝑑 ≥ 2. �

We deduce the following lower bound for the dimension of the singular locus of Z in terms of 𝑝(𝑍).
The proof proceeds as in the case of hypersurfaces, which is the content of [41, Lemma 2.1].

Corollary 3.40. If Z is a reduced closed subscheme of X, which is a local complete intersection of pure
dimension and whose singular locus 𝑍sing is nonempty, then

codim𝑍 (𝑍sing) ≥ 2𝑝(𝑍) + 1.

Proof. We may assume that Z is affine. If dim(𝑍sing) = 𝑠, then after successively cutting Z with s general
hyperplanes that meet 𝑍sing, we obtain a smooth subvariety Y of X of codimension s, such that 𝑍 ∩𝑌 is a
singular reduced local complete intersection. On one hand, the second assertion in Theorem 3.36 gives

𝑝(𝑍 ∩ 𝑌 ) ≥ 𝑝(𝑍).

On the other hand, we deduce from Theorem 3.39 that

𝑝(𝑍 ∩ 𝑌 ) ≤
dim(𝑍) − 𝑠 − 1

2
.

The bound in the statement follows by combining these two inequalities. �

4. Generation level and local cohomological dimension

We now address one of the main applications of this paper, namely, a characterisation of local coho-
mological dimension in terms of resolution of singularities. Before doing this, in the section below, we
establish the key technical tool, namely, a criterion for the generation level of the Hodge filtration on
the highest nontrivial local cohomology.

4.1. The generation level of the Hodge filtration

We fix, as always, a closed subscheme of a smooth, irreducible complex n-dimensional variety X and a
log resolution 𝑓 : 𝑌 → 𝑋 of (𝑋, 𝑍) as at the beginning of §2.4. We denote by 𝑗 : 𝑈 = 𝑋 \ 𝑍 ↩→ 𝑋 the
inclusion.

Recall that a good filtration 𝐹•M on a left 𝒟𝑋 -module M is said to be generated at level ℓ ∈ Z if

𝐹ℓ+𝑘M = 𝐹𝑘𝒟𝑋 · 𝐹ℓM for all 𝑘 ≥ 0.

Equivalently, this means that for every 𝑚 ≥ ℓ, we have

𝐹𝑚+1M = 𝐹1𝒟𝑋 · 𝐹𝑚M.

Lemma 4.1. The filtration 𝐹•M is generated at level k if and only if

H0Gr𝐹𝑖−𝑛DR𝑋 (M, 𝐹) = 0 for all 𝑖 > 𝑘.

Proof. It is easy to check that the filtration 𝐹•M is generated at level k if and only if the natural
multiplication map

𝑇𝑋 ⊗𝒪𝑋 Gr𝐹𝑖−1M → Gr𝐹𝑖 M
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is surjective for every 𝑖 > 𝑘 . After tensoring by 𝜔𝑋 , this surjectivity is, in turn, equivalent by definition
to the vanishing of H0Gr𝐹𝑖−𝑛DR𝑋 (M, 𝐹). �

The result we are after is:

Theorem 4.2. If 𝑞 ≥ 1 is, such that, H 𝑗
𝑍 (𝒪𝑋 ) = 0 for all 𝑗 > 𝑞, then the Hodge filtration on H𝑞

𝑍 (𝒪𝑋 )

is generated at level 𝑘 ∈ Z if and only if

𝑅𝑞−1+𝑖 𝑓∗Ω
𝑛−𝑖
𝑌 (log 𝐸) = 0 for all 𝑖 > 𝑘.

In particular, it is always generated at level 𝑛 − 𝑞.

A special case, which will lead to the proof of Theorem E in the next section, is the following:

Corollary 4.3. If 𝑞 ≥ 1 is, such that, H 𝑗
𝑍 (𝒪𝑋 ) = 0 for all 𝑗 > 𝑞, then

H𝑞
𝑍 (𝒪𝑋 ) = 0 ⇐⇒ 𝑅𝑞−1+𝑖 𝑓∗Ω

𝑛−𝑖
𝑌 (log 𝐸) = 0 for all 𝑖 ≥ 0.

Proof. We apply the theorem with 𝑘 = −1. Since, by Remark 2.3 we have 𝐹−1H𝑞
𝑍 (𝒪𝑋 ) = 0, it follows

that H𝑞
𝑍 (𝒪𝑋 ) is generated at level −1 if and only if it is zero. �

A key point in the proof of Theorem 4.2 is a formula for the graded pieces of the de Rham complex
of 𝑗∗Q𝐻

𝑈 [𝑛].

Lemma 4.4. For every 𝑖 ∈ Z, we have an isomorphism in D𝑏
(
Coh(𝑋)

)
:

Gr𝐹𝑖−𝑛DR𝑋
(
𝑗∗Q𝐻

𝑈 [𝑛]
)
� R 𝑓∗Ω𝑛−𝑖

𝑌 (log 𝐸) [𝑖] .

Proof. We use the approach and notation in §2.4. Recall that we have an isomorphism

𝑗∗Q𝐻
𝑈 [𝑛] � 𝑓∗ 𝑗

′
∗Q𝐻

𝑉 [𝑛] . (4.1)

The filtered resolution (2.16) gives an isomorphism

Gr𝐹𝑖−𝑛DR𝑌
(
𝑗 ′∗Q𝐻

𝑉 [𝑛]
)
� Ω𝑛−𝑖

𝑌 (log 𝐸) [𝑖]

(see also [36, §6]). Using the isomorphism (4.1) and Saito’s strictness-type result on the commutation
of the direct image functor with the graded pieces of the de Rham complex (see, e.g. [48, §2.3.7]), we
deduce that

Gr𝐹𝑖−𝑛DR𝑋
(
𝑗∗Q𝐻

𝑈 [𝑛]
)
� R 𝑓∗Gr𝐹𝑖−𝑛DR𝑌

(
𝑗 ′∗Q𝐻

𝑉 [𝑛]
)
� R 𝑓∗Ω𝑛−𝑖

𝑌 (log 𝐸) [𝑖] . �

Proof of Theorem 4.2. Recall from §2.3 that the filtered left 𝒟𝑋 -modules 𝑅𝑞−1 𝑗∗𝒪𝑈 underlie the co-
homologies of 𝑗∗Q𝐻

𝑈 [𝑛] and that they coincide with the local cohomology modules H𝑞
𝑍 (𝒪𝑋 ) (modulo

𝒪𝑋 when 𝑞 = 1). In particular, the Hodge filtration on H𝑞
𝑍 (𝒪𝑋 ) is generated at level k if and only if the

Hodge filtration on 𝑅𝑞−1 𝑗∗𝒪𝑈 is generated at level k. On the other hand, by Lemma 4.1, the latter is
generated at level k if and only if

H0Gr𝐹𝑖−𝑛DR𝑋 (𝑅𝑞−1 𝑗∗𝒪𝑈 ) = 0 for all 𝑖 > 𝑘.

Therefore, the statement of the theorem follows once we prove the following:
Claim: For q as in the hypothesis, we have

H0Gr𝐹𝑖−𝑛DR𝑋 (𝑅
𝑞−1 𝑗∗𝒪𝑈 ) � 𝑅

𝑞−1+𝑖 𝑓∗Ω
𝑛−𝑖
𝑌 (log 𝐸) for all 𝑖 ∈ Z.
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To this end, we need to compare the graded quotients of the filtered de Rham complex of 𝑗∗Q𝐻
𝑈 [𝑛]

with those of the filtered de Rham complexes of its cohomology sheaves. We use the spectral sequence

𝐸 𝑝𝑝
′

2 = H𝑝Gr𝐹𝑖−𝑛DR𝑋 (𝑅𝑝
′

𝑗∗𝒪𝑈 ) =⇒ H𝑝+𝑝′Gr𝐹𝑖−𝑛DR𝑋
(
𝑗∗Q𝐻

𝑈 [𝑛]
)
,

given by (2.2). Since the de Rham complex of a 𝒟𝑋 -module is supported in nonpositive cohomological
degrees, we have 𝐸 𝑝𝑝

′

2 = 0 if 𝑝 > 0. On the other hand, by hypothesis 𝑅𝑝′ 𝑗∗𝒪𝑈 = 0 for 𝑝′ ≥ 𝑞, hence,
𝐸 𝑝𝑝

′

2 = 0 if 𝑝′ ≥ 𝑞. First, this immediately implies that

𝐸0,𝑞−1
2 = 𝐸0,𝑞−1

∞ .

Second, we see that for all 𝑝 ≠ 0, we have 𝐸 𝑝,𝑞−1−𝑝
2 = 0, hence, 𝐸 𝑝,𝑞−1−𝑝

∞ = 0 as well. Looking at all
the terms for which 𝑝 + 𝑝′ = 𝑞 − 1, we, thus, have

H0Gr𝐹𝑖−𝑛DR𝑋 (𝑅𝑞−1 𝑗∗𝒪𝑈 ) � H𝑞−1Gr𝐹𝑖−𝑛DR𝑋
(
𝑗∗Q𝐻

𝑈 [𝑛]
)
� 𝑅𝑞−1+𝑖 𝑓∗Ω

𝑛−𝑖
𝑌 (log 𝐸),

where the second isomorphism follows from Lemma 4.4. This proves the claim. �

Remark 4.5. With the notation in Theorem 4.2, we note that each 𝑅𝑖 𝑓∗Ω 𝑗
𝑌 (log 𝐸) is independent of

the log resolution f. This follows in the usual way, comparing two log resolutions with a third one that
dominates both of them, using the fact that if E is a reduced SNC divisor on the smooth variety Y and if
𝑔 : 𝑌 ′ → 𝑌 is a proper morphism that is an isomorphism over𝑌 \Supp(𝐸) and, such that, 𝐸 ′ = 𝑔∗(𝐸)red
is again an SNC divisor, then for all j, we have

𝑔∗Ω
𝑗
𝑌 ′ (log 𝐸 ′) = Ω 𝑗

𝑌 (log 𝐸) and 𝑅𝑖𝑔∗Ω
𝑗
𝑌 ′ (log 𝐸 ′) = 0 for 𝑖 > 0

(see [12, Lemmas 1.2 and 1.5] or [36, Theorem 31.1]).

Example 4.6 (Top cohomology). It follows from Theorem 4.2 that the Hodge filtration 𝐹•H𝑛
𝑍 (𝒪𝑋 ) is

generated at level 0 for every 𝑍 ⊆ 𝑋 .

Example 4.7 (Next to top cohomology). We will see in Corollary 4.20 below that 𝐹•H𝑛−1
𝑍 (𝒪𝑋 ) is

generated at level 0 for every 𝑍 ⊆ 𝑋 .

Example 4.8 (Smooth subvarieties). The explicit description in Example 2.7 implies that if Z is a
smooth, irreducible subvariety of X, of codimension r, then the Hodge filtration on H𝑟

𝑍 (𝒪𝑋 ) is generated
at level 0. We can also deduce this from Theorem 4.2. Indeed, a log resolution of (𝑋, 𝑍) is given by
the blow-up 𝑓 : 𝑌 → 𝑋 along Z. If E is the exceptional divisor, then the condition in Theorem 4.2 for
having generation at level 0 is that

𝑅𝑟−1+𝑖 𝑓∗Ω
𝑛−𝑖
𝑌 (log 𝐸) = 0 for 𝑖 > 0.

This follows from the fact that all the fibres of f have dimension ≤ 𝑟 − 1.

Here are also some classes of examples where the generation level is known for different reasons.

Example 4.9 (Monomial ideals). If 𝐴 = C[𝑥1, . . . , 𝑥𝑛] and 𝐼 ⊆ 𝐴 is a monomial ideal, then the
Hodge filtration on 𝐻𝑞𝐼 (𝐴) is generated at level 0 for all q. As we have mentioned in Example 2.8, the
multiplication map

𝐻𝑞𝐼 (𝐴)𝑢−𝑒𝑖
𝑥𝑖
−→ 𝐻𝑞𝐼 (𝐴)𝑢

is an isomorphism whenever 𝑢𝑖 ≠ 0. Moreover, an inverse is given by left multiplication with 1
𝑢𝑖
𝜕𝑖 .

The assertion follows immediately from this observation and the description of the Hodge filtration on
𝐻𝑞𝐼 (𝐴) in Example 2.8.
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Example 4.10 (Determinantal varieties). Let 𝑋 � C𝑛2 be the space of 𝑛 × 𝑛 matrices, and let 𝑍𝑘 ⊂ 𝑋
be the determinantal subvariety consisting of matrices of rank ≤ 𝑘 . Perlman [44, Corollary 1.6] shows
that the generation level of H𝑞

𝑍𝑘
(𝒪𝑋 ) is equal to (𝑛2 − 𝑘 − 𝑞)/2. He also proves a similar result, though

more technical to state, for arbitrary matrices.

4.2. A criterion for local cohomological dimension

We now discuss the characterisation of the local cohomological dimension lcd(𝑋, 𝑍) of a closed
subscheme Z in a smooth complex variety X of dimension n in terms of a log resolution 𝑓 : 𝑌 → 𝑋 of
the pair (𝑋, 𝑍). We assume that f is an isomorphism over 𝑋 \ 𝑍; as always, we denote 𝐸 = 𝑓 −1(𝑍)red.
The criterion is stated as Theorem E in the Introduction. Given what was shown in the previous section,
the proof is now immediate:

Proof of Theorem E. We argue by descending induction on c, the case 𝑐 ≥ 𝑛 (when both conditions are
clearly satisfied) being clear. Suppose now that 𝑐 ≥ 1 and we know the assertion for 𝑐 + 1. Then the
condition

𝑅 𝑗+𝑖 𝑓∗Ω
𝑛−𝑖
𝑌 (log 𝐸) = 0 for all 𝑗 ≥ 𝑐, 𝑖 ≥ 0

is equivalent to

lcd(𝑍, 𝑋) ≤ 𝑐 + 1 𝑎𝑛𝑑 𝑅𝑐+𝑖 𝑓∗Ω
𝑛−𝑖
𝑌 (log 𝐸) = 0 for all 𝑖 ≥ 0.

On the other hand, Corollary 4.3 shows that this is, in turn, equivalent to the condition lcd(𝑍, 𝑋) ≤ 𝑐. �

Example 4.11. We write down the criterion in the theorem explicitly in the first few cases. Note that
we remove the terms of the form 𝑅𝑛 𝑓∗(−) from the list in Theorem E, since these vanish automatically.

1. lcd(𝑋, 𝑍) ≤ 𝑛 − 1 ⇐⇒ 𝑅𝑛−1 𝑓∗𝜔𝑌 (𝐸) = 0.

2. lcd(𝑋, 𝑍) ≤ 𝑛 − 2 ⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑅𝑛−1 𝑓∗Ω𝑛−1

𝑌 (log 𝐸) = 0
𝑅𝑛−1 𝑓∗𝜔𝑌 (𝐸) = 0
𝑅𝑛−2 𝑓∗𝜔𝑌 (𝐸) = 0

.

Remark 4.12 (Ogus’ theorem and comparison). A previous full characterisation of local cohomological
dimension was provided by Ogus [43, Theorem 2.13]. His criterion is of a quite different topological
flavor, in terms of Hartshorne’s local algebraic de Rham cohomology (which on complex algebraic
varieties can be identified with singular cohomology). As Ogus observes, it depends crucially on the
behavior of local de Rham cohomology at nonclosed points as well; he notes in loc. cit. (see the remark
before Example 2.17) that it is desirable to have a criterion that works at a single point and does not
depend on generalisations. Theorem E, here, provides such a criterion, expressed in terms of finitely
many coherent algebraic sheaves.

This being said, Ogus’ and our conditions should be equivalent. This seems quite delicate; at the
moment, we do not understand this even in relatively simple cases (cf., for instance, Example 4.23
below). The connection may have to do with properties of the (local) cohomology of Du Bois complexes
yet to be discovered.

Remark 4.13. B. Bhatt and M. Saito independently pointed out to us that one can use the Riemann-
Hilbert correspondence to give the following characterisation of local cohomological dimension in
terms of the perverse cohomology of the constant sheaf C𝑍 an :

lcd(𝑋, 𝑍) = dim(𝑋) − min
{
𝑗 ∈ Z | 𝑝H 𝑗 (C𝑍 an ) ≠ 0

}
(see [4] and [54]). For example, this is used in [4] in order to give another proof of Ogus’ characterisation
of local cohomological dimension.
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Remark 4.14 (Analytic setting). While this paper is written in the language of algebraic varieties for
uniformity, we point out that the characterisation of local cohomological dimension in Theorem E (as
well as Theorem D on local vanishing) holds when Z is an analytic subspace of a complex manifold
X as well. The reason is that all arguments, including Theorem 4.2, are based on the construction and
formal properties discussed in §2.4, which work in this setting (see Remark 2.11).

Before moving on to applications, we recall that much of the focus in the literature is on bounds on
lcd(𝑋, 𝑍) in terms of depth(𝒪𝑍 ). We note that in our context, this depth has a clear role related to the
vanishing of the first step of the Hodge filtration:

Lemma 4.15. For every Z, we have

𝐹0H𝑞
𝑍 (𝒪𝑋 ) = 0 for all 𝑞 > 𝑛 − depth(𝒪𝑍 ) = pd(𝒪𝑍 ).

Moreover, if Z has du Bois singularities, then

𝐹0H𝑞
𝑍 (𝒪𝑋 ) ≠ 0 for 𝑞 = 𝑛 − depth(𝒪𝑍 ) = pd(𝒪𝑍 ).

Proof. The equality 𝑛 − depth(𝒪𝑍 ) = pd(𝒪𝑍 ) is given by the Auslander-Buchsbaum formula. Then a
well-known characterisation of pd(𝒪𝑍 ) gives

𝑛 − depth(𝒪𝑍 ) = max
{
𝑞 | E𝑥𝑡𝑞

𝒪𝑋
(𝒪𝑍 ,𝒪𝑋 ) ≠ 0

}
.

The first assertion is then an immediate application of Corollaries 2.10 and B. For the converse in the
case of Du Bois singularities, we use in addition Theorem C. �

It is helpful to record that this allows us to bypass Theorem 4.2 if the generation level of the Hodge
filtration is a priori known to be optimal.

Corollary 4.16. If the Hodge filtration on H𝑞
𝑍 (𝒪𝑋 ) is generated at level 0, then

H𝑞
𝑍 (𝒪𝑋 ) = 0 ⇐⇒ 𝑅𝑞−1 𝑓∗𝜔𝐸 = 0.4

In particular, if the hypothesis holds for the Hodge filtration on all H𝑞
𝑍 (𝒪𝑋 ), then

lcd(𝑋, 𝑍) ≤ 𝑛 − depth(𝒪𝑍 ).

Proof. This follows immediately from Lemma 4.15 and the results cited in its proof. �

Remark 4.17. Note that if Z is either Cohen-Macaulay or has Du Bois singularities, then

lcd(𝑋, 𝑍) ≥ 𝑛 − depth(𝒪𝑍 ).

In the Du Bois case, this follows directly from Lemma 4.15. On the other hand, if Z is Cohen-Macaulay,
then 𝑛 − depth(𝒪𝑍 ) = 𝑛 − dim(𝑍) = codim𝑋 (𝑍) and the inequality follows from Remark 2.2.

In order to state the consequences of Theorem E in the desired level of generality, it is convenient to
also consider the local cohomological dimension at a (possibly nonclosed) point 𝜉 ∈ 𝑍 . We define

lcd𝜉 (𝑋, 𝑍) := max
𝜉 ∈𝑈

lcd(𝑈, 𝑍 ∩𝑈),

where the maximum is taken over the open neighbourhoods U of 𝜉. Recall that the support of every
local cohomology sheaf H𝑞

𝑍 (𝒪𝑋 ) is closed: this follows, for instance, from the fact that H𝑞
𝑍 (𝒪𝑋 ) has the

structure of a coherent 𝒟𝑋 -module, hence, its support is the image of its characteristic variety, which is

4Recall that for 𝑞 ≥ 2, we have an isomorphism 𝑅𝑞−1 𝑓∗𝜔𝐸 � 𝑅𝑞−1 𝑓∗𝜔𝑌 (𝐸) .
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a conical subvariety of the cotangent bundle 𝑇∗𝑋 . Since local cohomology commutes with localisation,
we see that if 𝑅 = 𝒪𝑋, 𝜉 and 𝔞 = I𝑍 · 𝑅, then

lcd𝜉 (𝑋, 𝑍) = max{𝑞 | 𝐻𝑞𝔞 (𝑅) ≠ 0}.

In particular, we have lcd𝜉 (𝑋, 𝑍) ≤ codim𝑋 (𝜉). It is clear that we also have

lcd(𝑋, 𝑍) = min
𝜉 ∈𝑍

lcd𝜉 (𝑋, 𝑍) = min
𝑥∈𝑍

lcd𝑥 (𝑋, 𝑍),

where 𝜉 runs over all (possibly nonclosed) points of Z and x runs over all closed points of Z. For instance,
here is Example 4.11 revisited in this more general setting.

Example 4.18. Let 𝜉 ∈ 𝑍 be a point with codim𝑋 (𝜉) = 𝑟 . Note that for every p and every 𝑞 ≥ 𝑟 , we
have 𝑅𝑞 𝑓∗Ω𝑝

𝑌 (log 𝐸) = 0 in some neighbourhood of 𝜉 (in which the fibres of f have dimension ≤ 𝑟 −1).

1. lcd𝜉 (𝑋, 𝑍) ≤ 𝑟 − 1 ⇐⇒ 𝑅𝑟−1 𝑓∗𝜔𝑌 (𝐸)𝜉 = 0.

2. lcd𝜉 (𝑋, 𝑍) ≤ 𝑟 − 2 ⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑅𝑟−1 𝑓∗Ω𝑛−1

𝑌 (log 𝐸)𝜉 = 0
𝑅𝑟−1 𝑓∗𝜔𝑌 (𝐸)𝜉 = 0
𝑅𝑟−2 𝑓∗𝜔𝑌 (𝐸)𝜉 = 0

.

Moving on to applications, Theorem E leads to previously known results on local cohomological
dimension, as well as to new results, in a unified fashion. We organise this in decreasing order of the
possible values of lcd(𝑋, 𝑍).

Cohomological dimension 𝑛 − 1. Here, we obtain rather quickly the following special case (i.e. when
X is smooth) of a well-known result (see [16, Theorem 3.1], [43, Corollary 2.10]).

Corollary 4.19 (Hartshorne-Lichtenbaum theorem, smooth case). We have

lcd(𝑋, 𝑍) ≤ 𝑛 − 1 ⇐⇒ 𝑍 has no isolated points.

More generally, if 𝜉 ∈ 𝑍 is a point with codim𝑋 (𝜉) = 𝑟 , then lcd𝜉 (𝑋, 𝑍) ≤ 𝑟 − 1 if and only if {𝜉} is
not an irreducible component of Z.

Proof. The first assertion is a special case of the second one, by letting 𝜉 run over the closed points of Z.
We, thus, focus on the second assertion. Consider the local ring 𝑅 = 𝒪𝑋, 𝜉 , with maximal ideal 𝔪, and
𝔞 = I𝑍 · 𝑅. If {𝜉} is an irreducible component of Z, then 𝔞 is 𝔪-primary, hence, 𝐻𝑟𝔞 (𝑅) = 𝐻𝑟𝔪 (𝑅) ≠ 0.

Suppose now that 𝑊 := {𝜉} is not an irreducible component of Z. In particular, we have 𝑟 ≥ 2. By
Example 4.18(1), in order to show that lcd𝜉 (𝑋, 𝑍) ≤ 𝑟−1, it is enough to show that 𝑅𝑟−1 𝑓∗𝜔𝑌 (𝐸)𝜉 = 0.

After possibly replacing X by a suitable open neighbourhood of 𝜉, we may assume that the image of
every irreducible component of E contains W. We write 𝐸 = 𝐸1 + · · · + 𝐸𝑚 + 𝐹, where the 𝐸𝑖 are the
prime components of E, such that 𝑓 (𝐸𝑖) = 𝑊 . Since W is not an irreducible component of Z, it follows
that 𝑓 (𝐹) = 𝑍 . Moreover, since the fibre 𝑓 −1(𝜉) is connected, it follows that after possibly reordering
the 𝐸𝑖 , we may assume that for every i, with 1 ≤ 𝑖 ≤ 𝑚, the intersection 𝐸𝑖 ∩ (𝐸𝑖+1 + · · · + 𝐸𝑚 + 𝐹)
dominates W.

If 𝑚 ≥ 1, let us write 𝐸 = 𝐸1 + 𝐸
′. The short exact sequence

0 → 𝜔𝑌 (𝐸
′) → 𝜔𝑌 (𝐸) → 𝜔𝐸1 (𝐸

′ |𝐸1 ) → 0

gives an exact sequence

𝑅𝑟−1 𝑓∗𝜔𝑌 (𝐸
′) → 𝑅𝑟−1 𝑓∗𝜔𝑌 (𝐸) → 𝑅𝑟−1 𝑓∗𝜔𝐸1 (𝐸

′ |𝐸1).
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Note that 𝑅𝑟−1 𝑓∗𝜔𝐸1 (𝐸
′ |𝐸1 )𝜉 = 0. Indeed, 𝐸1, 𝜉 := 𝐸1 ×𝑊 Spec C(𝜉) is a smooth projective variety

over Spec C(𝜉) of dimension 𝑟 − 1, and the pullback of 𝐸 ′ |𝐸1 to 𝐸1, 𝜉 is a nonzero effective Cartier
divisor T, so that

𝑅𝑟−1 𝑓∗𝜔𝐸1 (𝐸
′ |𝐸1)𝜉 � 𝐻𝑟−1 (𝐸1, 𝜉 , 𝜔𝐸1, 𝜉 (𝑇)

)
� 𝐻0 (𝐸1, 𝜉 ,𝒪𝐸1, 𝜉 (−𝑇)

)∨ = 0.

We, thus, conclude that it is enough to show that 𝑅𝑟−1 𝑓∗𝜔𝑌 (𝐸
′)𝜉 = 0. Iterating the above argument,

we see that it is, therefore, enough to show that 𝑅𝑟−1 𝑓∗𝜔𝑌 (𝐹)𝜉 = 0. The short exact sequence

0 → 𝜔𝑌 → 𝜔𝑌 (𝐹) → 𝜔𝐹 → 0

and Grauert-Riemenschneider vanishing (recall that 𝑟 ≥ 2) finally imply that it suffices to show that
𝑅𝑟−1 𝑓∗𝜔𝐹 = 0 in a neighbourhood of 𝜉. This follows from the fact that there is such a neighbourhood
over which all fibres of 𝐹 → 𝑊 have dimension ≤ 𝑟 − 2. �

Cohomological dimension 𝑛−2. Without any extra work, Theorem 4.2 guarantees that if H𝑛
𝑍 (𝒪𝑋 ) = 0,

the Hodge filtration onH𝑛−1
𝑍 (𝒪𝑋 ) is generated at level 1. It turns out that things are, in fact, always better:

Corollary 4.20. The Hodge filtration on H𝑛−1
𝑍 (𝒪𝑋 ) is generated at level 0.

Proof. We may assume 𝑛 ≥ 2, since the assertion is trivial if 𝑛 = 1. Around an isolated point of Z, we
have H𝑖

𝑍 (𝒪𝑋 ) = 0 for all 𝑖 < 𝑛, hence, the assertion is clear. On the other hand, on the complement of
the isolated points of Z, we have H𝑛

𝑍 (𝒪𝑋 ) = 0 by Corollary 4.19. We can, thus, apply Theorem 4.2, and
the only vanishing that needs to be checked is

𝑅𝑛−1 𝑓∗Ω
𝑛−1
𝑌 (log 𝐸) = 0.

This is a general phenomenon for any Z and any log resolution, the subject of Theorem 4.24, which will
be treated separately at the end of this section. �

This leads us to the following alternative to the characterisation of Hartshorne and Ogus [43, Corollary
2.11] (see also Remark 4.23):

Corollary 4.21. If Z has no isolated points, then

lcd(𝑋, 𝑍) ≤ 𝑛 − 2 ⇐⇒ 𝑅𝑛−2 𝑓∗𝜔𝑌 (𝐸) = 0.

More generally, if 𝜉 ∈ 𝑍 is a point with codim𝑋 (𝜉) = 𝑟 and, such that, {𝜉} is not an irreducible
component of Z, then

lcd𝜉 (𝑋, 𝑍) ≤ 𝑟 − 2 ⇐⇒ 𝑅𝑟−2 𝑓∗𝜔𝑌 (𝐸)𝜉 = 0.

Proof. The first part follows immediately from Corollaries 4.16 and 4.20.
More generally, for the second assertion, by hypothesis and Corollary 4.19, we already know that

𝑅𝑟−1 𝑓∗𝜔𝑌 (𝐸)𝜉 = 0. In view of Example 4.18(2), we are done if we have 𝑅𝑟−1 𝑓∗Ω𝑛−1
𝑌 (log 𝐸)𝜉 = 0 as

well. This is, again, part of the general Theorem 4.24 below. �

As an immediate consequence of Corollary 4.21 and of a suitable extension of Lemma 4.15, we
recover Ogus’ result [43, Remark pp. 338–339]:

Corollary 4.22 (Ogus’ theorem). If 𝜉 ∈ 𝑍 is, such that, codim𝑋 (𝜉) = 𝑟 and we have depth(𝒪𝑍, 𝜉 ) ≥ 2,
then lcd𝜉 (𝑋, 𝑍) ≤ 𝑟 − 2.

This happens, for instance, if Z is normal and 𝜉 is a point of codimension at least 2.
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Remark 4.23. This case of local cohomological dimension 𝑛 − 2 provides the first instance of the
intricacy of the comparison with Ogus’ theorem discussed in Remark 4.12. Recall that, in answer to a
conjecture of Hartshorne, Ogus showed in [43, Corollary 2.11] that, say at a closed point 𝑥 ∈ 𝑍 , one has
lcd𝑥 (𝑋, 𝑍) ≤ 𝑛 − 2 if and only if the punctured spectrum Spec(𝒪𝑍,𝑥) \ {𝔪} is formally geometrically
connected, which, in turn, is equivalent to the vanishing of the local singular cohomology 𝐻1

𝑥 (𝑍,C).
Thus, the equivalence between our criterion in Corollary 4.21 and Ogus’ criterion becomes, with the
notation above:

𝑅𝑛−2 𝑓∗𝜔𝑌 (𝐸)𝑥 = 0 ⇐⇒ 𝐻1
𝑥 (𝑍,C) = 0.

With the currently available methods, at the moment we only know how to prove that our condition
implies that of Ogus, that is, the implication from left to right.

To complete this circle of ideas, we need to establish the missing ingredient in the proof of
Corollary 4.20 and Corollary 4.21. We show that

𝑅𝑛−1 𝑓∗Ω
𝑗
𝑌 (log 𝐸) = 0 for all 𝑗 ≤ 𝑛 − 1,

for any proper closed subscheme Z of a smooth n-dimensional variety X, and any log resolution of
(𝑋, 𝑍). In fact, we prove the following more general result taking into account nonclosed points; it can
be read completely independently of the rest of the paper.

Theorem 4.24. With the notation above, if 𝜉 ∈ 𝑍 is a point with codim𝑋 (𝜉) = 𝑟 ≥ 2, then

𝑅𝑟−1 𝑓∗Ω
𝑗
𝑌 (log 𝐸)𝜉 = 0 for all 𝑗 ≤ 𝑟 − 1.

Moreover, if {𝜉} is not an irreducible component of Z, then the same vanishing holds for all 𝑗 ∈ Z.

Before giving the proof, we need some preparations. We begin with a lemma that allows us to reduce
the proof of statements like the one in Theorem 4.24 to the case when 𝜉 is a closed point. We consider
the following setup. Suppose that H is a general member of a base-point free linear system on X and
𝑔 : 𝐻𝑌 → 𝐻 is the morphism induced by f, where𝐻𝑌 = 𝑓 ∗𝐻. Note that by the Kleiman-Bertini theorem,
H and 𝐻𝑌 are smooth (though possibly disconnected) and 𝐻𝑌 + 𝐸 is a SNC divisor. Therefore, g is a
log resolution of (𝐻, 𝑍 ∩ 𝐻), which is an isomorphism over 𝐻 \ 𝑍 , and 𝐸 |𝐻𝑌 = 𝑔−1(𝑍 ∩ 𝐻)red.

Lemma 4.25. With the above notation, we have

𝑅𝑖 𝑓∗Ω
𝑗
𝑌 (log 𝐸) ·𝒪𝐻 � 𝑅𝑖𝑔∗

(
Ω 𝑗
𝑌 (log 𝐸) ·𝒪𝐻𝑌

)
for all 𝑖, 𝑗 .

Moreover, for every i and every q, if

𝑅𝑖𝑔∗Ω
𝑗
𝐻𝑌

(log 𝐸 |𝐻𝑌 ) = 0 for all 𝑗 ≤ 𝑞, then

𝑅𝑖 𝑓∗Ω
𝑗
𝑌 (log 𝐸) ·𝒪𝐻 = 0 for all 𝑗 ≤ 𝑞.

Proof. Let 𝛼 : 𝐻 ↩→ 𝑋 and 𝛽 : 𝐻𝑌 ↩→ 𝑌 be the inclusion maps. Since Y and H are Tor-independent
over X, the canonical base-change morphism

L𝛼∗R 𝑓∗Ω 𝑗
𝑌 (log 𝐸) → R𝑔∗L𝛽∗Ω 𝑗

𝑌 (log 𝐸)

is an isomorphism (see [57, Lemma 36.22.5]). Since H is general, we have
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H𝑖 (L𝛼∗R 𝑓∗Ω 𝑗
𝑌 (log 𝐸)

)
= 𝑅𝑖 𝑓∗Ω

𝑗
𝑌 (log 𝐸) ·𝒪𝐻 and

H𝑖 (R𝑔∗L𝛽∗Ω 𝑗
𝑌 (log 𝐸)

)
= 𝑅𝑖𝑔∗

(
Ω 𝑗
𝑌 (log 𝐸) ·𝒪𝐻𝑌

)
.

This gives the first assertion in the lemma.
For the second assertion, note that since 𝐻𝑌 + 𝐸 is a SNC divisor, we have an exact sequence of

locally free sheaves on 𝐻𝑌 :

0 → 𝒪𝐻𝑌 (−𝐻𝑌 ) → Ω1
𝑌 (log 𝐸) ·𝒪𝐻𝑌 → Ω1

𝐻𝑌
(log 𝐸 |𝐻𝑌 ) → 0.

This implies that for every j, the sheaf Ω 𝑗
𝑌 (log 𝐸) ·𝒪𝐻𝑌 has a filtration with successive quotients

𝒪𝐻𝑌 (−𝑝𝐻𝑌 ) ⊗𝒪𝐻𝑌
Ω 𝑗−𝑝
𝐻𝑌

(log 𝐸 |𝐻𝑌 ) for 0 ≤ 𝑝 ≤ 𝑗 .

The statement then follows by taking the long exact sequences for higher direct images, using the first
assertion and the fact that by the projection formula, we have

𝑅𝑖𝑔∗
(
𝒪𝐻𝑌 (−𝑝𝐻𝑌 ) ⊗𝒪𝐻𝑌

Ω 𝑗−𝑝
𝐻𝑌

(log 𝐸 |𝐻𝑌 )
)
� 𝒪𝐻 (−𝑝𝐻) ⊗𝒪𝐻 𝑅

𝑖𝑔∗Ω
𝑗−𝑝
𝐻𝑌

(log 𝐸 |𝐻𝑌 ). �

We next give a couple of easy lemmas regarding the pushforward of sheaves of log differentials under
smooth blow ups. Let us fix first some notation. Suppose that W is a smooth, irreducible codimension r
subvariety of the smooth n-dimensional variety X. Let 𝜋 : 𝑋 ′ → 𝑋 be the blow up of X along W, with
exceptional divisor F. Suppose that D is a reduced SNC divisor on X, that also has SNC with W, and let
𝐷 ′ = 𝐷 + 𝐹, where 𝐷 is the strict transform of D.

Lemma 4.26. With the above notation, if𝑊 ⊆ Supp(𝐷), then

𝑅𝑖𝜋∗Ω
𝑗
𝑋 ′ (log𝐷 ′) =

{
Ω 𝑗
𝑋 (log𝐷), if 𝑖 = 0;

0, otherwise.

Proof. This is well known, see, for example [12, Lemmas 1.2 and 1.5] or [36, Theorem 31.1] for a more
general statement. �

Lemma 4.27. With the above notation, if𝑊 � Supp(𝐷) and 𝑟 ≥ 2, then

𝑅𝑖𝜋∗Ω
𝑗
𝑋 ′ (log𝐷 ′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ω 𝑗
𝑋 (log𝐷), if 𝑖 = 0;

Ω 𝑗−𝑟
𝑊 (log𝐷 |𝑊 ), if 𝑖 = 𝑟 − 1;

0, otherwise.

Proof. This is also well known, but we include an argument for the lack of a good reference. Arguing
locally, we may assume that there is a smooth divisor H containing W, such that 𝐺 = 𝐷 + 𝐻 has SNC,
and also has SNC with W; for example, if we have local algebraic coordinates 𝑥1, . . . , 𝑥𝑛 on X, such that
W is defined by the ideal (𝑥1, . . . , 𝑥𝑟 ) and D is defined by 𝑥𝑟+1 · · · 𝑥𝑟+𝑠 , then we may take H to be defined
by 𝑥1. Let 𝐺 ′ = 𝐷 ′ + 𝐻, where 𝐻 is the strict transform of H. Note that if 𝑟 = 2, then the induced map
𝜑 : 𝐻 → 𝐻 is an isomorphism and the inverse image of W is 𝐹 |𝐻 . On the other hand, if 𝑟 ≥ 3, then 𝜑 is
the blow up of H along W, with exceptional divisor 𝐹 |𝐻 and we can apply induction for the divisor 𝐷 |𝐻 .

On 𝑋 ′, we have the short exact sequence

0 → Ω 𝑗
𝑋 ′ (log𝐷 ′) → Ω 𝑗

𝑋 ′ (log𝐺 ′) → Ω 𝑗−1
𝐻

(log𝐷 ′ |𝐻 ) → 0. (4.2)
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Note that by Lemma 4.26, we have

𝑅𝑖𝜋∗Ω
𝑗
𝑋 ′ (log𝐺 ′) �

{
Ω 𝑗
𝑋 (log𝐺), if 𝑖 = 0;

0, otherwise.
(4.3)

We prove the assertion in the lemma by induction on 𝑟 ≥ 2. Suppose first that 𝑟 = 2. Pushing forward
the exact sequence (4.2) and using (4.3), we obtain an exact sequence

0 → 𝜋∗Ω
𝑗
𝑋 ′ (log𝐷 ′) → Ω 𝑗

𝑋 (log𝐺) 𝛼
−→ Ω 𝑗−1

𝐻

(
log (𝐷 |𝐻 +𝑊)

)
→ 𝑅1𝜋∗Ω

𝑗
𝑋 ′ (log𝐷 ′) → 0.

Note that 𝛼 is the composition

Ω 𝑗
𝑋 (log𝐺) → Ω 𝑗−1

𝐻 (log𝐷 |𝐻 ) → Ω 𝑗−1
𝐻

(
log (𝐷 |𝐻 +𝑊)

)
,

where the first map is surjective and the second one is injective. We, thus, see that

𝜋∗Ω
𝑗
𝑋 ′ (log𝐷 ′) � Ω 𝑗

𝑋 (log𝐷) and 𝑅1𝜋∗Ω
𝑗
𝑋 ′ (log𝐷 ′) � Ω 𝑗−2

𝑊 (log𝐷 |𝑊 ).

Since 𝜋 has fibres of dimension ≤ 1, we deduce that 𝑅𝑖𝜋∗Ω 𝑗
𝑋 ′ (log𝐷 ′) = 0 for 𝑖 ≥ 2, which completes

the proof for 𝑟 = 2.
Suppose now that 𝑟 ≥ 3 and that we know the assertion for 𝑟 −1. Pushing forward the exact sequence

(4.2) and using (4.3) together with the inductive assumption, we first see that for 𝑖 ≥ 2, we have

𝑅𝑖𝜋∗Ω
𝑗
𝑋 ′ (log𝐷 ′) � 𝑅𝑖−1𝜑∗Ω

𝑗−1
𝐻

(log𝐷 ′ |𝐻 ) =

{
Ω 𝑗−𝑟
𝑍 (log𝐷 |𝑍 ), if 𝑖 = 𝑟 − 1;

0, otherwise.

We also get an exact sequence

0 → 𝜋∗Ω
𝑗
𝑋 ′ (log𝐷 ′) → Ω 𝑗

𝑋 (log𝐺)
𝛽

−→ Ω 𝑗−1
𝑍 (log𝐷 |𝐻 ) → 𝑅1𝜋∗Ω

𝑗
𝑋 ′ (log𝐷 ′) → 0.

We, thus, conclude that

𝜋∗Ω
𝑗
𝑋 ′ (log𝐷 ′) � ker(𝛽) � Ω 𝑗

𝑋 (log𝐷) and 𝑅1𝜋∗Ω
𝑗
𝑋 ′ (log𝐷 ′) � coker(𝛽) = 0.

This completes the proof of the lemma. �

Proof of Theorem 4.24. We may and will assume that X is affine and fix a linear system of divisors on X
obtained by restricting a complete, very ample linear system on a projective completion of X. Suppose
first that 𝑟 < 𝑛 and that H is a general element in our linear system, such that 𝐻 ∩ {𝜉} is nonempty. If
we knew the assertions in the theorem for g and for the irreducible components of 𝐻 ∩ {𝜉} (which have
codimension r in H), then we would get using Lemma 4.25 that 𝑅𝑟−1 𝑓∗Ω

𝑗
𝑌 (log 𝐸) ·𝒪𝐻 vanishes at some

point of 𝐻 ∩ {𝜉} for all j (we assume 𝑗 ≤ 𝑟 − 1 if {𝜉} is an irreducible component of Z). By Nakayama’s
lemma, we then deduce that 𝑅𝑟−1 𝑓∗Ω

𝑗
𝑌 (log 𝐸) vanishes at some point of {𝜉} and, thus, its stalk at 𝜉 is 0.

After repeating this several times, we reduce to the case when 𝜉 is a closed point, hence, 𝑟 = 𝑛. Since
the case 𝑗 = 𝑛 follows from Corollary 4.19, we only need to prove

𝑅𝑛−1 𝑓∗Ω
𝑗
𝑌 (log 𝐸) = 0 for all 𝑗 < 𝑛. (4.4)

Suppose that we have a sequence of morphisms:

𝑋𝑁
𝑔𝑁
−→ 𝑋𝑁−1

𝑔𝑁−1
−→ · · ·

𝑔2
−→ 𝑋1

𝑔1
−→ 𝑋0 = 𝑋
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with the following properties:

i) For every i with 0 ≤ 𝑖 ≤ 𝑁 − 1, we have a smooth, irreducible subvariety 𝑍𝑖 of 𝑋𝑖 of codimension
≥ 2, such that 𝑔𝑖+1 is the blow up of 𝑋𝑖 along 𝑍𝑖 , with exceptional divisor 𝐸𝑖+1; in particular,
𝑋1, . . . , 𝑋𝑁 are smooth.

ii) For every i with 1 ≤ 𝑖 ≤ 𝑁 , if

𝐷𝑖 =
(
𝑔∗𝑖 (𝐷𝑖−1) + 𝐸𝑖

)
red

(with the convention 𝐷0 = 0), then 𝐷𝑖 has SNC, and also has SNC with 𝑍𝑖 for 𝑖 ≤ 𝑁 − 1.
iii) All 𝑍𝑖 lie inside the inverse image of Z.

For every i, let us denote by 𝑓𝑖 the composition 𝑋𝑖 → 𝑋 . In order to prove (4.4), it is enough to show
by induction on 𝑁 ≥ 0 that under these assumptions

𝑅𝑛−1 ( 𝑓𝑁 )∗Ω
𝑗
𝑋𝑁

(log𝐷𝑁 ) = 0 for 0 ≤ 𝑗 ≤ 𝑛 − 1.

Indeed, we can find a sequence of morphisms as above, such that 𝑓𝑁 gives a log resolution of (𝑋, 𝑍) as
in the statement of the theorem. Since the sheaf 𝑅𝑛−1 𝑓∗Ω

𝑗
𝑌 (log 𝐸) is independent of the resolution (see

Remark 4.5), we obtain the desired vanishing.
The case 𝑁 = 0, when 𝑓𝑁 is the identity, is trivial, hence, we only need to prove the induction step.

There are two cases to consider. If 𝑍𝑁−1 ⊆ Supp(𝐷𝑁−1), then it follows from Lemma 4.26 that

𝑅𝑛−1 ( 𝑓𝑁 )∗Ω
𝑗
𝑋𝑁

(log𝐷𝑁 ) � 𝑅
𝑛−1( 𝑓𝑁−1)∗Ω

𝑗
𝑋𝑁−1

(log𝐷𝑁−1),

hence, we are done by induction.
Suppose now that 𝑍𝑁−1 � Supp(𝐷𝑁−1), and consider the Leray spectral sequence

𝐸 𝑝,𝑞2 = 𝑅𝑝 ( 𝑓𝑁−1)∗𝑅
𝑞 (𝑔𝑁 )∗Ω

𝑗
𝑋𝑁

(log𝐷𝑁 ) ⇒ 𝑅𝑝+𝑞 ( 𝑓𝑁 )∗Ω
𝑗
𝑋𝑁

(log𝐷𝑁 ).

It follows from Lemma 4.26 that the only possible nonzero terms 𝐸 𝑝,𝑞2 , with 𝑝 + 𝑞 = 𝑛 − 1, are

𝐸𝑛−1,0
2 = 𝑅𝑛−1 ( 𝑓𝑁−1)∗Ω

𝑗
𝑋𝑁−1

(log𝐷𝑁−1) and

𝐸𝑛−𝑟 ,𝑟−1
2 = 𝑅𝑛−𝑟 ( 𝑓𝑁−1)∗Ω

𝑗−𝑟
𝑍𝑁−1

(log𝐷𝑁−1 |𝑍𝑁−1),

where 𝑟 = codim𝑋𝑁−1 (𝑍𝑁−1). We see that 𝐸𝑛−1,0
2 = 0 by induction. Since 𝑍𝑁−1 � Supp(𝐷𝑁−1), the

induced morphism 𝑍𝑁−1 → 𝑓𝑁−1(𝑍𝑁−1) is birational. If dim(𝑍𝑁−1) = 𝑛 − 𝑟 is positive, then this
morphism has fibres of dimension ≤ 𝑛 − 𝑟 − 1, hence, 𝐸𝑛−𝑟 ,𝑟−1

2 = 0. On the other hand, if 𝑟 = 𝑛,
then 𝑗 − 𝑟 < 0, hence, again, 𝐸𝑛−𝑟 ,𝑟−1

2 = 0. We, thus, conclude from the spectral sequence that
𝑅𝑛−1 ( 𝑓𝑁 )∗Ω

𝑗
𝑋𝑁

(log𝐷𝑁 ) = 0, completing the proof of the theorem. �

Cohomological dimension 𝑛 − 3. The pattern of the previous two paragraphs continues for one more
step, by means of the following result of Dao-Takagi [8, Corollary 2.8], conjectured and proved in a
more restrictive setting by Varbaro [61].

Theorem 4.28 (Dao-Takagi-Varbaro theorem). If 𝜉 ∈ 𝑍 is a point with codim𝑋 (𝜉) = 𝑟 and
depth(𝒪𝑍, 𝜉 ) ≥ 3, then lcd𝜉 (𝑋, 𝑍) ≤ 𝑟 − 3.

We will point out below how one can use Theorem E in order to give another proof of this theorem at
a closed isolated singular point, as part of studying a more general related question (see Conjecture 5.9
and Theorem 5.11 below) that will also be useful in studying the Du Bois complex of Z.
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Optimal bounds. It is known that the ideal pattern

depth(𝒪𝑍 ) ≥ 𝑘 =⇒ lcd(𝑋, 𝑍) ≤ 𝑛 − 𝑘

stops, in fact, at 𝑘 = 3 with the result above; in characteristic 0, there are examples of determinantal
subschemes 𝑍 ⊆ A𝑛 for which depth(𝒪𝑍 ) ≥ 4 but lcd(𝑋, 𝑍) ≤ 𝑛 − 3 (see e.g. [8, Example 2.11]). Note
that things are better in positive characteristic, where Peskine and Szpiro [46] showed that, indeed, for
any point 𝜉 ∈ 𝑍 , we have lcd𝜉 (𝑋, 𝑍) ≤ 𝑛 − depth(𝒪𝑍, 𝜉 ).

As a consequence of Theorem E or the surrounding circle of ideas, we do, however, obtain the ideal
result for two classes of subschemes: those with quotient singularities and those given by monomial
ideals. We state the next result here, as it fits well with the current discussion, but for its proof, it is
useful to first read §5.1.

Corollary 4.29 (Quotient singularities). Let Z be a closed, irreducible subscheme of codimension r,
with quotient singularities, in the smooth, irreducible n-dimensional variety X. Then

lcd(𝑋, 𝑍) = 𝑛 − depth(𝒪𝑍 ) = 𝑟.

Proof. First, since quotient singularities are rational, hence, Cohen-Macaulay, the fact that lcd(𝑋, 𝑍) ≥
𝑛 − depth(𝒪𝑍 ) = 𝑟 follows from Remark 4.17. Second, the graded pieces of the Du Bois complex of
quotient singularities have a very simple form. Concretely, by [9, §5], we have quasi-isomorphisms

Ω𝑖𝑍 � Ω[𝑖 ]
𝑍

for each 𝑖 ≥ 0, where the right-hand side is the reflexive hull of Ω𝑖𝑍 . It follows from Corollary 5.3 below
that in order to show that lcd(𝑋, 𝑍) ≤ 𝑟 , it suffices to show

ℰ𝑥𝑡
𝑗+𝑖+1
𝒪𝑋

(
Ω[𝑖 ]
𝑍 , 𝜔𝑋

)
= 0 for all 𝑗 ≥ 𝑟, 𝑖 ≥ 0. (4.5)

But for quotient singularities, we have

depth
(
Ω[𝑖 ]
𝑍

)
= dim 𝑍 = 𝑛 − 𝑟,

which, indeed, implies (4.5). In order to see this, arguing étale locally, we may assume that we have
a morphism 𝜋 : 𝑌 → 𝑍 = 𝑌/𝐺, where Y is smooth and G is a group acting without quasi-reflections.
In this case, we have

Ω[𝑖 ]
𝑍 � (𝜋∗Ω

𝑖
𝑌 )

𝐺

by [58, Lemma 1.8]. This, in turn, is a direct summand of 𝜋∗Ω𝑖𝑌 , since we are in characteristic zero,
and, therefore, has maximal depth 𝑛 − 𝑟 . �

Corollary 4.29 says that the only nontrivial local cohomology sheaf is H𝑟
𝑍 (𝒪𝑋 ), even though Z is not

necessarily a local complete intersection. Due to results of Ogus, this, in turn, implies that subvarieties in
P𝑛 with quotient singularities share other nice features of local complete intersections (cf. [43, Corollary
4.8]) regarding the global cohomological dimension cd(·) of the complement, or of Barth-Lefschetz-
type.

Corollary 4.30. Let 𝑍 ⊂ P𝑛 be a closed subscheme of codimension r, with quotient singularities. Then

1. cd(P𝑛 \ 𝑍) < 2𝑟 − 1;
2. the restriction maps 𝐻𝑖 (P𝑛,C) → 𝐻𝑖 (𝑍,C) are isomorphisms for 𝑖 ≤ 𝑛 − 2𝑟 .

Proof. This holds more generally for any Z which is Cohen-Macaulay and satisfies lcd(P𝑛, 𝑍) = 𝑟 ,
as an immediate consequence of [43, Theorem 4.7]. The second part is stated for algebraic de Rham
cohomology in loc. cit.; over C, this is identified with singular cohomology by [17, Theorem IV.1.1]. �
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Remark 4.31 (Toroidal singularities). If Z has toroidal singularities, it is also the case that Ω𝑖𝑍 � Ω[𝑖 ]
𝑍

for all i (see [14, Chapter V.4]). However, it is known that the depth of Ω[𝑖 ]
𝑍 is not always maximal and,

therefore, the argument above does not go through.5 It would be interesting to have a complete answer
for the local cohomological dimension of such singularities.

We next consider the case of monomial ideals, for which we recover a result of Lyubeznik (see [31,
Theorem 1(iv)]).
Corollary 4.32 (Monomial ideals). If 𝐼 ⊆ 𝐴 = C[𝑋1, . . . , 𝑋𝑛] is a radical monomial ideal (i.e. 𝐴/𝐼 is
a Stanley-Reisner ring), then

lcd(𝐴, 𝐼) = 𝑛 − depth(𝐴/𝐼) = pd(𝐴/𝐼).

Proof. According to Example 4.9, the Hodge filtration on each 𝐻𝑞𝐼 (𝐴) is generated at level 0. It suffices
then to apply Corollary 4.16 and Remark 4.17. Note that, in this case, 𝐴/𝐼 has Du Bois singularities by
[56, Theorem 6.1], as Stanley-Reisner rings have F-injective (even F-pure) type. �

Remark 4.33. Unlike in the case of quotient singularities, Stanley-Reisner rings are not necessarily
Cohen-Macaulay and, therefore, pd(𝐴/𝐼) does not coincide, in general, with codim(𝐼).

5. The Du Bois complex and reflexive differentials

Building on Deligne’s work constructing mixed Hodge structures on the cohomology of algebraic
varieties, Du Bois introduced in [9] a version of the de Rham complex for singular varieties. Given a
(reduced) complex algebraic variety Z, the Du Bois complex of Z is an object Ω•

𝑍 in the derived category
of filtered complexes on Z. Its (shifted) graded pieces Ω𝑝

𝑍 := Gr𝑝𝐹Ω
•
𝑍 [𝑝] are objects in the derived

category of coherent sheaves on Z. There are canonical morphisms Ω𝑝
𝑍 → Ω𝑝

𝑍 that are isomorphisms
over the smooth locus of Z. The condition that this is an isomorphism everywhere on Z for 𝑝 = 0 defines
Du Bois singularities, an important class of singularities (see, e.g. [28] for a survey) that has already
made an appearance in this paper. The complexes Ω𝑝

𝑋 enjoy, in the proper setting, several important
properties of the De Rham complex of smooth varieties. For an introduction to this circle of ideas, see
[47, Chapter 7.3] and [59].

5.1. The Du Bois complex and local cohomological dimension

This is a preliminary section in which we record some basic facts involving the Du Bois complex of Z
and, in particular, reinterpret the vanishing conditions in Theorem E in these terms. A key ingredient is
a description, due to Steenbrink, for the graded pieces of the Du Bois complex of Z via a log resolution
of an ambient variety. Suppose that X is an irreducible complex algebraic variety and Z is a reduced
closed subscheme of X, such that 𝑋 \ 𝑍 is smooth (we will shortly assume that X is smooth, but we want
to state the first result in this slightly more general setting). Let 𝑓 : 𝑌 → 𝑋 be a proper map that is an
isomorphism over 𝑋 \ 𝑍 , with Y smooth and, such that, 𝐸 = 𝑓 −1(𝑍)red is an SNC divisor.
Theorem 5.1 [59, Proposition 3.3]. With the above notation, for each p, we have an isomorphism in
D𝑏

(
Coh(𝑋)

)
:

R 𝑓∗
(
Ω𝑛−𝑝
𝑌 (log 𝐸) (−𝐸)

)
� Ω𝑛−𝑝

𝑋,𝑍 .

Here, Ω𝑛−𝑝
𝑋,𝑍 is the (𝑛 − 𝑝)-th du Bois complex of the pair (𝑋, 𝑍), which sits in an exact triangle

Ω𝑛−𝑝
𝑋,𝑍 → Ω𝑛−𝑝

𝑋 → Ω𝑛−𝑝
𝑍

+1
−→, (5.1)

where the other two terms are the usual du Bois complexes.

5It is known that the depth is maximal for all i in the case of simplicial toric varieties, but these are exactly the toric varieties
that have quotient singularities.
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From now on, we return to our usual assumption that the ambient variety X is smooth. In this case,
we, of course, have Ω𝑛−𝑝

𝑋 � Ω𝑛−𝑝
𝑋 .

We relate 𝑅𝑞 𝑓∗Ω𝑝
𝑌 (log 𝐸) to the Du Bois complex as follows: by Grothendieck duality

R 𝑓∗Ω𝑝
𝑌 (log 𝐸) � R 𝑓∗

(
RH𝑜𝑚(Ω𝑛−𝑝

𝑌 (log 𝐸) (−𝐸), 𝜔𝑌 )
)
� (5.2)

� RH𝑜𝑚
(
R 𝑓∗

(
Ω𝑛−𝑝
𝑌 (log 𝐸) (−𝐸)

)
, 𝜔𝑋

)
,

and, therefore, for each q, we have

𝑅𝑞 𝑓∗Ω
𝑝
𝑌 (log 𝐸) �ℰ𝑥𝑡𝑞

𝒪𝑋

(
R 𝑓∗

(
Ω𝑛−𝑝
𝑌 (log 𝐸) (−𝐸)

)
, 𝜔𝑋

)
. (5.3)

As a consequence, we have:

Lemma 5.2. For every 𝑞 ≥ 1, we have

𝑅𝑞 𝑓∗Ω
𝑝
𝑌 (log 𝐸) �ℰ𝑥𝑡𝑞+1

𝒪𝑋
(Ω𝑛−𝑝

𝑍 , 𝜔𝑋 ).

Proof. By (5.3), Theorem 5.1 and (5.1), both sides are isomorphic to the sheaf ℰ𝑥𝑡𝑞
𝒪𝑋

(Ω𝑛−𝑝
𝑋,𝑍 , 𝜔𝑋 ). �

The above lemma leads to a useful equivalent formulation of Theorem E:

Corollary 5.3. For every positive integer c, the following are equivalent:

1. lcd(𝑋, 𝑍) ≤ 𝑐.
2. ℰ𝑥𝑡

𝑗+𝑖+1
𝒪𝑋

(Ω𝑖𝑍 , 𝜔𝑋 ) = 0 for all 𝑗 ≥ 𝑐 and 𝑖 ≥ 0.

We end this section with the discussion of the example pointed out in Remark 3.17.

Example 5.4. Consider the surjection

𝑅 = C[𝑥1, . . . , 𝑥4] → 𝑆 = C[𝑠4, 𝑠3𝑡, 𝑠𝑡3, 𝑡4],

with kernel I and the corresponding embedding 𝑍 = Spec(𝑆) ↩→ 𝑋 = Spec(𝑅). Note that Z is an
integral variety, with a unique singular point 0, defined by the ideal 𝔪0. The normalisation morphism
𝜋 : 𝑍 → 𝑍 corresponds to the inclusion 𝑆 ↩→ 𝑆 = C[𝑠4, 𝑠3𝑡, 𝑠2𝑡2, 𝑠𝑡3, 𝑡4]. Note that 𝑍 is a toric variety,
hence, it is Du Bois. The morphism 𝜋 is an isomorphism over 𝑍 \ {0} and 𝜋−1 (0) consists of one point.
It, thus, follows from [9, Proposition 3.9] that Ω𝑝

𝑍 � 𝜋∗Ω
𝑝

𝑍
for all p. In particular, we have Ω0

𝑍 � 𝜋∗𝒪𝑍 ,
hence, Z is not Du Bois.

On the other hand, we have 𝐹0𝐻
𝑞
𝐼 (𝑅) = 𝐸0𝐻

𝑞
𝐼 (𝑅) for all q. This is clear for 𝑞 ≠ 2 since, in this case,

𝐻𝑞𝐼 (𝑅) = 0 (for 𝑞 = 3, one can use [43, Corollary 2.11]). Using Lemma 5.2 and graded local duality,
we can identify the graded Matlis dual of the morphism

𝐹0𝐻
2
𝐼 (𝑅) ↩→ 𝐸0𝐻

2
𝐼 (𝑅) (5.4)

with the morphism

𝐻2
𝔪0 (𝑆) → 𝐻2

𝔪0 (𝑆).

This is an isomorphism, as can be seen from the long exact sequence of local cohomology associated to

0 → 𝑆 → 𝑆 → C → 0.

Therefore, (5.4) is an isomorphism.
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5.2. Higher Du Bois singularities for local complete intersections

The Hodge filtration on local cohomology allows us to state and prove a generalisation of the vanishing
theorem for cohomologies of the Du Bois complex of a hypersurface [41, Theorem 1.1], and of its
converse [24, Theorem 1], to the case of local complete intersections of arbitrary codimension.

Before proving the main result, Theorem F, we make some preparations. We begin with a description
of the graded pieces of the Du Bois complex in terms of the de Rham complex of the local cohomology
Hodge module (cf. [41, Lemma 2.1] for the case of hypersurfaces). This is all we use here, but a stronger
result, at the level of the Du Bois complex, was proved by Saito in [51, Theorem 0.2].

Proposition 5.5. If X is a smooth, irreducible n-dimensional complex algebraic variety and 𝑖 : 𝑍 ↩→ 𝑋
is the inclusion map of a closed reduced subscheme Z, then for every integer p, we have an isomorphism
in D𝑏

(
Coh(𝑋)

)
Ω𝑝
𝑍 � RH𝑜𝑚𝒪𝑋

(
Gr𝐹𝑝−𝑛DR𝑋 𝑖∗𝑖!Q𝐻

𝑋 [𝑛], 𝜔𝑋
)
[𝑝] .

In particular, if Z is a local complete intersection of pure codimension r, then

Ω𝑝
𝑍 � RH𝑜𝑚𝒪𝑋

(
Gr𝐹𝑝−𝑛DR𝑋H𝑟

𝑍 (𝒪𝑋 ), 𝜔𝑋
)
[𝑝 + 𝑟] .

Proof. Consider a log resolution 𝑓 : 𝑌 → 𝑋 of (𝑋, 𝑍) as in §2.4. Lemma 4.4 gives an isomorphism

Gr𝐹𝑝−𝑛DR𝑋
(
𝑗∗Q𝐻

𝑈 [𝑛]
)
� R 𝑓∗Ω𝑛−𝑝

𝑌 (log 𝐸) [𝑝] .

We similarly have an isomorphism

Gr𝐹𝑝−𝑛DR𝑋
(
Q𝐻
𝑋 [𝑛]

)
� Ω𝑛−𝑝

𝑋 [𝑝] .

Applying RH𝑜𝑚𝒪𝑋 (·, 𝜔𝑋 ) and the isomorphisms (5.2), we obtain the commutative diagram

RH𝑜𝑚𝒪𝑋

(
Gr𝐹𝑝−𝑛DR𝑋 ( 𝑗∗Q𝐻

𝑈 [𝑛]), 𝜔𝑋
)

RH𝑜𝑚𝒪𝑋

(
Gr𝐹𝑝−𝑛DR𝑋Q𝐻

𝑋 [𝑛], 𝜔𝑋
)

R 𝑓∗
(
Ω𝑝
𝑌 (log 𝐸) (−𝐸)

)
[−𝑝] Ω𝑝

𝑋 [−𝑝],

in which the vertical maps are isomorphisms. On the other hand, the exact triangle (2.8) in the derived
category of Hodge modules induces the exact triangle

Gr𝐹𝑝−𝑛DR𝑋
(
𝑖∗𝑖

!Q𝐻
𝑋 [𝑛]

)
−→ Gr𝐹𝑝−𝑛DR𝑋Q𝐻

𝑋 [𝑛] −→ Gr𝐹𝑝−𝑛DR𝑋
(
𝑗∗Q𝐻

𝑈 [𝑛]
) +1
−→ .

Applying RH𝑜𝑚𝒪𝑋 ( · , 𝜔𝑋 ) and using the above commutative diagram, as well as Theorem 5.1, we
obtain the first assertion in the proposition. The second one is an immediate consequence. �

Assume now that Z is a local complete intersection of pure codimension r. We recall from the
beginning of §3.3 that we have

𝐹𝑘H𝑟
𝑍 (𝒪𝑋 ) ⊆ 𝐸𝑘H𝑟

𝑍 (𝒪𝑋 ) for all 𝑘.

It follows that for every 𝑝 ≥ 0, if we denote by Gr𝐸𝑝−𝑛DR𝑋H𝑟
𝑍 (𝒪𝑋 ) the corresponding graded piece of

the de Rham complex of H𝑟
𝑍 (𝒪𝑋 ) with respect to the filtration 𝐸•, we have a morphism of complexes

𝜑𝑝 : Gr𝐹𝑝−𝑛DR𝑋H𝑟
𝑍 (𝒪𝑋 ) → Gr𝐸𝑝−𝑛DR𝑋H𝑟

𝑍 (𝒪𝑋 ).
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By definition, if 𝑝(𝑍) ≥ 𝑝, then 𝜑𝑝 is an isomorphism. If we only know that 𝑝(𝑍) ≥ 𝑝 − 1, then 𝜑𝑝 is
an injective morphism of complexes, whose cokernel is concentrated in cohomological degree 0.

Applying RH𝑜𝑚𝒪𝑋 ( · , 𝜔𝑋 ) to 𝜑𝑝 and taking H𝑖+𝑝+𝑟 (−), we obtain

𝜓𝑖𝑝 : E𝑥𝑡𝑖+𝑝+𝑟
𝒪𝑋

(
Gr𝐸𝑝−𝑛DR𝑋H𝑟

𝑍 (𝒪𝑋 ), 𝜔𝑋
)
→ E𝑥𝑡𝑖+𝑝+𝑟

𝒪𝑋

(
Gr𝐹𝑝−𝑛DR𝑋H𝑟

𝑍 (𝒪𝑋 ), 𝜔𝑋
)
� H𝑖 (Ω𝑝

𝑍 ),

where the isomorphism on the right is provided by Proposition 5.5.
Using the description of Gr𝐸• H𝑟

𝑍 (𝒪𝑋 ) in Lemma 3.21, it is easy to describe the domain of 𝜓𝑖𝑝 . Indeed,
note first that ℰ• := Gr𝐸𝑝−𝑛DR𝑋H𝑟

𝑍 (𝒪𝑋 ) is the complex

0 → Ω𝑛−𝑝
𝑋 ⊗ 𝜔𝑍 ⊗ 𝜔−1

𝑋 → Ω𝑛−𝑝+1
𝑋 ⊗ 𝒩𝑍/𝑋 ⊗ 𝜔𝑍 ⊗ 𝜔−1

𝑋 → · · · → Ω𝑛
𝑋 ⊗ Sym𝑝 (𝒩𝑍/𝑋 ) ⊗ 𝜔𝑍 ⊗ 𝜔−1

𝑋 → 0

placed in cohomological degrees −𝑝, . . . , 0. Recall now that if ℱ is a locally free 𝒪𝑍 -module, then

E𝑥𝑡ℓ𝒪𝑋
(ℱ, 𝜔𝑋 ) = 0 for ℓ ≠ 𝑟 and E𝑥𝑡𝑟𝒪𝑋

(ℱ, 𝜔𝑋 ) � ℱ∨ ⊗𝒪𝑍 𝜔𝑍 . (5.5)

Let us consider the hypercohomology spectral sequence

𝐸 𝑘,ℓ1 = E𝑥𝑡ℓ𝒪𝑋
(ℰ−𝑘 , 𝜔𝑋 ) ⇒ E𝑥𝑡𝑘+ℓ𝒪𝑋

(ℰ•, 𝜔𝑋 ).

Note that by (5.5), we have 𝐸 𝑘,ℓ1 = 0 unless ℓ = 𝑟 and 0 ≤ 𝑘 ≤ 𝑝; moreover, if 0 ≤ 𝑘 ≤ 𝑝, then

𝐸 𝑘,𝑟1 � Ω𝑘
𝑋 ⊗𝒪𝑋 Sym𝑝−𝑘 (𝒩𝑍/𝑋 )

∨.

The spectral sequence then implies that for every integer i, we have

E𝑥𝑡𝑖+𝑝+𝑟
𝒪𝑋

(ℰ•, 𝜔𝑋 ) = 𝐸
𝑖+𝑝,𝑟
2 = H𝑖 (C•

𝑝), (5.6)

where C•
𝑝 is the complex

0 → Sym𝑝 (𝒩𝑍/𝑋 )
∨ → Ω1

𝑋 ⊗𝒪𝑋 Sym𝑝−1(𝒩𝑍/𝑋 )
∨ → · · · → Ω𝑝−1

𝑋 ⊗𝒪𝑋 𝒩∨
𝑍/𝑋 → Ω𝑝

𝑋 ⊗𝒪𝑋 𝒪𝑍 → 0,

placed in cohomological degrees −𝑝, . . . , 0. Inspection of the maps in this complex shows that, if
𝑝 ≤ 𝑛−𝑟 , then C•

𝑝 is obtained by truncating the generalised Eagon-Northcott complexD𝑛−𝑟−𝑝 associated
to the canonical morphism

𝑔 : T𝑋 |𝑍 → 𝒩𝑍/𝑋 ,

keeping the first 𝑝+1 terms (and suitably translating). For basic facts about generalised Eagon-Northcott
complexes, we refer to [5, Chapter 2.C].

The exact sequence

𝒩∨
𝑍/𝑋 → Ω1

𝑋 |𝑍 → Ω1
𝑍 → 0

implies that we have a canonical isomorphism

H0(C•
𝑝) � Ω𝑝

𝑍 . (5.7)

Via the isomorphisms (5.6) and (5.7), the morphism 𝜓0
𝑝 gets identified with the morphism Ω𝑝

𝑍 →

H0(Ω𝑝
𝑍 ) induced by the canonical morphism Ω𝑝

𝑍 → Ω𝑝
𝑍 (this follows from the fact that this holds on the

smooth locus of Z, which is straightforward to check, and the fact that the sheaf H0(Ω𝑝
𝑍 ) is torsion-free,

which follows, for example, from the description in [19, Theorem 7.12]).
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Finally, we recall the fact that generalised Eagon-Northcott complexes exhibit depth sensitivity. This
implies that if depth(𝐼𝑟 (𝑔)

)
≥ 𝑘 , for some 1 ≤ 𝑘 ≤ 𝑝, then H𝑖 (C•) = 0 for −𝑝 ≤ 𝑖 ≤ −𝑝 + 𝑘 − 1. Note

that in our case, the ideal 𝐼𝑟 (𝑔) defines the singular locus 𝑍sing of Z, and since Z is Cohen-Macaulay,
the condition is equivalent to codim𝑍 (𝑍sing) ≥ 𝑘 . The depth sensitivity of generalised Eagon-Northcott
complexes is a consequence of the behavior in the case of generic matrices (see [5, Theorem 2.16]) and
of general properties of perfect modules (see [30, Proposition 2.11.2]). In fact, the depth sensitivity of
a more general class of complexes is proved in [30, Theorem 8.4].

After this preparation, we can now prove our result relating the singularity level of the Hodge filtration
𝑝(𝑍) and higher p-Du Bois singularities.

Proof of Theorem F. We follow the approach in [41] and [24], which treat the two implications in the
theorem for hypersurfaces. We may and will assume that Z is singular, since, otherwise, the equivalence
is trivial. In this case, it follows from Theorem 3.39 that 𝑝(𝑍) ≤

dim(𝑍 )−1
2 , and it is easy to see that

we may assume that 𝑝 ≤ dim(𝑍) = 𝑛 − 𝑟 .
Suppose first that 𝑝(𝑍) ≥ 𝑝. In this case, the morphism 𝜑𝑝 is an isomorphism, hence, so are the

morphisms 𝜓𝑖𝑝 . Since the complex C•
𝑝 is supported in nonpositive cohomological degrees, we have

H𝑖 (C•
𝑝) = 0 for 𝑖 > 0. It, thus, follows from (5.6) that

H𝑖 (Ω𝑝
𝑍 ) � E𝑥𝑡𝑖+𝑝+𝑟

𝒪𝑋
(E•, 𝜔𝑋 ) � H𝑖 (C•

𝑝) = 0 for 𝑖 > 0.

We also see that 𝜓0
𝑝 induces an isomorphism

Ω𝑝
𝑍 � H0(C•) � E𝑥𝑡 𝑝+𝑟

𝒪𝑋
(E•, 𝜔𝑋 ) → H0(Ω𝑝

𝑍 ).

This implies that the canonical morphism Ω𝑝
𝑍 → Ω𝑝

𝑍 is an isomorphism. Since the same argument
applies if we replace p by any k, with 0 ≤ 𝑘 ≤ 𝑝, we conclude that Z has, at most, higher p-Du Bois
singularities.

Conversely, suppose now that Z has, at most, higher p-Du Bois singularities. Arguing by induction
on p, it follows that we may assume that 𝑝(𝑍) ≥ 𝑝 − 1. In this case, the morphism 𝜑𝑝 is injective and
its cokernel is

𝑀 = 𝜔𝑋 ⊗𝒪𝑋

(
𝐸𝑝H𝑟

𝑍 (𝒪𝑋 )/𝐹𝑝H𝑟
𝑍 (𝒪𝑋 )

)
,

placed in cohomological degree 0. We need to show that 𝑀 = 0. Since the functor RH𝑜𝑚𝒪𝑋

(
−, 𝜔𝑋 [𝑛]

)
is a duality, it is enough to show that RH𝑜𝑚𝒪𝑋

(
𝑀,𝜔𝑋 ) = 0, that is, we have

E𝑥𝑡𝑖𝒪𝑋
(𝑀,𝜔𝑋 ) = 0 for all 𝑖 ∈ Z.

Let us put

ℰ• := Gr𝐸𝑝−𝑛DR𝑋H𝑟
𝑍 (𝒪𝑋 ) and ℱ• := Gr𝐹𝑝−𝑛DR𝑋H𝑟

𝑍 (𝒪𝑋 ).

The exact triangle

RH𝑜𝑚𝒪𝑋 (𝑀,𝜔𝑋 ) −→ RH𝑜𝑚𝒪𝑋 (ℰ
•, 𝜔𝑋 ) −→ RH𝑜𝑚𝒪𝑋 (ℱ

•, 𝜔𝑋 )
+1
−→

induces a long exact cohomology sequence

. . .→ E𝑥𝑡𝑖−1
𝒪𝑋

(ℱ•, 𝜔𝑋 ) → E𝑥𝑡𝑖𝒪𝑋
(𝑀,𝜔𝑋 ) → E𝑥𝑡𝑖𝒪𝑋

(ℰ•, 𝜔𝑋 ) → E𝑥𝑡𝑖𝒪𝑋
(ℱ•, 𝜔𝑋 ) → . . . .

As we have seen, the fact that the morphism Ω𝑝
𝑍 → Ω𝑝

𝑍 is an isomorphism translates as saying that
E𝑥𝑡𝑖𝒪𝑋

(ℱ•, 𝜔𝑋 ) = 0 for all 𝑖 ≠ 𝑝 + 𝑟 and the morphism

E𝑥𝑡 𝑝+𝑟
𝒪𝑋

(ℰ•, 𝜔𝑋 ) → E𝑥𝑡 𝑝+𝑟
𝒪𝑋

(ℱ•, 𝜔𝑋 )
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is an isomorphism. It follows from the long exact sequence that E𝑥𝑡 𝑝+𝑟
𝒪𝑋

(𝑀,𝜔𝑋 ) = 0 and

E𝑥𝑡𝑖𝒪𝑋
(𝑀,𝜔𝑋 ) � E𝑥𝑡𝑖𝒪𝑋

(ℰ•, 𝜔𝑋 ) for all 𝑖 ≠ 𝑝 + 𝑟.

Therefore, thanks to (5.6), we are done if we show that H𝑖 (C•
𝑝) = 0 for 𝑖 ≠ 0. This is trivial if 𝑝 = 0. On

the other hand, if 𝑝 ≥ 1, recalling that we are assuming 𝑝(𝑍) ≥ 𝑝−1 by induction, Corollary 3.40 gives

codim𝑍 (𝑍sing) ≥ 2𝑝(𝑍) + 1 ≥ 2𝑝 − 1 ≥ 𝑝.

The depth sensitivity of the generalised Eagon-Northcott complexes, thus, implies that H𝑖 (C•
𝑝) = 0 for

𝑖 ≠ 0, which completes the proof of the theorem. �

We also note the following corollary of the proof of Theorem F:

Corollary 5.6. Suppose that Z has higher p-du Bois singularities, with 𝑝 ≥ 1. Then Z is normal and
Ω𝑝
𝑍 is reflexive, that is, Ω𝑝

𝑍 � (Ω𝑝
𝑍 )

∨∨.

Proof. Since codim𝑍 (𝑍sing) ≥ 2𝑝 + 1 ≥ 3 by Corollary 3.40 and Z is Cohen-Macaulay, it follows that
Z is normal. In order to see that Ω𝑝

𝑍 is reflexive, it is enough then to show that depth(𝐽,Ω𝑝
𝑍 ) ≥ 2, where

J is the ideal defining 𝑍sing in Z. Using, again, the fact that codim𝑍 (𝑍sing) ≥ 2𝑝 + 1 ≥ 𝑝, it follows that
the complex C•

𝑝 used in the proof of Theorem F gives a locally free resolution of Ω𝑝
𝑍 . The well-known

behavior of depth in short exact sequences together with the fact that depth(𝐽, C 𝑗𝑝) = depth(𝐽,𝒪𝑍 ) ≥

2𝑝 + 1 for all j implies

depth(𝐽,Ω𝑝
𝑍 ) ≥ (2𝑝 + 1) − 𝑝 = 𝑝 + 1 ≥ 2. �

We next give a refinement of the vanishing statement for the higher cohomology of the graded pieces
of the Du Bois complex in Theorem F, in terms of the dimension of the locus where 𝑝(𝑍) is small.

Theorem 5.7. If for some 𝑝 ≥ 0, we have 𝐹𝑝H𝑟
𝑍𝒪𝑋 = 𝐸𝑝H𝑟

𝑍𝒪𝑋 away from a closed subset𝑊 ⊆ 𝑍 of
dimension s (with the convention that 𝑠 = −∞ if W is empty), then

H𝑖 (Ω𝑝
𝑍 ) = 0 for all 0 < 𝑖 < dim 𝑍 − 𝑝 − 𝑠 − 1.

Proof. We keep the setup used in the proof of Theorem F. Note that by assumption, the morphism

𝜑𝑝 : ℱ• = Gr𝐹𝑝−𝑛DR𝑋H𝑟
𝑍 (𝒪𝑋 ) →ℰ• = Gr𝐸𝑝−𝑛DR𝑋H𝑟

𝑍 (𝒪𝑋 )

is an isomorphism away from W. Recall that by (5.6), we have

E𝑥𝑡 𝑗+𝑝+𝑟
𝒪𝑋

(ℰ•, 𝜔𝑋 ) = 0 for all 𝑗 > 0. (5.8)

On the other hand, if 𝒢• is a complex on X concentrated in degrees ≤ 0, such that Supp(𝒢𝑞) ⊆ 𝑊
for all q, thenℰ𝑥𝑡𝑚

𝒪𝑋
(𝒢•, 𝜔𝑋 ) = 0 if 𝑚 < 𝑛 − 𝑠. This can be proved inductively by considering the long

exact sequences of ℰ𝑥𝑡 sheaves associated to the short exact sequences of complexes

0 → 𝜎≤ 𝑗−1 (𝒢•) → 𝜎≤ 𝑗 (𝒢•) → 𝒢 𝑗 [− 𝑗] → 0

and the fact that Ext𝑚
𝒪𝑋

(𝒢 𝑗 , 𝜔𝑋 ) = 0 for 𝑚 < 𝑛 − 𝑠 (see Lemma 3.9). Here, we denote by 𝜎≤ 𝑗 (𝒢•) the
‘stupid’ truncation of 𝒢• consisting of the terms placed in cohomological degrees ≤ 𝑗 .

This applies, in particular, to the complexes ker(𝜑) and coker(𝜑). Since 𝑖 + 𝑝 + 𝑟 + 1 < 𝑛 − 𝑠, we
conclude that

ℰ𝑥𝑡𝑖+𝑝+𝑟+1
𝒪𝑋

(
coker(𝜑), 𝜔𝑋

)
= 0 =ℰ𝑥𝑡𝑖+𝑝+𝑟

𝒪𝑋

(
ker(𝜑), 𝜔𝑋

)
. (5.9)
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The exact sequences

ℰ𝑥𝑡𝑖+𝑝+𝑟
𝒪𝑋

(ℰ•, 𝜔𝑋 ) →ℰ𝑥𝑡𝑖+𝑝+𝑟
𝒪𝑋

(
im(𝜑), 𝜔𝑋

)
→ℰ𝑥𝑡𝑖+𝑝+𝑟+1

𝒪𝑋

(
coker(𝜑), 𝜔𝑋

)
= 0

and

ℰ𝑥𝑡𝑖+𝑝+𝑟
𝒪𝑋

(
im(𝜑), 𝜔𝑋

)
→ℰ𝑥𝑡𝑖+𝑝+𝑟

𝒪𝑋
(ℱ•, 𝜔𝑋 ) →ℰ𝑥𝑡𝑖+𝑝+𝑟

𝒪𝑋

(
ker(𝜑), 𝜔𝑋 ) = 0,

together with the vanishing in (5.8) imply

H𝑖 (Ω𝑝
𝑍 ) �ℰ𝑥𝑡𝑖+𝑝+𝑟

𝒪𝑋
(ℱ•, 𝜔𝑋

)
= 0,

where the first isomorphism follows from Proposition 5.5. This completes the proof of the theorem. �

We conclude that there is a range of automatic vanishing in terms of the dimension of the singular
locus of Z; when Z is a hypersurface, this is [41, Corollary 3.5].

Corollary 5.8. If the singular locus of the local complete intersection Z has dimension s, then for all
𝑝 ≥ 0, we have

H𝑖 (Ω𝑝
𝑍 ) = 0 for 1 ≤ 𝑖 < dim 𝑍 − 𝑠 − 𝑝 − 1.

Question 5.10. Does this result continue to hold when Z is an arbitrary (or at least Cohen-Macaulay)
closed subscheme whose singular locus has dimension s?

5.3. Depth and local vanishing

We return to the general setting of a reduced closed subscheme Z of a smooth variety X. We have seen
in Theorem 4.24 that if 𝑛 ≥ 2, then 𝑅𝑛−1 𝑓∗Ω

𝑗
𝑌 (log 𝐸) = 0 for all 𝑗 < 𝑛, and related this to the condition

lcd(𝑋, 𝑍) ≤ 𝑛 − 2. For lower values of lcd(𝑋, 𝑍), it is also important to understand the vanishing of
𝑅𝑛−2 𝑓∗Ω

𝑗
𝑌 (log 𝐸). We make the following conjecture based on the depth of 𝒪𝑍 at its closed points.

Conjecture 5.9. If depth(𝒪𝑍 ) ≥ 𝑘 + 2, then 𝑅𝑛−2 𝑓∗Ω𝑛−𝑘
𝑌 (log 𝐸) = 0.

Remark 5.10. Conjecture 5.9 holds for 𝑘 = 0, 1. Indeed, by Corollary B, we have an inclusion

𝑅𝑛−2 𝑓∗𝜔𝑌 (𝐸) ↩→ℰ𝑥𝑡𝑛−1
𝒪𝑋

(𝒪𝑍 , 𝜔𝑋 ),

which gives the assertion for 𝑘 = 0. For 𝑘 = 1, it is a consequence of Theorems 4.28 and E.

The main result of this section is a proof of Conjecture 5.9 when Z has isolated singularities.
Reversing the use of Theorem E in the above remark, this gives an alternative proof of Theorem 4.28 at
closed isolated singular points. Further consequences are explained in §5.4.

Theorem 5.11. If depth(𝒪𝑍 ) ≥ 𝑘 + 2 and Z has isolated singularities, then

𝑅𝑛−2 𝑓∗Ω
𝑛−𝑘
𝑌 (log 𝐸) = 0.

We first need some preparations, starting with a lemma that will also be used in the next section. We
recall that the theory of depth admits an extension to complexes. If (𝑅,𝔪) is the local ring of X at a
closed point 𝑥 ∈ 𝑋 and M is an element of the bounded derived category of R-modules, we put

depth(𝑀) := 𝑛 − max{𝑖 | Ext𝑖𝑅 (𝑀, 𝑅) ≠ 0
}
= min

{
𝑖 | 𝐻𝑖𝔪 (𝑀) ≠ 0}

(with the convention that this is ∞ if 𝑀 = 0). For a proof of the above equality, as well as for other
properties of the depth of complexes, see [22]. If M is an element of the bounded derived category of
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coherent sheaves on X, we put

depth(𝑀) = min
𝑥∈𝑋

depth(𝑀𝑥),

where the minimum is over all closed points of X.

Lemma 5.12. If Z is reduced and dim 𝑍 ≥ 2, then for any 𝑘 ≥ 0, we have an equivalence

𝑅𝑛−2 𝑓∗Ω
𝑛−𝑘
𝑌 (log 𝐸) = 0 ⇐⇒ depth(Ω𝑘

𝑍 ) ≥ 2,

and either condition implies

depth(H0Ω𝑘
𝑍 ) ≥ 2.

Proof. Since n must be at least 3, by Lemma 5.2, we have

𝑅𝑛−2 𝑓∗Ω
𝑛−𝑘
𝑌 (log 𝐸) �ℰ𝑥𝑡𝑛−1 (Ω𝑘

𝑍 , 𝜔𝑋 ),

and the vanishing of the latter is equivalent to depth(Ω𝑘
𝑍 ) ≥ 2. For the last statement, we consider the

spectral sequence

𝐸
𝑖, 𝑗
2 =ℰ𝑥𝑡𝑖𝒪𝑋

(H− 𝑗Ω𝑘
𝑍 , 𝜔𝑋 ) =⇒ ℰ𝑥𝑡

𝑖+ 𝑗
𝒪𝑋

(Ω𝑘
𝑍 , 𝜔𝑋 ).

Note that 𝐸 𝑖, 𝑗2 = 0 if 𝑖 > 𝑛 or 𝑗 > 0; in the latter case, this follows from the well-known fact that HℓΩ𝑘
𝑍 =

0 for ℓ < 0. The term 𝐸𝑛−1,0
2 = ℰ𝑥𝑡𝑛−1

𝒪𝑋
(H0Ω𝑘

𝑍 , 𝜔𝑋 ) contributes to computing ℰ𝑥𝑡𝑛−1
𝒪𝑋

(Ω𝑘
𝑍 , 𝜔𝑋 ), and

since the differentials at each level are

𝐸𝑛−1−𝑟 ,𝑟−1
𝑟 → 𝐸𝑛−1,0

𝑟 → 𝐸𝑛−1+𝑟 ,1−𝑟
𝑟 ,

it follows that 𝐸𝑛−1,0
2 = 𝐸𝑛−1,0

∞ . Therefore,

ℰ𝑥𝑡𝑛−1
𝒪𝑋

(H0Ω𝑘
𝑍 , 𝜔𝑋 ) = 0,

which is equivalent to depth(H0Ω𝑘
𝑍 ) ≥ 2. �

We now set up some notation under the hypothesis of Theorem 5.11. Since Z has isolated singularities
and depth(𝒪𝑍 ) ≥ 2, it follows that Z is normal. Without loss of generality, we may assume that Z is
irreducible and 𝑃 ∈ 𝑍 is a point, such that 𝑍 \ {𝑃} is smooth. Let 𝑔 : 𝑍 → 𝑍 be a projective morphism
that is an isomorphism over 𝑍 \ {𝑃}, with 𝑍 smooth, and, such that, 𝐷 := 𝑔−1(𝑃)red is an SNC divisor.

According to the first statement of Lemma 5.12, in order to prove Theorem 5.11, it suffices to show
that under its hypotheses we have

depth(Ω𝑘
𝑍 ) ≥ 2.

We already know that this depth is ≥ 1, hence, it is enough to show that 𝐻1
𝔪𝑃

(Ω𝑘
𝑍 ) = 0, where 𝔪𝑃 is

the maximal ideal defining P. We may further assume that Z is affine. By Remark 5.10, we may assume
that 𝑘 ≥ 1. Using Theorem 5.1 and the exact triangle (5.1), we have an isomorphism

Ω𝑘
𝑍 � R𝑔∗Ω𝑘

𝑍
(log𝐷) (−𝐷),

hence, in order to prove the theorem, it suffices to show that

𝐻1
𝐷

(
𝑍,Ω𝑘

𝑍
(log𝐷) (−𝐷)

)
= 0. (5.11)
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The rest of the section is devoted to proving this statement. The proof is independent from the rest of
the paper, and involves some basic mixed Hodge theory.

The condition on depth(𝒪𝑍 ) will be used via the following lemma.

Lemma 5.13. If Z is a variety with isolated singularities and depth(𝒪𝑍 ) ≥ 𝑘 + 2, then

𝑅𝑞𝑔∗𝒪𝑍 = 0 for 1 ≤ 𝑞 ≤ 𝑘.

Proof. We follow the approach of [1, Proposition 4.3] but include the proof since in loc. cit., the authors
make the stronger assumption that Z is Cohen-Macaulay.6 Since Z has isolated singularities, it is easy
to see that we may assume that Z is projective. In this case, if L is an ample line bundle on Z, then
Kawamata-Viehweg vanishing gives

𝐻𝑖
(
𝑍, 𝑔∗L−𝑚) = 0 for all 𝑖 < 𝑑 = dim(𝑍), 𝑚 > 0. (5.12)

For a given 𝑚 > 0, consider the Leray spectral sequence

𝐸 𝑝,𝑞2 = 𝐻 𝑝 (𝑍, 𝑅𝑞𝑔∗𝒪𝑍 ⊗ L−𝑚) =⇒ 𝐻 𝑝+𝑞 (𝑍, 𝑔∗L−𝑚) . (5.13)

If 𝑞 > 0, then 𝑅𝑞𝑔∗(𝒪𝑍 ) has 0-dimensional support, hence, 𝐸 𝑝,𝑞2 = 0 for 𝑝 > 0. On the other hand,
since our assumptions imply that Z is normal, we have 𝑔∗𝒪𝑍 = 𝒪𝑍 , and since depth(𝒪𝑍 ) ≥ 𝑘 + 2, it
follows that if 𝑚 � 0, then for all 𝑝 ≤ 𝑘 + 1, we have

𝐸 𝑝,02 = 𝐻 𝑝 (𝑍,L−𝑚) � 𝐻𝑑−𝑝
(
𝑍,L𝑚 ⊗ 𝜔•

𝑍 [−𝑑]
)∨ = 0.

Indeed, for the vanishing on the right, note that the depth hypothesis implies that the object 𝐴• = 𝜔•
𝑍 [−𝑑]

can have cohomologies only in degrees 0, . . . , 𝑑 − 𝑘 − 2. On the other hand, the hypercohomology
group 𝐻𝑑−𝑝

(
𝑍,L𝑚 ⊗ 𝜔•

𝑍 [−𝑑]
)

is computed by a spectral sequence whose contributing 𝐸2-terms are
𝐻𝑖 (𝑍,L𝑚 ⊗ H 𝑗𝐴•), with 𝑖 + 𝑗 = 𝑑 − 𝑝. Since 𝑚 � 0, the only term that could contribute corresponds
to 𝑖 = 0, but, in this case, H𝑑−𝑝𝐴• = 0 since 𝑝 ≤ 𝑘 + 1.

Going back to the spectral sequence in (5.13), we keep the assumption that𝑚 � 0. Note that if 𝑟 ≥ 2,
then 𝑑𝑟 : 𝐸0,𝑞

𝑟 → 𝐸𝑟 ,𝑞−𝑟+1
𝑟 is 0 unless 𝑟 = 𝑞 + 1 > 𝑘 + 1, while 𝑑𝑟 : 𝐸−𝑟 ,𝑞+𝑟−1

𝑟 → 𝐸0,𝑞
𝑟 is always 0. We,

thus, conclude that if 𝑞 ≤ 𝑘 , then 𝐸0,𝑞
∞ = 𝐸0,𝑞

2 , and this vanishes because of (5.12). If we assume, in
addition, that 𝑞 ≥ 1, then we conclude that 𝑅𝑞𝑔∗𝒪𝑍 = 0, since this sheaf has 0-dimensional support. �

Corollary 5.14. If Z is a variety with isolated singularities and depth(𝒪𝑍 ) ≥ 𝑘 + 2, then

𝐻𝑞 (𝐷,𝒪𝐷) = 0 for 1 ≤ 𝑞 ≤ 𝑘.

Proof. It is shown in the proof of [42, Lemma 1.2] that, for each q, the vanishing of 𝑅𝑞𝑔∗𝒪𝑍 implies
𝐻𝑞 (𝐷,𝒪𝐷) = 0 (the statement in loc. cit. assumes that Z has rational singularities, but the proof gives,
in fact, this implication for any variety with isolated singularities). �

We can now prove the main result; part of the proof follows an argument in [60].

Proof of (5.11). We write 𝐷 =
∑𝑁
𝑖=1 𝐷𝑖 and define

Ω𝑘
𝐷 (𝑞) :=

⊕
𝑖1< · · ·<𝑖𝑞

Ω𝑘
𝐷𝑖1∩...∩𝐷𝑖𝑞

.

We then have an exact complex on 𝑍 :

𝐶•
𝑘 : 0 → Ω𝑘

𝑍
(log𝐷) (−𝐷) → Ω𝑘

𝑍
→ Ω𝑘

𝐷 (1) → Ω𝑘
𝐷 (2) → · · ·

6Note that in the Cohen-Macaulay case, an even stronger statement appears in [27].
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(for example, the case 𝑘 = 1 is treated in [34, Lemma 4.1], but the proof therein extends to arbitrary k).
Let

M𝑘 := ker
(
Ω𝑘
𝐷 (1) → Ω𝑘

𝐷 (2)

)
.

Claim: We have

𝐻1
𝐷

(
𝑍,Ω𝑘

𝑍
(log𝐷) (−𝐷)

)
= 0 ⇐⇒ 𝐻0 (𝑍,M𝑘 ) = 0.

In order to prove this, note first that the short exact sequence

0 → Ω𝑘
𝑍
(log𝐷) (−𝐷) → Ω𝑘

𝑍
→ M𝑘 → 0

gives a long exact sequence of local cohomology

0 = 𝐻0
𝐷 (𝑍,Ω

𝑘
𝑍
) → 𝐻0

𝐷 (𝑍,M𝑘 ) → 𝐻1
𝐷

(
𝑍,Ω𝑘

𝑍
(log𝐷) (−𝐷)

)
→ 𝐻1

𝐷 (𝑍,Ω
𝑘
𝑍
) → 𝐻1

𝐷 (𝑍,M𝑘 ).

Of course, M𝑘 is supported on D, hence,

𝐻0
𝐷 (𝑍,M𝑘 ) = 𝐻

0(𝑍,M𝑘 ).

The claim, thus, follows if we show that the map

𝐻1
𝐷 (𝑍,Ω

𝑘
𝑍
) → 𝐻1

𝐷 (𝑍,M𝑘 ) (5.14)

is injective. This is essentially shown in the proof of [60, Theorem 1.3], but since it is not stated there
in this form, we recall the main steps in the argument.

First, Steenbrink’s vanishing theorem (see [59, Theorem 2]) gives

𝑅𝑑−1𝑔∗
(
Ω𝑑−𝑘

𝑍
(log𝐷) (−𝐷)

)
= 0,

where 𝑑 = dim(𝑍) (note that 𝑘 ≤ 𝑑−2). Using the local duality theorem and relative duality, we deduce
from this that

𝐻1
𝐷

(
𝑍,Ω𝑘

𝑍
(log𝐷)

)
= 𝐻1

𝔪𝑃

(
R𝑔∗Ω𝑘

𝑍
(log𝐷)

)
= 0. (5.15)

Second, it is shown in [60, p. 99] via an argument using mixed Hodge structures that if

N𝑘 = Ω𝑘
𝑍
(log𝐷)/Ω𝑘

𝑍
(log𝐷) (−𝐷),

then the inclusion M𝑘 ↩→ N𝑘 induces an isomorphism 𝐻0 (𝑍,M𝑘 ) � 𝐻
0 (𝑍,N𝑘 ). Note that we have

a commutative diagram with exact rows

0 Ω𝑘
𝑍

Ω𝑘
𝑍
(log𝐷) Q𝑘 0

0 M𝑘 N𝑘 Q𝑘 0.

Id

https://doi.org/10.1017/fmp.2022.15 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.15


54 Mircea Mustaţă and Mihnea Popa

By considering the connecting homomorphisms in the long exact sequences of cohomology and local
cohomology, we obtain the commutative diagram

𝐻0
𝐷 (𝑍,Q𝑘 ) 𝐻1

𝐷 (𝑍,Ω
𝑘
𝑍
)

𝐻0(𝑍,Q𝑘 ) 𝐻1(𝑍,Ω𝑘
𝑍
)

𝐻0(𝑍,Q𝑘 ) 𝐻1(𝑍,M𝑘 ).

𝛼

𝛽

𝛾

Id 𝛿

𝜌

Note that 𝛼 is an isomorphism since Q𝑘 is supported on D and 𝛽 is an isomorphism by (5.15). Since
𝐻0 (𝑍,M𝑘 ) → 𝐻0 (𝑍,N𝑘 ) is an isomorphism, it follows that 𝜌 is injective. We, thus, conclude from
the above diagram that the composition 𝛿 ◦ 𝛾 is injective and this gets identified with the map (5.14)
since M𝑘 is supported on D. This completes the proof of the claim.

Our goal is, therefore, to show that 𝐻0(𝑍,M𝑘 ) = 0. If we apply 𝐻𝑞 (−) to the complex 𝐶•
𝑝 and

ignore the first two terms, we obtain the following complex

0 −→ 𝐻𝑞
(
𝑍,Ω𝑝

𝐷 (1)

) 𝑑𝑝,𝑞
1
−→ 𝐻𝑞

(
𝑍,Ω𝑝

𝐷 (2)

) 𝑑𝑝,𝑞
2
−→ · · · .

With this notation, for every p and q, the (𝑝, 𝑞) component of the pure Hodge structure on the graded
piece Gr𝑊𝑝+𝑞𝐻 𝑝+𝑞+𝑖 (𝐷,C) is given by

Gr𝑊𝑝+𝑞𝐻 𝑝+𝑞+𝑖 (𝐷,C) 𝑝,𝑞 = ker(𝑑 𝑝,𝑞𝑖+1 )/im(𝑑 𝑝,𝑞𝑖 )

(with the convention that 𝑑 𝑝,𝑞𝑖 = 0 for 𝑖 ≤ 0; see [11, Part II, 1] for a detailed description of the mixed
Hodge structure on the cohomology of D).

We, thus, see that in order to complete the proof, it is enough to show that

Gr𝑊𝑘 𝐻
𝑘 (𝐷,C)𝑘,0 = 0.

By Hodge symmetry, this is equivalent to

Gr𝑊𝑘 𝐻
𝑘 (𝐷,C)0,𝑘 = 0. (5.16)

On the other hand, we have

Gr0
𝐹𝐻

𝑘 (𝐷,C) � 𝐻𝑘 (𝐷,𝒪𝐷) = 0,

where the vanishing follows from Corollary 5.14. Since D is compact, we have the identification
𝑊𝑘𝐻

𝑘 (𝐷,C) = 𝐻𝑘 (𝐷,C), so that we have a surjective morphism

Gr0
𝐹𝐻

𝑘 (𝐷,C) → Gr0
𝐹Gr𝑊𝑘 𝐻

𝑘 (𝐷,C) = Gr𝑊𝑘 𝐻
𝑘 (𝐷,C)0,𝑘 .

We, thus, obtain the vanishing in (5.16), and this completes the proof. �

5.4. h-differentials and reflexive differentials

The characterisation of local cohomological dimension and the local vanishing results in the previous
sections have consequences regarding h-differentials on singular spaces. Recall that a recent result of
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Kebekus-Schnell [25, Corollary 1.12] states that if Z is a variety with rational singularities, then for all
p, the h-differentials Ω𝑝

ℎ |𝑍 of [19] coincide with the reflexive differentials Ω[𝑝]
𝑍 := (Ω𝑝

𝑍 )
∨∨.

Here we show, using Theorem 5.11, that when Z has isolated singularities, this holds under a weaker
hypothesis, at least for forms of low degree.

Proof of Theorem G. The sheaves of h-differentials Ω𝑘
ℎ |𝑍 are identified in [19, Theorem 7.12] with

H0Ω𝑘
𝑍 , hence, equivalently, we will show that the natural morphism

H0Ω𝑘
𝑍 → Ω[𝑘 ]

𝑍

in an isomorphism under the hypothesis of the theorem. Since the two sheaves are isomorphic on the
smooth locus of Z, it suffices, in turn, to show that the sheafH0Ω𝑘

𝑍 satisfies the 𝑆2 property. Equivalently,
if I is the ideal sheaf of the singular locus of Z, we need to show that

depth(I,H0Ω𝑘
𝑍 ) ≥ 2. (5.17)

Since Z has isolated singularities, using Theorem 5.11, we deduce that the hypothesis implies
𝑅𝑛−2 𝑓∗Ω𝑛−𝑘

𝑌 (log 𝐸) = 0. Lemma 5.12 then gives

depth(H0Ω𝑘
𝑍 ) ≥ 2.

By Auslander-Buchsbaum, it follows that for each 𝑥 ∈ 𝑍 , in some open neighbourhood of x, we can
find a resolution with locally free 𝒪𝑋 -modules of finite rank

0 → ℱ𝑛−2 → · · · → ℱ0 → H0Ω𝑘
𝑍 → 0.

Since the singular locus of Z is 0-dimensional, for each i, we have depth(I,ℱ𝑖) = 𝑛. If we denote

𝒢𝑖−1 := Coker(ℱ𝑖 → ℱ𝑖−1),

then it follows using basic properties of depth that depth(I,𝒢𝑖−1) ≥ 𝑖 +1 for 0 ≤ 𝑖 ≤ 𝑛−1. In particular,
we obtain that H0Ω𝑘

𝑍 = 𝒢0 satisfies (5.17). This completes the proof of the theorem. �

Remark 5.15. It is known that if Z is normal, then the isomorphism Ω𝑘
ℎ |𝑍 � Ω[𝑘 ]

𝑍 implies that the
k-forms on 𝑍reg extend to k-forms on any resolution of singularities 𝜋 : 𝑍 → 𝑍 . This consequence of
Theorem G is known in greater generality: van Straten and Steenbrink [60, Theorem 1.3] have shown
that if Z is any variety with isolated singularities, then k-forms extend for 𝑘 ≤ dim 𝑍 − 2.

Remark 5.16. When 𝑘 = 0, we have, in fact, that if depth(𝒪𝑍 ) ≥ 2 and Z is Du Bois away from a finite
set of points, then the canonical morphism

𝒪𝑍 → H0Ω0
𝑍 � Ω0

ℎ |𝑍

is an isomorphism, or, in other words, Z is weakly normal. Indeed, in this case, we have a short exact
sequence

0 → 𝒪𝑍 → H0Ω0
𝑍 → 𝜏 → 0,

where 𝜏 is supported in dimension 0, and, hence, has depth 0 if it is nonzero. On the other hand, if
depth(𝒪𝑍 ) ≥ 2, then 𝑅𝑛−2 𝑓∗𝜔𝑌 (𝐸) = 0 (see Remark 5.10), hence, again by Lemma 5.12, we have
depth(H0Ω0

𝑍 ) ≥ 2. The only way this can happen is to have 𝜏 = 0.

Another source for the type of vanishing needed in the proof of Theorem G is Corollary 2.14. We
record the special case 𝑝 = 𝑛 − 𝑘 and 𝑞 = 𝑛 − 2 needed here:
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Lemma 5.17. Assuming that Z has codimension r, we have

𝑅𝑛−2 𝑓∗Ω
𝑛−𝑘
𝑌 (log 𝐸) = 0 for 𝑘 ≤

[
𝑛 − 1
𝑟

]
− 2.

Moreover, if Z is normal, the same holds for

𝑘 ≤
[ 𝑛

𝑟 + 1

]
+

[
𝑛 − 1
𝑟 + 1

]
− 2.

In general, this only tells us about the depth of Ω𝑘
ℎ |𝑍 at closed points, which is only a step towards

the stronger 𝑆2-property. When Z has isolated singularities, however, the stronger statement is true, as
in Theorem G.

Corollary 5.18. With the notation above, we have the following:

1. If depth(𝒪𝑍 ) ≥ 3, then depth(Ω1
ℎ |𝑍 ) ≥ 2.

2. If Z has codimension r and 𝑘 ≤
[
𝑛−1
𝑟

]
− 2, then depth(Ω𝑘

ℎ |𝑍 ) ≥ 2. The same conclusion holds if Z is
in addition normal, and 𝑘 ≤

[
𝑛
𝑟+1

]
+
[
𝑛−1
𝑟+1

]
− 2.

3. Under the assumptions of (𝑖𝑖), if Z has isolated singularities, then Ω𝑘
ℎ |𝑍 � Ω[𝑘 ]

𝑍 .

Proof. This follows from Lemmas 5.12 and 5.17 and Remark 5.10. For 3, we use, in addition, the same
argument as in the proof of Theorem G. �
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