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Abstract

Following upon a previous paper [1] on the existence of chiral transformations in a foli-
ated version of the Cremmer, Julia and Scherk model, we deduce a couple of interesting
properties of the model. These are:

(i) TM4 is isomorphic to a quotient Lie pseudoalgebra on the algebra of basic functions
in Afii;

(ii) There is a locally trivial fibration which exhibits Mn as M1 x <&\ ̂  C W and W
is the basic manifold of the foliation [5];

(iii) The chiral group of the model is identified as Cl*(L,gL) x Clx(Q, go), the factors
are respectively the multiplication groups of units in the Clifford algebras Cl*(L, gL) and
Cl" (Q, go) and matching of this group with phenomenology is briefly discussed.

1. Introduction

It is generally accepted that one of the main problems with the Cremmer, Julia and
Scherk Model (CJS) [2] is its inability to support chiral transformations [8]. In a
previous paper [1], we show that this point can be remedied in such a way that none of
the essential features of the 11-dimensional Kaluza-Klein mechanism in the original
model needs to be changed. The starting point of the analysis is the observation that
the metric tensor used in the original work for Mn is bundle-line [6] and therefore
suggests that Mn has a foliation structure of dimension 7 and codimension 4. The
nature of the foliation is, of course, open. As a first step, we suggest that this foliation
is a simple foliation in the sense of Molino [5] and is brought about by a global
submersion of Mu into M4 with leaves difformorphic to Af7,

/ : Mn -+ M4. (1)
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The restriction of/ to a leaf gives rise to a map <p : M7 -> M4 which serves to relate
happenings in the internal manifold to the physical world. It is important to note that
the existence of this map is, by and large, implied by the bundle-like nature of the
metric for MM. In the second section, we show that the submersion (1) leads to some
consequences on the tangent space of M4. In the third section, we show that there is a
locally trivial fibration nb : Mu - • W, where W is the basic manifold of the foliation.
The fiber of this fibration is exactly M1 and hence there is a foliation induced on it by
(1). This foliation is a Lie foliation and its relation to the one assumed on M1 in order
to bring about chiral transformation is intriguing. At the present, we have not been
able to resolve this problem. In the third section, we follow up on the analysis of [1]
and identify the internal chiral group as Cl'(L, gL) x Clx(Q, gQ), where the factors
may be identified as automorphism groups of Clx(L,gL) and Clx(Q, gQ), where L is
the involutive subbundle of TM1 which brings about the foliation in M7, and Q is the
normal bundle. In the fourth section we conclude our analysis.

2. Structural properties of the CJS model

In the 11-dimensional Kaluza-Klein theory [8], one assumes that the ground state
is not an 11-dimensional Minkowski space but a product space M7 x M4, where M7

is a compact manifold of dimension 7 and M4 is the physical world. Symmetries
on M-, will be observed as gauge symmetries in the 4-dimensional world M4. If
(xm;m = / , . . . , 7) are the coordinates of A/7 and (Ta; a = / , . . . , AO are the generators
of the symmetry group G of M7, then the action of T" on xm may be represented by
xm -> xm + Kam(x), where Kam(x) is the Killing vector associated with the symmetry
T". The massless excitation of M7 x Af4 corresponds to the following ansatz for the
metric tensor for Mu (known normally as the DeWitt metric):

gABdzAdzB =guv(y)dyudyv

+ 8mn(x, y)(dxm - Kam(x)B°u(y)dyu)(dxn - Kb"Bb
vdy»). (2)

Here A, B = 1 , . . . , 11, u, v = 1,...,4, a, b - l,...,N; m,n = 1.....7. The
metric tensor of the 4-dimensional world M4 is denoted by guv and B"u{y) is the
massless gauge field of the group G. This metric is bundle-like [6] and therefore
suggests that Mn carries a foliation of dimension 7 and codimension 4. The inherent
nature of this foliation is, at this point, open to model builders. As a first step, we
suggest that it is a simple foliation [5] in the sense that the involutive subbundle that
defines the foliation is the vertical tangent bundle of some surjective submersion

/ : M n -+ M4. (3)
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As in [1], this simple foliation is required to have leaves diffeomorphic to Af7. This
gives rise to a map cp = f \Ml mapping Mj to M4. >

Now we are ready to state the first consequence of this simple foliation F [4]. Let A
be the involutive subbundle that defines the foliation F. Call a function u e C(MU)
basic if X(u) = 0 for all X e FA and denote the algebra of basic functions by
C(M,,)A. Let

L(Mn, A) = {X e rTMn | Y e FA => [X, Y] € FA} (4)

be the normalizer [7] of FA.in TTMn: Elements of L(MU, A) are called foliate
vector fields [5]. Since F is simple, the basic functions are precisely the pull-backs
of functions on M4 and the foliate vector fields are precisely those which project to
vector fields in M4. In terms of local coordinates this means the following. Let the
metric in M\ \ be expressed in the form:

J2dfp, (5)

where the 1-forms co' are of the form

ol = dxl = Yt^df" . (6)
o r = l

and (co1,..., co1, df1,..., df4) is a basis of the cotangent space T*Mn. The tangent
space TMU is s p a n n e d b y (d/dxl, ..., d/dx1, vlt...,v4) w i th

Thus a basic function u € C(MU) is one that does not depend on x',..., x1 and is
of the form u~ o / where u~ e C(M4). A foliate vector field is one whose last four
components do not depend on xl,..., x7 and under/, such a vector field is projected
into a vector field in M4.

L(Mn, A) is a Lie pseudoalgebra over C(Mn)A and FA is an ideal. Let l(Mn, A)
= L(M, A)/FA be the quotient Lie pseudoalgebra, then l(Mn, A) is canonically
isomorphic to TM4:

l(Mn, A) S TM4. (8)

This result depicts the tangent space of the physical world as a quotient Lie pseudoal-
gebra over the algebra of basic functions in M n . In our opinion, it is interesting and
may have consequences which may further prove or disprove the model.
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The next structural property of the foliated model may be explained as follows.
If we assume that the foliate vector fields on Mn span TMU, then F is known as
a transversally complete foliation [5]. As explained in [5], V neighbourhood 6 of
x € Afn, one can find basic functions f\, ...,/,,„ whose differentials are linearly
independent (in the neighbourhood under consideration). Consequently the system of
equations

d / , = 0 , . . . . dfqb = 0 (9)

is completely integrable. This system defines a foliation Fb which is called a basic
foliation of (Mi,, F). It has codimension qb and its leaves are unions of the leaves
of F. The leaf space Mn/F is Hausdorff and has the structure of a ^-dimensional
manifold, called W, the basic manifold of the foliation F. When F is transversally
complete, the closures of the leaves (these are just copies of M7, since M7 is closed)
are fibers of a locally trivial fibration nb : M n -*• W onto the basic manifold W. On
each fiber of nb, the foliation induced by F is a Lie foliation.

This result says that if F is transversally complete then there are qb functions in
C(M4) which, when pulled back to Mu, define level surfaces of Fb. Along directions
transverse to these level surfaces (which are defined by physical objects) Mu is locally
trivial, that is, is of the form M4 x % for some <& c W. This comes close to explaining
mathematically what we mean by saying that in the ground state Mi ] is of the form
M7 x M4. It would be interesting to see what happens if we take the fibration n instead
of the product as the starting structure of Mu.

3. The chiral group Cl* x Clx
q

In [1], we show that if the G-action of Kaluza-Klein has the property that for every
point p € M7 the tangent space to the orbit of the G-action has fixed dimension, then
the orbits themselves define a foliation on M7. The tangent space and the Riemannian
metric of M7 acquire the following orthogonal splitting;

L® Q, (10)

gM1=gL®gQ- (11)

The 7-dimensional Clifford algebra C7(7M7, gMl) is then isomorphic to the Z2-
graded tensor product Cl(L, gL) <g>A Cl(Q, gQ) [3]. It has been shown in [1] that if
M7 is spin then both L and Q are spin. It is then meaningful to talk about the spinor
bundles S( Q) and S(L). Along with the orthogonal splittings (10) and (11), the spinor
bundle on M7, becomes a Z2-graded tensor product 5(L) ®A S(Q) and spinors with
definite helicities are of the form

tfrint = a ± n , w <g> (i ± n,)<r, (12)
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where p and q are respectively the dimension and the codimension of the foliation and
£2P and Qq are the volume elements in the respective Clifford algebras and ty e S(L)
and a e S ( 0 . Chiral transformations are generated by matrices of the form

ru=2y,<g>kj. (13)

Here {yi, • • .,yp] forms a basis for Cl(L, gL) and [ky,..., Xq] forms a basis for
Cl(Q, go). This set of matrices clearly generates a Lie group which is of the form
Cl*(L, gi) x Clx(Q, gQ). Here the group Clx(V, q) is the multiplicative group of
units [3] in the Clifford algebra of the vector space V and bilinear form q and is
defined to be the subset

Clx(V,q) = {(pe CL(V,q) | 3tp~l with <p~ lcp = (pep'1 = 1}. (14)

When the vector space is of finite dimension, say n, it is a Lie group of dimension 2".
In general there is an associated Lie algebra clx(V, q) = Cl(V, q) with Lie bracket
given by

[x, v] = xy —yx. (15)

The group of units acts naturally as automorphisms of the algebra, that is, there is
a homomorphism

Ad : Clx(V,q)-+ Aut(C/(V, q)) (16)

called the adjoint representation given by

1. (17)

There is also a natural exponential mapping given by exp : clx{V, q) -> Clx(V, q)
defined by setting

00

exp(i/) = J]vm/m!. (18)
m=0

Thus we conclude that the chiral group of the model is Cl(L, gL) x Cl(Q, go).
The dimension of this group is 2P + 2* with p + q = 7.

Just on the basis of simple minded dimension counting and assuming that S £/(3) x
SU(2) x 1/(1) is all the symmetry that we have got, this is clearly too large a number.
Maybe there is a case to reduce the dimension of the internal manifold to, say, p = 3,
q = 3 because then an internal symmetry group U(3) x U(2) x t/(l) would fit just
nicely.
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4. Conclusion

In this paper, we have pointed out that the DeWitt metric for Mn suggests that the
11 -dimensional manifold in the CJS model is foliated. If one assumes that this foliation
is simple in the sense of Molino, one arrives at interesting structural properties on top
of the existence of chiral transformations. It would be extremely interesting to study
these properties further in detail and to correlate them with observed phenomenology.
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