
J. Functional Programming 7 (4): 447–449, July 1997. Printed in the United Kingdom

c© 1997 Cambridge University Press

447

Book review

ML for the Working Programmer (2nd edition) by L. C. Paulson,

Cambridge University Press, 1996.

A Practical Course in Functional Programming Using Standard ML by

R. Bosworth, McGraw Hill, 1996.

Introduction

The programming language Standard ML was defined (formally) in 1986 (Milner et al., 1990),

although the family of ML languages dates back to 1974. Since the standardisation, it has

been used widely for teaching in universities, sometimes as a first programming language,

because it exemplifies careful language design with many advanced features to support

good software engineering practice. It is now probably the most widely used functional

programming language, although it has only seen limited use in commercial production of

code.

In 1996, there was a minor revision of Standard ML (Gansner and Reppy, 1996), along

with the incorporation of a well designed library as part of the standard. As Paulson points

out: “It is worth stressing that the changes do not compromise ML’s essential stability”. The

availability of very efficient implementations supporting the standard library could pave the

way for much wider use of this language.

This review considers two ML related books. Firstly, a second edition of ML for the Working

Programmer by L. C. Paulson, and secondly, A Practical Course in Functional Programming

Using Standard ML by R. Bosworth. Both books claim to be practically oriented, which

can be taken to mean that the emphasis is on building useful tools and programs rather

than dwelling too much on the theoretical foundations and implementation of functional

languages. However, the books are aimed at very different audiences. The first is aimed

at experienced programmers and contains a wealth of useful advice on solving extensive

programming problems with ML. Paulson’s second edition is also timely in that it uses the

new standard and library. The other book is a new book aimed at beginners with little or

no prior experience of programming, and as such the practical advice and examples are at a

more elementary level. Bosworth’s book also predates the new standard, so it does not make

use of the standard library.

We look at these books separately below.

Paulson

The first edition of this book was well received and has been reviewed elsewhere (Fourman,

1996). The overall structure and style of the first edition has been retained for the second

edition. It still gives extensive coverage of most aspects of ML with very useful programs that

go beyond just elementary illustrative examples. The book still covers a great deal of ground,

but assumes a lot of basic computer science and programming knowledge as well as some

mathematical competence of the reader.

https://doi.org/10.1017/S0956796897002761 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002761


448 Book review

However, there are some important changes in the second edition. The most important is

probably the adoption of the new standard, which has required the reworking of examples

to make use of the standard library, avoiding the construction of an alternative set of basic

tools. This is to be applauded. Another important change is the introduction of ML modules

in chapter 2 rather than chapter 7. This was not only done to facilitate the use of the library

which makes extensive use of ML’s sophisticated module system, but also to emphasise this

important feature of ML for engineering software systems and for use in realistic examples.

The use of the module system in the book is based on extensive experience by the author and

others in the ML community, and the practical advice and examples are a rare and valuable

source of information on this aspect of the language.

The earlier adoption of modules in the text would tend to exacerbate the alienation

of readers who have little programming experience, so Paulson has also simplified the

introductory text. This is well written and melds well with the rest of the book, but it does

not make the book suitable for beginners. The subsequent chapters follow the same sequence

as the first edition: names functions and types; lists; trees and concrete types; functions

and infinite data; reasoning about functional programs; abstract types and functors (a more

detailed look at the module system); imperative programming in ML; and two case study

chapters (Lambda Calculus and Theorem Proving).

Good program structure (for maintenence and clarity) and correctness are emphasised in

carefully honed examples throughout, although techniques for reasoning about correctness

and equivalences are given a separate chapter rather than used pervasively. There is still

appropriate attention to efficiency without sacrificing clarity and important functional pro-

gramming transformation techniques are used to improve efficiency where it is important.

Some of the examples of highly reusable general code have also been made more efficient

than the versions appearing in the first edition.

The theorem prover case study is not an ideal choice. It would be a difficult read for

anyone not already familiar with sequent calculus and theorem proving and many of the

programming techniques used in the case study are illustrated well enough in the Lambda

Calculus case study. However, this is Paulson’s main area of expertise in applying ML to

programming problems and consequently shows a great deal of insight into the problem.

I would have preferred to see more elaboration of the new standard library (a case study

using some of the low-level and operating system facilities), but the library was still under

development when this edition was written.

Bosworth

This introductory text is based on a one semester course on functional programming, and

is written at a more elementary level. It does not attempt to cover ML, but uses ML as a

vehicle for introducing functional programming methods and concepts. It is not surprising,

then, that there is no mention of modules or of the imperative features of ML. Higher order

functions are introduced relatively early in chapter 6, and type definitions are introduced in

chapter 7 before lists in chapter 8. Other structured types (trees in particular) and abstract

types are not mentioned. Instead, the later chapters cover character lists and I/O culminating

in a chapter of case studies.

The approach is said to be “a problem-solving one – a problem is stated, then the features

of the language needed to solve that problem are introduced in a natural way” (quoted

from the preface). This could be an engaging approach if done well because most texts

on functional programming tend to emphasise concepts first, using examples for illustration

before launching a direct attack on difficult problems.

The book does not always follow the approach stated in the preface. The examples are

not always well-chosen, and are sometimes introduced just for illustrating some syntax. The

resulting structure of the book is a little haphazard. For example, ML’s let construct for

https://doi.org/10.1017/S0956796897002761 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002761


Book review 449

introducing local definitions in expressions is introduced in section 4 of chapter 7 (which is

about Constructor Functions) in between sections on Polymorphic Constructor Functions and

Stacks. This could be avoided as the let construct is not needed or used at this point in the

book. A glance at the contents pages reveals some other incongruities in the chapter sections

as well. Explanations of important concepts are sometimes buried and can be perfunctory

(for example, type variables and type inference rules on page 33, polymorphism on pages

113–114 are not well covered).

The program examples are not always well honed. For example, if a robust version of a

recursive function needs to check arguments, a local auxiliary function can be used to perform

the recursion when the check does not have to be repeated. This technique is used in an early

example, but not in subsequent definitions of the same nature.

Although the book does not get far, a valiant attempt is made to introduce a purely

functional approach to I/O in chapter 10 using ML’s procedural input and output streams

for implementation. The mechanism used relies on the programmer ensuring single-threaded

use of the stream values. It would have been better to go one step further and use the

more modern approach of monads – a functional mechanism to ensure single-threaded use

(Peyton Jones and Wadler, 1993). This chapter also misses an opportunity to discuss ML’s

procedural I/O (the details of the stream implementation are not explained and are relegated

to an appendix). A discussion of the problems arising from procedural/functional mixes and

non-single-threadedness is not included.

The case studies are quite reasonable, although not very complex. Robust design of

components is illustrated, but the limited coverage in prior chapters means that many generic

solutions and tools cannot be deployed to demonstrate fully the power of a language like

ML.

Summary

The two books reviewed have different aims, and are designed for different audiences. Paulson’s

second edition is a well judged revision of an already good book, and can be recommended

to experienced programmers wanting to learn about ML. Bosworth’s book is one of the few

functional programming texts aimed at novices, but the book’s structure and examples are

not ideal and I would not choose it in preference to some existing introductory texts.

References

Bosworth, R. (1996) A Practical Course in Functional Programming Using Standard ML.

McGraw-Hill.

Fourman, M. (1996) Book review. J. Functional Programming, 6(1), January.

Gansner, E. R. and Reppy, J. H. (eds.) (1996) The Standard ML Basis Library Reference

Manual. In preparation, URL http://www.research.att.com/ jhr/sml/basis/

Milner, R., Tofte, M. and Harper, R. (1990) The Definition of Standard ML. MIT Press.

Paulson, L. C. (1996) ML for the Working Programmer (2nd edition). Cambridge University

Press.

Peyton Jones, S. L. and Wadler, P. (1993) Imperative functional programming. Principles of

Programming Languages, January.

Chris Reade

Department of Computer Science and Information Systems

Brunel University

Email: chris.reade@brunel.ac.uk

https://doi.org/10.1017/S0956796897002761 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002761

