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Abstract. We prove uniqueness of positive solutions for the boundary value
problem {−�u = λf (u) in �,

u = 0 on ∂�,

where � is a bounded domain in �n with smooth boundary ∂�, λ is a large positive
parameter, f : (0,∞) → [0,∞) is nonincreasing for large t and is allowed to be singular
at 0.

2010 AMS classification. 35J75, 35J92

1. Introduction. Consider the boundary value problem{−�u = λf (u) in �,

u = 0 on ∂�,
(1.1)

where � is a bounded domain in �n with smooth boundary ∂�, λ is a large positive
parameter and f : (0,∞) → (0,∞).

The existence and uniqueness of a classical positive solution to (1.1) for all λ >

0 was obtained in [3] when f is nonincreasing and limt→0+ f (t) = ∞. We refer to
[4, 7, 9, 11, 12] for uniqueness results to (1.1) when λ is large and f is nonsingular.
Note that f (t) ∼ tβ at ∞ for some β ∈ [0, 1) in [4, 9, 11], f (t) ∼ tβ ln(1 + t) for some
β ∈ (0, 1) is allowed in [7], while f (t) = (1 + t)−γ with γ > 0 small is permitted in [12].
We are interested here in studying uniqueness of solutions to (1.1) for λ large when
f (t) is nonincreasing for t large and is possibly singular at 0. Our results complement
the uniqueness result in [6], where f (t) is possibly singular at 0 and nondecreasing for
t large, and the result in [12] mentioned above. Our approach is based on sharp upper
and lower estimates on the solutions of (1.1).

We shall make the following assumptions:
(A1) f : (0,∞) → (0,∞) is continuous.
(A2) There exist constants A > 0 and α ∈ (0, 1) such that

c−αf (t) ≤ f (ct) ≤ f (t)

for all c > 1, t > A.

(A3) lim inf t→0+ f (t)
t > 0
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(A4) For each constant B > 0, there exists a constant CB > 0 such that

|f (t) − f (s)| ≤ CB|t − s|
minα+1(s, t)

for s, t ≤ B.

REMARK 1.1. Condition (A2) is equivalent to the assumption that f (t) is
nonincreasing and tαf (t)is nondecreasing for t > A.

REMARK 1.2. (i) It is easily seen that condition (A4) is satisfied if f is of class C1

on (0,∞)and

lim sup
t→0+

tα+1|f ′(t)| < ∞.

(ii) Note that (A4) implies
(A5) lim supt→0+ tα|f (t)| < ∞.

To see this, let B > 0 and t ∈ (0, B]. Let n0 ∈ N be the largest number such that
n0t < B. Then, by (A4),

|f (t) − f (B)| ≤ |f (n0t) − f (B)| +
n0−1∑
k=1

|f (kt) − f ((k + 1)t)|

≤ CB

tα

n0∑
k=1

1
kα+1

≤ C̃B

tα
,

for t ≤ B, where C̃B = CB
∑∞

k=1
1

kα+1 . Hence, (A5) follows.

EXAMPLE 1.1. The following nonlinearities satisfy (A1)–(A4):
(a) f (t) = ln(a+tp)

tα , where α ∈ (0, 1), a ≥ 1, p ≥ 0 if a > 1 and 0 ≤ p ≤ α + 1 if a =
1.

(b) f (t) = tβ
(1+t)α , where α ∈ (0, 1), 0 ≤ β < α.

(c) f (t) = tδ+| sin(tγ )|
tα , where α ∈ (0, 1), 0 < γ < δ < α. Note that this function is not

differentiable on (0,∞).
By a solution of (1.1), we mean a function u ∈ C1,β(�̄) for some β ∈ (0, 1) which
satisfies (1.1). By the strong maximum principle [1], any solution u of (1.1) is
positive with ∂u

∂ν
< 0 on ∂�, where ν denotes the outer unit normal vector on

∂�. Our main result is

THEOREM 1.1. Let (A1)–(A4) hold. Then, there exists a positive constant λ0 such
that (1.1) has a unique solution for λ > λ0.

THEOREM 1.2. Let (A1), (A3), (A5) hold and suppose that there exists a constant
C > 0 such that limt→∞ tαf (t) = C. Let uλ be a solution of (1.1). Then,

lim
λ→∞

uλ(x)
(λC)1/(1+α)w(x)

= 1

uniformly in �, where w denotes the unique solution of

−�w = w−α in �, w = 0 on ∂�.

https://doi.org/10.1017/S0017089515000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000270


SINGULAR SEMILINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS II 463

2. Preliminary results. Let λ1 be the first eigenvalue of −� with Dirichlet
boundary conditions and φ1 be the normalized positive eigenfunction associated with
λ1 i.e. ||φ1||∞ = 1.

We shall denote the norms in L2(�), C1(�̄), and C1,β (�̄) by ||.||2, |.|1, and |.|1,β

respectively.
We first recall the following regularity result in [5, Lemma 3.1]

LEMMA 2.1. Let h ∈ L1(�) and suppose that there exist constants γ ∈ (0, 1) and
C > 0 such that

|h(x)| ≤ C
φ

γ

1 (x)

for a.e. x ∈ �. Then, the problem {−�u = h in �,

u = 0 on ∂�

has a unique solution u ∈ H1
0 (�). Furthermore, there exist constants β ∈ (0, 1) and M >

0depending only on C, γ,� such that u ∈ C1,β (�̄) and |u|1,β < M.

COROLLARY 2.1. Let h and u be given as in Lemma 2.1. Then, there exists a constant
k > 0 such that |u| ≤ kφ1 in �.

Proof. By Lemma 2.1, there exist constants β ∈ (0, 1) and M > 0 such that |u|1,β <

M. Hence, by the Mean Value Theorem, |u(x)| ≤ Md(x) for x ∈ �, where d(x) denotes
the distance from x to ∂�. Since φ1 > 0 in � and ∂φ1

∂ν
< 0 on ∂�, there exists a constant

k0 > 0 such that φ1(x) ≥ k0d(x) for x ∈ � (see e.g. [9, Proposition 2.1 (i)]. Consequently,
|u| ≤ kφ1 in �, where k = M/k0. �

LEMMA 2.2. Let D be an open set in � with D̄ ⊂ �. Let γ ∈ (0, 1) and z be the
solution of {

−�z = 1
φ

γ

1
χD in �,

z = 0 on ∂�,
(2.1)

Then, |z|1 → 0 as |D| → 0. Here, χD denotes the characteristic function on D and |D|
the Lebesgue measure of D.

Proof. By Lemma 2.1, there exist β ∈ (0, 1) and M > 0 independent of z such that
z ∈ C1,β (�̄) and |z|1,β < M.

Multiplying the equation in (2.1) by z and integrating gives

||∇z||22 =
∫

D

z
φ

γ

1

dx ≤ M
∫

D

1
φ

γ

1

dx.

Since 1/φ
γ

1 ∈ L1(�) (see [8]), it follows that ||∇z||2 → 0 as |D| → 0.

By the interpolation result in [2, Corollary 1.3], there exist constants c > 0 and
θ ∈ (0, 1) independent of z such that

|z|1 ≤ c|z|1−θ
1,β ||∇z||θ2 ≤ cM1−θ ||∇z||θ2,

which implies |z|1 → 0 as |D| → 0. �
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LEMMA 2.3. Let (A1), (A3), (A5) hold and let ube a solution of (1.1). Then, for λ

large enough, there exists a constant cλ > 0 with limλ→∞ cλ = ∞ such that

u ≥ cλφ1 in �.

Proof. Let u be a solution of (1.1) and M > 0. By (A1) and (A3), there exists a
constant K > 0 such that

f (t) ≥ Kt

for t ∈ (0, M]. By the strong maximum principle, there exists a constant δ > 0 such that
u ≥ δφ1 in �. Let δ0 be the largest of those δ. Then, u ≥ δ0φ1 in �. Suppose λ > λ1/K.

We claim that δ0 ≥ M. Suppose to the contrary that δ0 < M. Let D = {x ∈ � : u(x) <

M} and a = min(λK, λ1M/δ0} > λ1. Then,

{−�u ≥ λKu ≥ λKδ0φ1 ≥ aδ0φ1 in D,

u = M ≥ aδ0/λ1 on ∂D.

By the weak comparison principle [10, Lemma A2], u ≥ (aδ0/λ1)φ1 in �, which
contradicts the maximality of δ0. Hence, u ≥ Mφ1 in D, and since u ≥ M ≥ Mφ1

in �\D, this completes the proof. �

LEMMA 2.4. Let (A1), (A3), (A5) hold and suppose that there exist positive
constants A, M0, M1 such that

M0c−αf (t) ≤ f (ct) ≤ M1f (t) (2.2)

for c > 1, t > A. Then, there exist positive constants λ̄, K0 and cλ with limλ→∞ cλ = ∞
such that if u is a solution of (1.1) with λ ≥ λ̄ then

cλφ1 ≤ u ≤ K0cλφ1 in �.

Proof. Let u be a solution of (1.1) and λ be large enough so that Lemma 2.2 holds.
Let cλ be the largest number so that u ≥ cλφ1 in �.

For cλφ1 > A, it follows from (2.2) that

f (u) ≤ M1f (cλφ1) ≤ M2f (cλ)
φα

1

, (2.3)

where M2 = M1M−1
0 . For u > A and cλφ1 ≤ A,

f (u) ≤ M1f (A) ≤ M1Aαf (A)
(cλφ1)α

, (2.4)

while it follows from (A5) that there exists a constant B > 0 such that

f (u) ≤ B
uα

≤ B
(cλφ1)α

. (2.5)
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for u ≤ A. Since lim infλ→∞ cα
λf (cλ) > 0, it follows from (2.2)–(2.4) that there exists a

constant M > 0 such that

−�u = λf (u) ≤ λMf (cλ)
φα

1

in � (2.6)

for λ large. Let φ be the solution of

−�φ = 1
φα

1

in �, φ = 0 on ∂�. (2.7)

By Corollary 2.1, there exists a constant k > 0 such that φ ≤ kφ1 in �. Then (2.5) and
the weak comparison principle imply

u ≤ dλφ1 in �, (2.8)

where dλ = λkMf (cλ).
Let D0 = {x ∈ � : φ1(x) > 1/2} . Then for λ large,

u ≥ cλ/2 > A in D0,

which implies

−�u ≥
{

λM−1
1 f (dλ) in D0,

0 in �\D0.

Hence,

u ≥ λM−1
1 f (dλ)φ0 ≥ λk0f (dλ)φ1 in �, (2.9)

where φ0 is the solution of

−�φ0 =
{

1 in D0,

0 in �\D0,

and k0 > 0 is such that M−1
1 φ0 ≥ k0φ1 in �. By (2.2),

dα
λ f (dλ) ≥ M0cα

λf (cλ),

which, together with (2.8) and the maximality of cλ, implies

cλ ≥ λk0f (dλ) ≥ λk0M0cα
λf (cλ)

(λkMf (cλ))α
.

Consequently,

cλ ≥ λk1f (cλ), (2.10)

where k1 = (k0M0/(kM)α)1/(1−α). Hence,

dλ = λkMf (cλ) ≤ K0cλ, (2.11)

where K0 = kM/k1. This, together with (2.7), completes the proof of Lemma 2.3. �
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REMARK 2.1. Let (A1), (A3), (A5) hold and suppose that there exists a constant
C > 0 such that limt→∞ tαf (t) = C. Then (2.2) hold and we deduce from (2.9) and
(2.10) that for λ large, there exist positive constants m1, m2 such that any solution u of
(1.1) satisfies

m1λ
1/(α+1)φ1 ≤ u ≤ m2λ

1/(α+1)φ1 in �.

3. Proof of the main results.

Proof of Theorem 1.1 Since f is sublinear at ∞ and lim inf t→∞ tαf (t) > 0, the
existence of a solution to (1.1) for λ large follows from [5, Theorem 2.1]. Let u1 and
u2 be solutions of (1.1) with λ large. By Lemma 2.3, c0u2 ≤ u1 ≤ c−1

0 u2 in �, where
c0 = K−1

0 . Let c be the largest number such that cu2 ≤ u1 ≤ c−1u2 in � and suppose
that c < 1. Then,

|u1 − u2| ≤ (c−1 − 1)u2 in �.

Let a > 0 be such that

cα − c ≥ a(1 − c) for c ∈ [c0, 1]. (3.1)

If u2 > AK0, then u1 > A and it follows from (3.1), (A2) and Lemma 2.3 that

f (u1) − cf (u2) ≥ f (c−1u2) − cf (u2) ≥ (cα − c)f (u2)

≥ B0(cα − c)
uα

2

≥ B0a(1 − c)
(K0cλφ1)α

= B1(1 − c)
(cλφ1)α

, (3.2)

where B0 = (AK0)αf (AK0), B1 = B0a/Kα
0 .

On the other hand, if u2 ≤ AK0 then u1 ≤ AK2
0 and it follows from (A4) with

B = AK2
0 that

|f (u1) − f (u2)| ≤ CB|u1 − u2|
minα+1(u1, u2)

≤ CB(c−1 − 1)u2

(cu2)α+1

≤ CB(1 − c)
cα+2(cλφ1)α

= B2(1 − c)
(cλφ1)α

,

where B2 = CB/c2+α
0 . In particular,

f (u1) − cf (u2) ≥ −B2(1 − c)
(cλφ1)α

. (3.3)

Let Dλ = {x ∈ � : φ1(x) > AK0/cλ}. Then, u2 ≥ cλφ1 > AK0 in Dλ and it follows from
(3.2)–(3.3) that

−�(u1 − cu2) = λ(f (u1) − cf (u2)) (3.4)

≥ λB1(1 − c)
(cλφ1)α

− λB3(1 − c)
(cλφ1)α

χ�\Dλ
in �,

where B3 = B1 + B2. Let z be the solution of (2.1) with D = �\Dλ and γ = α. Since

�\Dλ ⊂ {x ∈ � : φ1(x) ≤ AK0/cλ}
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and cλ → ∞ as λ → ∞, it follows that |�\Dλ| → 0 as λ → ∞. Hence, Lemma 2.1
with D = �\Dλ gives |z|1 → 0 as λ → ∞. This, together with (3.4), gives

u1 − cu2 ≥ λ(1 − c)
cα
λ

(B1φ − B3z) ≥ λB1(1 − c)
2cα

λ

φ in �

if λ is large enough, where φ is defined in (2.6). This contradicts the maximality of c
and therefore c = 1, which completes the proof. �

Proof of Theorem 2.2. Without loss of generality, we assume C = 1. Let uλ be a
solution of (1.1) with λ large, and let vλ = λ1/(1+α)w. Note that vλ satisfies

−�vλ = λv−α
λ in �, vλ = 0 on ∂�.

By Remark 2.1,

m1λ
1/(α+1)φ1 ≤ uλ, vλ ≤ m2λ

1/(α+1)φ1 in �,

which implies c0vλ ≤ uλ ≤ c−1
0 vλ in �, where c0 = m1/m2. Let c be the largest number

such that cvλ ≤ uλ ≤ c−1vλ in �. Let ε ∈ (0, 1) and suppose that c ≤ (1 − ε)1/(1−α) ≡ ε0.

Since limt→∞ tαf (t) = 1, there exists a constant A > 0 such that

1 − ε/2
tα

≤ f (t) ≤ (1 − ε/2)−1

tα

for t > A. Hence, for uλ > A,

f (uλ) − c
vα

λ

≥ 1 − ε/2
uα

λ

− c
vα

λ

≥ (1 − ε/2)cα − c
vα

λ

≥ m3

vα
λ

≥ m4

λα/(1+α)φα
1

,

(3.5)

where m3 = minc0≤c≤ε0 ((1 − ε/2)cα − c) > 0, m4 = m3m−α
2 , and

f (uλ) − c−1

vα
λ

≤ (1 − ε/2)−1

uα
λ

− c−1

vα
λ

≤ (1 − ε/2)−1c−α − c−1

vα
λ

≤ −m5

vα
λ

≤ − m6

λα/(1+α)φα
1

,

(3.6)

where m5 = minc0≤c≤ε0 (c−1 − (1 − ε/2)−1c−α) > 0, m6 = m5m−α
2 .
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On the other hand, it follows from (A1) and (A5) that there exists a constant
B > 0 such that

0 < f (t) ≤ Bt−α for t ∈ (0, A].

Hence, for uλ ≤ A,

f (uλ) − c
vα

λ

≥ − c
vα

λ

≥ − ε0

vα
λ

≥ − m7

λ
α

α+1 φα
1

, (3.7)

where m7 = ε0m−α
1 , and

f (uλ) − c−1

vα
λ

≤ B
uα

λ

≤ m8

λ
α

α+1 φα
1

, (3.8)

where m8 = Bm−α
1 .

Let Dλ = {x ∈ � : φ1(x) > Am−1
1 λ−1/(α+1)}. Note that uλ > A in Dλ and |�\Dλ| →

0 as λ → ∞.

From (3.5) and (3.7), it follows that

−�(uλ − cvλ) = λ

(
f (uλ) − c

vα
λ

)
≥ λ1/(α+1)

(
m4

φα
1

− m9

φα
1

χ�\Dλ

)
,

where m9 = m4 + m7. On the other hand, (3.6) and (3.8) give

−�(uλ − c−1vλ) = λ

(
f (uλ) − c−1

vα
λ

)
≤ −λ1/(α+1)

(
m6

φα
1

− m10

φα
1

χ�\Dλ

)
,

where m10 = m6 + m8. Hence, Lemma 2.1 and the weak comparison principle give

uλ − cvλ ≥ λ1/(α+1) (m4φ − m9z) ≥ λ1/(α+1)(m4/2)φ in �,

and

uλ − c−1vλ ≤ −λ1/(α+1)(m6φ − m10z) ≤ −λ1/(α+1)(m6/2)φ in �

for λ  1, where φ is defined in (2.6) and z is defined in Lemma 2.1 with D = �\Dλ.

This contradicts the maximality of c and therefore c ≥ (1 − ε)1/(1−α) for λ  1 i.e.

(1 − ε)1/(1−α)vλ ≤ uλ ≤ (1 − ε)1/(α−1)vλ in �.

This completes the proof of Theorem 1.2. �
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