UNIQUENESS FOR SINGULAR SEMILINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS II

D. D. HAI and R. C. SMITH
Department of Mathematics and Statistics,
Mississippi State University, Mississippi State, MS 39762, USA
e-mail: dang@math.msstate.edu, smith@math.msstate.edu

(Received 8 May 2014; revised 16 September 2014; accepted 17 December 2014;
first published online 21 July 2015)

Abstract

We prove uniqueness of positive solutions for the boundary value problem $$
\left\{\begin{aligned} -\Delta u & =\lambda f(u) \text { in } \Omega \\ u & =0 \text { on } \partial \Omega \end{aligned}\right.
$$ where Ω is a bounded domain in \mathbb{R}^{n} with smooth boundary $\partial \Omega, \lambda$ is a large positive parameter, $f:(0, \infty) \rightarrow[0, \infty)$ is nonincreasing for large t and is allowed to be singular at 0 .

2010 AMS classification. 35J75, 35J92

1. Introduction. Consider the boundary value problem

$$
\left\{\begin{align*}
-\Delta u & =\lambda f(u) \text { in } \Omega, \tag{1.1}\\
u & =0 \text { on } \partial \Omega,
\end{align*}\right.
$$

where Ω is a bounded domain in \mathbb{R}^{n} with smooth boundary $\partial \Omega, \lambda$ is a large positive parameter and $f:(0, \infty) \rightarrow(0, \infty)$.

The existence and uniqueness of a classical positive solution to (1.1) for all $\lambda>$ 0 was obtained in [3] when f is nonincreasing and $\lim _{t \rightarrow 0^{+}} f(t)=\infty$. We refer to $[4,7,9,11,12]$ for uniqueness results to (1.1) when λ is large and f is nonsingular. Note that $f(t) \sim t^{\beta}$ at ∞ for some $\beta \in[0,1)$ in $[4,9,11], f(t) \sim t^{\beta} \ln (1+t)$ for some $\beta \in(0,1)$ is allowed in [7], while $f(t)=(1+t)^{-\gamma}$ with $\gamma>0$ small is permitted in [12]. We are interested here in studying uniqueness of solutions to (1.1) for λ large when $f(t)$ is nonincreasing for t large and is possibly singular at 0 . Our results complement the uniqueness result in [6], where $f(t)$ is possibly singular at 0 and nondecreasing for t large, and the result in [12] mentioned above. Our approach is based on sharp upper and lower estimates on the solutions of (1.1).

We shall make the following assumptions:
(A1) $f:(0, \infty) \rightarrow(0, \infty)$ is continuous.
(A2) There exist constants $A>0$ and $\alpha \in(0,1)$ such that

$$
c^{-\alpha} f(t) \leq f(c t) \leq f(t)
$$

for all $c>1, t>A$.
(A3) $\lim \inf _{t \rightarrow 0^{+}} \frac{f(t)}{t}>0$
(A4) For each constant $B>0$, there exists a constant $C_{B}>0$ such that

$$
|f(t)-f(s)| \leq \frac{C_{B}|t-s|}{\min ^{\alpha+1}(s, t)}
$$

for $s, t \leq B$.
REMARK 1.1. Condition (A2) is equivalent to the assumption that $f(t)$ is nonincreasing and $t^{\alpha} f(t)$ is nondecreasing for $t>A$.

Remark 1.2. (i) It is easily seen that condition (A4) is satisfied if f is of class C^{1} on $(0, \infty)$ and

$$
\limsup _{t \rightarrow 0^{+}} t^{\alpha+1}\left|f^{\prime}(t)\right|<\infty
$$

(ii) Note that (A4) implies
(A5) $\lim \sup _{t \rightarrow 0^{+}} t^{\alpha}|f(t)|<\infty$.
To see this, let $B>0$ and $t \in(0, B]$. Let $n_{0} \in N$ be the largest number such that $n_{0} t<B$. Then, by (A4),

$$
\begin{gathered}
|f(t)-f(B)| \leq\left|f\left(n_{0} t\right)-f(B)\right|+\sum_{k=1}^{n_{0}-1}|f(k t)-f((k+1) t)| \\
\leq \frac{C_{B}}{t^{\alpha}} \sum_{k=1}^{n_{0}} \frac{1}{k^{\alpha+1}} \leq \frac{\tilde{C}_{B}}{t^{\alpha}}
\end{gathered}
$$

for $t \leq B$, where $\tilde{C}_{B}=C_{B} \sum_{k=1}^{\infty} \frac{1}{k^{\alpha+1}}$. Hence, (A5) follows.
Example 1.1. The following nonlinearities satisfy (A1)-(A4):
(a) $f(t)=\frac{\ln \left(a+t^{p}\right)}{t^{\alpha}}$, where $\alpha \in(0,1), a \geq 1, p \geq 0$ if $a>1$ and $0 \leq p \leq \alpha+1$ if $a=$ 1.
(b) $f(t)=\frac{t^{\beta}}{(1+t)^{\alpha}}$, where $\alpha \in(0,1), 0 \leq \beta<\alpha$.
(c) $f(t)=\frac{t^{s}+\left|\sin \left(t^{\gamma}\right)\right|}{t^{\alpha}}$, where $\alpha \in(0,1), 0<\gamma<\delta<\alpha$. Note that this function is not differentiable on $(0, \infty)$.
By a solution of (1.1), we mean a function $u \in C^{1, \beta}(\bar{\Omega})$ for some $\beta \in(0,1)$ which satisfies (1.1). By the strong maximum principle [1], any solution u of (1.1) is positive with $\frac{\partial u}{\partial v}<0$ on $\partial \Omega$, where v denotes the outer unit normal vector on $\partial \Omega$. Our main result is

Theorem 1.1. Let (A1)-(A4) hold. Then, there exists a positive constant λ_{0} such that (1.1) has a unique solution for $\lambda>\lambda_{0}$.

Theorem 1.2. Let (A1), (A3), (A5) hold and suppose that there exists a constant $C>0$ such that $\lim _{t \rightarrow \infty} t^{\alpha} f(t)=C$. Let u_{λ} be a solution of (1.1). Then,

$$
\lim _{\lambda \rightarrow \infty} \frac{u_{\lambda}(x)}{(\lambda C)^{1 /(1+\alpha)} w(x)}=1
$$

uniformly in Ω, where w denotes the unique solution of

$$
-\Delta w=w^{-\alpha} \text { in } \Omega, w=0 \text { on } \partial \Omega
$$

2. Preliminary results. Let λ_{1} be the first eigenvalue of $-\Delta$ with Dirichlet boundary conditions and ϕ_{1} be the normalized positive eigenfunction associated with λ_{1} i.e. $\left\|\phi_{1}\right\|_{\infty}=1$.

We shall denote the norms in $L^{2}(\Omega), C^{1}(\bar{\Omega})$, and $C^{1, \beta}(\bar{\Omega})$ by $\|\cdot\| \|_{2},|\cdot|_{1}$, and $|\cdot|_{1, \beta}$ respectively.

We first recall the following regularity result in [5, Lemma 3.1]
Lemma 2.1. Let $h \in L^{1}(\Omega)$ and suppose that there exist constants $\gamma \in(0,1)$ and $C>0$ such that

$$
|h(x)| \leq \frac{C}{\phi_{1}^{\gamma}(x)}
$$

for a.e. $x \in \Omega$. Then, the problem

$$
\left\{\begin{array}{c}
-\Delta u=h \text { in } \Omega, \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

has a unique solution $u \in H_{0}^{1}(\Omega)$. Furthermore, there exist constants $\beta \in(0,1)$ and $M>$ 0 depending only on C, γ, Ω such that $u \in C^{1, \beta}(\bar{\Omega})$ and $|u|_{1, \beta}<M$.

Corollary 2.1. Let h and u be given as in Lemma 2.1. Then, there exists a constant $k>0$ such that $|u| \leq k \phi_{1}$ in Ω.

Proof. By Lemma 2.1, there exist constants $\beta \in(0,1)$ and $M>0$ such that $|u|_{1, \beta}<$ M. Hence, by the Mean Value Theorem, $|u(x)| \leq M d(x)$ for $x \in \Omega$, where $d(x)$ denotes the distance from x to $\partial \Omega$. Since $\phi_{1}>0$ in Ω and $\frac{\partial \phi_{1}}{\partial \nu}<0$ on $\partial \Omega$, there exists a constant $k_{0}>0$ such that $\phi_{1}(x) \geq k_{0} d(x)$ for $x \in \Omega$ (see e.g. [9, Proposition 2.1 (i)]. Consequently, $|u| \leq k \phi_{1}$ in Ω, where $k=M / k_{0}$.

Lemma 2.2. Let D be an open set in Ω with $\bar{D} \subset \Omega$. Let $\gamma \in(0,1)$ and z be the solution of

$$
\left\{\begin{array}{c}
-\Delta z=\frac{1}{\phi_{1}^{\prime}} \chi_{D} \text { in } \Omega, \tag{2.1}\\
z=0 \quad \text { on } \partial \Omega,
\end{array}\right.
$$

Then, $|z|_{1} \rightarrow 0$ as $|D| \rightarrow 0$. Here, χ_{D} denotes the characteristic function on D and $|D|$ the Lebesgue measure of D.

Proof. By Lemma 2.1, there exist $\beta \in(0,1)$ and $M>0$ independent of z such that $z \in C^{1, \beta}(\bar{\Omega})$ and $|z|_{1, \beta}<M$.

Multiplying the equation in (2.1) by z and integrating gives

$$
\|\nabla z\|_{2}^{2}=\int_{D} \frac{z}{\phi_{1}^{\gamma}} d x \leq M \int_{D} \frac{1}{\phi_{1}^{\gamma}} d x
$$

Since $1 / \phi_{1}^{\gamma} \in L^{1}(\Omega)$ (see $[\mathbf{8}]$), it follows that $\|\nabla z\|_{2} \rightarrow 0$ as $|D| \rightarrow 0$.
By the interpolation result in [2, Corollary 1.3], there exist constants $c>0$ and $\theta \in(0,1)$ independent of z such that

$$
|z|_{1} \leq c|z|_{1, \beta}^{1-\theta}\|\nabla z\|_{2}^{\theta} \leq c M^{1-\theta}\|\nabla z\|_{2}^{\theta}
$$

which implies $|z|_{1} \rightarrow 0$ as $|D| \rightarrow 0$.

Lemma 2.3. Let (A1), (A3), (A5) hold and let ube a solution of (1.1). Then, for λ large enough, there exists a constant $c_{\lambda}>0$ with $\lim _{\lambda \rightarrow \infty} c_{\lambda}=\infty$ such that

$$
u \geq c_{\lambda} \phi_{1} \text { in } \Omega
$$

Proof. Let u be a solution of (1.1) and $M>0$. By (A1) and (A3), there exists a constant $K>0$ such that

$$
f(t) \geq K t
$$

for $t \in(0, M]$. By the strong maximum principle, there exists a constant $\delta>0$ such that $u \geq \delta \phi_{1}$ in Ω. Let δ_{0} be the largest of those δ. Then, $u \geq \delta_{0} \phi_{1}$ in Ω. Suppose $\lambda>\lambda_{1} / K$. We claim that $\delta_{0} \geq M$. Suppose to the contrary that $\delta_{0}<M$. Let $D=\{x \in \Omega: u(x)<$ $M\}$ and $a=\min \left(\lambda K, \lambda_{1} M / \delta_{0}\right\}>\lambda_{1}$. Then,

$$
\left\{\begin{array}{cc}
-\Delta u \geq \lambda K u \geq \lambda K \delta_{0} \phi_{1} \geq a \delta_{0} \phi_{1} \text { in } D, \\
u=M \geq a \delta_{0} / \lambda_{1} & \text { on } \partial D .
\end{array}\right.
$$

By the weak comparison principle [10, Lemma A2], $u \geq\left(a \delta_{0} / \lambda_{1}\right) \phi_{1}$ in Ω, which contradicts the maximality of δ_{0}. Hence, $u \geq M \phi_{1}$ in D, and since $u \geq M \geq M \phi_{1}$ in $\Omega \backslash D$, this completes the proof.

Lemma 2.4. Let (A1), (A3), (A5) hold and suppose that there exist positive constants A, M_{0}, M_{1} such that

$$
\begin{equation*}
M_{0} c^{-\alpha} f(t) \leq f(c t) \leq M_{1} f(t) \tag{2.2}
\end{equation*}
$$

for $c>1, t>A$. Then, there exist positive constants $\bar{\lambda}, K_{0}$ and c_{λ} with $\lim _{\lambda \rightarrow \infty} c_{\lambda}=\infty$ such that if u is a solution of (1.1) with $\lambda \geq \bar{\lambda}$ then

$$
c_{\lambda} \phi_{1} \leq u \leq K_{0} c_{\lambda} \phi_{1} \quad \text { in } \Omega .
$$

Proof. Let u be a solution of (1.1) and λ be large enough so that Lemma 2.2 holds. Let c_{λ} be the largest number so that $u \geq c_{\lambda} \phi_{1}$ in Ω.

For $c_{\lambda} \phi_{1}>A$, it follows from (2.2) that

$$
\begin{equation*}
f(u) \leq M_{1} f\left(c_{\lambda} \phi_{1}\right) \leq \frac{M_{2} f\left(c_{\lambda}\right)}{\phi_{1}^{\alpha}} \tag{2.3}
\end{equation*}
$$

where $M_{2}=M_{1} M_{0}^{-1}$. For $u>A$ and $c_{\lambda} \phi_{1} \leq A$,

$$
\begin{equation*}
f(u) \leq M_{1} f(A) \leq \frac{M_{1} A^{\alpha} f(A)}{\left(c_{\lambda} \phi_{1}\right)^{\alpha}} \tag{2.4}
\end{equation*}
$$

while it follows from (A5) that there exists a constant $B>0$ such that

$$
\begin{equation*}
f(u) \leq \frac{B}{u^{\alpha}} \leq \frac{B}{\left(c_{\lambda} \phi_{1}\right)^{\alpha}} . \tag{2.5}
\end{equation*}
$$

for $u \leq A$. Since $\liminf _{\lambda \rightarrow \infty} c_{\lambda}^{\alpha} f\left(c_{\lambda}\right)>0$, it follows from (2.2)-(2.4) that there exists a constant $M>0$ such that

$$
\begin{equation*}
-\Delta u=\lambda f(u) \leq \frac{\lambda M f\left(c_{\lambda}\right)}{\phi_{1}^{\alpha}} \text { in } \Omega \tag{2.6}
\end{equation*}
$$

for λ large. Let ϕ be the solution of

$$
\begin{equation*}
-\Delta \phi=\frac{1}{\phi_{1}^{\alpha}} \text { in } \Omega, \phi=0 \text { on } \partial \Omega \tag{2.7}
\end{equation*}
$$

By Corollary 2.1, there exists a constant $k>0$ such that $\phi \leq k \phi_{1}$ in Ω. Then (2.5) and the weak comparison principle imply

$$
\begin{equation*}
u \leq d_{\lambda} \phi_{1} \quad \text { in } \Omega \tag{2.8}
\end{equation*}
$$

where $d_{\lambda}=\lambda k M f\left(c_{\lambda}\right)$.
Let $D_{0}=\left\{x \in \Omega: \phi_{1}(x)>1 / 2\right\}$. Then for λ large,

$$
u \geq c_{\lambda} / 2>A \text { in } D_{0}
$$

which implies

$$
-\Delta u \geq \begin{cases}\lambda M_{1}^{-1} f\left(d_{\lambda}\right) \text { in } D_{0} \\ 0 & \text { in } \Omega \backslash D_{0}\end{cases}
$$

Hence,

$$
\begin{equation*}
u \geq \lambda M_{1}^{-1} f\left(d_{\lambda}\right) \phi_{0} \geq \lambda k_{0} f\left(d_{\lambda}\right) \phi_{1} \text { in } \Omega \tag{2.9}
\end{equation*}
$$

where ϕ_{0} is the solution of

$$
-\Delta \phi_{0}=\left\{\begin{array}{l}
1 \text { in } D_{0}, \\
0 \text { in } \Omega \backslash D_{0},
\end{array}\right.
$$

and $k_{0}>0$ is such that $M_{1}^{-1} \phi_{0} \geq k_{0} \phi_{1}$ in Ω. By (2.2),

$$
d_{\lambda}^{\alpha} f\left(d_{\lambda}\right) \geq M_{0} c_{\lambda}^{\alpha} f\left(c_{\lambda}\right)
$$

which, together with (2.8) and the maximality of c_{λ}, implies

$$
c_{\lambda} \geq \lambda k_{0} f\left(d_{\lambda}\right) \geq \frac{\lambda k_{0} M_{0} c_{\lambda}^{\alpha} f\left(c_{\lambda}\right)}{\left(\lambda k M f\left(c_{\lambda}\right)\right)^{\alpha}}
$$

Consequently,

$$
\begin{equation*}
c_{\lambda} \geq \lambda k_{1} f\left(c_{\lambda}\right) \tag{2.10}
\end{equation*}
$$

where $k_{1}=\left(k_{0} M_{0} /(k M)^{\alpha}\right)^{1 /(1-\alpha)}$. Hence,

$$
\begin{equation*}
d_{\lambda}=\lambda k M f\left(c_{\lambda}\right) \leq K_{0} c_{\lambda} \tag{2.11}
\end{equation*}
$$

where $K_{0}=k M / k_{1}$. This, together with (2.7), completes the proof of Lemma 2.3.

Remark 2.1. Let (A1), (A3), (A5) hold and suppose that there exists a constant $C>0$ such that $\lim _{t \rightarrow \infty} t^{\alpha} f(t)=C$. Then (2.2) hold and we deduce from (2.9) and (2.10) that for λ large, there exist positive constants m_{1}, m_{2} such that any solution u of (1.1) satisfies

$$
m_{1} \lambda^{1 /(\alpha+1)} \phi_{1} \leq u \leq m_{2} \lambda^{1 /(\alpha+1)} \phi_{1} \text { in } \Omega .
$$

3. Proof of the main results.

Proof of Theorem 1.1 Since f is sublinear at ∞ and $\liminf _{t \rightarrow \infty} t^{\alpha} f(t)>0$, the existence of a solution to (1.1) for λ large follows from [$\mathbf{5}$, Theorem 2.1]. Let u_{1} and u_{2} be solutions of (1.1) with λ large. By Lemma 2.3, $c_{0} u_{2} \leq u_{1} \leq c_{0}^{-1} u_{2}$ in Ω, where $c_{0}=K_{0}^{-1}$. Let c be the largest number such that $c u_{2} \leq u_{1} \leq c^{-1} u_{2}$ in Ω and suppose that $c<1$. Then,

$$
\left|u_{1}-u_{2}\right| \leq\left(c^{-1}-1\right) u_{2} \text { in } \Omega \text {. }
$$

Let $a>0$ be such that

$$
\begin{equation*}
c^{\alpha}-c \geq a(1-c) \text { for } c \in\left[c_{0}, 1\right] . \tag{3.1}
\end{equation*}
$$

If $u_{2}>A K_{0}$, then $u_{1}>A$ and it follows from (3.1), (A2) and Lemma 2.3 that

$$
\begin{align*}
f\left(u_{1}\right)-c f\left(u_{2}\right) & \geq f\left(c^{-1} u_{2}\right)-c f\left(u_{2}\right) \geq\left(c^{\alpha}-c\right) f\left(u_{2}\right) \\
& \geq \frac{B_{0}\left(c^{\alpha}-c\right)}{u_{2}^{\alpha}} \geq \frac{B_{0} a(1-c)}{\left(K_{0} c_{\lambda} \phi_{1}\right)^{\alpha}}=\frac{B_{1}(1-c)}{\left(c_{\lambda} \phi_{1}\right)^{\alpha}}, \tag{3.2}
\end{align*}
$$

where $B_{0}=\left(A K_{0}\right)^{\alpha} f\left(A K_{0}\right), B_{1}=B_{0} a / K_{0}^{\alpha}$.
On the other hand, if $u_{2} \leq A K_{0}$ then $u_{1} \leq A K_{0}^{2}$ and it follows from (A4) with $B=A K_{0}^{2}$ that

$$
\begin{aligned}
\left|f\left(u_{1}\right)-f\left(u_{2}\right)\right| & \leq \frac{C_{B}\left|u_{1}-u_{2}\right|}{\min ^{\alpha+1}\left(u_{1}, u_{2}\right)} \leq \frac{C_{B}\left(c^{-1}-1\right) u_{2}}{\left(c u_{2}\right)^{\alpha+1}} \\
& \leq \frac{C_{B}(1-c)}{c^{\alpha+2}\left(c_{\lambda} \phi_{1}\right)^{\alpha}}=\frac{B_{2}(1-c)}{\left(c_{\lambda} \phi_{1}\right)^{\alpha}}
\end{aligned}
$$

where $B_{2}=C_{B} / c_{0}^{2+\alpha}$. In particular,

$$
\begin{equation*}
f\left(u_{1}\right)-c f\left(u_{2}\right) \geq-\frac{B_{2}(1-c)}{\left(c_{\lambda} \phi_{1}\right)^{\alpha}} . \tag{3.3}
\end{equation*}
$$

Let $D_{\lambda}=\left\{x \in \Omega: \phi_{1}(x)>A K_{0} / c_{\lambda}\right\}$. Then, $u_{2} \geq c_{\lambda} \phi_{1}>A K_{0}$ in D_{λ} and it follows from (3.2)-(3.3) that

$$
\begin{align*}
-\Delta\left(u_{1}-c u_{2}\right) & =\lambda\left(f\left(u_{1}\right)-c f\left(u_{2}\right)\right) \tag{3.4}\\
& \geq \frac{\lambda B_{1}(1-c)}{\left(c_{\lambda} \phi_{1}\right)^{\alpha}}-\frac{\lambda B_{3}(1-c)}{\left(c_{\lambda} \phi_{1}\right)^{\alpha}} \chi_{\Omega \backslash D_{\lambda}} \text { in } \Omega,
\end{align*}
$$

where $B_{3}=B_{1}+B_{2}$. Let z be the solution of (2.1) with $D=\Omega \backslash D_{\lambda}$ and $\gamma=\alpha$. Since

$$
\Omega \backslash D_{\lambda} \subset\left\{x \in \Omega: \phi_{1}(x) \leq A K_{0} / c_{\lambda}\right\}
$$

and $c_{\lambda} \rightarrow \infty$ as $\lambda \rightarrow \infty$, it follows that $\left|\Omega \backslash D_{\lambda}\right| \rightarrow 0$ as $\lambda \rightarrow \infty$. Hence, Lemma 2.1 with $D=\Omega \backslash D_{\lambda}$ gives $|z|_{1} \rightarrow 0$ as $\lambda \rightarrow \infty$. This, together with (3.4), gives

$$
u_{1}-c u_{2} \geq \frac{\lambda(1-c)}{c_{\lambda}^{\alpha}}\left(B_{1} \phi-B_{3} z\right) \geq \frac{\lambda B_{1}(1-c)}{2 c_{\lambda}^{\alpha}} \phi \text { in } \Omega
$$

if λ is large enough, where ϕ is defined in (2.6). This contradicts the maximality of c and therefore $c=1$, which completes the proof.

Proof of Theorem 2.2. Without loss of generality, we assume $C=1$. Let u_{λ} be a solution of (1.1) with λ large, and let $v_{\lambda}=\lambda^{1 /(1+\alpha)} w$. Note that v_{λ} satisfies

$$
-\Delta v_{\lambda}=\lambda v_{\lambda}^{-\alpha} \text { in } \Omega, v_{\lambda}=0 \text { on } \partial \Omega
$$

By Remark 2.1,

$$
m_{1} \lambda^{1 /(\alpha+1)} \phi_{1} \leq u_{\lambda}, v_{\lambda} \leq m_{2} \lambda^{1 /(\alpha+1)} \phi_{1} \text { in } \Omega,
$$

which implies $c_{0} v_{\lambda} \leq u_{\lambda} \leq c_{0}^{-1} v_{\lambda}$ in Ω, where $c_{0}=m_{1} / m_{2}$. Let c be the largest number such that $c v_{\lambda} \leq u_{\lambda} \leq c^{-1} v_{\lambda}$ in Ω. Let $\varepsilon \in(0,1)$ and suppose that $c \leq(1-\varepsilon)^{1 /(1-\alpha)} \equiv \varepsilon_{0}$. Since $\lim _{t \rightarrow \infty} t^{\alpha} f(t)=1$, there exists a constant $A>0$ such that

$$
\frac{1-\varepsilon / 2}{t^{\alpha}} \leq f(t) \leq \frac{(1-\varepsilon / 2)^{-1}}{t^{\alpha}}
$$

for $t>A$. Hence, for $u_{\lambda}>A$,

$$
\begin{align*}
f\left(u_{\lambda}\right)-\frac{c}{v_{\lambda}^{\alpha}} & \geq \frac{1-\varepsilon / 2}{u_{\lambda}^{\alpha}}-\frac{c}{v_{\lambda}^{\alpha}} \geq \frac{(1-\varepsilon / 2) c^{\alpha}-c}{v_{\lambda}^{\alpha}} \tag{3.5}\\
& \geq \frac{m_{3}}{v_{\lambda}^{\alpha}} \geq \frac{m_{4}}{\lambda^{\alpha /(1+\alpha)} \phi_{1}^{\alpha}}
\end{align*}
$$

where $m_{3}=\min _{c_{0} \leq c \leq \varepsilon_{0}}\left((1-\varepsilon / 2) c^{\alpha}-c\right)>0, m_{4}=m_{3} m_{2}^{-\alpha}$, and

$$
\begin{align*}
f\left(u_{\lambda}\right)-\frac{c^{-1}}{v_{\lambda}^{\alpha}} & \leq \frac{(1-\varepsilon / 2)^{-1}}{u_{\lambda}^{\alpha}}-\frac{c^{-1}}{v_{\lambda}^{\alpha}} \leq \frac{(1-\varepsilon / 2)^{-1} c^{-\alpha}-c^{-1}}{v_{\lambda}^{\alpha}} \tag{3.6}\\
& \leq-\frac{m_{5}}{v_{\lambda}^{\alpha}} \leq-\frac{m_{6}}{\lambda^{\alpha /(1+\alpha)} \phi_{1}^{\alpha}},
\end{align*}
$$

where $m_{5}=\min _{c_{0} \leq c \leq \varepsilon_{0}}\left(c^{-1}-(1-\varepsilon / 2)^{-1} c^{-\alpha}\right)>0, m_{6}=m_{5} m_{2}^{-\alpha}$.

On the other hand, it follows from (A1) and (A5) that there exists a constant $B>0$ such that

$$
0<f(t) \leq B t^{-\alpha} \text { for } t \in(0, A]
$$

Hence, for $u_{\lambda} \leq A$,

$$
\begin{equation*}
f\left(u_{\lambda}\right)-\frac{c}{v_{\lambda}^{\alpha}} \geq-\frac{c}{v_{\lambda}^{\alpha}} \geq-\frac{\varepsilon_{0}}{v_{\lambda}^{\alpha}} \geq-\frac{m_{7}}{\lambda^{\alpha+1} \phi_{1}^{\alpha}} \tag{3.7}
\end{equation*}
$$

where $m_{7}=\varepsilon_{0} m_{1}^{-\alpha}$, and

$$
\begin{equation*}
f\left(u_{\lambda}\right)-\frac{c^{-1}}{v_{\lambda}^{\alpha}} \leq \frac{B}{u_{\lambda}^{\alpha}} \leq \frac{m_{8}}{\lambda^{\frac{\alpha}{\alpha+1}} \phi_{1}^{\alpha}} \tag{3.8}
\end{equation*}
$$

where $m_{8}=B m_{1}^{-\alpha}$.
Let $D_{\lambda}=\left\{x \in \Omega: \phi_{1}(x)>A m_{1}^{-1} \lambda^{-1 /(\alpha+1)}\right\}$. Note that $u_{\lambda}>A$ in D_{λ} and $\left|\Omega \backslash D_{\lambda}\right| \rightarrow$ 0 as $\lambda \rightarrow \infty$.

From (3.5) and (3.7), it follows that

$$
-\Delta\left(u_{\lambda}-c v_{\lambda}\right)=\lambda\left(f\left(u_{\lambda}\right)-\frac{c}{v_{\lambda}^{\alpha}}\right) \geq \lambda^{1 /(\alpha+1)}\left(\frac{m_{4}}{\phi_{1}^{\alpha}}-\frac{m_{9}}{\phi_{1}^{\alpha}} \chi_{\Omega \backslash D_{\lambda}}\right),
$$

where $m_{9}=m_{4}+m_{7}$. On the other hand, (3.6) and (3.8) give

$$
-\Delta\left(u_{\lambda}-c^{-1} v_{\lambda}\right)=\lambda\left(f\left(u_{\lambda}\right)-\frac{c^{-1}}{v_{\lambda}^{\alpha}}\right) \leq-\lambda^{1 /(\alpha+1)}\left(\frac{m_{6}}{\phi_{1}^{\alpha}}-\frac{m_{10}}{\phi_{1}^{\alpha}} \chi_{\Omega \backslash D_{\lambda}}\right),
$$

where $m_{10}=m_{6}+m_{8}$. Hence, Lemma 2.1 and the weak comparison principle give

$$
u_{\lambda}-c v_{\lambda} \geq \lambda^{1 /(\alpha+1)}\left(m_{4} \phi-m_{9} z\right) \geq \lambda^{1 /(\alpha+1)}\left(m_{4} / 2\right) \phi \text { in } \Omega,
$$

and

$$
u_{\lambda}-c^{-1} v_{\lambda} \leq-\lambda^{1 /(\alpha+1)}\left(m_{6} \phi-m_{10} z\right) \leq-\lambda^{1 /(\alpha+1)}\left(m_{6} / 2\right) \phi \text { in } \Omega
$$

for $\lambda \gg 1$, where ϕ is defined in (2.6) and z is defined in Lemma 2.1 with $D=\Omega \backslash D_{\lambda}$. This contradicts the maximality of c and therefore $c \geq(1-\varepsilon)^{1 /(1-\alpha)}$ for $\lambda \gg 1$ i.e.

$$
(1-\varepsilon)^{1 /(1-\alpha)} v_{\lambda} \leq u_{\lambda} \leq(1-\varepsilon)^{1 /(\alpha-1)} v_{\lambda} \text { in } \Omega .
$$

This completes the proof of Theorem 1.2.
Acknowledgements. The authors wish to express their gratitude to the referee for constructive remarks and helpful suggestions.

REFERENCES

1. H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, Siam Rev. 18 (1976), 620-709.
2. L. An, On the local Holder continuity of the inverse of the p-Laplace operator, Proc. Amer. Math. Soc. 135 (2007), 3553-3560.
3. M. G. Crandall, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearitiy, Comm. Partial Differ. Equ. 2 (1977), 193-222.
4. E. N. Dancer, On the number of positive solutions of weakly nonlinear elliptic equations when a parameter is large, Proc. London Math. Soc. 53 (1986), 429-452.
5. D. D. Hai, On a class of singular p-Laplacian boundary value problems, J. Math. Anal. Appl. 383 (2011), 619-626.
6. D. D. Hai and R. C. Smith, Uniqueness for singular semilinear elliptic boundary value problems, Glasgow Math. J. 55 (2013), 399-409.
7. D. D. Hai and R. C. Smith, On uniqueness for a class of nonlinear boundary value problems, Proc. Roy. Soc. Edinburgh 136 (2006), 779-784.
8. A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc. 111 (1991), 721-730.
9. S. S. Lin, On the number of positive solutions for nonlinear elliptic equations when a parameter is large, Nonlinear Anal. 16 (1991), 283-297.
10. S. Sakaguchi, Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet Problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 14 (1987), 403-421.
11. V. Schuchman, About uniqueness for nonlinear boundary value problems, Math. Ann. 267 (1984), 537-542.
12. M. Wiegner, A uniqueness theorem for some nonlinear boundary value problems with a large parameter, Math. Ann. 270 (1985), 401-402.
