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ON RINGS WITH NIL COMMUTATOR IDEAL

Hazar ABU-KHuzAM

Let R be a ring in which for each x, ¥ in R there exists a

n
positive integer n = n(x, y) such that (zy)n - (y=)" 1is in

the center of R . Then R has a nil commutator ideal.

A theorem of Belluce, Herstein and Jain [2] states that, if R is a

ring in which for each x, ¥y in R there exists integers

m=m(x,y) 21, n=n(x,y) =1 such that (xy)" = (yx)” , then the
commutator ideal of R 1is nil. OQur objective is to generalize the above
result for the case where m(x, y) = n(x, y) . Indeed, we prove that, if

R 1is a ring in which for each x, y in R there exists an integer

n =n(z, y) 21 such that (xy)" - (y2)" is in the center of R , then

R has a nil commutator.

In preparation for the proofs of our main theorem, we first consider
the following lemmas. Throughout, R will denote a ring, Z will denote
the center of R , and J the Jacobson radical of R . We use the
standard notation [z, y] = ay - yx .

The first two lemmas are known and we omit their proofs.
LEMMA 1. If [z, y) commutes with x , then
Erk, y] = kxk_l[x, yl.
LEMMA 2. Let d be a derivation of R. If = ¢ R 1is such that

P(z) =0 then d() = k1(d=)* foratz kz1.
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LEMMA 3. If R <s a ring in which for each x,y 1in R , there

exists an integer n = n(x, y) = 1 such that (xy)" - (yx)n €2 . Then

for each a € J , x € R there exist integers n = n(z, a) 21 and
m=m(z, a) 21 such that (um)i[a, x2n]hm =0.

Proof. Let a €J , x €R . {(l+a) is formally invertible (R need

not have an identity element). Using the hypothesis for the elements

(1+a)x and :z:(l+a)_l , there exists an integer 7 = 1 such that

((1+a)?(1+a)™ )" - 2™ € 2 .

Thus
(1+a)a - 2M(14a) = (1+a) (1+a)z™(1+a) ™)
((1+a)z®"-2""(14a)) (1+a) = (1+a) ((1+a)z™ 22 (1+a)) .
Hence
(1) (@®-2?d)a = a(ax®™""a) , acd, zeR.

Let d(y) =ay -ya . d 1is a derivation of R . Using (1),

dz(xzn) = 0 . Applying (1) for :z:!m instead of x , there exists an

integer m > 1 such that
(a (xlm) 2m__ (mhn) 2ma)a = a[a (xlm) 2m_ (xlm) Zma)
Thus, dz(xa’"”) = 0 . Hence, by Lemma 2,
0 = &™((Z®)*™ = (um (@)

and so (km)i[a, zen]hm =0 .
Theorem 1 below is proved in [/] and we omit its proof here.
THEOREM 1. If R <8 a semisimple ring in which, for each x,y in

R there exists an integer n =nlz, y) =2 1 such that (ay)" = (yo)* €z .

Then R 18 commutative.
THEOREM 2. Let R be a ring in which, for each =z, y in R there

exigts an integer n = nl(x, y) 2 1 such that (ay)” - (y:z:)rl €2 . Then
the commutator ideal of R 1is nil. Equivalently, if R has no nonzero
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nil ideals then R 18 commutative.

Proof. To prove that the commutator ideal of R is nil it is enough
to show that if R has no nonzero nil ideals then it is commutative. So
we suppose that F has no nonzero nil ideals. Then R is a subdirect

product of prime rings Ra , having no nonzero nil ideals, such that in

t(I
each R& there is a nonnilpotent element ba in which ba( ) €I for

every nonzero ideal I of Ra . Clearly, Ra satisfies the condition

n n
(xy) - (yx) € Za[center of Ra] . So we may assume that R is a prime
ring, having no nonzero nil ideals, in which there is a nonnilpotent

t(I

element b € R such that b (1) € I for all nonzero ideals I of R .
We may assume that J # 0 , otherwise the result follows from Theorem 1.
If char R=p # 0, then, by (1), for any « € R and a € J , there

exists an integer 7 = n(a, £) =2 1 such that

Ez, Ez, xzn]] =0 .

Hence, by Lemma 1,
(@, s = pf 2, ] =0 .

So for any X,y €J , Lrp, y2n] = 0 . This implies by [3] that J is
commutative, and therefore R is commutative since it is prime and has a

nonzero commutative ideal [4].

So we may assume that char R = 0 , and since R is prime with

char R = 0, R is torsion-free.

CLAIM 1. Every zero divisor in R is nilpotent.

To prove Claim 1, suppose that ac =0 , with a # 0 and ¢
nonnilpotent. Let A4 = {x €R : xc" =0 for some r = 1} and
B = {x €R: c®x =0 for some & = 1} . Then 4 is a left ideal of R ,
and B 1is a right ideal. A # 0 since O#a €A . If x € A, then

r _ r \2 .

xe =0 for some r =1 , and hence (c zﬂ = 0 . By hypothesis, there
exists an integer n = 1 such that (¢ (z+c"))” - ((z+c")°")" € z . This

- c(2n-1)rxcr = crc(2"°l)rx

implies that (car]n-lcpx €Z. S 0 , and
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hence Pz =0 fora positive integer & . Thus x € B , and ACB .
Similarly, Bc A . So A =B and hence A 1is an ideal of R . Since 4
is a nonzero ideal of R , bt € A for some ¢t =1 . Thus btcr =0 for
some r =21 , and since ¢ 1is not nilpotent, then bt is a zero divisor.
Now we can repeat the above argument to show that the set

c={xc¢R: (*)% = 0 for some u = 1} is an ideal of R . Since

cr#OGC', C # 0 , and hence bkEC for some k=1 . So btu-bk=0.
This contradicts the fact that b is nonnilpotent. This proves Claim 1.

CLAIM 2. R has no nonzero nilpotent elements.
To prove Claim 2, suppose that u2 =0 with y # 0 . Then every

element of yR 1is a zero divisor, and hence by Claim 1 every element of

YR 1is nilpotent. Thus yR is a nil right ideal, and so
(2) yRc d .
If Z =0 , then by hypothesis, for every ¢, d in R there exists an

integer n = n{e, d) 21 such that (ed)” = (de)” , which implies by [Z]
that R is commutative. So we may assume that Z # 0 , and let
O#2 €2Z . BSince R is primeand O # 2z € Z , then

(3) 2 1is not a zero divisor, O # 2z € 2 .

Let a €J . Using (1) with (y+z) instead of x , there exists an

integer 7 2 1 such that
(L) (a(y+z)2n-(y+z)2na)a = a(a(y+z)2n-(y+z)2na)
Since y° =0 eand z € 2 , (4) implies

[a (2nzzn_ly+z2n]-(2nzzn-ly+32n)a, al] =0,
and hence

2n-1
2nz [la, ¥, a] =0,
. . . on-1 . ..

and since K 1is torsion-free and =z is not a zero divisor

(5) [la, y1,a] =0 forall a€d, y°=o0.
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Using induction on the index of nilpotence of nilpotent elements Vv

and proceeding as above yields that
(6) [la, v], a] =0 for all a €J , and all nilpotents v .
Since YR is nil, (2) and (6) imply that
[ta, v], a] =0 for all a, v in yR .

Hence yR is a nii right ideal satisfying a polynomial identity. So by
Lemma 2.1.1 of [4], R has a nonzero nilpotent ideal, a contradiction.
Hence yR =0, and so yxr =0 for all x € R . Thus every element of R
is a zero divisor, and hence nilpotent by Claim 1. This is a contradiction
since R has no nonzero nil ideals. Thus y = 0 and Claim 2 is now

proved.

Now we can complete the proof of Theorem 2. By Lemma 3, for each
a €J , x € R, there exist integers 7n =n(x, a) 21 and
2n]hm=0.

m=m(x, a) =21 such that (hm)!Ea, x Using Claim 2, and that

R is torsion-free, we get [ﬁ, x2n] =0 . Thus for every x, a € J there

exists an integer 7 = n(x, @) =1 such that [a, x2n] =0, and hence J
is commutative [3]. R is prime, and has a commutative nonzero ideal J ,

hence R is commutative [4]. This completes the proof of Theorem 2.
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