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ON THE COHOMOLOGY OF CONGRUENCE SUBGROUPS
OF SYMPLECTIC GROUPS

K. F. LAI

§1. Introduction

This paper is concerned with the cohomology at “infinity” (in the
sense of Harder [4], [5]) of a congruence subgroup of the symplectic group
G = Sp(24,R). G is the subgroup of GL(2/4, R) consisting of matrices g
satisfying ‘gJg = J where

J— < 0 I )
—~I 0

and [ is the £ X ¢ identity matrix. We consider G as the real points of
the algebraic group G = Sp(2¢) defined over Q. Let p be a prime not
equal to 2 and I" be the kernel of the natural map

Sp(24, Z) —> Sp(2¢, Z|p"Z) .

We assume that r is chosen large enough so that I" is torsion free.

We are interested in the Eilenberg-Maclane cohomology groups
H*(I", C) of I' (cf: Borel [2]). Itis well-known that H*(I", C) ~ H*(X/I', C)
where X is the symmetric space of maximal compact subgroups of G and
G acts in a natural way on X. In [3] Borel and Serre constructed a com-
pactification X/I" of X/I" having the property that H*(X/I", C) ~ H*(X|I", C).
X|/I' is a manifold with corners and is a union of subsets ¢'(P) (see [3]
p. 476) where P runs over the I' conjugacy classes of parabolic Q-sub-
groups of G. Let

(1.1) r: H¥X/I', C) —> H*@(X|I"), C)

be the homomorphism induced by the map a(X/I") — X/I". The general
programme is to investigate the existence of a subspace Hf (', C) of
H*(I',C) =~ H*(X/I', C) which restricts isomorphically onto Imr. The
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elements of H*,,{(I', C) can be considered as describing the cohomology
at “infinity”.

Fix a standard Borel subgroup B of G (see §1). Let T be the maxi-
mal torus in B and m be the dimension of the unipotent radical of B.
Let D be a set of representatives for all the I'-conjugacy classes of minimal
parabolic subgroups of G which are defined over Q. Choose D so that Be
D. Following G. Harder we use Langlands’ theory of Eisenstein series to
construct elements of H (", C) from cohomology classes in @,., H*('(P),
C). For precise statement see § 10.

In the case of Q-rank one algebraic groups, Harder has shown that
cohomology classes constructed this way exhaust the entire space H¥(I", C)
(cf: [4], [5]). Schwermer has obtained similar results for SL(3) and SL(n)
(cf: [11], [12]).

Notation. For an algebraic subgroup G of GL(n) defined over a field
k and r a subring of k, G(r) denotes the subgroup of G(k) (the group of
k-rational points of G) consisting of n X n matrices with entries in r and
determinants units in r.

For a prime p of the rational numbers Q@ we write Q, (resp. Z,) for
the p-adic numbers (resp. integers). A (resp. 4,) denotes the adeles (resp.
the finite adeles) of Q.

§2.

Let g be the Lie algebra of G; g consists of 24 X 2/ real matrices X
satisfying the condition: ‘XJ + JX = 0. Let a be the Cartan subalgebra
of g consisting of real matrices

For 1 < j < ¢, define elements ¢, in the dual space a* of a by ¢,(H) = h,.
Then the root system of the pair (g, a) is given by

U={texeiz j 1<i, j<OU{x2%:1<j< 8

https://doi.org/10.1017/50027763000019681 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019681

CONGRUENCE SUBGROUPS 157

and the set of simple roots is
4= {51 T &gy & T &yttt 6 — &y 25[}

we also write «; =¢;, —¢;,, for 1 <j<¢ — 1 and a, = 2¢,.

For pea*, Hea we denote with (H, x) the value p(H). The restric-
tion of the Killing form (-, -) of g to a is nonsingular and hence one can
define a map g — H(p) of a* onto a by the relation

(2.1) (H, H(w) = {H, 11 ,

for all Hea. The mapping defines a nonsingular bilinear form on a*
given by

(2.2) (1, ) = CH(p), 4

Denote by g, the root subspace of g corresponding to the root «. Let ¥+
(resp. ¥'~) be the set of positive (resp. negative) roots with respect to the
order determined by 4. Let

n= Zae'lf‘*' ga

and 0 = a + n, the Borel subalgebra of g containing a. Let B be the Borel
subgroup of G with Lie algebra b, N be the unipotent radical of B and T
the maximal torus of G in B. Then B= T.N. Let K be the intersec-
tion of G and the special orthogonal group SO(2¢,R). K is a maximal
compact subgroup of G consisting of matrices

(Y x)
-Y X
satisfying the relations

XX +'YY =1, ‘XY ="'YX.

Moreover G = K. B = KAN (Iawasawa decomposition), where A is the
identity component of T = T(R).
X can be identified with K\G and we have a principal fibration

x: GII' — X|I

with structure group K. Let x, be the point in X fixed by K. Then we
can identify the tangent space at x, with b and the tangent bundle of X/I"
is the bundle induced (viarx) by adjoint representation Ad of K on b ([5]
p. 131).
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Let 2™(X/I") be the vector space of smooth C-valued differential m-
forms on X/I'. Then the cohomology groups H*(X/I', C) are canonically
isomorphic to the cohomology groups of the de Rham complex (2*(X/I"), d)
(cf: [5], [9]). Moreover there is a natural identification between the space
Q™(X|I') and the space of smooth functions

¢: G/I' —> Hom (A™b, C)
which satisfy
(2.3 g(kg) = A™ Ad* (k)g(g), geG, keK

where Ad* is the dual representation to the adjoint representation Ad of
K on B (cf: [5] § 1).

Matsushima-Murakami ([9]) defined an Laplacian operator 4 on the
complex Q*(X/I'). A form we 2%¥(X/I') is then said to be harmonic if 4w
= 0. On the other hand, the universal enveloping algebra U(g.) of go=
g ® C operates as an algebra of differential operators on the smooth func-
tions on G/I" with values in Hom (A™9, C) ([6] chap I §2). The Casimir
operator C defined with respect to the Killing form lies in the centre &
of U(g) and it sends smooth functions satisfying (2.3) into smooth func-
tions satisfying the same conditions. Moreover according to the lemma
of Kuga ([9] §6) we have for all smooth m-forms ¢: G/I' — Hom (A™b, C)
the formula

2.49) A = — C¢ .
§3.
Let G(A) be the adele group of G ([14]).
Let
Fp = {(Tq) € Q(A)lrp € G(Zp)! =1 mod p’, and Ta = 1if g+ p}
K, =[], G(Z,)
K, = Fp Hq;tp Q(Zq)
Q = Kr\Ko .

Write B (resp. T, N) for the image of B(4,) N K, (resp. T(4,) N K,, (£+1,N(A4,))
NK,) in G. Then it is a well-known consequence of the strong approxi-
mation theorem that the I'-conjugacy classes of Borel @Q-subgroups (I" as
defined in §1) corresponds bijectively with the Cartesian product X X Y
where X = B\G and
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Y = K, N B(4,)\B(4,)/BQ) .
One can then deduce the following

LemMma 3.1. Let y be a unitary character of T satisfying
3.1 x@®) =1

for all t in the image of T(Q) N K, in T.
Let V, be the complex vector space of C-valued functions f on G which
are right invariant under N and satisfy

(3.2) f(kt) = x(Of (k)
for ke G and te T. Then there exists an isomorphism
(3.3) ®ren H*(€'(P), C) = H*(€'(B), C)® (®,V)) .

(The direct sum on the right is taken over all the unitary characters y of
T satisfying (3.1).)

The explicit form of this isomorphism is not needed here and so we
will not reproduce here the proof of this lemma (which follows the same
lines as Satz 5.7 and p. 40 of Schwermer [12]). As a consequence of Lemma
3.1, an element of @®,., H*('(P),C) can be identified with o ® > f, for
some w e H*(e'(B),C) and f, e V,. Next we seek to represent » by a func-
tion on G/BN I'.

§4.
According to Proposition 9.4 of Borel-Serre [3] we have
e(B)=NINNT.
Thus
“4.1) H*(/'(B),C) = H¥NINN I',C) .

The right hand side of (4.1) can be computed by using the de Rham com-
plex 2Q¥(N/N N I',C) and we can identify 2Q™(N/N N I', C) with the space
of smooth functions N — Hom (4™n, C) which are right invariant under
N N I'. (Note that the tangent bundle of N/N N I' is trivial.) Thus a
cohomology class of H™(¢’(B), C) can be represented by a smooth function
¢ on N with values in Hom (4™n, C). By composing with the embedding

Hom (4™n, C) —> Hom (A™b, C) ,
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we can think of ¢ as taking values in Hom (4™b, C). For 1€ a§, we extend
¢ to a function

6,: G/B N I' —> Hom (45, C)
by
(4.2) $:(8) = A™ Ad* (R)($(1))5-.-,(a)
if g=kane G = KAN, p=1/23,cp+« and &_,_, is the character on T

associated to — 2 — p.

§5.

Next we want to extend ¢, to a function defined on G(4).
First we note that G(Q) is embedded as a discrete subgroup of G(A)

and

I'=GQ)NK,.
It is well-known that
(6.1) G(4) = K- K, B(4)
and
(52) GII' = K\G(4)/G(Q) .

(See for example [1]). In particular this means that any function on
K,\G(4)/G(Q) is determined by its restriction to G/I.

A function f in V, (see §3) can be thought of as a function on G
right invariant under N. K, acts on the vector space C(G) of complex
valued functions on G by left translation, L:

L(R)f(g) = f(k'g), keK, geG.
Let 2, be the projection from C(G) to V,. Then L(k)f = 2, L(k)f defines

X
an action of K, on V,. We can give C(G) an inner product such that
L(k) is an unitary operator for all k.
The unitary character y on T can be trivially extended to an unitary

character on
TR)-T(4) N K\NT(4)/T(@Q) .

We use the same symbol y for the extended character. Note that if =
t,)eT(A), t,e T(Z,) for g #+ p and ¢, = 1, then y(¢) = 1.
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By § 3 every element of @,., H"(¢/(P), C) corresponds to a [¢]® >, f,
for some cohomology class [¢] of H™(e'(B), C) represented by ¢ and some
f,eV, TFor 2eaf, we associate to [¢] ® f, a function

?,: G(A4)/B(Q) —> Hom (A0, C)R® V,
given by
(5.3) ?,(g) = (A" Ad* (R)p(1)) @ (L(R)f )1 ()E -5, (1)

if g = kkitne G(4) = KK,T(A)N(A). Here, &, is the character of T associ-
ated to 1 and &, defines a character on T'(4). We shall write @ for @,
unless specified otherwise. The following lemma is a straightforward con-
sequence of the definition.

LemMmA 5.1. For g = (g,) € G(4) and te T(4) we have

(i) O(gt) = D(eDE_._, (D)
(ii) If g, =1 for all finite prime q, then

@(g) == ¢x(gm)®fz .

@) If g, = 1 for all primes (including o) q' except one q #+ p and
8 = kit,n, € G(Q,) = G(Z)T(4,)N(4,) then

D(g) = 2t )it P .

(iv) If g, =1 for all primes (including o) except the prime p and g,
=k,t,n,, then

D(g) = (¢(1) ® Lk )x(t,)6 2= ,(t,)
where k is the adele (1, ---,1,k,, 1, ---,1). Moreover, we have

10()l < 16— G MG 1
§ 6.

We recall some results on differential operators.

Let W be the Weyl group of (g,a). For we W, let #w denote the
number of elements in the set w¥-N¥*. For any nonnegative integer m
put

W(im) = {we W: fw = m} .

The adjoint representation induces a representation of a on Hom (4*n, C)
which commutes with the coboundary operator (cf: [7] §5.7) and so gives
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rise to a representation of ¢ on H*(n, C). For any weight g of this repre-
sentation, let H*(1t)* be the space of all classes in H*(n, C')) whose weight
is ¢ Kostant [7] proved that

(6.1) H*(n, C) = @ H*(n)*
where p satisfies

6.2) o)=@C+po+p
and each H*(n)* is irreducible. Moreover

(6.3) H™(n, C) = @uewm, Hm)~* .

The vector space Hom (4™n, C) can be considered as the space of
smooth functions N— Hom (4™, C) which are invariant under N. There-
fore we have an embedding

Hom (£*n,C) —> Q¥(N/N N I', C)

(cf, §4). It is an easy consequence of the theorems of van Est [13] that
the above embedding induces isomorphism on cohomology:

6.4) H*(n,C) = H¥(NINN I, C)
(cf: [5] Theorem 2.2). Corresponding to (6.1) we have the decomposition
(6.5) H*(e'(B), C) = @ H(e'(B)) .

The elements of H(e'(B))* are called cohomology classes of weight g In
particular if w, is the element of the Weyl group satisfying w ¥~ = ¥*
then #(w,) = dim n and (6.3) yields

(6.6) H™(€'(B),C) = H('(B), C)*, m = dim 1.

LEMMA 6.1.

(i) Every cohomology class in H™'(B), C) can be represented by a
harmonic differential form ¢.

(ii) If ¢ is chosen as in (i) and @, is the function defined by (5.3)
then the Eisenstein series

E(g,0,) = ZQ(Q)/E(Q) ?,(g7)

is a “smooth” function on G(A) and is holomorphic (as a function of 1) in
the domain defined by the condition

Re (2, @) > (p, @) for all ac ¥+ .
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Moreover, E(g, D,) has meromorphic continuation into the entire aj.

(i) If ¢ is chosen as in (i) and E(g,®,) is holomorphic at A then
E(g, ®,) defines a differential form on X/I'. Moreover if ¢ is of weight p,
then we have

(6.7) AE(g, D) = (x + o, 1+ p) — (A, D)E(, D) .

Proof. (i) follows trivially from the fact that ¢'(B) = NINN [ is
compact. If ¢ is harmonic, then by Kuga’s lemma (§ 2) ¢ is an eigenfunc-
tion of the Casimir operator. Moreover ¢ is trivially a cusp form, so we
can apply the theorem of Borel-Garland ([2] Theorem 6.2) to conclude that
¢ is an automorphic form in the sense of Harish-Chandra, Langlands ([6],
[8D.

(i1) now follows from standard results on Eisenstein series (cf: [6]
Chap. 11 §2, [8] Chap. 4 and Appendix II). It is clear from the defini-
tion of f, and (5.3) that E(g, ®,) is a function on K,\G(4)/G(Q). Thus it
defines, via (5.2) a function on G/I" with values in Hom (4™b, C) ® V, and
by §2 is a differential form on X/I". The formula (6.7) for the Laplacian
operator is a trivial consequence of Kuga’s lemma.

Suppose that under the map (3.3) the element w of ®,., H*('(P), C)
corresponds to [¢] ® >, f, where ¢ is chosen to be harmonic. Let E(g, »)
be >, E(g,@,). Define the constant term of E(g, w) by

E*(g,0) = 2, E%(g,9))

where

6.9 E%g,0) = | E(gn, ®,)dn .

NA/N@

Then Harder ([5]) has proved the following lemma.

Lemma 6.2. If at 2= 2, E(g,9,) is holomorphic and dE*(g,?,) = 0,
then the value of E(g,w) at 2= 1, is a closed form. Moreover E(g, ») and
E?(g, w) represents the same cohomology class on the boundary o(X/I').

Next we calculate E*(g, @,).

§7.
For e e ¥, let G, be the derived group of the centralizer in G of the

connected component of the kernel of &,. Let G.(R) = K,A,N, be the
Iwasawa decomposition (compatible with that of G(R)); N, = N,(R) where
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N, is a one parameter subgroup in G. For we W, let

Nw - HHGW“’ N .

2 la
w—lag¥+

Then we have the Bruhat decomposition

G(Q) = Uvew N(Qr.B(@)

where r, belongs to the group of Q-rational points of the normalizer of
T. Moreover r, can be chosen in K. We shall simply write w for r,.
The following lemma is an easy consequence of the Bruhat decomposition
(see for example [8] p. 85 and 277)

Lemma 7.1. For ge G(A), let

(1.1) o(w, DD(g) = LW) D(gnw)dn .
Then
(7.2) E*(g, @) = > uew c(w, DD(g) .

The integral in (7.1) actually gives the effect of the linear transfor-
mation c(w, ) on the function @. For our purposes the exact space of
functions (see [5] p. 149) on which c(w, 1) acts is not important. However

it is known that c(w, 1) satisfies the following functional equation ([8] p.
120)

(7.3) c(w,w,, 2) = c(w,, w,A)c(w,, 2)

for w,, w,c W. Since W is generated by the reflections w, for « € 4, the
functional equation (7.3) allows us to restrict our attention to c(w,, )P(g)

for e e 4. In fact it is sufficient to calculate c(w,, )@@ for tc T(4). In
this case we have

e(w, HO() = me)@(tnt“tw)dn

=& [ Omuydn
)
where we have changed the variable once and used the fact that
d(tnt™) = Sa(w)(t)dn

with 6(w) = — Jjaforac ¥+ and wi(@) e ¥*. Put “x() = y(w'tw). Using
Lemma 5.1 (i), we get
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O(ntw) = D(nw w'tw)
= O(nw)" x (B - wr-, (1) -

We also have
o= wp — dw) .

Putting together these formulas, we get

a9 cw, 900 = ([ omwdn )20, 0 -

Put w,; = w;and N; = N, for «;e 4. Then N*j = N,. Choose a Haar
measure dx = [[,dx, on 4 such that dx. is the usual Euclidean measure
on R and for all finite primes ¢, the volume of Z, with respect to dx, is
1. Identify the one parameter subgroup N,;(4) with A4 and give it the Haar
measure dn induced from dx.

Let 2, a* be defined by

(15) 2hpe) _ 5,
(aj’ “j)
where «,, - -+, @, are the simple roots (see §1) and J,; is the Kronecker

delta. Then 2, ---, 1, are the fundamental dominant weights and every
leaf can be written as > .4, s;€C. For te T(4), we have

20 = [116,00

where |-|, is the adelic norm. (Note that p = > ).
Now we can return to the integral in (7.4). For w = w; we have

a7 f D(nw,)dn — Limj D(w,)dn
Njd) s Jn¥

where & is a finite set of primes including infinity and the number of
elements of & goes to infinity. N7 is the subgroup of N;(4) consisting
of those n = (n,) in which n, =1 for g¢.#. This allows us to reduce the
problem to the calculation of local factors. They are of three kinds. (In
the following 1 = > s;4; lies in the domain of convergence of the integral
(7.7) and we apply Lemma 5.1)

The factor at infinity is

(1.9) C.= [ gnwn.

- j o A Ad w50 T [ (alnaw DI
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Here n.w, = k(n.w)a(n.w)n(n.w,) (Iwasawa decomposition).
The factor at a finite prime gq+#p is

(1.9) Co= [, . wemw) TT 16 e ) dn,
Here n,w; = k(nw)t(n,w,)n(n,w;) (Iwasawa decomposition) and |-|, is the

valuation of @, such that |@,|, = ¢ if @, is the uniformizing element of
Q,. And finally the factor at p is

(710 C = Whmw)tm,w) T &, dn,
4i&p. i
where n,w; = k(n,w)t(n,w,)n(n,w,) is the Iwasawa decomposition of n,w;
in G(Q,).
§8.
To calculate the factor C, we need to know the explicit action of
A* Ad.

We number the rows and columns of 2¢ X 2¢ matrices by
,2,.--,¢,—-1,—-2,---, —4}.

Let e;; be the matrix which is 1 at (i, /)™ entry and 0 elsewhere. For «;
ed (1<i<¢—1) the Lie algebra a, of A,, is spanned by e; = e,; — €,,,,;.;
—e_;_;+ e_;4 ;... and the Lie algebra a, of A,, is spanned by e,, —e_, _,.

We write

€ —e_; 4 & — &

eji - e_,-'_j Ej - Si

e;,_;t e _; . e+ & . .
(8.1) e, = < if a = i<y).

€.yt € s — & =g

€, -1 2¢;

€_i1 — 2,

Then e, is basis vector of g,. Let m, be the space spanned by e, - e_,
and m = > e+ W,. Then b can be embedded in the space

P = 2 ased8 D D lacws M, .

If1<j< £ —1, we write
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(1
1
cos @ sin g .
—sin @ cos @ y J
1
1
8.2) ki(6) = S
1
1
cosf sind ) o
—sinf cosf
1
L 1]
and
I
cos 8 sin 6
kA0) = 7 ,
— sind cos @

where I is the (4 — 1) X (¢ — 1) identity matrix.

Lemma 8.1. For a;cd, let Ad, denotes the restriction to K, of the
adjoin action of K on 9. Then we list below the Ad, invariant subspaces
together with the matrix of Ad, k,(d) with respect to the above basis.

(A) The case a; = g5 — ¢;,, a<gj<o

1) a; + m,,; the matrix is

< cos 20 sin 26 >
—sin20 cos 26

@) M., + My, + Mo, the matrix is

cos’ 6 sin? 6 sin 26
sin® 6 cos® 6 —sin 20
—sinf cosfd sinf cosé cos 20

(B) M., + My forj+2<h< ¢
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@) W+ My for 1<A<j—1
G) Mo+ M, forj+2<h< 4
6 My +my_, forl<h<j-—1.
The matrix for the cases (3) to (6) is

( cos 6 sinf))
—sinf cosfd/

(M m,,.., for all pairs (i, h) satisfying i < h and either

1<i<y, 2<h<j;
or 1<i<y, j+l<h<i;
or JH1I<i<e, jH1I<hLY.

®) my,forl<h<?¢ and h+j, j+1
Ad, k,(6) acts trivially on each of the spaces in (7) and (8).
(B) The case of «,
1) a, + m,,; the matrix is

( cos 20 sin 26 )
—sin 20 cos 26

@ m,_.,+ m,,., for 1 < h<{; the matrix is

( cos 6 sinﬁ)
—sinf cosd

3 m.,.., for all pairs (i,j) satisfying i< hand 1<i1<¢—2,2<h
<4-1

4 my, forl<h<{-—1

Ad, ky(0) acts trivially on each of the spaces in (3) and (4).

CorOLLARY 8.2. Write m = dimn and e = A,cy+,azafe. + €..). Then
A™ Ad, k(6) acts on the 2 dimensional space

Am(aj @ ZaGW+,n¢ajmu) (—D Amm

by the matrix

( cos 20 sin 26 )
—sin 26 cos 26

with respect to the basis {e; N e, (e,, + e_.) N e}
The lemma is proved by means of a simple matrix calculation which
will be omitted here. The corollary follows trivially from the lemma.
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kj(ﬁ)atnx

for some 6, xe€ R, tc R%; where k;(¢) is given in §8, n, = I + xe, and

(8.4)

a, =

And in the case of «,, we have

(8.5)

Here n, = (I + xe,,), k(6) is given in §8 and

(8.6)

Moreover we put

a, =

‘1 W
1
t .
g1 jo
1
1
1
1
t! . — jm
t
1
1)
k(O)a,n, .
(1 |
J
1
- ,{i '_ B « ftn
- |
1
t—l ] ¢ _gth
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(1
1
0 -1
1 0
1
1 .
8.7 w; = 1 1<j<e-1
1
0 —1
1 0
1
1 7
and
1 |
1
0 1
(8.8) w, = |— ER
1
! 1 0
For 1 <j < ¢, if the Iwasawa decomposition of n,w; is k,#)-a,-n, \then
_ . -1
8.9) x = — Y t=+1++ and sinf=_—_- _
1+ & V1t a®
so that

U Ifzi(a(nzwj))l—si-x — gt

By using Corollary 8.2, we see immediately from (7.8) that
_ cos20 sin20 )\, )
(1, s

—sin 20 cos 26

= ([, (G712 e+ peorda)en)
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Evaluating the integrals in terms of I'-functions we get

610 . = (1=9)TUDL6D .

1+s, ) T + s)/2)
§9.
We compute in this section the factors at the finite primes. Put
(1
1 0
-1 1
- |
11
ki(x) = ‘1— 1<j<¢-1
1 x!
0 1
< 1 J
and
4
1 0
k =
(%) l I
x| 1

where I is the (4 — 1) X (¢ — 1) identity matrix.

For a given a e 4, if xe Q, write n, = I+ xe,; if te Q}, let a, be given
by the matrix (8.4) (resp. (8.6)) in case @ = a;, 1 <j < 4 — 1 (vesp. ¢ = a,),
then T,(Q,) is just the set of matrices a,. Let y; be the restriction of y
to T,(Q,). Write y,(a,) for z,a;). In this way we can regard y; as a
character of @, We use the same w; as given in § 8. Finally, if xe Q},
a = a,, then

9.1 nw; = k(x)a,n_,_. .

First let us handle the case of C,, ¢ # p. Since n,w,cG,(Z,) if xe
Z,, we have
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U Ifzi(t(nzwj))lq—ﬁ—l
_ {1 if xe Z,
T lale it wez,”

By the formula (7.9) C, equals to

i dx + >0, x(a;) x| % dx

= 1-— Xj(d’q)_(sjﬂ)
1-— Zj((bq)q_sj

J\".;q_ nZNey MV 2Z,

Let
L(s, 0) = [1.(1 — xl@.)g~)"

be the Hecke L-function (the product is taken over all the finite primes
q where y is unramified).
Let &, be the set of finite primes at which y; is ramified. Let

quy’j\(m Cq if be y]‘

v 1 — y@)p~" :
(nqeyj C‘Z) 1 X (ZZ) )ep‘(1+si) lfpgyj .
— 7@,
Then we get
(9.2) qu&p Cq = K 77{‘_(_?&22_

TLA+ 857

(Note that the above formula was obtained under the assumption that
A lies the domain of convergence of the integral (7.7). We can extend the
formula to all 2 by the principle of analytic continuation.)

Next we consider the local factor C,. According to Lemma 5.1, it is
sufficient to study the integral

9.3) [, o st dn.

An easy calculation as above shows that (9.3) is equal to

1 . q—(a+1)

S s ifs,=0++v—-1r.
1—q°

As a consequence we have the following

Levmma 9.1. C, is holomorphic in 2 = Y s, if Res, > 0.
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§ 10.

Suppose that under the map (3.3) the element o of @,., H™('(P), C)
corresponds to [¢]® >, f,. If for each y that appears the corresponding

x; #+ 1, then we say that o is a regular class. Now we can state the
theorem.

THEOREM. If we @, H™(e'(P), C) is a regular class, then there exists
a e H¥X|I', C) such that r(®) = o (r is the restriction map (1.1)). More-
over & can be represented by a harmonic form.

We first put together the results of the previous three sections on
the constant term E?(g, @) (6.9) of the Eisenstein series. We have

(7.2) E*(g, @) = 2 lucw c(w, DO(g) .

For 1 <j< ¢ and 2= ] s, c(w,, )P is the product of
(10'1) (¢(1) ® CP)ij5~p—u'jl.

and a constant

(10.2) 1—s, I'Q/)I(s;/2)  L(s;, 75)

1+s, I'((0+s)2 LA+s,7,) "
(cf: (7.4), (8.10) and (9.2)).

Now if y is such that %, is not the trivial character for all j, and 2
= >, 2; = p, then since c(w;, 2) is a linear transformation on function space
(and is independent of g) it is clear from (10.2) that c(w,, )¢ is zero for
all j. Moreover, as c(w, )@ is holomorphic at p, the general properties
of the transformations c(w, 2) (cf: [8]) implies that the same is true for
c(w, )®. In fact the functional equation (7.3) implies that c(w, p)@ is zero
for all Weyl group elements w which is not the identity. Thus at 2 = p,
we have

(10.3) E*(g, @) = c(d, )D(g) = D(g).
An easy calculation (using formula (2.3) of [5]) shows that
d@(Hyle ’Xm)= (—‘U _P_Z)H@(Xn Ty Xm)

for Hea, X,, ---, X, en. According to (6.6), p = — 2p.
Hence at 2 = p, we have

(10.4) dE*(g, @) = 0
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and by (6.7),
(10.5) 4E(g,¢) = 0.

Suppose [¢] ® 37, f, corresponds to the element  in @, H*('(P), C).
If o is regular then y, = 1 and by Lemma 4.1 of [8] E(g, @,) is holomorphic
at 2 = p. Therefore by Lemma 6.2, (10.4), (10.5) the value of E(g, ») at the
special point 2 = p is an harmonic form representing a cohomology class
@ and the restriction r(@) of @ to the boundary 8(X/I') can be represented
by E*(g, w). Hence by (10.3), r(@) = o.
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