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ON THE COHOMOLOGY OF CONGRUENCE SUBGROUPS

OF SYMPLECTIC GROUPS

K. F. LAI

§ 1. Introduction

This paper is concerned with the cohomology at "infinity" (in the
sense of Harder [4], [5]) of a congruence subgroup of the symplectic group
G — Sp(2£, R). G is the subgroup of GL(2S, R) consisting of matrices g
satisfying ιgJg = J where

~I 0

and I is the £ X £ identity matrix. We consider G as the real points of
the algebraic group G = Sp(2£) defined over Q. Let p be a prime not
equal to 2 and Γ be the kernel of the natural map

Sp(2£, Z) > Sp(2S, Z\prZ) .

We assume that r is chosen large enough so that Γ is torsion free.
We are interested in the Eilenberg-Maclane cohomology groups

H*(Γ, C) of Γ (cf: Borel [2]). It is well-known that H*(Γ, C) « H*(X/Γ, C)
where X is the symmetric space of maximal compact subgroups of G and
G acts in a natural way on X. In [3] Borel and Serre constructed a com-
pactification XjΓ oΐX/Γ having the property that H*(X/Γ9 C) « H*(X/Γ, C).
XjΓ is a manifold with corners and is a union of subsets e\P) (see [3]
p. 476) where P runs over the Γ conjugacy classes of parabolic Q-sub-
groups of G. Let

(1.1) r: H*(X/Γ, C) > H*(d(XIΓ), C)

be the homomorphism induced by the map d(X/Γ) -> X\Γ. The general
programme is to investigate the existence of a subspace H?nΐ(Γ, C) of
H*(Γ,C) « H*(X/Γ,C) which restricts isomorphically onto Imr. The
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elements of H*inΐ(Γ, C) can be considered as describing the cohomology

at "infinity".

Fix a standard Borel subgroup B of G (see § 1). Let T be the maxi-

mal torus in B and m be the dimension of the unipotent radical of B.

Let D be a set of representatives for all the .Γ-conjugacy classes of minimal

parabolic subgroups of G which are defined over Q. Choose D so that B e

D. Following G. Harder we use Langlands' theory of Eisenstein series to

construct elements of Hfnΐ(Γ, C) from cohomology classes in φPeD H*(e\P),

C). For precise statement see § 10.

In the case of Q-rank one algebraic groups, Harder has shown that

cohomology classes constructed this way exhaust the entire space Hfnf(Γ, C)

(cf: [4], [5]). Schwermer has obtained similar results for SL(S) and SL(n)

(cf: [11], [12]).

Notation. For an algebraic subgroup G of GL(n) defined over a field

k and r a subring of k, G(r) denotes the subgroup of G(k) (the group of

/^-rational points of G) consisting of n X n matrices with entries in r and

determinants units in r.

For a prime p of the rational numbers Q we write Qp (resp. Zp) for

the p-adic numbers (resp. integers). A (resp. Ao) denotes the adeles (resp.

the finite adeles) of Q.

§2.

Let Q be the Lie algebra of G; Q consists of 2£ x 2£ real matrices X

satisfying the condition: ιXJ + JX = 0. Let α be the Cartan subalgebra

of g consisting of real matrices

ΓA,

H

h,

For 1 < j < £, define elements ed in the dual space α* of a by ε^H) —

Then the root system of the pair (g, α) is given by

¥ = {±εί± sj`. i φ j , 1 < i, j < ί) U {± 2e,: 1 < j < £}
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and the set of simple roots is

Δ = {βj — ε2, ε2 — ε3 , εs_, — ei9 2ε£}

we also write aό = ε; — εj + 1 for 1 < j <£ — 1 and ae = 2εs.

For μea*, He a we denote with (H, μ) the value μ(H). The restric-

tion of the Killing form ( , ) of g to a is nonsingular and hence one can

define a map μ -> H(μ) of α* onto α by the relation

(2.1) (tf, flfy)) - <#, /.> ,

for all H e α. The mapping defines a nonsingular bilinear form on α*

given by

(2.2) (μ, X) = (H(μ), λ) .

Denote by gα the root subspace of g corresponding to the root a. Let Ψ+

(resp. Ψ~) be the set of positive (resp. negative) roots with respect to the

order determined by Δ. Let

and 6 = α + π, the Borel subalgebra of g containing α. Let JB be the Borel

subgroup of G with Lie algebra 6, iVbe the unipotent radical of B and T

the maximal torus of G in B. Then B = T. N. Let K be the intersec-

tion of G and the special orthogonal group SO(2£, R). K is a maximal

compact subgroup of G consisting of matrices

/ X Y\

\-γ x)

satisfying the relations

- ' 7 7 = 1 , tXY=ΎX.

Moreover G = K. B — KAN (Iawasawa decomposition), where A is the

identity component of T = T_(R).

X can be identified with K\G and we have a principal fibration

π: G/Γ >X/Γ

with structure group K. Let x0 be the point in X fixed by K. Then we

can identify the tangent space at x0 with B and the tangent bundle of X/Γ

is the bundle induced (viaπ ) by adjoint representation Ad of K on δ ([5]

p. 131).
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Let Ωm{XjΓ) be the vector space of smooth C-valued differential in-

forms on X/Γ. Then the cohomology groups H*(XIΓ, C) are canonically

isomorphic to the cohomology groups of the de Rham complex (Ω*(X/Γ), d)

(cf: [5], [9]). Moreover there is a natural identification between the space

Ωm{XjΓ) and the space of smooth functions

φ: G/Γ •Hom(Λw6,C)

which satisfy

(2.3) φ(kg) = A m Ad* (k)φ(g), geG, k e K

where Ad* is the dual representation to the adjoint representation Ad of

K on B (cf: [5] § 1).

Matsushima-Murakami ([9]) defined an Laplacian operator Δ on the

complex Ω*(X/Γ). A form ω e Ω*(X/Γ) is then said to be harmonic if Δω

= 0. On the other hand, the universal enveloping algebra U(gc) of gc =

9 ® C operates as an algebra of differential operators on the smooth func-

tions on G/Γ with values in Horn (Λmfi, C) ([6] chap I § 2). The Casimir

operator C defined with respect to the Killing form lies in the centre 2£

of C7(g) and it sends smooth functions satisfying (2.3) into smooth func-

tions satisfying the same conditions. Moreover according to the lemma

of Kuga ([9] §6) we have for all smooth m-forms φ: G/Γ -> Horn (Amh, C)

the formula

(2.4) Δφ - - Cφ .

§3.

Let G(A) be the adele group of G ([14]).

Let

ΓP = {(n) e G(A) I γp e G(ZV\ γp = 1 modp r, and γq - 1 if q φ p)

Kr = Γp\\qΦpG{Zq)

Q = Kr\K0 .

Write B (resp. Γ, N) for the image of B(A0) Π Ko (resp. T(A0) Π K09 (±1N(A))

Π Ko) in G. Then it is a well-known consequence of the strong approxi-

mation theorem that the Γ-conjugacy classes of Borel Q-subgroups (Γ as

defined in § 1) corresponds bijectively with the Cartesian product X X Y

where X= B\G and
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Y=K0Π B(A0)\B(A0)/B(Q)

One can then deduce the following

LEMMA 3.1. Let χ be a unitary character of T satisfying

(3.1) χ(t) = 1

for all t in the image of T(Q) Π Kr in T.

Let Vχ be the complex vector space of C-valued functions f on G which

are right invariant under N and satisfy

(3.2) f(kt) = χ{t)f(k)

for keG and te T. Then there exists an isomorphism

(3.3) ®PeD H*{e\P\ C) ^ H*(e'(B), C) <g> (®χ Vχ) .

(The direct sum on the right is taken over all the unitary characters χ of

T satisfying (3.1).)

The explicit form of this isomorphism is not needed here and so we

will not reproduce here the proof of this lemma (which follows the same

lines as Satz 5.7 and p. 40 of Schwermer [12]). As a consequence of Lemma

3.1, an element of ®PeD H*(e'(P), C) can be identified with ω®YΛf/ for

some ω e H*(e'(B), C) and fχ e Vχ. Next we seek to represent ω by a func-

tion on GjB Π Γ.

§4.

According to Proposition 9.4 of Borel-Serre [3] we have

e\B) - N/N Π Γ .

Thus

(4.1) H*(e'(B), C) = H*(N/N Π Γ,C).

The right hand side of (4.1) can be computed by using the de Rham com-

plex Ω*(N/N Π Γ, C) and we can identify Ωm(N/N Π Γ, C) with the space

of smooth functions iV—> Horn (Λmn, C) which are right invariant under

N Π Γ. (Note that the tangent bundle of N/N Π Γ is trivial.) Thus a

cohomology class of Hm(e\B), C) can be represented by a smooth function

φ on N with values in Horn (Λmn, C). By composing with the embedding

Horn (Λmn, C) > Horn (Λmh, C) ,
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we can think of φ as taking values in Hom (Λmh, C). For λ e αg, we extend
φ to a function

φλ: GIB Π Γ > Hom (Λmh, C)

by

(4.2) φλ(g) = A- Ad* (k){φ{l))ξ.λ.p{a)

if £ = /κm € G = XΆiV, ^ = 1/2 ΣαG^+ α a n ( * f -?-p *s ^ e character on T
associated to — λ — p.

§5.

Next we want to extend φλ to a function defined on G(A).
First we note that G(Q) is embedded as a discrete subgroup of ίz

and

r - S(Q) n κr.

It is well-known that

(5.1) G(A) = K K0B(A)

and

(5.2) GIΓ = Kr\G(A)/G(Q) .

(See for example [1]). In particular this means that any function on
Kr\G(A)/G(Q) is determined by its restriction to GjΓ.

A function / in Vχ (see § 3) can be thought of as a function on G
right invariant under N. Ko acts on the vector space C(G) of complex
valued functions on G by left translation, L:

Uh)f(g)=f(k-`g\ keK0, geG.

Let 0>χ be the projection from C(G) to Vχ. Then L(k)f = 0>χL(k)f defines
an action of Ko on Vχ. We can give C(G) an inner product such that
L(k) is an unitary operator for all k.

The unitary character χ on T can be trivially extended to an unitary
character on

T(R).T(Ao) Γί Kr\T(A)/T(Q)

We use the same symbol χ for the extended character. Note that if t =
(tp) e T(A\ tq e T(Zq) for q ψ p and tp = 1, then χ(ί) = 1.
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By § 3 every element of ®PeD Hm(e'(P), C) corresponds to a [φ] ® Σ χ fχ

for some cohomology class [φ] of Hm(ef(B), C) represented by φ and some

fχe Vχ. For λea%, we associate to [φ]®fχ a function

> Horn (Λmb, C) ® Vγ

given

(5.3)

by

Φ.

<V

,(*) =

G(A)IB(Q)

= (Λm Ad* ι

if g = Mom e G(^) = KK,T{A)N{Λ). Here, f, is the character of T associ-

ated to /I and ξλ defines a character on T(A). We shall write Φ for Φχ

unless specified otherwise. The following lemma is a straightforward con-

sequence of the definition.

LEMMA 5.1. For g = (gq) e G(A) and t e T(A) we have

( i ) Φ(gt) = Φ(g)χ{t)ξ.λ.p{t).

(ii) If gq — 1 for all finite prime q, then

(iii) If gq, = 1 for all primes (including oo) qf except one qφ p and

gq - kqtqnq e G(Qq) - G(Zq)T(Aq)N(Aq) then

Φ(g) = l(tq)ξ_λ_p{tq){φ{ΐ)® Q .

(iv) If gq = 1 for all primes (including oo) except the prime p and gv

= kptpnp, then

Φ(g) = TO® L(K)fχ)χ(Qξ->-P(tp)

where k is the adele (1, ` - -,1, kp,l, , 1). Moreover, we have

§6.

We recall some results on differential operators.

Let W be the Weyl group of (g, α). For M eίf, let $w denote the

number of elements in the set wΨ~ C\Ψ+- For any nonnegative integer m

put

W(m) = {weW: $w = m) .

The adjoint representation induces a representation of α on Hom(Λ*n, C)

which commutes with the coboundary operator (cf: [7] § 5.7) and so gives
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rise to a representation of a on H*(n, C). For any weight μ of this repre-

sentation, let H*(n)μ be the space of all classes in H*(n, C) whose weight

is μ. Kostant [7] proved that

(6.1) #*(n, C) = Θ H*(nY

where μ satisfies

(6.2) (p, p) = (p + μ,p + μ)

and each H*(n)μ is irreducible. Moreover

(6.3) ίP(n, C) = ®wemm) H(rCT>-' .

The vector space Horn (Λmn, C) can be considered as the space of

smooth functions iV-> Horn (Λmnf C) which are invariant under N. There-

fore we have an embedding

Horn U*n, C) • Ω*(NIN Π Γ, C)

(cf, § 4). It is an easy consequence of the theorems of van Est [13] that

the above embedding induces isomorphism on cohomology:

(6.4) H*(n, C) « H*(NjN Π Γ, C)

(cf: [5] Theorem 2.2). Corresponding to (6.1) we have the decomposition

(6.5) H*{ef(B), C) = ® H{e\B)Y .

The elements of H(e'(B))μ are called cohomology classes of weight μ. In

particular if wQ is the element of the Weyl group satisfying w0W~ = Ψ+

then §(w0) — dim n and (6.3) yields

(6.6) Hm(e'(B), C) = H(e'(B), C)~2p, m = dim n.

LEMMA 6.1.

( i ) Every cohomology class in Hm(e'(B), C) can be represented by a

harmonic differential form φ,

(ii) If φ is chosen as in (i) and Φχ is the function defined by (5.3)

then the Eίsenstein series

E(g, Φz) = Σg(β)/5(Q) φ*(gr)

is a "smooth" function on G(A) and is holomorphίc (as a function of X) in

the domain defined by the condition

Re (λ, a) > (p, a) for all a e Ψ+ .
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Moreover, E(g, Φχ) has meromorphίc continuation into the entire α$.

(iii) // φ is chosen as in (i) and E(g, Φχ) is holomorphic at λ then

E(g, Φχ) defines a differential form on X/Γ. Moreover if φ is of weight μ,

then we have

(6.7) Δ E { g , Φχ) = ((μ + p , μ + p ) - (λ, λ))E(g, Φχ) .

Proof. ( i ) follows trivially from the fact that e\B) = N/N Π Γ is

compact. If φ is harmonic, then by Kuga's lemma (§ 2) φ is an eigenfunc-

tion of the Casimir operator. Moreover φ is trivially a cusp form, so we

can apply the theorem of Borel-Garland ([2] Theorem 6.2) to conclude that

φ is an automorphic form in the sense of Harish-Chandra, Langlands ([6],

[8]).

(ii) now follows from standard results on Eisenstein series (cf: [6]

Chap. 11 § 2, [8] Chap. 4 and Appendix II). It is clear from the defini-

tion of fχ and (5.3) that E(g, Φχ) is a function on Kr\G(A)/G(Q). Thus it

defines, via (5.2) a function on GjΓ with values in Horn (Λmb, C) ® Vχ and

by § 2 is a differential form on X/Γ. The formula (6.7) for the Laplacian

operator is a trivial consequence of Kuga's lemma.

Suppose that under the map (3.3) the element ω of ®PeD H*(e'(P), C)

corresponds to [φ] (x) Σxfχ where φ is chosen to be harmonic. Let E(g, ω)

be 2] z E(g, Φχ)- Define the constant term of E(g, ω) by

where

(6.8) E\g, Φχ) = ί E(gn, Φx)dn .
J N{A)/N{Q)

Then Harder ([5]) has proved the following lemma.

LEMMA 6.2. If at λ = λ0 E(g, Φχ) is holomorphic and dEB(g, Φχ) = 0,

then the value of E(g, ω) at λ = λ0 is a closed form. Moreover E(g, ω) and

EB(g, ω) represents the same cohomology class on the boundary d(XjΓ).

Next we calculate EB(g, Φχ).

§7.

For a e Ψ, let Ga be the derived group of the centralizer in G of the

connected component of the kernel of ξa. Let Ga(R) = KaAaNa be the

Iwasawa decomposition (compatible with that of G(R)); Na — Na(R) where
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Na is a one parameter subgroup in G. For w e W, let

Then we have the Bruhat decomposition

where rw belongs to the group of Q-rational points of the normalizer of

T. Moreover rw can be chosen in K. We shall simply write w for rw.

The following lemma is an easy consequence of the Bruhat decomposition

(see for example [8] p. 85 and 277)

LEMMA 7.1. For ge G(A), let

(7.1) φυ, X)Φ(g) - f Φ(gnw)dn .
J N™{A)

Then

(7.2) Eβ(g, Φ) = Σwew c(w, λ)Φ(g) .

The integral in (7.1) actually gives the effect of the linear transfor-

mation c(w, X) on the function Φ. For our purposes the exact space of

functions (see [5] p. 149) on which c(w, X) acts is not important. However

it is known that c(w, λ) satisfies the following functional equation ([8] p.

120)

(7.3) ciWiWz, λ) = c(wl9 w2λ)c(w2ί X)

for wl9 w2 e W. Since W is generated by the reflections wa for oce Δ, the

functional equation (7.3) allows us to restrict our attention to c(wa, λ)Φ(g)

for ae Δ. In fact it is sufficient to calculate φυa, λ)Φ(t) for t e T(A). In

this case we have

φυ, λ)Φ(t) = f Φ(tnt-ίtw)dn
J N`»(A)

= &(„)(*) f Φ(ntw)dn
J N`»{A)

where we have changed the variable once and used the fact that

d(tnt~l) = ξδiw)(t)dn

with δ(w) = - Σ a for a e Ψ+ and w^a) £ Ψ+. Put wχ(i) = x(w~ltw). Using

Lemma 5.1 (i), we get
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φ(ntw) = Φ(nw w~Hw)

= Φ(nw)wχ(t)ξ_wλ_wp(t) .

We also have

p = wp — δ(w) .

Putting together these formulas, we get

(7.4) c(w, λ)Φ(t) = ( f Φ(nw)dn ) w

Put waj = Wj and Nj = Na. for a3 e J. Then iVω./ = N5. Choose a Haar

measure dx = J]p dxp on 4̂ such that dx^ is the usual Euclidean measure

on R and for all finite primes q, the volume of Zq with respect to dxq is

1. Identify the one parameter subgroup N3(A) with A and give it the Haar

measure dn induced from dx.

Let λi e α* be defined by

(7.5) ψ^l
(aj, oc )

where al9 , ag are the simple roots (see § 1) and δtj is the Kronecker

delta. Then λ19 , λe are the fundamental dominant weights and every

λ e αg can be written as 2 M*> s^ ̂  C. For ί 6 T(A), we have

f _,_,ω - π i^ωii -̂1

where | \A is the adelic norm. (Note that p = 2 ^)

Now we can return to the integral in (7.4). For w = Wj we have

(7.7) I Φ(nWj)dn = Lim | Φ{nw3)dn

where ¥ is a finite set of primes including infinity and the number of

elements of ^ goes to infinity. Nf is the subgroup of Nj(A) consisting

of those n = (nq) in which nq = 1 for g g y . This allows us to reduce the

problem to the calculation of local factors. They are of three kinds. (In

the following λ = 2 $A lies in the domain of convergence of the integral

(7.7) and we apply Lemma 5.1)

The factor at infinity is

(7.8) C. = f

= f
J Λ

τ
i(R)
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Here n^Wj = kin^w^ain^w^nin^Wj) (Iwasawa decomposition).

The factor at a finite prime qφp is

(7.9) C9 = f x(KnQw})) Π iξxM
J Nj(Qq) ί

Here nqWj = k(nqw^t{nqw^n(nqw^) (Iwasawa decomposition) and | ^ is the

valuation of Qq such that \ώq\q = g"1 if ώq is the uniformizing element of

Qq. And finally the factor at p is

(7.10) = ί mKnpW
i

where n^u^ = kiUpW^tinpiv^nitipW]) is the Iwasawa decomposition of npiϋ^

in G(QP).

§8.

To calculate the factor CL we need to know the explicit action of

Λ*Ad.

We number the rows and columns of 2£ X 2£ matrices by

{1,2, . . . , ί , - l , - 2 , -•-,-£}.

Let e^ be the matrix which is 1 at (ί,j)th entry and 0 elsewhere. For ocj

e Δ (1 < ί < I — 1) the Lie algebra aό of Aa. is spanned by ej = eJS — ej+hj+1

— e_j>_j + e_j_li_j^ι. and the Lie algebra at of Aae is spanned by eitί — e_if_e.

We write

et] - e_,,_t

(8.1) e,,.,,.t if a = •<

\-2εt

Then ea is basis vector of gα. Let ma be the space spanned by ea

and m = Σ«e?r+ roβ. Then B can be embedded in the space

If 1 < j < ί - 1, we write

e_α
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(8.2) k,(β) =

cos θ sin θ
— sin θ cos θ

cos θ sin 0
— sin θ cos 0

and

I
cos#

— sin#

sin θ

I
cos#

where I is the (S — ϊ) X (S — 1) identity matrix.

LEMMA 8.1. For a5 e Δ, let Ad^ denotes the restriction to Ka. of the

adjoin action of K on p. Then we list below the Aά5 invariant subspaces

together with the matrix of Aάj kj(θ) with respect to the above basis.

(A) The case a5 = ε5 — εj + ί (1 < j < £)

(1) Xj + maj; the matrix is

ί cos 2Θ sin 2Θ
sin 2Θ cos 2Θ

(2) xn2tJ + va2εj+1 + mεj+ε.+1; the matrix is

cos2 θ sin2 θ
sin2 θ cos2 θ

— sin θ cos θ sin # cos

(3) m.,_ift + /or + 2 < Λ < ί
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(4) mεj+εh + m,,+1+,Λ for 1 < h < j - 1

(5) m ε j + ε h + m ε j + 1 + ε h for j + 2 < h < S

(6) mεh.εj + mεh.εj+1 for 1 < h < j - 1 .

The matrix for the cases (3) to (6) is

I cos θ sin θ \
V — sin θ cos θ /

(7) m£ίTεft for all pairs (ί, h) satisfying i < h and either

l<ί<j, 2 < h < j

or l<i<j, j + K h<£

or j + l<ί< J6, j + Kh<£ .

(8) m2εh for \<h<i and hψ j , j + 1

Aάjkj(θ) acts trivially on each of the spaces in (7) and (8).

(B) The case of a£

(1) az + mae; the matrix is

ί cos 2Θ sin 2Θ \
\ — sin 20 cos 2θ)- sin 2Θ cos 2Θ .

(2) m£ft_ε<, + meft+e, /or 1 < h < ^ ί/iβ matrix is

I cos ^ sin θ \
V —sin^ cosθ/

(3) vaε.τεjι for all pairs (ί,j) satisfying i < h and I <i < £ — 2, 2<h

< £- 1

(4) m2εh forl<h<S-l

Aάj kj{θ) acts trivially on each of the spaces in (3) and (4).

COROLLARY 8.2. Write m = dimn and e = Λaef+,aΦa.(ea + e_a). Then

Λm Adj kj(θ) acts on the 2 dimensional space

Λm{aj Θ Σaβf^aΦajVaJ Θ Λmm

by the matrix

I cos 2Θ sin 2Θ \
\ — sin2# cos 2θ)

with respect to the basis {e5 Λ e, (ea. + e_αy) Λ e}.

The lemma is proved by means of a simple matrix calculation which

will be omitted here. The corollary follows trivially from the lemma.
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If a5 — £j — εj + 1, 1 <j < £ — 1, then every element of Ga.(R) can be

written as

kj(θ)atnx

for some θ, x e R, t e Rl where k3{θ) is given in § 8, nx = I + xeaj and

1

(8.4)

And in the case of ae, we have

(8.5) W)atnx .

Here nx = (I + xea), k(θ) is given in § 8 and

1 ί

(8.6) at =

Moreover we put

-r
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and

0
1

-1
0

(8.7) i <; < i - l

o
1

- 1
0

(8.8) w, =

0

For 1 < j < £, if the Iwasawa decomposition of nxWj is kj(θ)-at'

(8.9) x' = *-

so that

-, ί = Vl + x2 and sin θ —

i

By using Corollary 8.2, we see immediately from (7.8) that

/f / cos
\Jiί\-sinsin2i9 cos

, . , d
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Evaluating the integrals in terms of Γ-functions we get

(8.10) C. =

§9.

We compute in this section the factors at the finite primes. Put

1

1 0
x-1 1

kj(x) =

1 x-
0 1

1 < j < i - 1

and

I
1 0

J
1

k((x) =

where I is the (β — 1) X {ί — 1) identity matrix.

For a given α e Δ, if x e Qς write nx = / + xeα; if ί e Q^, let α; be given

by the matrix (8.4) (resp. (8.6)) in case a = aj9 1 < j < & — 1 (resp. or = a^),

then Taj(Qq) is just the set of matrices αf. Let χό be the restriction of χ

to Ta.(Qq). Write χ/ώβ) for χj(aώq). In this way we can regard χ̂  as a

character of QQ. We use the same Wj as given in § 8. Finally, if xeQ%,

a = ccj, then

(9.1) nxw;; = kjixja.n^,-! .

First let us handle the case of CQ, q Φ P Since n ^ e Ga.(Zq) if x e

ZQ, we have
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Π l&XKnxWj))]-*1-1

if

1 if x e Zq

By the formula (7.9) CQ equals to

ί dx + ΣS.i f
Zq\ω~ <m~ »

Let

be the Hecke L-function (the product is taken over all the finite primes
q where χ is unramified).

Let όfj be the set of finite primes at which χs is ramified. Let

- L.«
Then we get

L(l + s,-, ΪJ)

(Note that the above formula was obtained under the assumption that
λ lies the domain of convergence of the integral (7.7). We can extend the
formula to all λ by the principle of analytic continuation.)

Next we consider the local factor Cp. According to Lemma 5.1, it is
sufficient to study the integral

(9.3) f \(ξ^p(tp(nw3))\dn.
J NjiQp)

An easy calculation as above shows that (9.3) is equal to

1

1 _ g _. , if s, = σ + </=ϊτ .

As a consequence we have the following

LEMMA 9.1. Cp is holomorphίc in λ = 2] s^i tf ^ e SJ > 0.
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§10.

Suppose that under the map (3.3) the element ω of ®PeD Hm(e'(P), C)

corresponds to [ ^ ] ® Σ χ / r If for each χ that appears the corresponding

Xj Φ 1, then we say that ω is a regular class. Now we can state the

theorem.

THEOREM. If ω e ®PeD Hm(e\P), C) is a regular 'class, then there exists

a ώe H*(X/Γ, C) such that r(ώ) = ω (r is the restriction map (1.1)). More-

over ώ can be represented by a harmonic form.

We first put together the results of the previous three sections on

the constant term EB(g, Φ) (6.9) of the Eisenstein series. We have

(7.2) EB(g,Φ) = Σve

For 1 < j < £ and λ = Σ SΛ> C(WJ> %)& i s the product of

(10.1) (Φ(l)®CP)y^ξ_p_wμ

and a constant

(10 2) 1 - s , Γ(l/2)Γ(s,/2) L(sjΛj) g

1 + Sj Γ((l + s,)/2) Lil+s^γJ J

(cf: (7.4), (8.10) and (9.2)).

Now if χ is such that χ̂  is not the trivial character for all j , and λ

— 2] λi = p, then since c(Wj, λ) is a linear transformation on function space

(and is independent of g) it is clear from (10.2) that c(wj9 λ)φ is zero for

all j . Moreover, as c(w, λ)Φ is holomorphic at p, the general properties

of the transformations c(w, X) (cf: [8]) implies that the same is true for

c(w, X)Φ. In fact the functional equation (7.3) implies that c(w, ρ)Φ is zero

for all Weyl group elements w which is not the identity. Thus at λ = p,

we have

(10.3) EB(g, Φ) = c(Id, X)Φ(g) = Φ(g).

An easy calculation (using formula (2.3) of [5]) shows that

dΦ(H, Xu...,Xm) = ( - μ - p - λ)HΦ(Xl9 , X m )

for He a, Xl9 •• , I m e n . According to (6.6), μ = — 2ρ.

Hence at λ — p, we have

(10.4) dEB(g, Φ) = 0
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and by (6.7),

(10.5) AE(g, φ) = 0.

Suppose [φ] ® Σχ/χ corresponds to the element ω in φPeD ίP(e'(P), C).

If ω is regular then χs ψ 1 and by Lemma 4.1 of [8] E(g, Φχ) is holomorphic

at λ = /o. Therefore by Lemma 6.2, (10.4), (10.5) the value of E(g, ω) at the

special point λ — p is an harmonic form representing a cohomology class

ώ and the restriction r(ώ) of ώ to the boundary d(X/Γ) can be represented

by EB(g, ω). Hence by (10.3), r(ω) = ω.
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