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Abstract
Recently, Gross, Mansour and Tucker introduced the partial-dual polynomial of a ribbon graph as a generating
function that enumerates all partial duals of the ribbon graph by Euler genus. It is analogous to the extensively
studied polynomial in topological graph theory that enumerates by Euler genus all embeddings of a given graph.
To investigate the partial-dual polynomial, one only needs to focus on bouquets: that is, ribbon graphs with exactly
one vertex. In this paper, we shall further show that the partial-dual polynomial of a bouquet essentially depends on
the signed intersection graph of the bouquet rather than on the bouquet itself. That is to say, two bouquets with the
same signed intersection graph have the same partial-dual polynomial. We then give a characterisation of when a
bouquet has a planar partial dual in terms of its signed intersection graph. Finally, we consider a conjecture posed
by Gross, Mansour and Tucker that there is no orientable ribbon graph whose partial-dual polynomial has only one
nonconstant term; this conjecture is false, and we give a characterisation of when all partial duals of a bouquet have
the same Euler genus.

Contents

1 Introduction 1
2 Signed rotations and signed intersection graphs 3
3 Mutants 4
4 First main theorem 5
5 Intersection polynomials 9
6 Second main theorem 11

6.1 Prime bouquets and our result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.2 Nonorientable case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.3 Orientable case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7 Concluding remarks 15

1. Introduction

The concept of partial duality was introduced in [4] by Chmutov, and together with other partial
twualities, it has received ever-increasing attention; their applications span topological graph theory, knot
theory, matroids/delta-matroids and physics. We assume readers are familiar with the basic knowledge
of topological graph theory; see, for example, [16, 22]. For a ribbon graph G and a subset A of its
edge-ribbons 𝐸 (𝐺), the partial dual 𝐺𝐴 of G with respect to A is a ribbon graph obtained from G
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by glueing a disc to G along each boundary component of the spanning ribbon subgraph (𝑉 (𝐺), 𝐴)
(such discs will be the vertex-discs of 𝐺𝐴), removing the interiors of all vertex-discs of G and keeping
the edge-ribbons unchanged. For more detailed discussions of the ribbon graphs and partial duals, see
[1, 4, 9, 11, 18].

Similar to the extensively studied polynomial in topological graph theory that enumerates by Euler
genus all embeddings of a given graph, in [14], Gross, Mansour and Tucker introduced the partial-dual
polynomials for arbitrary ribbon graphs.

Definition 1.1 (Definition 3.1 of [14]). The partial-dual polynomial of any ribbon graph G is the
generating function

𝜕𝜀𝐺 (𝑧) =
∑

𝐴⊆𝐸 (𝐺)

𝑧𝜀 (𝐺
𝐴)

that enumerates all partial duals of G by Euler genus.

A bouquet is a ribbon graph with only one vertex. It is observed in [11, 14] that for any connected
ribbon graph G, whenever A is a spanning tree, 𝐺𝐴 will be a bouquet. Thus the partial-dual polynomial
of any connected ribbon graph is equal to that of a bouquet. Hence we shall restrict ourselves to
bouquets.

In [23], we introduced the notion of signed interlace sequences of bouquets and proved that two
bouquets with the same signed interlace sequence have the same partial-dual polynomial if the num-
ber of edges of the bouquets is less than 4 and two orientable bouquets with the same signed in-
terlace sequence have the same partial-dual polynomial if the number of edges of the bouquets
is less than 5. As we observed in Remarks 13 and 17 in [23], there are bouquets with the same
signed interlace sequence but different partial-dual polynomials. The first purpose of this paper is to
strengthen the notion of signed interlace sequences such that it can determine the partial-dual polynomial
completely.

Intersection graphs (also called circle graphs) appear and are very useful in both graph theory and
combinatorial knot theory [12]. For example, a characterisation of those graphs that can be realised as
intersection graphs is given by an elegant theorem of Bouchet [3]. The signed interlace sequence of
a bouquet is the degree sequence (with signs) of its signed intersection graph. Based on a theorem of
Chmutov and Lando [6], we shall prove that two bouquets with the same signed intersection graph have
the same partial-dual polynomial.

Then we focus on signed intersection graphs; the intersection polynomial is introduced, and a
recursion for this polynomial is given and used to compute intersection polynomials of paths and stars.
We also prove that the intersection polynomial contains a nonzero constant term: that is, the bouquet
has a plane partial dual if and only if the signed intersection graph is positive and bipartite.

In [14], Gross, Mansour and Tucker characterised connected ribbon graphs with constant polynomials:
that is, one of the partial duals is a tree. They also found examples of nonorientable ribbon graphs
whose polynomials have only one (nonconstant) term. The second purpose of this paper is to give a
characterisation of when all partial duals of a bouquet have the same Euler genus. We will show that
the partial-dual polynomial of a prime nonorientable bouquet has only one nonconstant term if and
only if its intersection graph is trivial. Chmutov and Vignes-Tourneret [5] mentioned that this result has
also been obtained by Maya Thompson (Royal Holloway University of London). They did not provide
a reference, and we have not found any references either. For orientable ribbon graphs, Gross, Mansour
and Tucker posed the following conjecture.

Conjecture 1.2 (Conjecture 3.1 of [14]). There is no orientable ribbon graph having a nonconstant
partial-dual polynomial with only one nonzero coefficient.

The conjecture is not true. In [23], we found an infinite family of counterexamples (see Proposition
6.3) whose intersection graphs are nontrivial complete graphs of odd order. In this paper, we shall prove
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Figure 1. A bouquet with the signed rotation (𝑎, 𝑐,−𝑎, 𝑑, 𝑏, 𝑑, 𝑐,−𝑏) and its signed intersection graph.

that Conjecture 1.2 is actually true for all prime orientable bouquets except the family of counterex-
amples. We point out that this is also obtained independently by Chmutov and Vignes-Tourneret [5];
their arXiv paper appeared about one week before our arXiv paper, but the proof is not completely the
same. They also mentioned our results in their published paper [5]. We will discuss the similarities and
differences of the two proofs in Remark 6.11.

This paper is organised as follows. In Section 2, we recall the notions of signed rotations and signed
intersection graphs. In Section 3, we recall the notion of mutant chord diagrams and a theorem of
Chmutov and Lando on mutant chord diagrams and intersection graphs. In Section 4, we prove that
the signed intersection graph can determine the partial-dual polynomial. In Section 5, we introduce the
intersection polynomial and discuss its basic properties. In Section 6, we give a characterisation of when
all partial duals of a bouquet have the same Euler genus. In the final section, we pose several problems
for further study.

2. Signed rotations and signed intersection graphs

Let e be an edge of a ribbon graph G. If the vertex-discs at the ends of e are distinct, we say that e is
proper. If e is a loop at the vertex disc v and 𝑒 ∪ 𝑣 is homeomorphic to a Möbius band, then we call e a
twisted loop. Otherwise, it is said to be an untwisted loop.

A signed rotation [16] of a bouquet is a cyclic ordering of the half-edges at the vertex, and if the edge
is an untwisted loop, then we give the same sign + or − to the corresponding two half-edges and give the
different signs (one +, the other −) otherwise. The sign + is always omitted. See Figure 1 for an example.
Sometimes we will use the signed rotation to represent the bouquet itself. Two signed rotations are the
same if one can be obtained from the other by a sequence of cyclic permutations or reversals, where
a reversal means reversing the cyclic order of the half-edges about the vertex or changing the signs of
both labels corresponding to an edge at the same time.

The intersection graph [6] 𝐼 (𝐵) of a bouquet B is the graph with vertex set 𝐸 (𝐵) and in which
two vertices 𝑒1 and 𝑒2 of 𝐼 (𝐵) are adjacent if and only if their ends are met in the cyclic order
𝑒1 · · · 𝑒2 · · · 𝑒1 · · · 𝑒2 · · · when traveling around the boundary of the unique vertex of B: that is, in the
signed rotation of B.

The signed intersection graph 𝑆𝐼 (𝐵) of a bouquet B consists of 𝐼 (𝐵) and a + or − sign at each
vertex of 𝐼 (𝐵), where the vertex corresponding to the untwisted loop of B is signed +, and the vertex
corresponding to the twisted loop of B is signed −. See Figure 1 for an example. A signed intersection
graph is said to be positive if each of its vertices is signed +. The following lemma is obvious.

Lemma 2.1. A bouquet B is orientable if and only if its signed intersection graph 𝑆𝐼 (𝐵) is
positive.
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Figure 2. 𝑆𝐼 (𝐵1), 𝑆𝐼 (𝐵2) and 𝑆𝐼 (𝐵3), respectively.

Remark 2.2. Let 𝐵1, 𝐵2 and 𝐵3 be bouquets with signed rotations

(𝑎, 𝑏, 𝑐, 𝑓 , 𝑔, 𝑑, 𝑓 , 𝑔, 𝑏, 𝑑, 𝑒, 𝑎, 𝑒, 𝑐),

(𝑎, 𝑏, 𝑐, 𝑓 , 𝑔, 𝑑, 𝑓 , 𝑔, 𝑒, 𝑑, 𝑏, 𝑒, 𝑎, 𝑐),

and

(𝑎, 𝑏, 𝑔, 𝑐, 𝑑, 𝑒, 𝑐, 𝑓 , 𝑒, 𝑑, 𝑏, 𝑓 , 𝑎, 𝑔),

respectively. It is easily seen that they have the same signed interlace sequence (1, 2, 2, 2, 2, 2, 3). But
𝑆𝐼 (𝐵1) = 𝑆𝐼 (𝐵2) ≠ 𝑆𝐼 (𝐵3), as shown in Figure 2. Furthermore, we can obtain that

𝜕𝜀𝐵1 (𝑧) =
𝜕𝜀𝐵2 (𝑧) = 48𝑧6 + 68𝑧4 + 12𝑧2,

but

𝜕𝜀𝐵3 (𝑧) = 40𝑧6 + 64𝑧4 + 22𝑧2 + 2.

In the following, we shall prove that two bouquets with the same signed intersection graph have the same
partial-dual polynomial: that is, signed intersection graphs can determine the partial-dual polynomials
completely. In the next section, we will first recall mutants.

3. Mutants

In knot theory, mutants are a pair of knots obtained from one another by rotating a tangle. Mutants are
usually very difficult to distinguish by knot polynomials.

A chord diagram refers to a set of chords with distinct endpoints on a circle. A combinatorial analogue
of the tangle in mutant knots is a share. A share [6] in a chord diagram is a union of two arcs of the
outer circle and chords ending on them possessing the following property: each chord, one of whose
ends belongs to these arcs, has both ends on these arcs. A mutation [6] of a chord diagram is another
chord diagram obtained by a 180◦ rotation of a share about one of the three axes (i.e., a vertical axis,
a horizontal axis and an axis perpendicular to the page). See Figure 3 for an example. Note that the
composition of rotations about two of the three axes will be exactly the rotation about the third axis.
Two chord diagrams are said to be mutant [6] if they can be transformed into one another by a sequence
of mutations.

Theorem 3.1 (Theorem 2 of [6]). Two chord diagrams have the same intersection graph if and only if
they are mutant.

https://doi.org/10.1017/fms.2022.62 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.62


Forum of Mathematics, Sigma 5

Figure 3. A share and mutations of a chord diagram along the share.

For the details, we refer the reader to [6]. Mutations can be defined for bouquets similarly. Suppose
𝑃 = 𝑝1𝑝2 · · · 𝑝𝑘 is a string; then 𝑃−1 = 𝑝𝑘 𝑝𝑘−1 · · · 𝑝1 is called the inverse of P.

Definition 3.2. Let B be a bouquet with signed rotation (𝑀𝑃𝑁𝑄), where both labels of each edge must
belong to 𝑀𝑁 or both not. A mutation of B is another bouquet with signed rotation (𝑀−1𝑃𝑁−1𝑄) or
(𝑁𝑃𝑀𝑄). Two bouquets are said to be mutant if they can be transformed into one another by a sequence
of mutations.

In Definition 3.2, either 𝑀, 𝑁, 𝑃 or Q can be empty. Several of 𝑀, 𝑁, 𝑃, 𝑄 can be empty at once; in
particular, B is an isolated vertex if and only if 𝑀, 𝑁, 𝑃 and Q are all empty at once.

Corollary 3.3. Two bouquets have the same signed intersection graph if and only if they are mutant.

Proof. Obviously, mutations preserve the intersection graphs of bouquets. Furthermore, the sign of
each vertex of a signed intersection graph is not changed by a mutation. Hence if two bouquets are
mutant, they have the same signed intersection graph. Conversely, if two bouquets have the same signed
intersection graph, by Theorem 3.1, they are related by a sequence of mutations. �

In the next section, we will show that two bouquets with the same signed intersection graph have the
same partial-dual polynomial.

4. First main theorem

Now we state our first main theorem as follows.

Theorem 4.1. If two bouquets 𝐵1 and 𝐵2 have the same signed intersection graph, then 𝜕𝜀𝐵1 (𝑧) =
𝜕𝜀𝐵2 (𝑧).

Let G be a ribbon graph. Let 𝑒 ∈ 𝐸 (𝐺) and u and v be its incident vertices, which are not necessarily
distinct. The contraction [1, 11] 𝐺/𝑒 of e is defined as follows. Consider the boundary component(s) of
𝑒 ∪ 𝑢 ∪ 𝑣 as curves on G. For each resulting curve, attach a disc, which will form a vertex of 𝐺/𝑒, by
identifying its boundary component with the curve. Delete 𝑒, 𝑢 and v from the resulting complex. Note
that𝐺/𝑒 = 𝐺𝑒−𝑒 [4], and there is a fundamental difference between graph and ribbon graph contractions.
For instance, if G is the orientable ribbon graph with one vertex and one edge, then contracting that
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Figure 4. The bouquets 𝐵1, 𝐵3 and 𝐵4.

Figure 5. The bouquets 𝐺1, 𝐺3 and 𝐺4.

edge results in the ribbon graph comprising two isolated vertices. Ellis-Monaghan and Moffatt [11]
have shown that the order in which contractions are performed does not matter. Let 𝐴 ⊆ 𝐸 (𝐺). We
define 𝐺/𝐴 as the result of contracting every edge of A in any order and then 𝐺/𝐴 = 𝐺𝐴 − 𝐴. It is
an important observation [11, 17] that the operation of the contraction does not change the number of
boundary components. Let 𝑣(𝐺), 𝑒(𝐺) and 𝑓 (𝐺) denote the number of vertices, edges and boundary
components of a ribbon graph G, respectively. To prove Theorem 4.1, we need three lemmas.

Lemma 4.2. Let B be a bouquet. Then the Euler genus 𝜀(𝐵) is given by the equation

𝜀(𝐵) = 1 + 𝑒(𝐵) − 𝑓 (𝐵).

Proof. Recall that if G is a connected ribbon graph, then 2 − 𝜀(𝐺) = 𝑣(𝐺) − 𝑒(𝐺) + 𝑓 (𝐺). The lemma
then follows from 𝑣(𝐵) = 1. �

Lemma 4.3. If two bouquets 𝐵1 and 𝐵2 have the same signed intersection graph, then 𝜀(𝐵1) = 𝜀(𝐵2).

Proof. By Corollary 3.3, we can assume that 𝐵1 can be transformed into 𝐵2 by a mutation. Let 𝐵1 =
(𝑀𝑃𝑁𝑄). Then 𝐵2 = (𝑀−1𝑃𝑁−1𝑄) or 𝐵2 = (𝑁𝑃𝑀𝑄), as in Figure 4. Denote 𝐵3 = (𝑀−1𝑃𝑁−1𝑄)
and 𝐵4 = (𝑁𝑃𝑀𝑄). By Lemma 4.2, it suffices to prove that 𝑓 (𝐵1) = 𝑓 (𝐵3) = 𝑓 (𝐵4).

Suppose that 𝐺1 = (𝑀𝑒2𝑃𝑒2𝑁𝑒1𝑄𝑒1), 𝐺3 = (𝑀−1𝑒2𝑃𝑒2𝑁
−1𝑒1𝑄𝑒1) and 𝐺4 = (𝑁𝑒2𝑃𝑒2𝑀𝑒1𝑄𝑒1),

as in Figure 5. Since

𝐵𝑖 = 𝐺𝑖 − {𝑒1, 𝑒2} = (𝐺𝑖
{𝑒1 ,𝑒2 }) {𝑒1 ,𝑒2 } − {𝑒1, 𝑒2} = 𝐺𝑖

{𝑒1 ,𝑒2 }/{𝑒1, 𝑒2}

for 𝑖 ∈ {1, 3, 4} and contraction does not change the number of boundary components, it follows that
𝑓 (𝐵𝑖) = 𝑓 (𝐺𝑖

{𝑒1 ,𝑒2 }). For the ribbon graph 𝐺𝑖 {𝑒1 ,𝑒2 }, arbitrarily orient the boundary of 𝑒1, place an
arrow on each of the two arcs where 𝑒1 meets vertices of 𝐺𝑖 {𝑒1 ,𝑒2 } such that the directions of these
arrows follow the orientation of the boundary of 𝑒1, and label the two arrows with 𝑒′1 and 𝑒′′1 . The
same operation can be drawn for 𝑒2; label the two arrows with 𝑒′2 and 𝑒′′2 . Let 𝑣𝑃 , 𝑣𝑄 and 𝑣𝑀𝑁 denote
the vertices of 𝐺𝑖 {𝑒1 ,𝑒2 }, which contain 𝑃,𝑄 and 𝑀𝑁 , respectively. Let 𝐵𝑖 ′ denote the ribbon graph
obtained from 𝐺𝑖

{𝑒1 ,𝑒2 } by deleting the vertices 𝑣𝑃 , 𝑣𝑄 together with all the edges incident with 𝑣𝑃 , 𝑣𝑄,
but keeping the marking arrows 𝑒′′1 and 𝑒′′2 , as in Figure 6. Since both labels of each edge must belong
to 𝑀𝑁 or both not, this results in a bouquet with exactly two labelled arrows 𝑒′′1 and 𝑒′′2 on its boundary
of the vertex, and these marking arrows only indicate the positions and no other significance. Note that
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Figure 6. The ribbon graphs 𝐺𝑖 {𝑒1 ,𝑒2 } and 𝐵𝑖 ′ for 𝑖 ∈ {1, 3, 4} and 𝐺1
′.

if we ignore the two labelled arrows 𝑒′′1 and 𝑒′′2 , the bouquets 𝐵1
′, 𝐵3

′ and 𝐵4
′ are equivalent. Hence

𝑓 (𝐵1
′) = 𝑓 (𝐵3

′) = 𝑓 (𝐵4
′). Similarly, let 𝐺𝑖 ′ denote the ribbon graph obtained from 𝐺𝑖

{𝑒1 ,𝑒2 } by
deleting the vertex 𝑣𝑀𝑁 together with all the edges incident with 𝑣𝑀𝑁 , but keeping the marking arrows
𝑒′1 and 𝑒′2. This results in a ribbon graph with exactly two labelled arrows 𝑒′1 and 𝑒′2 on the boundaries
of 𝑣𝑃 and 𝑣𝑄, as in Figure 6. Note that 𝐺1

′ = 𝐺3
′ = 𝐺4

′. Obviously, we can recover the boundaries of
𝐺𝑖

{𝑒1 ,𝑒2 } from𝐺𝑖
′ and 𝐵𝑖 ′ as follows: draw a line segment from the head of 𝑒′1 to the tail of 𝑒′′1 and a line

segment from the head of 𝑒′′1 to the tail of 𝑒′1. The same operation is applied to 𝑒′2 and 𝑒′′2 . We observe
that

(i) If 𝑒′′1 and 𝑒′′2 are contained in different boundary components of 𝐵1
′, then 𝑒′′1 and 𝑒′′2 are also

contained in different boundary components of 𝐵3
′ and 𝐵4

′.
(ii) If 𝑒′′1 and 𝑒′′2 are contained in the same boundary component of 𝐵1

′, then 𝑒′′1 and 𝑒′′2 are also
contained in the same boundary component of 𝐵3

′ and 𝐵4
′. The arrows 𝑒′′1 and 𝑒′′2 are called

consistent (inconsistent) in 𝐵1
′ if these two arrows have consistent (inconsistent) orientations on

the boundary component. We can also observe that if 𝑒′′1 and 𝑒′′2 are consistent (inconsistent) in 𝐵1
′,

then 𝑒′′1 and 𝑒′′2 are also consistent (inconsistent) in 𝐵3
′ and 𝐵4

′.

If 𝑒′1 and 𝑒′2 are contained in the same boundary component of 𝐺1
′ and 𝑒′1, 𝑒′2 are consistent in 𝐺1

′,
then there are three cases, as follows.

Case 1. If 𝑒′′1 and 𝑒′′2 are contained in different boundary components of 𝐵1
′, then by (i),

𝑓 (𝐺1
{𝑒1 ,𝑒2 }) = 𝑓 (𝐺3

{𝑒1 ,𝑒2 }) = 𝑓 (𝐺4
{𝑒1 ,𝑒2 }) = 𝑓 (𝐺1

′) + 𝑓 (𝐵1
′) − 2,

as in Figure 7.

Case 2. If 𝑒′′1 and 𝑒′′2 are contained in the same boundary component of 𝐵1
′ and 𝑒′′1 , 𝑒′′2 are consistent

in 𝐵1
′, then by (ii),

𝑓 (𝐺1
{𝑒1 ,𝑒2 }) = 𝑓 (𝐺3

{𝑒1 ,𝑒2 }) = 𝑓 (𝐺4
{𝑒1 ,𝑒2 }) = 𝑓 (𝐺1

′) + 𝑓 (𝐵1
′)

as in Figure 8.
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Figure 7. Case 1.

Figure 8. Case 2.

Figure 9. Case 3.

Case 3. If 𝑒′′1 and 𝑒′′2 are contained in the same boundary component of 𝐵1
′ and 𝑒′′1 , 𝑒′′2 are inconsistent

in 𝐵1
′, then by (ii),

𝑓 (𝐺1
{𝑒1 ,𝑒2 }) = 𝑓 (𝐺3

{𝑒1 ,𝑒2 }) = 𝑓 (𝐺4
{𝑒1 ,𝑒2 }) = 𝑓 (𝐺1

′) + 𝑓 (𝐵1
′) − 1

as in Figure 9.

Similar arguments apply to the case where 𝑒′1 and 𝑒′2 are contained in different boundary components
of 𝐺1

′ or 𝑒′1 and 𝑒′2 are contained in the same boundary component of 𝐺1
′ and 𝑒′1, 𝑒′2 are inconsistent

in 𝐺1
′. �

Lemma 4.4 (Corollary 2.3 of [14]). Let B be a bouquet, and let 𝐴 ⊆ 𝐸 (𝐵). Then

𝜀(𝐵𝐴) = 𝜀(𝐴) + 𝜀(𝐴𝑐),

where 𝐴𝑐 = 𝐸 (𝐵) − 𝐴 and 𝜀(𝐴) is the Euler genus of the subgraph induced by A.

Proof of Theorem 4.1. For any subset 𝐴1 of edges of 𝐵1, we also denote its corresponding vertex subset
of 𝑆𝐼 (𝐵1) by 𝐴1. Let 𝑆𝐼 (𝐵1) [𝐴1] denote the subgraph of 𝑆𝐼 (𝐵1) induced by the vertex subset 𝐴1. Since
𝑆𝐼 (𝐵1) = 𝑆𝐼 (𝐵2), there is a corresponding subset 𝐴2 of vertices of 𝑆𝐼 (𝐵2) such that 𝑆𝐼 (𝐵1) [𝐴1] =
𝑆𝐼 (𝐵2) [𝐴2] and 𝑆𝐼 (𝐵1) [𝐴

𝑐
1 ] = 𝑆𝐼 (𝐵2) [𝐴

𝑐
2 ]. It follows that 𝜀(𝐴1) = 𝜀(𝐴2) and 𝜀(𝐴𝑐1 ) = 𝜀(𝐴𝑐2 ) by

Lemma 4.3. Hence, 𝜀(𝐵1
𝐴1) = 𝜀(𝐵2

𝐴2) by Lemma 4.4. Thus 𝜕𝜀𝐵1 (𝑧) =
𝜕𝜀𝐵2 (𝑧). �

Remark 4.5. Two bouquets with different signed intersection graphs may have the same partial-dual
polynomial. For example, let 𝐵1 = (1, 2,−1, 2) and 𝐵2 = (1, 2,−1,−2). Obviously, 𝜕𝜀𝐵1 (𝑧) =

𝜕𝜀𝐵2 (𝑧) =
2𝑧 + 2𝑧2 (see also [23]), but the signed intersection graphs of 𝐵1 and 𝐵2 are different. In fact, 𝐵2 = 𝐵{1}

1 .
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Figure 10. Two cases for the bouquet B in the proof of Theorem 5.2.

5. Intersection polynomials

A signed graph 𝑆𝐺 with a + or − sign at each vertex is said to be a signed intersection graph if there
exists a bouquet B such that 𝑆𝐺 = 𝑆𝐼 (𝐵).

Definition 5.1. The intersection polynomial 𝐼𝑃𝑆𝐺 (𝑧) of a signed intersection graph 𝑆𝐺 is defined by
𝐼𝑃𝑆𝐺 (𝑧) := 𝜕𝜀𝐵 (𝑧), where B is a bouquet such that 𝑆𝐺 = 𝑆𝐼 (𝐵).

The well-definedness of Definition 5.1 is guaranteed by Theorem 4.1.

Theorem 5.2. Let 𝑆𝐺 be a signed intersection graph and 𝑣1, 𝑣2 ∈ 𝑉 (𝑆𝐺). If 𝑣1, 𝑣2 are adjacent and the
vertex 𝑣1 is positive and of degree 1, then

𝐼𝑃𝑆𝐺 (𝑧) = 𝐼𝑃𝑆𝐺−𝑣1 (𝑧) + (2𝑧2)𝐼𝑃𝑆𝐺−𝑣1−𝑣2 (𝑧).

Proof. Let B be a bouquet satisfying 𝑆𝐺 = 𝑆𝐼 (𝐵). We have 𝐼𝑃𝑆𝐺 (𝑧) = 𝜕𝜀𝐵 (𝑧). Note that 𝑣1, 𝑣2
correspond to two edges of B; we denote them by 𝑒1 and 𝑒2, respectively. Since the degree of 𝑣1 is 1
and the sign of 𝑣1 is positive, it follows that 𝑒1 is an untwisted loop; and for any 𝑒 ∈ 𝐸 (𝐵) − 𝑒1 − 𝑒2, the
ends of e are therefore on 𝛼 and 𝛽, or 𝛾 and 𝜃 (otherwise it interlaces 𝑒1), as shown in Figure 10. We
partition the subsets A of 𝐸 (𝐵) into two types:

𝜏1: those for which one of 𝑒1, 𝑒2 is in A and the other is in 𝐴𝑐;
𝜏2: those for which 𝑒1, 𝑒2 are both in A or both in 𝐴𝑐 .

Then

𝜕𝜀𝐵 (𝑧) =
∑
𝐴∈𝜏1

𝑧𝜀 (𝐵
𝐴) +

∑
𝐴∈𝜏2

𝑧𝜀 (𝐵
𝐴) .

We start by establishing a one-to-one correspondence between the set of subsets of 𝐸 (𝐵 − 𝑒1) and
𝜏1. Let 𝐷 ⊆ 𝐸 (𝐵 − 𝑒1). Then 𝐷𝑐 = 𝐸 (𝐵 − 𝑒1) − 𝐷. If 𝑒2 ∈ 𝐷, take 𝐴 = 𝐷 so that 𝐴𝑐 = 𝐷𝑐 ∪ 𝑒1; if
𝑒2 ∉ 𝐷, take 𝐴 = 𝐷 ∪ 𝑒1 so that 𝐴𝑐 = 𝐷𝑐 . Furthermore, it is not difficult to see that 𝜀(𝐷) = 𝜀(𝐴) and
𝜀(𝐷𝑐) = 𝜀(𝐴𝑐) for each case. Then we have 𝜀((𝐵 − 𝑒1)

𝐷) = 𝜀(𝐵𝐴) by Lemma 4.4. Hence,∑
𝐴∈𝜏1

𝑧𝜀 (𝐵
𝐴) = 𝜕𝜀𝐵−𝑒1 (𝑧).

Let 𝐷 ⊆ 𝐸 (𝐵 − 𝑒1 − 𝑒2). Then 𝐷𝑐 = 𝐸 (𝐵 − 𝑒1 − 𝑒2) − 𝐷. Take 𝐴 = 𝐷 ∪ {𝑒1, 𝑒2} so that 𝐴𝑐 = 𝐷𝑐 .
Clearly, 𝜀(𝐴𝑐) = 𝜀(𝐷𝑐), and it is not difficult to see that 𝑓 (𝐴) = 𝑓 (𝐷); hence 𝜀(𝐴) = 𝜀(𝐷) + 2. Then
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we have

𝜀(𝐵𝐴) = 𝜀((𝐵 − 𝑒1 − 𝑒2)
𝐷) + 2

by Lemma 4.4. Thus ∑
𝐴∈𝜏2

𝑧𝜀 (𝐵
𝐴) = 2

∑
{𝑒1 ,𝑒2 }⊆𝐴∈𝜏2

𝑧𝜀 (𝐵
𝐴)

= (2𝑧2) 𝜕𝜀𝐵−𝑒1−𝑒2 (𝑧).

Therefore,

𝜕𝜀𝐵 (𝑧) =
𝜕𝜀𝐵−𝑒1 (𝑧) + (2𝑧2) 𝜕𝜀𝐵−𝑒1−𝑒2 (𝑧);

that is,

𝐼𝑃𝑆𝐺 (𝑧) = 𝐼𝑃𝑆𝐺−𝑣1 (𝑧) + (2𝑧2)𝐼𝑃𝑆𝐺−𝑣1−𝑣2 (𝑧). �

Example 5.3. Let 𝑃𝑛 be a positive path with n vertices. Then
𝐼𝑃𝑃1 (𝑧) = 2;
𝐼𝑃𝑃2 (𝑧) = 2 + 2𝑧2;
𝐼𝑃𝑃𝑛+2 (𝑧) = 𝐼𝑃𝑃𝑛+1 (𝑧) + 2𝑧2𝐼𝑃𝑃𝑛 (𝑧).

Now we give a characterisation of bouquets admitting plane partial duals in terms of intersection
graphs.

Theorem 5.4. Let 𝑆𝐺 be a signed intersection graph with 𝑣(𝑆𝐺) ≥ 2. Then 𝐼𝑃𝑆𝐺 (𝑧) contains a nonzero
constant term if and only if 𝑆𝐺 is positive and bipartite.

Proof. Let B be a bouquet satisfying 𝑆𝐺 = 𝑆𝐼 (𝐵). We know that 𝐼𝑃𝑆𝐺 (𝑧) = 𝜕𝜀𝐵 (𝑧). Since 𝐼𝑃𝑆𝐺 (𝑧)
contains a nonzero constant term, it follows that B is a partial dual of a plane ribbon graph. According
to the property that partial duality preserves orientability, we have that B is orientable, and hence 𝑆𝐺
is positive. Suppose that 𝑆𝐺 is not bipartite. Then 𝑆𝐺 contains an odd cycle C. We denote by D the
edge subset of B corresponding to vertices of C. It is obvious that deleting edges cannot increase the
Euler genus. Then for any subset A of 𝐸 (𝐵), we have 𝜀(𝐴 ∩ 𝐷) � 𝜀(𝐴), 𝜀(𝐴𝑐 ∩ 𝐷) � 𝜀(𝐴𝑐). Since
𝑆𝐺 contains an odd cycle C, there are two loops 𝑒1, 𝑒2 ∈ 𝐴 ∩ 𝐷 or 𝑒1, 𝑒2 ∈ 𝐴𝑐 ∩ 𝐷 such that their
ends are met in the cyclic order 𝑒1 · · · 𝑒2 · · · 𝑒1 · · · 𝑒2 · · · when traveling around the boundary of the
unique vertex of B. Then 𝜀(𝐴 ∩ 𝐷) + 𝜀(𝐴𝑐 ∩ 𝐷) > 0. Thus 𝜀(𝐵𝐴) = 𝜀(𝐴) + 𝜀(𝐴𝑐) > 0. But since
B is a partial dual of a plane ribbon graph, there exists a subset 𝐴′ ⊆ 𝐸 (𝐵) such that 𝜀(𝐵𝐴′ ) = 0, a
contradiction.

Conversely, if 𝑆𝐺 is bipartite and nontrivial, then its vertex set can be partitioned into two subsets
X and Y so that every edge of 𝑆𝐺 has one end in X and the other end in Y. For these two subsets X
and Y of the vertex set of 𝑆𝐺, we also denote these two corresponding edge subsets of B by X and Y.
Obviously, 𝑋 ∪ 𝑌 = 𝐸 (𝐵), 𝑋 ∩ 𝑌 = ∅ and 𝜀(𝑋) = 𝜀(𝑌 ) = 0. Thus 𝜀(𝐵𝑋 ) = 0 by Lemma 4.4. Hence,
𝜕𝜀𝐵 (𝑧) (hence, 𝐼𝑃𝑆𝐺 (𝑧)) contains a nonzero constant term. �

Remark 5.5. This problem has been studied in terms of separability in [19, 21].

Let 𝑆𝑛 be a positive star: that is, a complete bipartite graph whose vertex set can be partitioned into
two subsets X and Y so that every edge has one end in X and the other end in Y with |𝑋 | = 1 and |𝑌 | = 𝑛.
We conclude the section by characterising partial-dual polynomials of degree 2 with nonzero constant
terms using intersection polynomials and signed intersection graphs.
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Theorem 5.6. Let 𝑆𝐺 be a connected signed intersection graph with 𝑣(𝑆𝐺) = 𝑣, and let a and b be
positive integers. Then

𝐼𝑃𝑆𝐺 (𝑧) = 𝑎𝑧
2 + 𝑏 ⇐⇒ 𝑆𝐺 = 𝑆𝑣−1.

Proof. For sufficiency, we have initial condition 𝐼𝑃𝑆1 (𝑧) = 2𝑧2 + 2, and by Theorem 5.2, the
recursion

𝐼𝑃𝑆𝑣−1 (𝑧) = 𝐼𝑃𝑆𝑣−2 (𝑧) + 2𝑣−1𝑧2.

Then it is easy to obtain that

𝐼𝑃𝑆𝐺 (𝑧) = 𝐼𝑃𝑆𝑣−1 (𝑧) = (2𝑣 − 2)𝑧2 + 2.

Conversely, since 𝐼𝑃𝑆𝐺 (𝑧) contains a nonzero constant term, 𝑆𝐺 is positive and bipartite by Theorem
5.4. Thus the vertex set of 𝑆𝐺 can be partitioned into two subsets X and Y so that every edge has one
end in X and the other end in Y, with |𝑋 | = 𝑚 and |𝑌 | = 𝑛. If 𝑚 = 1 or 𝑛 = 1, then the proof is complete.
Otherwise, suppose that𝑚 > 1 and 𝑛 > 1. Since 𝑆𝐺 is connected and bipartite, there exist 𝑣1, 𝑣3 ∈ 𝑋 and
𝑣2, 𝑣4 ∈ 𝑌 such that 𝑣1𝑣2, 𝑣3𝑣4 ∈ 𝐸 (𝑆𝐺). Let B be a bouquet satisfying 𝑆𝐺 = 𝑆𝐼 (𝐵). Note that 𝑣1, 𝑣2, 𝑣3
and 𝑣4 correspond to four edges of B; we denote them by 𝑒1, 𝑒2, 𝑒3 and 𝑒4, respectively. Thus 𝑒1 and 𝑒2
are interlaced, and so are 𝑒3 and 𝑒4. Therefore, 𝜀({𝑒1, 𝑒2}) = 2 and 𝜀(𝐸 (𝐵) −𝑒1−𝑒2) ≥ 𝜀({𝑒3, 𝑒4}) = 2.
By Lemma 4.4, we have

𝜀(𝐵{𝑒1 ,𝑒2 }) = 𝜀({𝑒1, 𝑒2}) + 𝜀(𝐸 (𝐵) − 𝑒1 − 𝑒2) ≥ 4,

contradicting 𝜕𝜀𝐵 (𝑧) = 𝐼𝑃𝑆𝐺 (𝑧) = 𝑎𝑧2 + 𝑏. Hence, 𝑆𝐺 = 𝑆𝑣−1. �

6. Second main theorem

Gross, Mansour and Tucker [14] discussed the simplest partial-dual polynomial: that is, a constant
polynomial. They proved:

Proposition 6.1 (Propositions 3.3 and 3.6 of [14]). Let G be a connected ribbon graph. Then 𝜕𝜀𝐺 (𝑧) =
2𝑒 (𝐺) if and only if there is a subset 𝐴 ⊆ 𝐸 (𝐺) such that 𝐺𝐴 is a tree.

They also considered partial-dual polynomials that are not constant polynomials and have only one
term, and proved:

Proposition 6.2. (Proposition 3.7 of [14]). For any 𝑛 > 0 and any 𝑚 ≥ 𝑛, there is a nonorientable
ribbon graph G such that 𝜕𝜀𝐺 (𝑧) = 2𝑚𝑧𝑛.

For orientable ribbon graphs, Gross, Mansour and Tucker posed Conjecture 1.2, and we found an
infinite family of counterexamples in [23]. Let t be a positive integer, and let 𝐵𝑡 be a bouquet with the
signed rotation (1, 2, 3, · · · , 𝑡, 1, 2, 3, · · · , 𝑡).

Proposition 6.3 (Theorem 23 of [23]). Let t be a positive integer. Then

𝜕𝜀𝐵𝑡 (𝑧) =

{
2𝑡 𝑧𝑡−1, if 𝑡 is odd,
2𝑡−1𝑧𝑡 + 2𝑡−1𝑧𝑡−2, if 𝑡 is even.

Note that 𝐵3, 𝐵5, 𝐵7, · · · is an infinite family of counterexamples to Conjecture 1.2. The purpose
of this section is to give a characterisation of when all partial duals of a bouquet have the same Euler
genus.
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6.1. Prime bouquets and our result

Moffatt [20] defined the ribbon-join operation on two disjoint ribbon graphs P and Q, denoted by 𝑃∨𝑄,
in two steps (see also [14]):
(i) Choose an arc p on the boundary of a vertex-disc 𝑣1 of P that lies between two consecutive ribbon

ends, and choose another such arc q on the boundary of a vertex-disc 𝑣2 of Q.
(ii) Paste vertex-discs 𝑣1 and 𝑣2 together by identifying the arcs p and q.
Note that, in general, the ribbon-join is not unique. A ribbon graph is called empty if it has no edges.
We say that G is prime if there do not exist nonempty ribbon subgraphs 𝐺1, · · · , 𝐺𝑘 of G such that
𝐺 = 𝐺1 ∨ · · · ∨ 𝐺𝑘 , where 𝑘 ≥ 2. Clearly, we have
Lemma 6.4. A bouquet B is prime if and only if its intersection graph 𝐼 (𝐵) is connected.

Let 𝐵1 = (1,−1) be the non-orientable bouquet with only one edge, and let B = {𝐵1, 𝐵1, 𝐵3, 𝐵5, · · · }.
Now we are in a position to state our second main theorem as follows.
Theorem 6.5. Let B be a nonempty bouquet. Then

𝜕𝜀𝐵 (𝑧) = 2𝑒 (𝐵) 𝑧𝑏 ⇐⇒ 𝐵 = 𝐵𝑡1 ∨ · · · ∨ 𝐵𝑡𝑘 ,

where 𝑘 ≥ 1 and 𝐵𝑡𝑖 ∈ B for 1 � 𝑖 � 𝑘 . Furthermore, if the number of the prime factors 𝐵1 in B is 𝑘2,
then 𝑏 = 𝑒(𝐵) − 𝑘 + 𝑘2.

Note that the signed intersection graph of 𝐵1 is a negative isolated vertex and the signed intersection
graph of 𝐵2𝑖+1 is a positive complete graph of order 2𝑖 + 1. In fact, 𝐵2𝑖+1 is the only bouquet whose
signed intersection graph is a positive complete graph of order 2𝑖 + 1. Restating Theorem 6.5 in the
language of signed intersection graphs, we have
Corollary 6.6. Let B be a bouquet. Then 𝜕𝜀𝐵 (𝑧) = 2𝑒 (𝐵) 𝑧𝑏 if and only if each component of 𝑆𝐼 (𝐵) is
a complete graph of odd order and each vertex of 𝑆𝐼 (𝐵), except some isolated vertices, has positive
sign.

It is easy to see that 𝜕𝜀𝐵1 (𝑧) = 2 and 𝜕𝜀𝐵1
(𝑧) = 2𝑧. To prove Theorem 6.5, we shall use the following

lemma.
Lemma 6.7 (Proposition 3.2 (a) of [14]). Let 𝐺 = 𝐺1 ∨ 𝐺2. Then

𝜕𝜀𝐺 (𝑧) =
𝜕𝜀𝐺1 (𝑧)

𝜕𝜀𝐺2 (𝑧).

It suffices to show that among all prime nonorientable bouquets, there is only 𝐵1 whose partial-dual
polynomial has one (nonconstant) term; and among all nonempty prime orientable bouquets, there are
only 𝐵1, 𝐵3, 𝐵5, · · · whose partial-dual polynomials have one term.

Let𝐺∗ denote the (full) dual of a ribbon graph G. Corresponding to each edge e of G, there is an edge
𝑒∗ of 𝐺∗. We view each ribbon as an oriented rectangle; then the opposing two sides lying on face-discs
are called ribbon-sides [14]. We need the following lemma.
Lemma 6.8 (Table 1.1 of [14]). Let G be a ribbon graph and 𝑒 ∈ 𝐸 (𝐺). Then 𝜀(𝐺) = 𝜀(𝐺𝑒) if and
only if

⎧⎪⎪⎨
⎪⎪⎩
𝑒∗ is proper in 𝐺∗, if 𝑒 is an untwisted loop,
𝑒∗ is an untwisted loop in 𝐺∗, if 𝑒 is proper,
𝑒∗ is a twisted loop in 𝐺∗, if 𝑒 is a twisted loop.

6.2. Nonorientable case

Proposition 6.9. Let B be a prime nonorientable bouquet. Then 𝜕𝜀𝐵 (𝑧) = 2𝑒 (𝐵) 𝑧𝑏 if and only if
𝐵 = 𝐵1.
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Figure 11. Proof of Proposition 6.9.

Proof. The sufficiency is easily verified by calculation. For necessity, since B is nonorientable, we may
assume that 𝑒(𝐵) � 2.

Claim 1. B does not contain a bouquet with signed rotation (𝑒1, 𝑒2,−𝑒1, 𝑒2).
Suppose that Claim 1 is not true. Then 𝑒∗1 is a twisted loop, and 𝑒∗2 is proper in 𝐵∗ by Lemma

6.8. Thus the two ribbon-sides of 𝑒1 lie on the same boundary component of B, denoted by 𝐶1; and
if we assign two arrows to the two ribbon-sides of 𝑒1 such that these two arrows are consistent on
the edge boundary of 𝑒1, then these two arrows are nonconsistent on 𝐶1 and the two ribbon-sides
of 𝑒2 lie on different boundary components of B, as in Figure 11. Delete the edge 𝑒1, and note
that 𝑓 (𝐵) = 𝑓 (𝐵 − 𝑒1) and the two ribbon-sides of 𝑒2 also lie on different boundary components
of 𝐵 − 𝑒1. Hence, 𝑓 (𝐵 − {𝑒1, 𝑒2}) = 𝑓 (𝐵 − 𝑒1) − 1, that is, 𝑓 (𝐵 − {𝑒1, 𝑒2}) = 𝑓 (𝐵) − 1. Since
𝜀(𝑒1, 𝑒2,−𝑒1, 𝑒2) = 2 and 𝜀(𝐵 − {𝑒1, 𝑒2}) = 𝑒(𝐵) − 1 − 𝑓 (𝐵 − {𝑒1, 𝑒2}) by Lemma 4.2, we have

𝜀(𝐵{𝑒1 ,𝑒2 }) = 𝜀(𝑒1, 𝑒2,−𝑒1, 𝑒2) + 𝜀(𝐵 − {𝑒1, 𝑒2}) = 𝑒(𝐵) + 1 − 𝑓 (𝐵 − {𝑒1, 𝑒2})

by Lemma 4.4. Since 𝜀(𝐵) = 𝑒(𝐵) + 1 − 𝑓 (𝐵), it is easy to check that 𝜀(𝐵) ≠ 𝜀(𝐵{𝑒1 ,𝑒2 }), contrary
to 𝜕𝜀𝐵 (𝑧) = 2𝑒 (𝐵) 𝑧𝑏 . The claim then follows.
Claim 2. B does not contain a bouquet with signed rotation (𝑒1, 𝑒2,−𝑒1,−𝑒2).

Assume that Claim 2 is not true. It is easily seen that 𝐵𝑒1 contains a bouquet with signed rotation
(𝑒1, 𝑒2,−𝑒1, 𝑒2). Since 𝜕𝜀𝐵𝑒1 (𝑧) = 𝜕𝜀𝐵 (𝑧) = 2𝑒 (𝐵) 𝑧𝑏 , this contradicts Claim 1.

Since B is a nonorientable bouquet, there exists a twisted loop. Let 𝑒1 be any twisted loop. As B is
prime and 𝑒(𝐵) � 2, there exists a loop 𝑒2 such that the loops 𝑒1 and 𝑒2 alternate; this contradicts Claim
1 or 2. Hence 𝑒(𝐵) = 1: that is, 𝐵 = 𝐵1. �

6.3. Orientable case

Proposition 6.10. Let B be a nonempty prime orientable bouquet. Then 𝜕𝜀𝐵 (𝑧) = 2𝑒 (𝐵) 𝑧𝑏 if and only
if 𝐵 = 𝐵2𝑖+1 for some nonnegative integer i.

Proof. The sufficiency is easily verified by Proposition 6.3. For necessity, the result is easily verified
when 𝑒(𝐵) ∈ {1, 2}. Assume that 𝑒(𝐵) � 3. Let 𝑥, 𝑦, 𝑧 ∈ 𝐸 (𝐵). Note that 𝑥∗, 𝑦∗ and 𝑧∗ are proper in 𝐵∗

by Lemma 6.8. Hence the two ribbon-sides of x (or y or z) lie on different boundary components of B.
We denote the two ribbon-sides of x (or y or z) lying on the two boundary components of B by 𝐶𝑥1 and
𝐶𝑥2 (or 𝐶𝑦1 and 𝐶𝑦2 or 𝐶𝑧1 and 𝐶𝑧2 ), respectively.

The following facts about ribbon graphs are well known and readily seen to be true. Deleting any
edge x of an orientable ribbon graph G changes the number of boundary components by exactly one.
Otherwise, 𝐺∗ contains a twisted loop, which is contrary to the orientability of G. More specifically,

(T1) The two ribbon-sides of x lie on different boundary components of G if and only if 𝑓 (𝐺 − 𝑥) =
𝑓 (𝐺) − 1.

https://doi.org/10.1017/fms.2022.62 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.62


14 Qi Yan and Xian’an Jin

(T2) The two ribbon-sides of x lie on the same boundary component of G if and only if 𝑓 (𝐺 − 𝑥) =
𝑓 (𝐺) + 1.

From (T1), it follows that 𝑓 (𝐵− 𝑥) = 𝑓 (𝐵) −1. Obviously, 𝜀(𝐵) = 𝑒(𝐵) +1− 𝑓 (𝐵) and 𝜀(𝐵− {𝑥, 𝑦}) =
𝑒(𝐵) − 1 − 𝑓 (𝐵 − {𝑥, 𝑦}) by Lemma 4.2. There are two cases to consider:

Case 1. If 𝐵({𝑥, 𝑦}) = (𝑥, 𝑦, 𝑥, 𝑦), we have

𝜀(𝐵{𝑥,𝑦 }) = 𝜀(𝑥, 𝑦, 𝑥, 𝑦) + 𝜀(𝐵 − {𝑥, 𝑦}) = 𝑒(𝐵) + 1 − 𝑓 (𝐵 − {𝑥, 𝑦})

by Lemma 4.4. Since 𝜀(𝐵{𝑥,𝑦 }) = 𝜀(𝐵), it follows that

𝑓 (𝐵 − {𝑥, 𝑦}) = 𝑓 (𝐵) = 𝑓 (𝐵 − 𝑥) + 1.

Applying (T2) to 𝐵 − 𝑥 and y, we obtain that the two ribbon-sides of y lie on the same boundary
component of 𝐵 − 𝑥. Hence, the two ribbon-sides of y must lie on 𝐶𝑥1 and 𝐶𝑥2 , respectively, in B.
Thus

{𝐶𝑥1 , 𝐶𝑥2 } = {𝐶𝑦1 , 𝐶𝑦2 }.

Case 2. If 𝐵({𝑥, 𝑦}) = (𝑥, 𝑥, 𝑦, 𝑦), then

𝜀(𝐵{𝑥,𝑦 }) = 𝜀(𝑥, 𝑥, 𝑦, 𝑦) + 𝜀(𝐵 − {𝑥, 𝑦}) = 𝑒(𝐵) − 1 − 𝑓 (𝐵 − {𝑥, 𝑦})

by Lemma 4.4. As 𝜀(𝐵{𝑥,𝑦 }) = 𝜀(𝐵), we have

𝑓 (𝐵 − {𝑥, 𝑦}) = 𝑓 (𝐵) − 2 = 𝑓 (𝐵 − 𝑥) − 1.

Applying (T1) to 𝐵 − 𝑥 and y, we obtain that the two ribbon-sides of y lie on different boundary
components of 𝐵 − 𝑥. Hence at most one of the two ribbon-sides of y lie on 𝐶𝑥1 and 𝐶𝑥2 in B.
Thus

{𝐶𝑥1 , 𝐶𝑥2 } ∩ {𝐶𝑦1 , 𝐶𝑦2 } ≠ {𝐶𝑥1 , 𝐶𝑥2 }.

Claim 3. B does not contain a bouquet with signed rotation (𝑥, 𝑦, 𝑧, 𝑥, 𝑧, 𝑦).
Assume that Claim 3 is not true. Since 𝐵({𝑥, 𝑦}) = (𝑥, 𝑦, 𝑥, 𝑦) and 𝐵({𝑥, 𝑧}) = (𝑥, 𝑧, 𝑥, 𝑧), it

follows that

{𝐶𝑥1 , 𝐶𝑥2 } = {𝐶𝑦1 , 𝐶𝑦2 } = {𝐶𝑧1 , 𝐶𝑧2 }

by Case 1. Thus

{𝐶𝑦1 , 𝐶𝑦2 } ∩ {𝐶𝑧1 , 𝐶𝑧2 } = {𝐶𝑦1 , 𝐶𝑦2 }.

But 𝐵({𝑦, 𝑧}) = (𝑦, 𝑦, 𝑧, 𝑧); this contradicts Case 2.

Suppose that 𝐼 (𝐵) is not a complete graph. Since B is prime, it follows that 𝐼 (𝐵) is connected.
Then there is a vertex set {𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧} of 𝐼 (𝐵) such that the induced subgraph 𝐼 (𝐵) ({𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧}) is a
2-path (see Exercise 2.2.11 [2]). We may assume without loss of generality that the degree of 𝑣𝑥 is
2 in 𝐼 (𝐵) ({𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧}) and 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 are corresponding to the loops 𝑥, 𝑦, 𝑧 of B, respectively. Thus
𝐵({𝑥, 𝑦, 𝑧}) = (𝑥, 𝑦, 𝑧, 𝑥, 𝑧, 𝑦); this contradicts Claim 3. Hence, 𝐼 (𝐵) is a complete graph, and 𝐵 = 𝐵2𝑖+1
by Proposition 6.3. �

Remark 6.11. Proposition 6.10 tells us that Conjecture 1.2 is actually true for all prime orientable
bouquets except the family of counterexamples as in Proposition 6.3. We denote the two ribbon-
sides of a ribbon x (or a ribbon y) lying on the two boundary components of a bouquet B by 𝐶𝑥1
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and 𝐶𝑥2 (or 𝐶𝑦1 and 𝐶𝑦2 ), respectively. To prove this result, both our proof and Chmutov and Vignes-
Tourneret’s proof [5] discuss {𝐶𝑥1 , 𝐶𝑥2 } = {𝐶𝑦1 , 𝐶𝑦2 } or {𝐶𝑥1 , 𝐶𝑥2 } ≠ {𝐶𝑦1 , 𝐶𝑦2 }. Chmutov and Vignes-
Tourneret’s approach is more geometric, and their proof follows directly from the construction of partial
duals. Our proof is different and is based on Euler formula and Gross-Mansour-Tucker’s formula (see
Lemma 4.4).

7. Concluding remarks

As shown in Remark 4.5, there are different signed intersection graphs with the same intersection
polynomial. More examples could be obtained by using Theorem 6.5. For example, let 𝐾+

5 be the
positive 𝐾5 and 4𝐾−

1 ∪ 1𝐾+
1 be the disjoint union of 4 negative isolated vertices and 1 positive isolated

vertex; then 𝐼𝑃𝐾 +
5
(𝑧) = 𝐼𝑃4𝐾−

1 ∪1𝐾 +
1
(𝑧) = 32𝑧4. Similar to the chromatic polynomial [10] and the

Tutte polynomial [13], we can call two signed intersection graphs IP-equivalent if they have the same
intersection polynomial. It is interesting to find more examples of equivalent signed intersection graphs
and eventually clarify the IP-equivalence from the viewpoint of the structures of graphs. In particular, a
signed intersection graph is IP-unique if there are no other signed intersection graphs sharing the same
intersection polynomial: that is, the class of the IP-equivalence contains only one signed intersection
graph. It is also interesting to find families of IP-unique signed intersection graphs.

Not every signed graph is a signed intersection graph. We define the intersection polynomial of a
signed intersection graph 𝑆𝐺 to be the partial-dual polynomial of a bouquet B with 𝑆𝐺 = 𝑆𝐼 (𝐵). Could
we redefine the intersection polynomial for signed intersection graphs independent from the bouquets?
The recursion in Theorem 5.2 is an attempt, but it fails even for the negative 𝑣1. If the answer is
negative, can we define a polynomial on a larger set of signed graphs, including all signed intersection
graphs, such that when we restrict ourselves to a signed intersection graph, it is exactly the intersection
polynomial?

As a reviewer told us, Theorem 4.1 can be derived from the knowledge of matroid/delta-matroid
using a few facts in [7, 8]. Our proof given in this paper is completely inside the area of topological graph
theory. As we mentioned in the introduction, in addition to the partial-dual (i.e., partial-∗) polynomial,
there are partial-×, partial-∗×, partial-×∗ and partial-∗ × ∗ polynomials [15]. For investigation of the
partial-• polynomial, one can focus on bouquets if • ∈ {∗×,×∗, ∗ × ∗} and quasi-trees (i.e., ribbon
graphs with only one face) if • = ×. Could we derive something from bouquets or quasi-trees that could
determine the partial-• polynomial completely?

Now that nonempty bouquets whose partial-dual polynomials have only one term have been charac-
terised completely, our Theorem 5.6 is an attempt to characterise bouquets whose partial-dual polyno-
mials have exactly two terms. More unknowns need to be explored in this direction.
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