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Abstract. The Hermitian function fieldd = K (x, y) is defined by the equatiop! + y = x4+1
(¢ being a power of the characteristic &f). OverK = Fqg it is a maximal function fieldj.e. the

numberN (H) of ]qu-rational places attains the Hasse—Weil upper bavicd) = q2+1+2g(H)-q.

All subfieldsK ; E C H are also maximal. In this paper we construct a large number of nonrational
subfieldsE < H, by considering the fixed field&% under certain groupg of automorphisms of
H/K. Thus we obtain many integegs> 0 that occur as the genus of some maximal function field
over]qu.
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1. Introduction

Let K be a finite field,F /K an algebraic function field ovet of genusg(F). By

the Hasse—Weil theorem, the numidé¢F) of rational places of*/K is bounded

by N(F) < #K + 1+ 2g(F) - V#K . The function field is said to bmaximalif

N (F) attains this upper bound. We are interested in the following question: Which

integersg > 0 happen to be the genus of some maximal function field &vzr
Suppose that the cardinality &f is not a square and thdt/K is maximal.

From the equalityV (F) = #K + 1+ 2g(F) - v/#K follows thatg(F) = 0, hence

F is the rational function field oveK. Therefore we will always assume thak'#

is a square. We fix some notation.

* The first and second authors were partially supported by GMD-CNPq, the third author was
supported by DFG.
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p is a prime number.

g = p" is some power op (withn > 1).

K =T is the finite field withg? elements.

K* = K \ {0} is the multiplicative group oK.

F is a function field ovelk, andK is algebraically closed id'.
g(F) isthe genus of' /K.

N (F) is the number of rational places (places of degree oné&)/af.
P(F) is the set of all places of /K .

By definition, F/K is maximal if and only if
N(F) = ¢?>+1+42g(F) - q. (1.1)

Our main problem can be stated as follows: Describe the set

I'(¢% = {g > 0] there exists a maximal function field/ K
of genusg(F) = g}. 1.2)

A well-known example of a maximal function field ov&r = I . is theHermitian
function field H; it is defined by

H=K(x,y) withy? 4+ y=x9*1 (1.3)

The genus ofH is g(H) = q(g — 1)/2, the number of rational placesM(H) =
q3+1=¢q?+14+2¢(H)-q, cf. [St 1, VI.4.4]. One can show that any function field
over K of genusg > ¢g(¢ — 1)/2 is not maximal, and that the Hermitian function
field is the only maximal function field of genus= ¢g(¢g — 1)/2. In particular,
I'(¢®) is a finite set. More precisely, one knows that

T'(g% [0, (g — D?/41U {q(q — 1)/2}, (1.4)

see [R-St], [X-St], [F-T].

Any subfield E € F of a maximal function fieldF/K (with K G E) is
maximal [La], so all subfields of the Hermitian function figitlprovide examples
of maximal function fields oveK. In this paper we will construct systematically
a large variety of subfield& € H which can be obtained as fixed fields of some
subgroups of the automorpism grouut(H). We will determine the genera of
these subfield® (thus finding many numberg € I'(¢?)), and in some cases we

will describe E explicitly by generators and equations.
2. Places and Automorphisms o

We recall some known facts about the Hermitian function figldas defined in
(1.3)) that we will use in subsequent sections, cf. [St 1, VI1.4.4].
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The extensionH /K (x) is Galois of degre¢H: K (x)] = g. The pole ofx in
K (x) is totally ramified inH, and we denote by., € P(H) the unique pole ot
in H; i.e.x has pole divisox). = g Ps. All other rational places oK (x) split
completely inH /K (x), thus we haveV (H) = 1+ ¢ rational places i /K.
We will also need the number of placesif K of degree 2 and 3.

LEMMA2.1. Forallr > 1letB, =#{P ¢ P(H) | degP = r}. Then
Bi=NH)=¢>+1  B,=0; Bs=1q%g+D(¢*-D.

Proof. It is clear thatB; = N(H) = ¢° + 1. From the maximality o /K
follows that the numeratak 4 (¢) of the Zeta function of is

2g(H)

Ly@t) =[] @—wmn),

i=1
withw; = —g fori =1, ..., 2¢(H). Setting

2g(H)

S =Y of =(=D'(qg — Dg"™,
i=1

we obtain [St 1, V.2.9] for > 2:

B, = %dZu (5) @ = so.
(n denotes the Mdbius function.) In particular,
By = 3(=(¢*— S0+ (¢" = 52)
= 3(—¢*— (¢ — D¢’ +4* — (¢ — Dg¢® =0,
and
By = 3(—(q* = 51 + (¢° — 3)

=3(-¢"— (@@~ D¢*+¢°+ (@ - DgH =3¢%q +D@*-D. O
The automorphism group of the Hermitian function field,
A= Aut(H) = {o: H — H | o is an automorphism off /K }

is extremely large [St 3], [Le]. It is isomorphic to the projective unitary group
PGU(3, ¢°) and has order

ordA =¢3(¢? — (g3 + 1). (2.1)
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We describea in some detail: The subgroup

A(Py) ={0 € A| 0Py = Py} C A
consists of all automorphisms with

o(x) =ax +b, o(y) =a?*ly +abix +c,

acK*, bekK, c1+c=0pitl (2.2)
It has order

ord A(Px) = ¢3(g* - 1). (2.3)
Let

A1(Ps) = {0 € A(Py) | 0x = x + b for someb € K}.

Then 4,(Py) is the uniquep-Sylow subgroup ofA(P,,), it contains all auto-
morphisms with

ox=x+b, oy=y+bix+c,

(2.4)
beK, c¢?+c=0bitl,
and its order is
ord A1(Px) = ¢°. (2.5)

The factor group(P)/A1(Ps) is cyclic of orderg? — 1; it is generated by the
automorphisme € A(Py) With

€(x) = ax, €(y) = a‘”ly, (2.6)

wherea € K is a primitive (g% — 1)th root of unity.
Another automorphism € A is given by

by 1
w(x) =—, w(y) =—. (2.7)
y y
This elementw is an involution (i.e. or@w) = 2), and+ is generated byt (Py,)
andw; i.e.
A = (A(Px), ®) . (2.8)

Let g C A be a subgroup oft; we denote by % its fixed field,

H%={zeH|oz=z forall oc§}.
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ThenH/H?% is a Galois extension of degred: H%] = ord(4), andg is the Galois
group of H/H#%. Since 2(H) = q(q — 1), the Hurwitz genus formula gives

g®>—q—2=ord§) - (2g(H%) — 2) + deg Diff(H/H?%), (2.9)

where Diff(H/H#%) is the different ofH/H?%. For a placeP € P(H) let Q =
P N H?% be the restriction o’ to H%, and we denote by

e(Q) :=e(P|Q) (resp.d(Q) :=d(P|Q))

the ramification index (resp. the different exponentPof. Thus

deg Diff(H/H%) = ord(g) - > % .degQ,
QeP(H%) ¢ Q

and we obtain from (2.9) that

d(Q)

-d . 2.10
Q) egQ) (2.10)

¢*—q—2=ord§) - (28<H9)2+ >

QeP(H%)

PROPOSITION 2.2 The fixed fieldd* is rational, and exactly two places &f*
are ramified inH. One of the ramified places is the plagg, := P,, N H*; this
place is wildly ramified inH / H* with ramification index

e(On0) = e(Pos | Qo) = ¢°(¢* = 1)

and different exponent

d(Qo0) =d(Pos | Q) =q¢°+¢° —q — 2.

The conjugates aPy, under are exactly all rational places o/ .

The other ramified place is the plage := P N H*, whereP € P(H) is any
place of degree three. This plac@ is a ratlonal place ofH*, and it is tamely
ramified inH/H* with e(Q) = ¢(P|Q) = g2 — g + 1. The conjugates af under
A are exactly all places off of degree three.

Proof. As the extensiori{ /K (x) is Galois,H* is contained irk (x), and hence
H* is also rational. In order to determine the ramification index and the different
exponent ofP,, | Q. we use Hilbert's ramification theory, cf. [St 1, Ch.lII.8]. By
definition, the groupA(Py) = {0 € 4 | 0 P, = P} is the decomposition group
of P | O, SO

e(Ps | Qo) = 0rd A(Ps) = ¢3(g% — 1)
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by (2.3) (note that4 (P,.) is also the inertia group since dég, = 1).

The different exponend (P, | Ox) can be calculated as follows: Lep, be
the discrete valuation off associated td,,, and choose ®,,-prime element,
i.e.vp (1) =1.For1# o € A(Py) Set

i(0)=vp (o(t) —1); (2.11)
then

d(Pu| Q)= ) (o)

10 €A(Poo)
by [St 1, Prop. 111.5.12 and Thm. 111.8.8]. In our situation we have (2.2)
o(x) =ax +b, o(y) =a’"ty +abix +c,
witha € K \ {0} andb € K, and we can choose the prime elemest x/y. So

(o) ax +b X
i(0) = v - =
Po\qatly yabix +¢c

= vp_((ax +b)y — x(@’™y +ab’x + ¢)) — 2vp,_(y)

= vp ((@a —a’xy — ab?x® + by — cx) +2(q + 1)

1, if a#1,
= {2 if a=21andb #0,
g+2, if a=1andb =0 (andc # 0). (2.12)

Hence

d(Pol0x) =(@*—2)-¢*+@° -1 -q-2+(@—1D(q+2
=¢°+q¢°—q -2

As the number of conjugates &%, under is equal to the indexA : A(Py)) =
g%+ 1 = N(H), all rational places oH are #-conjugate. Now all assertions of
Proposition 2.2 concerning,, are settled.

We substitutez( Q) andd(Q.) into formula (2.10) and find after some com-
putation that

egQ =

9_ 2.13
e(Q) g2 —q+1 213)

2 _
Zd(Q)_d q9°—4q
070
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This implies that exactly one plag@ € P(H*) with O # Q. ramifies inH/H*,
that degQ = 1 and thatQ is tamely ramified (otherwise the left-hand side of
(2.13) would be> 1). Moreover it follows that(Q) = 42 — g + 1 (sinced(Q) =
e(Q) —1).

In order to show that any place € P(H) lying aboveQ has degree three, we
consider the groupB inertia group ofP in H/H*. The groups is cyclic of
order ordB) = g2 — g + 1. LetR = P N H® be the restriction of to the fixed
field H® of 8. As all places of /K of degree one lie abov@ ., and as there are
no places of degree two (by Lemma 2.1), we conclude that

degR = degP > 3. (2.14)

The Hurwitz genus formula (2.10), applied to the extengibiH €, yields

e(R)—1

R
o(R) deg

*—q—-2=(q"—q+1 (Zg(H£)2+ >

ReP(H3)

From this equation and (2.14) we conclude easily thal®) = 0, thatR is the
only ramified place inf /H®, and that deg? = degP = 3.
The number of places df lying above the plac® = P N H* is equal to

ord(4) -deg0  ¢%(¢* - D> +1) _
e(P|Q)-degP  (¢?°—q+1)-3

1%q+D(@? - D),

and this is exactly the number of places Bf of degree three, by Lemma 2.1.
Hence all places off of degree three are conjugate undgrand Proposition 2.2
is completely proved. O

In the proof of Proposition 2.2 we have also established:

COROLLARY 2.3. Let P € P(H) be a place of degree three a8l C 4 be the
inertia group of P with respect to the extensidi/H*. Then the fixed field 2 is
rational, the extensio{ / H® is cyclic of degred H: H3] = ¢2 — g + 1, and P
is totally ramified inH /H%. All other places off £ are unramified inH /H®.

There is another useful description of the Hermitian function fléle- K (x, y)
as follows: Choose elemenisb € K such that? + a = b?*1 = —1, and set

y+a v_b(y-i—a—i—l)

u = y
X X

ThenH = K (u, v), and one checks easily that

it it p1=0. (2.15)
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3. The Fixed Fields ofp-SubgroupsU C A

We maintain all notations from Section 2. L&t C A be ap-subgroup ofA. We
consider the fixed field/ * of H underU and want to determine its gengi6H %).

SinceA;(Py) is ap-Sylow subgroup of4 and any twop-Sylow subgroups are
conjugate, we will assume w.l.0.g. that C A,(Py). We identify an automorph-
ismo € A1(Py) With the pairc = [b, c] € K x K where

ox =x+b, oy=y+bix+c and ¢!+ c=5prtt, (3.2)
see (2.4). The group operation on such pairs is then given by
[b1, c1] - [b2, c2] = [b1 + b2, bib) + c1 + c2]. (3.2)

The identity is the paif0, 0], the inverse ofb, c]is [b, c]™* = [—b, b7 —¢]. The
mapg: U — K given by

¢([b,c]) =b (3.3)
is a homomorphism into the additive groupffand we set

Vo =Im(p), Wy ={ceK|[0c]eU. (3.4)
These are additive subgroupskf and Wy, >~ Ker(¢). Hence

ordU = p't*, wherep’ =ordVy and p* = ord Wy,. (3.5)

Now we determine the genyg HY). It is easily seen thaP,, is the only place
of H which is ramified in the extensiod / HY, the Hurwitz genus formula (2.10)
then yields

¢*—q—2=ordU- (2g(HY) — 2) + d(Px), (3.6)

whered(P,,) denotes the different exponent Bf, in the extensiond /HY. We
have (withi (o) as in (2.11))

d(Px) = ) i(0)

1#0eU
= 2(ord U —ord Wy) + (g + 2)(ord Wy, — 1)
= 20" = p")+ (@ +2(p" - D (3.7)
by (2.12). Substituting this into (3.6), we obtain
g(HY) = $p"V(p"™ = 1). (3.8)

In particular, HY is a rational function field if and only if one of the following
(pairwise equivalent) conditions holds

(i) ord(Wy) = q.
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(i) U 2{[0,c]|c?+c=0}.
(i) HY C K(x).

PROPOSITION 3.1.Letg = p" and U be ap-subgroup of4 such that the fixed
field H% is not rational. Theng(H%) = Zp""(p"™ — 1), with0O< w <n—1
and0 < v < n.

Proof. Sinceg(HY) is an integer, all assertions follow immediately from
(3.8). O

We show now that the above numerical conditionsvandw are also sufficient
for the existence of such a subfield Bf if the characteristic oK is odd.

THEOREM 3.2. Letg = p" with p # 2, and letg > 1 be an integer. Then the
following assertions are equivalent.

(i) There exists g-subgroupU C A such thatg = g(HY).
(i) There are integers, w suchthaD < w <n—-1,0< v < nand
g=3p"""(p"" = 1.

Proof. It remains to show that (ii) implies (i). One checks immediately that the
setC = {[b, c] € A1(Px) | b € F,} is an Abelian subgroup oh,(P,,) of order
ord @ = ¢2. Forj > 1 and[b, c] € A1(Ps) holds

(b, c) = |:jb, je+ Lz_l)bq“} . (3.9)

Since the characteristie of K is odd, we conclude that all nontrivial automorph-
ismso € A1(Px) have ordep. It follows thatC is alF ,-vector space of dimension
2n. The space

Z =1{[0,c] € A1(Ps) | ¢? +c =0}

is ann-dimensional subspace 6f(in fact, Z is the center of4,(P.,)). We choose
[F,-subspace®’, W C C with

wC Z, dim]FpW:w, YNZ=0 and dimppv:v.

ThenU = V - W is a subgroup ofA;(Ps) such thatWy, >~ W andVqy ~ V
(notation as in (3.4)). Hence, the genusk¥ is g(HY) = %p”_”(p"_w — 1) by
Proposition 3.1. a

In the case chdK) = 2, the situation is slightly different.

THEOREM 3.3. Letg = 2", and letg > 1 be an integer. Then the following
assertions are equivalent.

(i) There exists @-subgroupU C s such thatg = g(HY).
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(i) g =201 2" _DHwithd0<v<n—1land0 < w < n —1, and
there exist additive subgroups € K and'W C [, of ordersord V = 2 and
ord W = 2¥, such thatve+! = {7t | b € V} is contained inw.

Proof. (i) = (ii): Let U < A be a 2-group whose fixed field “ is not rational.
We can assume thal C A1(P,). DefineV = Vo andW = Wy, as in formulas
(3.4), and let ordv = 2", ord W = 2*. By (3.8) the genus off % is g(HY) =
2r—v=12"—w —1). Sinceg(HY) is a positive integer, we conclude thatQv <
n—1and 0< w < n — 1. It remains to prove thaw < [, and vitl C w.
Letc € W. Then[0, ¢] € 41(Py) and, thereforeg? 4+ ¢ = 0 by (3.1). Sincey is
even, it follows that € F,. Finally, letb € V. Choose an elemedte K such that
[b,d] € U. Then[b, d]?> = [0, b?*1] € U, henceh?*! € W.

(i) = (i): We note that the seZ = {[0,c] | ¢ € F,} = {0? | 0 € 41(Px)}
is the center of4,(P,,) (this is easily checked). Assume now tatC K and
W C F, are additive subgroups of orders &d 2’ such that 0O< w < n and
Vvitl C w. We show by induction om (for fixed W) that there is a subgroup

The casev = 0 is trivial: in this case we sell := {[0,c] | ¢ € W}. Suppose
now thatv > 0. Let'Vy € 'V be a subgroup of order2. By induction hypothesis
there is a subgroufidy € A1(Px) With Vo, = Vo and Wy, = W. Choose an
elementh € V \ Vp and an element € K with ¢? + ¢ = b9+1, and letg = [b, c].
For all elements = [bg, cg] € U We have that

(By)? = [b + bo, x]*> = [0, (b + bo)"™]

lies in Ug (becausey?*! € W). Now we claim that

p-Uo= Uo- B (3.10)

In order to prove this, consider the prodyct y with somey € Up. Sincep* =
y* =10, 0] and all squares are in the center6f( Py,), we find that

By =By (By*B> = (By)*y3p°
=y3- (By)2-B2-B € Uo- Uo- Up- B = UoB-

This implies (3.10) and shows that := Uy U B - Ug is a subgroup oft;(Ps). It
is easily checked tha#,, = 'V and Wy, = ‘W, as desired. O
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COROLLARY 3.4. Letg = 2". Then we have

(i) If there exists @-subgroupU < 4 such that the fixed fieldl * has genus
g(HY) = 20—v=1. (2"=» — 1) # Othen there is &-subgroupU’ < A with

g(HY) = 2=V} _ 1) forall v/ with 0< v’ < v.

(i) For all integersv, w with0 < v < w < n there is a2-subgroupU < 4
such thatg(HY) = 2" v—1(2"—v — 1).

(i) Suppose that andw satisfy the following conditions:

v

v —1

wln, wlv, v|2n, 1< v <n and (2" +1).

Then there exists 2subgroupU C « such that
g(H‘U) — 2n—v—1(2n—w _ 1)

Proof. (i) If g(HY) = 2"v~1(2"~» — 1) then ordVy, = 2', ord Wy, = 2V
and vf{fl C Wy. For allv’ < v there is a subgroup’ C Vq, of order 2’ and
clearly (V')4* € ‘Wy,. By Theorem 3.3 there exists a 2-subgrdup € 4 with
g(H‘u’) — 2n7v’7l(2n7w —1).

(i) First choose an additive subgroag < F, of order 2. As b?+1 = b2 for
all b € F,, the mappingy > b9** is an isomorphism of the additive groUg)
onto itself. Hence there is, for all < w, a subgrougV C F, of order 2 with
va+l < ‘w. Now apply Theorem 3.3.

(iii) The conditions orw andw imply thatF,w C Fy» C Foe = K. The norm
mappingv: Fo. — Fou is given byv(b) = b@-D/@"=D and the assumption
(2 —1)/(2* — 1) | (2" + 1) implies that(F»)?'** < F. Now we can apply
Theorem 3.3 withV = Fyv and'W = Fow. O

Remark3.5. Here we want to indicate how hard it is to find a 2-subgroup
U C A with v > w. If w = 0, that means¥y, = {0}, the conditionV?,"* < Wy,
impliesv = 0.

Now suppose thab = 1, that means¥y, = {0, o} for somea € FZ fv>0
we then fix an elemerit € Vq,\{0}. For another elemei € Vq,\{0, b}, we have

(b+b)?™ = b 4 b1 4 b bT 4 b7 by
Using the conditiorﬂig’l+l C Wy = {0, «}, we must have

o =bbi +b?b. (3.11)
We multiply Equation (3.11) by and byb,, obtaining

b?bi + aby =ab and ab+ b?bi = ab;.
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Henceb? b2 = b2 b¢ and (by/b)"'> = by/b. We then conclude thak /b € 5 N
qu = de, W|th

1, if n even
dZQCd(”_l’Z”):{z i n odd

This shows that < 2 andv = 2 occurs only ifz is odd.
We have then shown that there is no 2-subgrdug 4 with genus as below.

22'-1) withog<s<n—-2

g(HY) =1 2521 —1) with nevenand < s <n — 3.
252"t — 1) with noddand 0< s < n — 4.

4. The Fixed Fields of Subgroups of4 (P )

As in Section 2, we denote by
A(Ps) = {0 € A = Aut(H/K) | 0 Px, = Ps}

the decomposition group d., in the Galois extensioli/ /H*. Any o € A(Py)
acts as follows

o(x) =ax +b, o(y) = a’"ty +ablx +c,

acK*, bek, c? + ¢ = b1t
For convenience we will indentify with this triple[a, b, c], SO

A(Ps) ={la,b,c]l|ae K*,beK,c!+c=0bl").
The group structure oft(P.) is given by

[a1, by, c1] - [az, b2, c2] = [araz, azby + b, ClgHCl +axbibi+ ¢l (4.1)
The identity is the tripld1, 0, O], the inverse ofa, b, c] is

[a,b,c]™t =[a"t, —a b, a1V ). (4.2)
The uniquep-Sylow subgroup of4(P,,) is the group

A1(Px) = {[L b, c] | b e K,c? +c=bIt.

Our aim is to determine the genus of the fixed field&/oivith respect to subgroups
of A(Ps). Let us fix some notation for the rest of this section.
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G C A(Py) is a subgroup o4 (Py).

Ug = § N A1(Py) is the uniquep-Sylow subgroup of;.

Vg = {b € K | there is some € K such tha{l, b, c] € §}. (4.3)
Wy ={ce K|[10,c]eg}.

ordg = m - p* with (m, p) = 1.

ord Vg = p?, ord Wy = p*.

As we have consideregd-groups already in Section 3, we will always assume in
this Section thag is not ap-group, so

ordg=m-p" with(m,p)=1, m>1 and u=v+w=>0.
The Hurwitz genus formula (2.9) for the Galois extensidpH ¢ yields
*—q—2=ord§-(2g(H" —2)+ Y  dg(P) degP, (4.4)
PeP(H)

wheredg (P) is the different exponent af with respect taH /H%.
The placeP,, is totally ramified inH / H%. Using the transitivity of the different
exponent in the extensiaH? € HY% C H, we obtain from Equation (3.7) that

dg(Px) =2(p" =1 +q(p” =1 + p"(m -1
=p‘m+1+qp¥ -1 -2 (4.5)
=ord§+ p" +qp” —q — 2.

LetS = {P € P(H)|degP =1 and P # P.}. Itis easily seen that the
only placesP € P(H) \ { P} which ramify in H/H?% are inS, and they are tamely
ramified. Denoting by, (P) the ramification index of in H/H?%, we obtain from
(4.4) and (4.5)

q(q—p") - p" =ord§ - 2g(H?) — 1) + ) (eg(P) — 1). (4.6)

PeS

For tamely ramified places of degree one, ramification theory [St 1, III] yields
eg(P)—1=#o e g\ {1} |oP = P)}.
Hence we obtain that

D (eg(P) =1 = Y Ns(o) 4.7)

Pes 1#£0 €6

with Ng(o) :=#{P € S|oP = P}, foro € § \ {1}. Before we can determine
Ns(o), we need some preparation. loe K * denote by or¢z) the multiplicative
order ofa.

LEMMA 4.1. Leto = [a, b, c] € A(Py) Witha # 1. Then we have
(i) If ord(a) is not a divisor ofy + 1, thenord(c) = ord(a).
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(ii) If ord(a) dividesg + 1, then

ord(a), if c =ab?™t/(a —1).
ord(o) =
p -ord(a), otherwise

Proof Lett :=[1, e, f]with
e:=b/(a—1) and fI+ f=eltl
Thent—! =[1, —e, f?], and one checks that
07 =[a,0,c*] withc* +c¢* =0.

(i) If ord(a) does not dividey + 1, let f* := ¢*/(a9*! — 1). Then

*q c*

1
*q * _ g o
T+ f _(aq+1_1)q+aq+1_1_aq+1_1(c +c*) =0.

Sot*:=[1,0, f*]isin 41(Ps), and

™ 1. [a,0,c*]-t* = [a,0,a?tt f*9 4 c* + f*]
= [a,0, —a?1 f* + f* 4+ c*]1 =[a,0,0].

We have thus shown thatis conjugate to the automorphidian, 0, 0], hence
ord(c) = ord([a, 0, 0]) = ord(a).

(i) Now we assume that?*! = 1. With the same choice af = [1, ¢, f] as
above we find that* := t o7 = [a, 0, ¢*] with

¢t =fi4 f+4+c—able—ael™ +elb

= et — gettl —able + ¢ib + ¢

patt 1 q b4
=  (1—q)—abl- b-
(a—1)4+1( @) —a a—1+ (a—l)‘i+c
_patl ab?tl patl
_a‘i—l_a—l+a‘i—l+c

a

=c— ——b1

¢ a—1

Hencec* = 0iff ¢ = ab?**/(a — 1). One checks easily that the orderof =
[a, 0, c*]is

o ord(a), if ¢* =0,
ord(o™) = { p-ord(a), if ¢*#0.
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Since ordo) = ord(c*), Lemma 4.1 is completely proved. O

LEMMA 4.2. Leto = [a, b, c] € A(Ps) Witho # 1. Then

0, if p divides ord(o).
Ng(o) =1 ¢, if ord(o) divides g+ 1.
1, otherwise

Proof. (i) Suppose that oi@) is divisible by p. As all P € S are tame in the
extensionH /H*"~) we conclude that P # P forall P € S, i.e. Ng(o) = 0.

(i) Suppose thatr # 1 and ordo) dividesg + 1. The proof of Lemma
4.1 (ii) shows thats is conjugate inA(P) to o* = [a, 0, 0] with ord(a) =
ord(o) dividing ¢ + 1. ThenNg(o) = Ns(o*), and 1# o* € Gal(H/K (y)). In
the extensiorH /K (y) exactlyq placesP < S are ramified (namely the zeros of
y? + y), and they are totally ramified. Thié(c*) = g.

(i) Now we assume that ofd) = s with s | (¢ — 1) buts does not divide
g+1. By Lemma4.1(i)¢ is conjugate inAd(P,) too* = [a, 0, 0] with ord(a) = s
(in particulara?*t £ 1). For(a, B) € K x K with 7 4+ 8 = «?** there is a unique
placeP, s € S which is a common zero of — « andy — g, and all places € §
can be described in this manner. We have

0" (Pyp) = Pyp < Pyp isacommon zero ob*(x —a) and o*(y — ).

S|nce0'*(x —C() =ax —o = a(x _a) +C((Cl — l) ando-*(y _ IB) — aq+1y _ ,B —
atti(y — B) + B(a?™t — 1), it follows that

0*(Pyp) = Pup ©afa—1) =p@™-1)=0
sa=8=0.

HenceNs(o) = Ng(o™*) = 1. O

LEMMA 4.3. Notations as in4.3). Letag € K*, ord(ag) = s > 1ands|m.

(i) If s 1 (¢ + 1), then there are exactlp” elementsy € § of the formo =
[ag, *, ] having orders.

(i) If s | (¢+1) then there are exactly’ elements € § of the formo = [ao, *, *]
having orders.

Proof. The mapping

g — K*
P o=Jla,b,c] +—a

is @ homomorphism, its kernel is theSylow subgrouplUg of § of order p*, its
image is the unique subgroup &f* of orderm. Since ordag) = s is a divisor of
m, there exists an automorphisrg = [ag, bo, co] € §. The coseby - Uy is then

oo Ug ={la,b,c] € §|a=aog}.
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(1) Suppose that is not a divisor of + 1. It follows that all elements € og- Ug
have order, by Lemma 4.1(i).

(i) Now we assume thatdividesqg+1. For eacth’ € V4 we fix an element’ € K
such thall, 2’, ¢'] € §;then every € op - Ug can be uniquely represented as

o = [007 bO’ CO] : [l’ b/’ C/] : [l’ 0’ C] = [ao’ bO + b/’ *]’

with " € Vg andc € ‘Wy. By Lemma 4.1, there is at most one element § of
orders with o = [ag, bg + b, %] if ag andb := by + b’ are given. The proof of
Lemma 4.3(ii) will be finished when we show the following assertion:

CLAIM. Leto = [ao, b, c'] € § andord(ag) = s be a divisor ofy + 1. Then
there exists an elemeéte § of orders such thate = [ao, b, ¢].

Proof. If ord(c) = s we taked = o. Otherwise, or¢b) = p-s by Lemma 4.1.
Forall j > 1 holds

, Cal —1
lao, b, ¥}/ = |:a'(’,, —ag— 1 - b, *:|

Choose > 1 with p -t =1 mods. Then

o= [a(), b, *]pl‘ = [Clo, ao—b, *j| = [a07 ba *]
ap — 1

is an element of, of orders whose first components asg andb, as desired. O

THEOREM 4.4, Let4 C A(P,) be a subgroup of orden - p* withm > 1, and
definev, w as in(4.3). Letd := gcd(m, g + 1). Then the fixed field/ % has genus

n__ LW
g(Hg) _pr —r
2mp"

(p" —(d—-Dp").
Proof. There are exactly — 1 elements £ ap € K* with
ord(ag) |m and ordag) | (¢ + 1),
and there are exactly — d elementsyy € K* with
ord(ag) [m and al™t # 1.

Now we obtain from Lemma 4.2 and Lemma 4.3

Y Ns(o) =(d—Dp'q+(m—dp"
1#0€§

=ord§ +d(gp’ — p") — qp®.
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Formulas (4.6) and (4.7) imply that
q(q — p") — p" = 2g(H%) - mp" +d(qp" — p*) — qp".
Substitutingg = p" andu = v + w, the result follows. O

Not for all choices ofv, w andm with0 < w < n,0< v < 2n andm | (g% — 1)
there exists a subgroup € 4(Ps) of orderm - p***, with ord Vg = p* and

ord Wg = p". For example ifd = gcdim,q + 1) > 1, then there is no such

a subgroup having > n andw < n. We will not give necessary and sufficient
conditions omw, w andm in the general case but we restrict ourselves to special
cases. Let

Go:={[a,0,c]|lae K* and ¢?+4c=0)}. (4.8)

This is a subgroup of4(P.,) of order¢(¢?> — 1), its fixed field is the rational
function field H% = K (z) with z = x¢° 1.

COROLLARY 4.5. Let 4 C 4o be a subgroup of ordeord § = m - p*, with
(m, p) = 1. Then the fixed fiel# % has genus

1
9N\ n _ n—u __
g(H )——2 (P'+1-d)p 1),

whered = gcd(m, g + 1).
Proof. Note thatVy = 0 for § € §o, hencex = w andv = 0. The result
follows immediately from Theorem 4.4. O

PROPOSITION 4.6.Letm > 1,d > 1and0 < u < n be integers with the
following properties.

(i) m| (g°—1) andd = gcdm, g + 1).
(i) s:=min{r > 1| p” =1 mod(m/d)} is a divisor ofu.

Then there exists a subgro@p C 4, of orderm - p*, and hence there exists a
subfieldE € H with

1
Ey=—((p"+1-d)(p" ™" -1.
g(E) Zm(p + )(p )
Proof. Leta € K* be an element with” = 1, and letw := a9t1. Then
o™ =1, with d = gcdm, g + 1).

It follows thata € F,s wheres is defined by (ii). Moreover we know that
g = 1 mod(m/d) (sincem | (g?> — 1)), henceF,s < F,. The setT = {c €
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K | ¢? + ¢ = 0} is a one-dimensiondf,-vector space, hence it is a vector space
overF,s of dimensionn/s. Since 0< u/s < n/s, we can find arF ,;-subspace
W C T of dimensionu/s; thenW is an additive subgroup of of order p*. Let

g :={[a,0,c]|a" =1 and ce€ W}

Theng is a subgroup ofo: in fact, if [a1, 0, ¢1] and[ay, O, c,] are elements o,
then

[a1, 0, c1] - [a2, 0, c2] = [a1a2, O, GZHCl + ¢2]

is in g because} ™ € F,» andW is anF ,.-module. The order of. is obviously
m - p", as desired. O

Remark4.7. One can show that all subgroupsC G, satisfy the numerical
conditions of Proposition 4.6.

COROLLARY 4.8. Suppose that | (g+1)(p—1). Thenforallu withO < u < n
there exists a subgroup < 4, such that

1
H¥) = —@(p"+1-d)(p" ™ -1,
g(H?) zm(p + )(p )
whered = gcd(m, g + 1). In particular, if m | (¢ + 1), then

1 n11
g(H%) = > (p +

_ 1) (pnfu _ l)

Proof. The conditionn | (¢ + 1)(p — 1) implies thatn /d is a divisor ofp — 1,
hences = 1 (with s as in Proposition 4.6(ii)). Now all assertions of Corollary 4.8
follow immediately. O

The following special case of Proposition 4.6 is often useful.

COROLLARY 4.9. For any divisorm of g2 — 1 there exists a subgrou$ C G,
such that

1
9\ n _ n__
g(H?) = o (P"+1-ad)(p" -1,

whered = gcd(m, g + 1).
Proof. Setu = 0 in Proposition 4.6. O

5. The Fixed Fields of Some Tame Subgroups ek

We call a subgroug, € A tame if the extensiot{ / H is tame; i.e. the ramific-
ation index of any plac® < P(H) in the extensionH /H? is relatively prime to
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the characteristipp of K. In particular, if p does not divide the order ¢f theng
is tame.

In this section we will determine the gengéH %) for a large number of tame
subgroupg; C A. We start with

THEOREM 5.1. Let P € P(H) be a place of degre8, and let8 < 4 be the
inertia group of P with respect to the field extensidhy/ H*. The groups is cyclic
of orderg? — ¢ + 1, and for any integer > 1 dividing g°> — ¢ + 1 there exists a
unique subgroug € B of orderord § = r. The genus of the fixed field? is then

¢ —q+1

—1
g(HHY = "= with s =
2 r

Proof. The group is cyclic of orderg?2 — ¢ + 1, andP is the only place of
H that ramifies in the extensiol /H®, see Corollary 2.3. Let > 1 be a divisor
of g> — ¢ + 1 andg C 8 denote the unique subgroup 8fof orderr. SinceP is
totally ramified inH / H%, the different ofH/H? is
Diff (H/H%) = (r — 1) - P.
The Hurwitz genus formula fol / H# yields
g*—q—2=rQg(H% —2)+ (r — 1) - degP.

As degP = 3, Theorem 5.1 follows immediately. O

Next we prove a general formula for the gerg/ %), whereg C A is any tame
subgroup ofA.

PROPOSITION 5.2Letg C A be a tame subgroup of satisfying the following
hypothesis.

All P e P(H) with deg P >1 are unramified in H/H%. (%)

Then the genus g ¢ is

g(H) =1+ 9°—q—-2— ) N |,

2-ord§ 1erts

whereN (o) is defined as

N(o):=#P eP(H)|degP =1 and o P = P}. (5.1)
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Proof. Denote bye(P) the ramification index of a plac® < P(H) in the
extensionH /H%. By hypothesigx), the degree of the different Difff/ H%) is

Y (eP)-1

PeP(H);deg P=1

= Z Z 1= Z N(o).

PeP(H);deg P=11#0€G;06 P=P 1#0€

deg Diff(H /H%)

Hence the Hurwitz genus formula (2.9) implies Proposition 5.2. O

We will apply Proposition 5.2 to various tame subgrogps- 4. First we will
consider subgroups of the grow := (¢, w) € + which is generated by the
automorphims andw given by (2.6) and (2.7):

ex)=ax, e(y)=ay and wx)=x/y, o) =1/y.
Herea e K is a primitive (g2 — 1)th root of unity. Anyo € € is of the form
o(x) =cx, o(y) =c?tty with c € K*,
or
o(x)=c-x/y, o(y)=c?t.1/y with c e K*.

Hence ordC) = 2(¢% — 1), andC is tame if cha(K) # 2.

Moreover, hypothesig«) from Proposition 5.2 holds fo® (in order to prove
this, consider ramification in the subextensioH§ = K(y7~! + y~b) c
K(y"™') € K(y) C H).

LEMMA 5.3. Assume thatharK) # 2.
(i) Leto € Cwitho(x) = cx,0(y) = c?*lyandl # ¢ € K*. Then
2, if ¢ttt £ 1
N(o) =
g+1, if citt=1
(i) Leto € Cwitho(x) =c-x/y,o(y) =c?*1.1/yandc € K*. Then
g+1, if ceF,
N(@o) = 0, if c¢F, and c@*D/2=1
2, if c¢F, and c@D/2= 1.

Proof. (i) This is a consequence of Lemma 4.2 (note thidat) = 1 + N (o),
becauseVs(o) does not count the plade,,).
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(i) Now we determineN (o) for an automorphisne € € given byo (x) =
c-x/yando(y) = c?t1. 1/y, with ¢ € K*. The placesP € P(H) of degree
one areP = P, and, for any paie, 8) € K x K with 87 + g = "%, the
unique common zer® = P, g of x — « andy — B. Obviouslyo (Py) # P and

o (Poo) # Poo- For the remaining placeR, s holdsg # 0, and we have for such
a place

U(Pa,ﬁ) = Pa,ﬁ 4 G(x)(Pa,ﬁ) =oa and O(y)(Pa,ﬁ) = IB
& c-a/f=a and c"/p=p
S a(ept—1) =0 and p%=crtL

So we have to count all paifg, 8) € K x K* satisfying
Bl +B=ait g2=c" and a(ct-1)=0 (5.2)

One checks that (5.2) has precisely the following soluti@n$®) € K x K*:

Case l.c € F,. Theng = c anda?*™ = 2c.
Case2.c ¢ T, andc@’~b/2 = 1. There are no solutions of (5.2).

Case 3.c ¢ F, andc@’~0/2= —1, Thena = 0 andg = +c@+D/2, m
THEOREM 5.4. Assume thatharK) # 2. Letm be a divisor ofg? — 1 and let
b € K be an element of order.. Consider the grouf§ := (A, w) € C that is
generated by the automorphisthsind w, where

) =bx, A=y and o) =x/y,  w®)=1/y.
Letd := gcd(m, ¢ + 1), d := gcd(m, ¢ — 1) and

0, if m divides (4% — 1)/2.

m, otherwise
Then the fixed field/% has genus
9 1 7
g(H?) = E((q-l-l)(q —1-d-d)+2(m+d) —9).

Proof. The groupg has order &; it consists of the following automorphisms
o. andt. where

Gc(x) =CX, Gc(y) = C(Hl)’, "= l,
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and
.(x) =c-x/y, .(y) =c?tt. 1y, M =1

From Lemma 5.3(i) follows

Y N =(q+1(d -1 +2m—d).

om=1,c#1

The number of elements € F, with ¢ =1 isd = gcdim, g — 1). Now we
distinguish two cases.

Case 1.m divides(g? — 1)/2. We see from Lemma 5.3 that in this case

> N =dg+1).

cm=1

Case 2.m does not divide(g? — 1)/2. Now there are exactly:/2 elements
¢ € K with ¢ = 1 and¢@’~P/2 = —1, and all of them are ik \ F,. Hence
Lemma 5.3 yields in this case

Y N@)=2-m/24+d(g+1) =d(g+1) +m.

cm=1

In both cases we find that

Z N@)=(@+Dd+d—1) +2m—d)+3,

1£0€§
with
0, if m divides (¢g°> —1)/2.
N m, otherwise
Proposition 5.2 yields now the desired formula for the genug?). O

EXAMPLE 5.5. (chatk) # 2).
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(i) For any even divisom of g — 1, there is a subfieldz € H of genus

1
8(E) = (q— Dig—1—-m).
11
(i) For any odd divisom of ¢ — 1, there is a subfield&& € H of genus
1
8(E) = 4—(q — (g —m).
11
(i)  For any even divisom of g + 1, there is a subfiel&& C H of genus
1
g(E) = 4—(q -3)(g +1—m).
11
(iv) Forany odd divisonn of g + 1, there is a subfield& € H of genus
1
g(E)=—(g-3+1-m+q+D.
11

Proof. We use notations as in Theorem 5.4.

() Letm be an even divisor of — 1. Thend = gcdim,q +1) = 2,5 = 0 and
d = gcd(m, g — 1) = m. By Theorem 5.4 the genus &f := H% is

1 1
§(E) = 7—~((q+D(q =1=2=m)+2m+2) = (g~ (g —1-m).
m 4m

(i) If m is an odd divisor ofy — 1, thend = gcd(m, ¢ + 1) = 1,d = gcdim, g —
1) = m ands = 0. The genus of := H¥% is in this case

1 1
g(E)=—((g+Dlg-1-1-m)+2m+1)=—(q—Dig—m).
m 4m
The proofs of (iii) and (iv) are similar. 0
We consider another class of subgrogps € in the following example:

EXAMPLE 5.6. (chatK) # 2). Letm be an even divisor (resp. odd divisor) of
q — 1. Then there exists a subfietl C H of genus

—1)2 -
(q471> (.resp.q{q4 1)), if ¢ =1mod4
1 U
$t8) = 12+ 2m 1) +2m
u (resp_u>’ if qg= 3 mod 4
4m 4m

Proof. Consider the following subgroug, C +:

Go:= {0 € A|o(x)=ax,o(y) =a’™ty with a" = 1}.
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Choose an elemertt € K such thath’~! = —1 and define an automorphism
p € A by
p(x)=b-x/y,  p() =b"""1/y.

It is easily verified tha := Go U p$o IS a subgroup o€ of order ordg, = 2m.
We get from Lemma 5.3(i):

Z N@) = g+ +m—2)-2=qg— 3+ 2m, if miseven, (resp.
1#0€%0

Z N(o) = (m—1) -2, if mis odd)
1#0€%0

The automorphisms € § \ o are given byr = p o o with o € 4, hence
t(x) =ab-x/y, T(y) = (ab)™ - 1/y with a™ = 1.
Sinceab ¢ F, and

(ab) =12 = (q1=1)@+D/2 (pa=Yy@+D/2 _ 1 (_1)@+D/2

it follows from Lemma 5.3(ii) that

0, for g =3 mod 4

N(t) =
{2, for g=1mod4

Therefore
ZN() g — 3+ 2m, (resp. 21 —2) for g =3 mod 4
o) =
Lty g — 3+ 4m, (resp.4n —2) for g=1mod 4

Now we apply Proposition 5.2 and obtain the desired formula for the genus
g(HY). 0

Many other tame subgroups of A can be constructed if we represent the Her-
mitian function field as in (2.15)H = K («, v) with u?tt + 07t + 1 = 0. All
rational places? € P(H) can then be described in the following manner.

() P = Qupwitha, § € K,
u(P)=a, v(P)=p and o’ 474 1=0.
(i) P = Q. witha € K,
u(P) =v(P) = o0, (%) (P)=a and o«’t4+1=0.
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Let¢ € K be a primitive(q + 1)th root of unity and consider the automorphisms
o1 ando, € A with

o1(u) = Cu, o1(v) =v, and or(u) =u, o(v) = Cv.
These maps generate a tame Abelian subgOup (o1, 02) C A,
D ={ojo] |i,j € Z/(q + DT}, (5.3)

which is isomorphic taZ/(¢g + 1)Z x Z/(g + 1)Z. The fixed fieldH? of D

is rational, namely#®? = Ku9*') = K(vi*1), and it is easily seen that only
rational places oH are ramified in / H® (hence hypothesig) from Proposition
5.2 holds for all subgroupg € D).

LEMMAS5.7. Letl # o =olo) € D withi, j € Z/(g + 1)Z. Then

No) g+1lifi=0o0r j=0o0ri=j,
o) =
0 otherwise

Proof. Fori = 0 we haver = azj € Gal(H/K (n)). In the extensior /K (u)
exactly theq + 1 zeros ofv are ramified, henceN(azj) = g + 1. In a similar
manner one shows that(alj) = N((0102)/) = g + 1 for j # O (observe that
(0102) € Gal(H/K (u/v))). Now leto = a{azj with i, j # 0 andi # j. We have
to show that none of the placés= Q, s resp.P = Q, is invariant undet .

Case(i). P = Q, 4. Assume that P = P. Thena = u(P) = (cu)(P) = {'a,
hencex = 0. Moreover8 = v(P) = (ov)(P) = ¢/ B, hences = 0. This conflicts
with the conditiona?*! 4 g9+t + 1 = 0.

Case(ii). P = Q,. Assume that P = P. Then
u ou .
= — = —_— = =J
“= (v)(P) (O’U)(P) ¢ e
Asi # j it follows thata = 0 which is a contradiction ta?*! + 1 = 0. O

THEOREM 5.8. Let§ be a subgroup oD (as defined ir{5.3)). Then
" +D@+1—-r1—r2—r3)
2r 9
withr = ord(4), r1 = ord(4 N{o1)), ro = ord(4 N (o)) andrz = ord(§ N(o102)).

Proof. Since{o1) N {07) = (01) N {0102) = (02) N {o102) = {1}, we obtain
from Lemma 5.7 that

Y N@)=n—D+02—D+3—1)-(g+D.
l#0€e§

g(H%) =1
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The result follows now from Proposition 5.2. O

EXAMPLE 5.9. Leta, b be integers. Define

d:=gcdg +1,a,b), di :==gcdlg + 1, a),

d> :=gcdlg +1,b) and dsz:=gcdlg +1,a—b).
Then there exists a subgrogp< £ such that

g(H%) =1+ 3(d(qg +1) —d1 — dp — dy).

Proof. We consider the cyclic groug < £ which is generated by the auto-
morphismo := o{c’. Then

ord¢) = (¢ +1)/d, ord(g N{o1) = da/d,
ord(g¢ N{oy)) = di/d and ordg N {o102)) = ds/d.
The result now follows from Theorem 5.8. O

EXAMPLE 5.10. Letc > 1 be an odd divisor (resp. even divisor)(@f+ 1). Then
there exists a subfielfly € H such thatH/Hy is cyclic of degredH : Hp] = ¢
and

qg—2@+1

Hy) =1
g(Ho) + e

<resp.g(H0) =1+ —(q —3+ 1)).

2c

Moreover the extensioHl / Hy is unramified ifc is odd.
Proof. Letg + 1 = a - c andb := 2a. With notations as in Example 5.9 (i.&.,
is the cyclic group generated by 02%), we have

d=di=d,=ds=a, if cis odd
d=di=ds=ua; dy=2a, Iifciseven.

The formula for the genug(Hp) now follows from Example 5.9. I is an odd
divisor of (¢ + 1) then H/ Hy is unramified becausé = d, = d» = d3 = a in this
case and hence

g N{o1) = §N(o2) =GN {o102) = {1}. ]

EXAMPLE 5.11. Leta, b > 1 be divisors ofy + 1, and letd := gcd(a, b). Then
there exists a subgroup € D such thatg(H%) = 1 + %(ab —a—>b-—d).
Proof. In this case we choose the subgrguge O that is generated by, and
b
o,. Then

ord(§) = (¢ + D?/ab,  ord(§ N(o1)) = (g + 1)/a,
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ord(§ N{o2) = (¢ +D/b and ordg N (o102) = (g + 1)/lem(a, b).

The result follows from Theorem 5.8. O

We give yet another example of a tame subgréug 4. Let H = K(u, v) be
generated as above, i+ 4+ v+ + 1 = 0. Consider the automorphismasand
p € s given by

v 1
t(u) =v, t(w)=u, and pu) = - o) = "

Thent? = p% = 1 andr1pt = p?, hence
€ :=(t, p) (5.4)

is a group of order 6 isomorphic to the symmetric gréddpFor p # 2, 3 thisis a
tame subgroup oft.

EXAMPLE 5.12. The genus of the fixed field &fis

llz(q2—4q+3) for g =1 mod 6

g(H“”)=[ .
13(q° —4q +7) for ¢ =5mod 6

Proof. The automorphism fixes exactly the placeB = Q,, , with 207141 =
0, henceN (1) = g + 1. One checks easily that

2 ifg=1mod6

N =
©) [o if ¢ =5mod6

As all elements of order 2 i& are conjugate t@, we obtain

> N©) = 3-N@)+N(p)+Np?
1#0€é

= 3(@+1D+2N(p)
3g+7 if g=1mod6
3q +3 if g=5mod 6

The claim follows now from Proposition 5.2. O
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6. Supplementary Remarks

In Section 1 we defined the sBtg?) = {g > 0| there is a maximal function field
overF . of genusg}, and we remarked that

(g — 1)? Org:q(q—l)‘

- - (6.1)

gel@d=g<

The genera of subfields of the Hermitian function fiéldF . are inT"(¢%). Com-
bining (6.1) with the results of this paper, we obtain.

Remark6.1. Forg < 16 holds
(2% = {0, 1}, r@3% =1{0,1 3}
4% =1{0,1,2,6}; (5% =1{0,1,2, 3, 4,10}
{0,1,2,3,5,7,9,21} C I'(7% C [0,9] U {21};
{0,1,2,3,4,6,7,9,10,12 28 < I'(8%) C [0, 12] U {28};
{0,1,2,3,4,6,8,9,12 16,36} < I'(9%) C [0, 16] U {36};

{0,1,2,3,4,5,7,9,10,11, 13, 15,18, 19, 25,55} C I'(11%)
€ [0, 25] U {55};

{0,2,3,6,9,12 15, 18 26,36, 78} < I'(13%) C [0, 36] U {78};
{0,1,2,4,6,8,12 24,28, 40,56,120} C I'(16°) < [0, 56] U {120}.
Proof. We give the details only faf = 5 andg = 8; the other cases are similar.

g =5 T((5% C {0,1,2 3,4, 10} follows from (6.1). By Corollary 4.9 the
Hermitian function fieldH /F,5 contains subfields of genus D 2, 4 and 10, and
Theorem 5.1 provides a subfield of genus 3.

g =8: T'(8% C [0, 12]U{28} follows from (6.1). By Corollary 4.9 the Hermitian
function field overFg, contains subfields of genus 1) 4, 7 and 28. Corollary 3.4
gives subfields of of genusg = 227*(23~* —1) for (v, w) = (0, 0), (0, 1), (0, 2),
(1,1, (1,2),(2,2) and (2,1), so 12,3, 4,6,12 28 are inI"(8%). Theorem 5.1
provides a subfield of geny49 — 1)/2 = 9, and Theorem 5.8 yields a subfield of
genus 10 (taking = 3 andr; = r, = r3 = 1, with notations as in Theorem 5.8).

All entries in the tables of Remark 6.1 come from subfields of the Hermitian func-
tion field. We can add the entgy = 1 for ¢ = 13, since 1e I'(¢?) for all ¢, see
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[Se]. The results of Remark 6.1 fgr= 2, 3, 4,5 and 9 are known [Se], [X-St],
[G-V 8]. Forg = 8 the fact that % I'(8%) seems to be new [G-V 8].

It is known that{0, 1,2} < I'(¢?) for all sufficiently largeq, see [Se]. For an
arbitrary integeu > 0 we can prove a weaker result

Remark6.2. Given an integet > 0, there exist infinitely many with
aeT'(qg?.

Proof. Chooseg such thaty = —1 mod (2a + 1) holds. Thern = (g% —
1)/(2a + 1) is a divisor ofg? — 1 and gcd(m, g + 1) = (¢ + 1)/(2a + 1). By
Corollary 4.9 there is a subfieldl of H of genus

1 qg+1
= 1-— -1 =a. 0
g 2m(61+ 2a+l>(q ) =a

In many cases one can easily describe the fixed field H% (for a group$ of
automorphisms of the Hermitian function fieHd) in terms of generators of.
Here are some examples.

EXAMPLE 6.3 (cf. Corollary 4.9).ConsiderH = F2(x, y) with y? + y = x47*
and the automorphisra of H/IF 2 given bye(x) = ax, e(y) = a?*ly, wherea is
a primitive (¢® — 1)th root of unity. Themrd(e¢) = g2 — 1, and for anym | (¢> — 1)
there is a unique subgrou@ < (¢) of orderm. The fixed fielde = H% can be
generated by two functions ¢ satisfying the irreducible equation

=1+ 197 with n:= (g% —1)/m.
Proof. Letr := y?~!; thenH = F2(x, y) = F 2(x, 1) with
X = ()T =TT DT =+ DT
Settingz := x™ we obtainE = H% = F 2(z, 1) andz" = ¢(r + 1)7~ . O

EXAMPLE 6.4 (cf. also [La] and [L, p. 40])Here we give equations for some
other maximal curves. Let the Hermitian function field be represented by its Fermat
equation:

Vit = (=1 - (Wi +1). (6.2)

We will consider two cases and in both cases we will haveutigt belongs to the
function field of the maximal curve considered and hence Thebr@applies to
both cases.

Case 1.Letk € N andm|(g + 1). Multiplying Equation (6.2) by:*”, we get

Zm + tk(thtl + 1) — 0, (63)
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wherez = u* - v andr = u”.
Equation (6.3) is the equation of a maximal curve dvgrwith genusg given
by (see [St 1, Prop. I11.7.3])

+1
2g="7(m—1>—<81+82—2>,

wheres; = gcdim, k) ands, = gcd(m, oy k).
The fieldK (z, t) is the fixed field of the groug inside D (notations as in (5.3))
of orderg + 1 corresponding to pairg, j) with

g+1
m

i = O(mod ) and L.k 4 j = O(modm).
qg+1
Case 2: Let k andb be two natural numbers. Raising Equation (6.2) toktie
power and then multiplying by?@+V we get

.. q+1 q+1
wherem; andm are divisors ofg + 1), z = w?vF) ™ andt = un .

Equation (6.4) is the equation of a maximal curve dverwith genusg given
by (see [St1, Prop. lIl.7.3]))@= m(m1—381)—(82+683—2), wheres; = gcd(my, k),
8> = gcd(my, bm) anddz = gcdimy, (b + k)m).

In this case, the fielK (z, ¢) is the fixed field of the grougs of the order
(g + 1)?/mm, corresponding to pairg, j) with

i=0(modm) and ib+ jk=0 (modm,). O

Remark6.5. Defining equations for the fieldg%, whereg < s is a nona-
belian tame subgroup of as considered in Theorem 5.4, are related to Chebyshev
polynomials; for details we refer to [G-S].

Remarl6.6. Subfields of the Hermitian function field cover almost all examples
of maximal function fields that we found in the literature, see [D-H], [D-S-V],
[G-V, 1-8], [I], [La], [M—K], [Se], [St 1], [W 1,2].

Except at the end of Section 5 and in Example 6.4 we have not used the fact that
the Hermitian function field? can be given by a Fermat equation.

H=K@u,v) with ut+141=0.

There is a natural subgroup of the automorphism groug to consider here. It
consists of the elements(u) = au + bv ando (v) = cu + dv satisfying:

attt 4ttt =1, it 4@t =1 and a?b+ ¢%d = 0.
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It can be shown that the order of this subgrgiigs equal to(¢® — ¢) - (¢ + 1).

It would be interesting to determine the genera of fixed fields of subgroups of this
group ¥ . At the end of Section 5 we have considered subgroupsmithc = 0.

Here we will consider two further examples:

EXAMPLE 6.7 (charK # 2).For two element$, ¢ € K with b9+ = ¢4+ = 1,
let o be the automorphism given by:

o) =>bv and o(v) = cu.
We then have that
o2 (u) = (bc)" -u and o?(v) = (be)" - v;
o2t w) = (be)" -bv and o2 *i(v) = (be)" - cu.

Denoting byM the multiplicative order of the elemebt, we have that the cyclic
subgroup ofF generated by has order equal t®M. Since we assumed that
charK # 2, the cyclic group(o) is tame. Denoting by (o1) the number of fixed
points of an automorphiswy € (o), one can check that:

N@o?) =qg+1 forn=12....,M—1, and

2, if (¢ +1)/M is odd,
N2 =1 ¢g+1 ifMisoddand = (M —1)/2,
0, otherwise.

Now it follows from Proposition 5.2 that the gengisf the fixed field ofo) is given
by:

(g+D(@g—-21) —(g—3)M, if(g+21)/Mevenand even,

G+ -1 —(g—DM, if(g+1)/M odd,
g+D(@q—-2—(q—-3)M, if Modd

If M is odd the genus formula above coincides with the one in Examp(&). If
M is even andV is a proper divisor ofg + 1), then the genus formula above does
not coincide with the one given in Exampl&iii). O

EXAMPLE 6.8 (charK # 2). Letm be a divisor of(g + 1). We havem?
automorphisms off of the form below.

ow)=>bv and o) =cu, withd" =" =1 (6.5)

These automorphisms generate a subg@ud # having2m? elements; the other
m? elements being of the form below.

t(w)=bu and t(v) =cv, with p" =" =1 (6.6)
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SincecharK) # 2, we have tha is tame. The number of fixed poimt&t)
for automorphisms as in(6.6) above is easily seen to satisfy (see Lenia

g+1 if b=1andc #1.
g+1 fc=1landb #1
g+1, fb=c#Ll

0, otherwise

N(t) =

Hence summing overas in(6.6), we get
D N(r) =3(m — (g + D). (6.7)
1#7

It remains to determin& (o) for automorphismg as in(6.5)above. For these
automorphisms we have:
g+1 ifbc=1
N@o)={ 2, if (be)'? = —1.
0, otherwise

Hence summing over as in(6.5), we get

| m@+1D), if (¢g+21)/mis even
> N@) _{m(q+1+m), if (g +1)/mis odd. (6.8)
It now follows from(6.7), (6.8)and Propositions.2 that the genug = g(H%)
is given by:
A2 o — 4nm?+ (g + (g +1—4m), if (g+1)/mis even
ET 3P+ (g + (g +1—4m), if (¢+1)/mis odd.

Particularly interesting is the case: = 2. In this case the grouf is the
dihedral group with 8 elements and we have:

_ | @-3?%18 if g=3mod 4
8= (g —1(g-5/16. if g=1mod 4. -

The following remark was communicated to us by J.-P. Serre:

Remark6.9. The natural action oft = Aut(H) on thel-adic Tate module
of the Hermitian curve (wherkis a prime number not dividing) gives rise to a
representatiorp: A — GL,(Q;). The corresponding charactgris irreducible
and has values i@. For a subgroupB C 4, the genug (H®) is given by

1
Zg(HéB) = M‘ZX(U)-

oeB
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This formula comes from the orthogonality relations for characters of irreducible
representations, applied to the restrictjoi and to the identity id.

As an example, consider the cage= 8 and a subgrougB = (o) C A of
order 3. The values of the charactercan be found in the Atlas of finite groups
[C, p. 64]. Depending on the type ef one hasy(c) = —7 or x(o) = —1 or
x (o) = 2. Hence

g(H®) = 1(x(id) + x(0) + x(0?) = £(56+ 2 x(0)),

and thereforeg(H*®) = 7 or 9 or 10. The casg(H®) = 9 corresponds to our
Theorem 5.1; the other cases are special cases of Example 5.11.
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