

Compositio Mathematica **120:** 137–170, 2000. © 2000 *Kluwer Academic Publishers. Printed in the Netherlands.*

On Subfields of the Hermitian Function Field

ARNALDO GARCIA¹,* HENNING STICHTENOTH^{2*} and CHAO-PING XING^{3*}

¹Instituto de Matématica Pura e Aplicada IMPA, 22460-320 Rio de Janeiro RJ, Brazil. e-mail: garcia@impa.br

²Universität GH Essen, FB 6, Mathematik u. Informatik, 45117 Essen, Germany. e-mail: stichtenoth@uni-essen.de

³Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China; and Department of Information Systems and Computer Science, The National University of Singapore, 10 Lower Kent Ridge Crescent, Singapore 119260. *e-mail: xingcp@iscs.nus.edu.sg*

(Received: 8 May 1998; accepted in final form: 14 September 1998)

Abstract. The Hermitian function field H = K(x, y) is defined by the equation $y^q + y = x^{q+1}$ (*q* being a power of the characteristic of *K*). Over $K = \mathbb{F}_{q^2}$ it is a maximal function field; *i.e.* the number N(H) of \mathbb{F}_{q^2} -rational places attains the Hasse–Weil upper bound $N(H) = q^2 + 1 + 2g(H) \cdot q$. All subfields $K \subsetneq E \subseteq H$ are also maximal. In this paper we construct a large number of nonrational subfields $E \subseteq H$, by considering the fixed fields $H^{\frac{q}{2}}$ under certain groups g of automorphisms of H/K. Thus we obtain many integers $g \ge 0$ that occur as the genus of some maximal function field over \mathbb{F}_{q^2} .

Mathematics Subject Classifications (1991): 11Gxx, 14Gxx

Key words: function fields, rational places, finite fields.

1. Introduction

Let *K* be a finite field, F/K an algebraic function field over *K* of genus g(F). By the Hasse–Weil theorem, the number N(F) of rational places of F/K is bounded by $N(F) \leq \#K + 1 + 2g(F) \cdot \sqrt{\#K}$. The function field is said to be *maximal* if N(F) attains this upper bound. We are interested in the following question: Which integers $g \ge 0$ happen to be the genus of some maximal function field over *K*?

Suppose that the cardinality of *K* is not a square and that F/K is maximal. From the equality $N(F) = \#K + 1 + 2g(F) \cdot \sqrt{\#K}$ follows that g(F) = 0, hence *F* is the rational function field over *K*. Therefore we will always assume that #K is a square. We fix some notation.

^{*} The first and second authors were partially supported by GMD-CNPq, the third author was supported by DFG.

p is a prime number.

 $q = p^n$ is some power of p (with $n \ge 1$). $K = \mathbb{F}_{q^2}$ is the finite field with q^2 elements. $K^{\times} = K \setminus \{0\}$ is the multiplicative group of K. F is a function field over K, and K is algebraically closed in F. g(F) is the genus of F/K. N(F) is the number of rational places (places of degree one) of F/K. $\mathbb{P}(F)$ is the set of all places of F/K.

By definition, F/K is maximal if and only if

$$N(F) = q^{2} + 1 + 2g(F) \cdot q.$$
(1.1)

Our main problem can be stated as follows: Describe the set

$$\Gamma(q^2) = \{g \ge 0 \mid \text{there exists a maximal function field } F/K$$
of genus $g(F) = g\}.$ (1.2)

A well-known example of a maximal function field over $K = \mathbb{F}_{q^2}$ is the *Hermitian* function field *H*; it is defined by

$$H = K(x, y)$$
 with $y^{q} + y = x^{q+1}$. (1.3)

The genus of *H* is g(H) = q(q-1)/2, the number of rational places is $N(H) = q^3 + 1 = q^2 + 1 + 2g(H) \cdot q$, cf. [St 1, VI.4.4]. One can show that any function field over *K* of genus g > q(q-1)/2 is not maximal, and that the Hermitian function field is the only maximal function field of genus g = q(q-1)/2. In particular, $\Gamma(q^2)$ is a finite set. More precisely, one knows that

$$\Gamma(q^2) \subseteq [0, (q-1)^2/4] \cup \{q(q-1)/2\},\tag{1.4}$$

see [R–St], [X–St], [F–T].

Any subfield $E \subseteq F$ of a maximal function field F/K (with $K \subsetneq E$) is maximal [La], so all subfields of the Hermitian function field H provide examples of maximal function fields over K. In this paper we will construct systematically a large variety of subfields $E \subseteq H$ which can be obtained as fixed fields of some subgroups of the automorpism group Aut(H). We will determine the genera of these subfields E (thus finding many numbers $g \in \Gamma(q^2)$), and in some cases we will describe E explicitly by generators and equations.

2. Places and Automorphisms of H

We recall some known facts about the Hermitian function field H (as defined in (1.3)) that we will use in subsequent sections, cf. [St 1, VI.4.4].

The extension H/K(x) is Galois of degree [H: K(x)] = q. The pole of x in K(x) is totally ramified in H, and we denote by $P_{\infty} \in \mathbb{P}(H)$ the unique pole of x in H; *i.e.* x has pole divisor $(x)_{\infty} = qP_{\infty}$. All other rational places of K(x) split completely in H/K(x), thus we have $N(H) = 1 + q^3$ rational places in H/K.

We will also need the number of places of H/K of degree 2 and 3.

LEMMA 2.1. For all $r \ge 1$ let $B_r = #\{P \in \mathbb{P}(H) \mid \deg P = r\}$. Then

$$B_1 = N(H) = q^3 + 1;$$
 $B_2 = 0;$ $B_3 = \frac{1}{3}q^3(q+1)(q^2 - 1).$

Proof. It is clear that $B_1 = N(H) = q^3 + 1$. From the maximality of H/K follows that the numerator $L_H(t)$ of the Zeta function of H is

$$L_H(t) = \prod_{i=1}^{2g(H)} (1 - \omega_i t),$$

with $\omega_i = -q$ for $i = 1, \ldots, 2g(H)$. Setting

$$S_r := \sum_{i=1}^{2g(H)} \omega_i^r = (-1)^r (q-1)q^{r+1},$$

we obtain [St 1, V.2.9] for $r \ge 2$:

$$B_r = \frac{1}{r} \sum_{d|r} \mu\left(\frac{r}{d}\right) (q^{2d} - S_d).$$

(μ denotes the Möbius function.) In particular,

$$B_2 = \frac{1}{2}(-(q^2 - S_1) + (q^4 - S_2))$$

= $\frac{1}{2}(-q^2 - (q - 1)q^2 + q^4 - (q - 1)q^3) = 0,$

and

$$B_3 = \frac{1}{3}(-(q^2 - S_1) + (q^6 - S_3))$$

= $\frac{1}{3}(-q^2 - (q - 1)q^2 + q^6 + (q - 1)q^4) = \frac{1}{3}q^3(q + 1)(q^2 - 1).$

The automorphism group of the Hermitian function field,

 $\mathcal{A} := \mathcal{A}ut(H) = \{ \sigma \colon H \to H \mid \sigma \text{ is an automorphism of } H/K \}$

is extremely large [St 3], [Le]. It is isomorphic to the projective unitary group PGU $(3, q^2)$ and has order

ord
$$\mathcal{A} = q^3(q^2 - 1)(q^3 + 1).$$
 (2.1)

140

We describe A in some detail: The subgroup

$$\mathcal{A}(P_{\infty}) = \{ \sigma \in \mathcal{A} \mid \sigma P_{\infty} = P_{\infty} \} \subseteq \mathcal{A}$$

consists of all automorphisms σ with

$$\sigma(x) = ax + b, \qquad \sigma(y) = a^{q+1}y + ab^q x + c,$$

$$a \in K^{\times}, \quad b \in K, \quad c^q + c = b^{q+1}.$$
(2.2)

It has order

ord
$$\mathcal{A}(P_{\infty}) = q^3(q^2 - 1).$$
 (2.3)

Let

$$\mathcal{A}_1(P_{\infty}) = \{ \sigma \in \mathcal{A}(P_{\infty}) \mid \sigma x = x + b \text{ for some } b \in K \}.$$

Then $\mathcal{A}_1(P_\infty)$ is the unique *p*-Sylow subgroup of $\mathcal{A}(P_\infty)$, it contains all automorphisms with

$$\sigma x = x + b, \qquad \sigma y = y + b^q x + c,$$

$$b \in K, \quad c^q + c = b^{q+1},$$
(2.4)

and its order is

$$\operatorname{ord} \mathcal{A}_1(P_\infty) = q^3. \tag{2.5}$$

The factor group $\mathcal{A}(P_{\infty})/\mathcal{A}_1(P_{\infty})$ is cyclic of order $q^2 - 1$; it is generated by the automorphism $\epsilon \in \mathcal{A}(P_{\infty})$ with

$$\epsilon(x) = ax, \qquad \epsilon(y) = a^{q+1}y, \tag{2.6}$$

where $a \in K$ is a primitive $(q^2 - 1)$ th root of unity.

Another automorphism $\omega \in \mathcal{A}$ is given by

$$\omega(x) = \frac{x}{y}, \qquad \omega(y) = \frac{1}{y}.$$
(2.7)

This element ω is an involution (i.e. $\operatorname{ord}(\omega) = 2$), and \mathcal{A} is generated by $\mathcal{A}(P_{\infty})$ and ω ; i.e.

$$\mathcal{A} = \langle \mathcal{A}(P_{\infty}), \omega \rangle \,. \tag{2.8}$$

Let $\mathcal{G} \subseteq \mathcal{A}$ be a subgroup of \mathcal{A} ; we denote by $H^{\mathcal{G}}$ its fixed field,

 $H^{\mathcal{G}} = \{ z \in H \mid \sigma z = z \text{ for all } \sigma \in \mathcal{G} \}.$

Then H/H^{g} is a Galois extension of degree $[H: H^{g}] = \operatorname{ord}(g)$, and g is the Galois group of H/H^{g} . Since 2g(H) = q(q-1), the Hurwitz genus formula gives

$$q^{2} - q - 2 = \operatorname{ord}(\mathcal{G}) \cdot (2g(H^{\mathfrak{G}}) - 2) + \deg \operatorname{Diff}(H/H^{\mathfrak{G}}),$$
 (2.9)

where $\text{Diff}(H/H^{\mathfrak{g}})$ is the different of $H/H^{\mathfrak{g}}$. For a place $P \in \mathbb{P}(H)$ let $Q = P \cap H^{\mathfrak{g}}$ be the restriction of P to $H^{\mathfrak{g}}$, and we denote by

$$e(Q) := e(P|Q) \quad (\text{resp. } d(Q) := d(P|Q))$$

the ramification index (resp. the different exponent) of P|Q. Thus

$$\deg \operatorname{Diff}(H/H^{\mathfrak{g}}) = \operatorname{ord}(\mathfrak{g}) \cdot \sum_{Q \in \mathbb{P}(H^{\mathfrak{g}})} \frac{d(Q)}{e(Q)} \cdot \deg Q,$$

and we obtain from (2.9) that

$$q^{2} - q - 2 = \operatorname{ord}(\mathcal{G}) \cdot \left(2g(H^{\mathcal{G}}) - 2 + \sum_{Q \in \mathbb{P}(H^{\mathcal{G}})} \frac{d(Q)}{e(Q)} \cdot \deg Q \right).$$
(2.10)

PROPOSITION 2.2. The fixed field H^A is rational, and exactly two places of H^A are ramified in H. One of the ramified places is the place $Q_{\infty} := P_{\infty} \cap H^A$; this place is wildly ramified in H/H^A with ramification index

$$e(Q_{\infty}) = e(P_{\infty} \mid Q_{\infty}) = q^3(q^2 - 1)$$

and different exponent

$$d(Q_{\infty}) = d(P_{\infty} \mid Q_{\infty}) = q^5 + q^2 - q - 2.$$

The conjugates of P_{∞} under A are exactly all rational places of H.

The other ramified place is the place $\tilde{Q} := \tilde{P} \cap H^{\mathcal{A}}$, where $\tilde{P} \in \mathbb{P}(H)$ is any place of degree three. This place \tilde{Q} is a rational place of $H^{\mathcal{A}}$, and it is tamely ramified in $H/H^{\mathcal{A}}$ with $e(\tilde{Q}) = e(\tilde{P}|\tilde{Q}) = q^2 - q + 1$. The conjugates of \tilde{P} under \mathcal{A} are exactly all places of H of degree three.

Proof. As the extension H/K(x) is Galois, $H^{\mathcal{A}}$ is contained in K(x), and hence $H^{\mathcal{A}}$ is also rational. In order to determine the ramification index and the different exponent of $P_{\infty} \mid Q_{\infty}$ we use Hilbert's ramification theory, cf. [St 1, Ch.III.8]. By definition, the group $\mathcal{A}(P_{\infty}) = \{\sigma \in \mathcal{A} \mid \sigma P_{\infty} = P_{\infty}\}$ is the decomposition group of $P_{\infty} \mid Q_{\infty}$, so

$$e(P_{\infty} \mid Q_{\infty}) = \text{ord } \mathcal{A}(P_{\infty}) = q^{3}(q^{2} - 1)$$

by (2.3) (note that $\mathcal{A}(P_{\infty})$ is also the inertia group since deg $P_{\infty} = 1$).

The different exponent $d(P_{\infty} \mid Q_{\infty})$ can be calculated as follows: Let $v_{P_{\infty}}$ be the discrete valuation of H associated to P_{∞} , and choose a P_{∞} -prime element t, i.e. $v_{P_{\infty}}(t) = 1$. For $1 \neq \sigma \in \mathcal{A}(P_{\infty})$ set

$$i(\sigma) = v_{P_{\infty}}(\sigma(t) - t); \qquad (2.11)$$

then

$$d(P_{\infty} \mid Q_{\infty}) = \sum_{1 \neq \sigma \in \mathcal{A}(P_{\infty})} i(\sigma)$$

by [St 1, Prop. III.5.12 and Thm. III.8.8]. In our situation we have (2.2)

$$\sigma(x) = ax + b, \qquad \sigma(y) = a^{q+1}y + ab^q x + c,$$

with $a \in K \setminus \{0\}$ and $b \in K$, and we can choose the prime element t = x/y. So

$$i(\sigma) = v_{P_{\infty}} \left(\frac{ax+b}{a^{q+1}y+ab^{q}x+c} - \frac{x}{y} \right)$$

= $v_{P_{\infty}}((ax+b)y - x(a^{q+1}y+ab^{q}x+c)) - 2v_{P_{\infty}}(y)$
= $v_{P_{\infty}}((a-a^{q+1})xy - ab^{q}x^{2} + by - cx) + 2(q+1)$
= $\begin{cases} 1, & \text{if } a \neq 1, \\ 2, & \text{if } a = 1 \text{ and } b \neq 0, \\ q+2, & \text{if } a = 1 \text{ and } b = 0 \text{ (and } c \neq 0). \end{cases}$ (2.12)

Hence

$$d(P_{\infty}|Q_{\infty}) = (q^2 - 2) \cdot q^3 + (q^2 - 1) \cdot q \cdot 2 + (q - 1)(q + 2)$$

= $q^5 + q^2 - q - 2$.

As the number of conjugates of P_{∞} under \mathcal{A} is equal to the index $(\mathcal{A} : \mathcal{A}(P_{\infty})) = q^3 + 1 = N(H)$, all rational places of H are \mathcal{A} -conjugate. Now all assertions of Proposition 2.2 concerning P_{∞} are settled.

We substitute $e(Q_{\infty})$ and $d(Q_{\infty})$ into formula (2.10) and find after some computation that

$$\sum_{Q \neq Q_{\infty}} \frac{d(Q)}{e(Q)} \cdot \deg Q = \frac{q^2 - q}{q^2 - q + 1}.$$
(2.13)

This implies that exactly one place $\tilde{Q} \in \mathbb{P}(H^A)$ with $\tilde{Q} \neq Q_\infty$ ramifies in H/H^A , that deg $\tilde{Q} = 1$ and that \tilde{Q} is tamely ramified (otherwise the left-hand side of (2.13) would be ≥ 1). Moreover it follows that $e(\tilde{Q}) = q^2 - q + 1$ (since $d(\tilde{Q}) = e(\tilde{Q}) - 1$).

In order to show that any place $\tilde{P} \in \mathbb{P}(H)$ lying above \tilde{Q} has degree three, we consider the group $\mathcal{B} :=$ inertia group of \tilde{P} in H/H^A . The group \mathcal{B} is cyclic of order ord $(\mathcal{B}) = q^2 - q + 1$. Let $\tilde{R} = \tilde{P} \cap H^{\mathcal{B}}$ be the restriction of \tilde{P} to the fixed field $H^{\mathcal{B}}$ of \mathcal{B} . As all places of H/K of degree one lie above Q_{∞} , and as there are no places of degree two (by Lemma 2.1), we conclude that

$$\deg R = \deg P \ge 3. \tag{2.14}$$

The Hurwitz genus formula (2.10), applied to the extension $H/H^{\mathscr{B}}$, yields

$$q^{2} - q - 2 = (q^{2} - q + 1) \left(2g(H^{\mathcal{B}}) - 2 + \sum_{R \in \mathbb{P}(H^{\mathcal{B}})} \frac{e(R) - 1}{e(R)} \deg R \right).$$

From this equation and (2.14) we conclude easily that $g(H^{\mathcal{B}}) = 0$, that \tilde{R} is the only ramified place in $H/H^{\mathcal{B}}$, and that deg $\tilde{R} = \deg \tilde{P} = 3$.

The number of places of H lying above the place $\tilde{Q} = \tilde{P} \cap H^{\mathcal{A}}$ is equal to

$$\frac{\operatorname{ord}(\mathcal{A}) \cdot \operatorname{deg} \tilde{Q}}{e(\tilde{P}|\tilde{Q}) \cdot \operatorname{deg} \tilde{P}} = \frac{q^3(q^2 - 1)(q^3 + 1)}{(q^2 - q + 1) \cdot 3} = \frac{1}{3}q^3(q + 1)(q^2 - 1),$$

and this is exactly the number of places of H of degree three, by Lemma 2.1. Hence all places of H of degree three are conjugate under A, and Proposition 2.2 is completely proved.

In the proof of Proposition 2.2 we have also established:

COROLLARY 2.3. Let $\tilde{P} \in \mathbb{P}(H)$ be a place of degree three and $\mathcal{B} \subseteq \mathcal{A}$ be the inertia group of \tilde{P} with respect to the extension $H/H^{\mathcal{A}}$. Then the fixed field $H^{\mathcal{B}}$ is rational, the extension $H/H^{\mathcal{B}}$ is cyclic of degree $[H: H^{\mathcal{B}}] = q^2 - q + 1$, and \tilde{P} is totally ramified in $H/H^{\mathcal{B}}$. All other places of $H^{\mathcal{B}}$ are unramified in $H/H^{\mathcal{B}}$.

There is another useful description of the Hermitian function field H = K(x, y) as follows: Choose elements $a, b \in K$ such that $a^q + a = b^{q+1} = -1$, and set

$$u = \frac{y+a}{x}, \qquad v = \frac{b(y+a+1)}{x}.$$

Then H = K(u, v), and one checks easily that

$$u^{q+1} + v^{q+1} + 1 = 0. (2.15)$$

3. The Fixed Fields of *p*-Subgroups $\mathcal{U} \subseteq \mathcal{A}$

We maintain all notations from Section 2. Let $\mathcal{U} \subseteq \mathcal{A}$ be a *p*-subgroup of \mathcal{A} . We consider the fixed field $H^{\mathcal{U}}$ of H under \mathcal{U} and want to determine its genus $g(H^{\mathcal{U}})$.

Since $\mathcal{A}_1(P_\infty)$ is a *p*-Sylow subgroup of \mathcal{A} and any two *p*-Sylow subgroups are conjugate, we will assume w.l.o.g. that $\mathcal{U} \subseteq \mathcal{A}_1(P_\infty)$. We identify an automorphism $\sigma \in \mathcal{A}_1(P_\infty)$ with the pair $\sigma = [b, c] \in K \times K$ where

$$\sigma x = x + b, \qquad \sigma y = y + b^q x + c \text{ and } c^q + c = b^{q+1},$$
 (3.1)

see (2.4). The group operation on such pairs is then given by

$$[b_1, c_1] \cdot [b_2, c_2] = [b_1 + b_2, b_1 b_2^q + c_1 + c_2].$$
(3.2)

The identity is the pair [0, 0], the inverse of [b, c] is $[b, c]^{-1} = [-b, b^{q+1} - c]$. The map $\varphi: \mathcal{U} \to K$ given by

$$\varphi([b,c]) = b \tag{3.3}$$

is a homomorphism into the additive group of K and we set

$$\mathcal{W}_{\mathcal{U}} = \operatorname{Im}(\varphi), \quad \mathcal{W}_{\mathcal{U}} = \{ c \in K \mid [0, c] \in \mathcal{U} \}.$$
(3.4)

These are additive subgroups of *K*, and $W_{\mathcal{U}} \simeq \text{Ker}(\varphi)$. Hence

ord
$$\mathcal{U} = p^{v+w}$$
, where $p^v = \text{ord } \mathcal{V}_{\mathcal{U}}$ and $p^w = \text{ord } \mathcal{W}_{\mathcal{U}}$. (3.5)

Now we determine the genus $g(H^{\mathcal{U}})$. It is easily seen that P_{∞} is the only place of H which is ramified in the extension $H/H^{\mathcal{U}}$, the Hurwitz genus formula (2.10) then yields

$$q^{2} - q - 2 = \text{ord } \mathcal{U} \cdot (2g(H^{\mathcal{U}}) - 2) + d(P_{\infty}),$$
 (3.6)

where $d(P_{\infty})$ denotes the different exponent of P_{∞} in the extension $H/H^{\mathcal{U}}$. We have (with $i(\sigma)$ as in (2.11))

$$d(P_{\infty}) = \sum_{1 \neq \sigma \in \mathcal{U}} i(\sigma)$$

= 2(ord \mathcal{U} - ord $\mathcal{W}_{\mathcal{U}}$) + (q + 2)(ord $\mathcal{W}_{\mathcal{U}}$ - 1)
= 2($p^{v+w} - p^w$) + (q + 2)($p^w - 1$) (3.7)

by (2.12). Substituting this into (3.6), we obtain

$$g(H^{\mathcal{U}}) = \frac{1}{2}p^{n-\nu}(p^{n-w} - 1).$$
(3.8)

In particular, $H^{\mathcal{U}}$ is a rational function field if and only if one of the following (pairwise equivalent) conditions holds

(i) $\operatorname{ord}(W_{\mathcal{U}}) = q$.

ON SUBFIELDS OF THE HERMITIAN FUNCTION FIELD

(ii) $\mathcal{U} \supseteq \{[0, c] \mid c^q + c = 0\}.$ (iii) $H^{\mathcal{U}} \subseteq K(x).$

PROPOSITION 3.1. Let $q = p^n$ and \mathcal{U} be a *p*-subgroup of \mathcal{A} such that the fixed field $H^{\mathcal{U}}$ is not rational. Then $g(H^{\mathcal{U}}) = \frac{1}{2}p^{n-v}(p^{n-w}-1)$, with $0 \leq w \leq n-1$ and $0 \leq v \leq n$.

Proof. Since $g(H^{\mathcal{U}})$ is an integer, all assertions follow immediately from (3.8).

We show now that the above numerical conditions on v and w are also sufficient for the existence of such a subfield of H, if the characteristic of K is odd.

THEOREM 3.2. Let $q = p^n$ with $p \neq 2$, and let $g \ge 1$ be an integer. Then the following assertions are equivalent.

- (i) There exists a p-subgroup $\mathcal{U} \subseteq \mathcal{A}$ such that $g = g(H^{\mathcal{U}})$.
- (ii) There are integers v, w such that $0 \le w \le n 1, 0 \le v \le n$ and $g = \frac{1}{2}p^{n-v}(p^{n-w} 1).$

Proof. It remains to show that (ii) implies (i). One checks immediately that the set $C = \{[b, c] \in \mathcal{A}_1(P_\infty) \mid b \in \mathbb{F}_q\}$ is an Abelian subgroup of $\mathcal{A}_1(P_\infty)$ of order ord $C = q^2$. For $j \ge 1$ and $[b, c] \in \mathcal{A}_1(P_\infty)$ holds

$$[b,c]^{j} = \left[jb, jc + \frac{j(j-1)}{2}b^{q+1}\right].$$
(3.9)

Since the characteristic p of K is odd, we conclude that all nontrivial automorphisms $\sigma \in \mathcal{A}_1(P_\infty)$ have order p. It follows that \mathcal{C} is a \mathbb{F}_p -vector space of dimension 2n. The space

$$\mathcal{Z} = \{ [0, c] \in \mathcal{A}_1(P_{\infty}) \mid c^q + c = 0 \}$$

is an *n*-dimensional subspace of \mathcal{C} (in fact, \mathcal{Z} is the center of $\mathcal{A}_1(P_\infty)$). We choose \mathbb{F}_p -subspaces $\mathcal{V}, \mathcal{W} \subseteq \mathcal{C}$ with

$$W \subseteq Z$$
, $\dim_{\mathbb{F}_n} W = w$, $V \cap Z = 0$ and $\dim_{\mathbb{F}_n} V = v$.

Then $\mathcal{U} = \mathcal{V} \cdot \mathcal{W}$ is a subgroup of $\mathcal{A}_1(P_\infty)$ such that $\mathcal{W}_{\mathcal{U}} \simeq \mathcal{W}$ and $\mathcal{V}_{\mathcal{U}} \simeq \mathcal{V}$ (notation as in (3.4)). Hence, the genus of $H^{\mathcal{U}}$ is $g(H^{\mathcal{U}}) = \frac{1}{2}p^{n-\nu}(p^{n-w}-1)$ by Proposition 3.1.

In the case char(K) = 2, the situation is slightly different.

THEOREM 3.3. Let $q = 2^n$, and let $g \ge 1$ be an integer. Then the following assertions are equivalent.

(i) There exists a 2-subgroup $\mathcal{U} \subseteq \mathcal{A}$ such that $g = g(H^{\mathcal{U}})$.

(ii) $g = 2^{n-v-1} \cdot (2^{n-w} - 1)$ with $0 \le v \le n-1$ and $0 \le w \le n-1$, and there exist additive subgroups $\mathcal{V} \subseteq K$ and $\mathcal{W} \subseteq \mathbb{F}_q$ of orders ord $\mathcal{V} = 2^v$ and ord $\mathcal{W} = 2^w$, such that $\mathcal{V}^{q+1} = \{b^{q+1} \mid b \in \mathcal{V}\}$ is contained in \mathcal{W} .

Proof. (i) \Rightarrow (ii): Let $\mathcal{U} \subseteq \mathcal{A}$ be a 2-group whose fixed field $H^{\mathcal{U}}$ is not rational. We can assume that $\mathcal{U} \subseteq \mathcal{A}_1(P_\infty)$. Define $\mathcal{V} = \mathcal{V}_{\mathcal{U}}$ and $\mathcal{W} = \mathcal{W}_{\mathcal{U}}$ as in formulas (3.4), and let ord $\mathcal{V} = 2^v$, ord $\mathcal{W} = 2^w$. By (3.8) the genus of $H^{\mathcal{U}}$ is $g(H^{\mathcal{U}}) = 2^{n-v-1}(2^{n-w}-1)$. Since $g(H^{\mathcal{U}})$ is a positive integer, we conclude that $0 \leq v \leq n-1$ and $0 \leq w \leq n-1$. It remains to prove that $\mathcal{W} \subseteq \mathbb{F}_q$ and $\mathcal{V}^{q+1} \subseteq \mathcal{W}$. Let $c \in \mathcal{W}$. Then $[0, c] \in \mathcal{A}_1(P_\infty)$ and, therefore, $c^q + c = 0$ by (3.1). Since q is even, it follows that $c \in \mathbb{F}_q$. Finally, let $b \in \mathcal{V}$. Choose an element $d \in K$ such that $[b, d] \in \mathcal{U}$. Then $[b, d]^2 = [0, b^{q+1}] \in \mathcal{U}$, hence $b^{q+1} \in \mathcal{W}$.

(ii) \Rightarrow (i): We note that the set $\mathbb{Z} = \{[0, c] \mid c \in \mathbb{F}_q\} = \{\sigma^2 \mid \sigma \in \mathcal{A}_1(P_\infty)\}$ is the center of $\mathcal{A}_1(P_\infty)$ (this is easily checked). Assume now that $\mathcal{V} \subseteq K$ and $\mathcal{W} \subseteq \mathbb{F}_q$ are additive subgroups of orders 2^v and 2^w such that $0 \leq w < n$ and $\mathcal{V}^{q+1} \subseteq \mathcal{W}$. We show by induction on v (for fixed \mathcal{W}) that there is a subgroup $\mathcal{U} \subseteq \mathcal{A}_1(P_\infty)$ with $\mathcal{V}_{\mathcal{U}} = \mathcal{V}$ and $\mathcal{W}_{\mathcal{U}} = \mathcal{W}$.

The case v = 0 is trivial: in this case we set $\mathcal{U} := \{[0, c] \mid c \in W\}$. Suppose now that v > 0. Let $\mathcal{V}_0 \subseteq \mathcal{V}$ be a subgroup of order 2^{v-1} . By induction hypothesis there is a subgroup $\mathcal{U}_0 \subseteq \mathcal{A}_1(P_\infty)$ with $\mathcal{V}_{\mathcal{U}_0} = \mathcal{V}_0$ and $\mathcal{W}_{\mathcal{U}_0} = \mathcal{W}$. Choose an element $b \in \mathcal{V} \setminus \mathcal{V}_0$ and an element $c \in K$ with $c^q + c = b^{q+1}$, and let $\beta = [b, c]$. For all elements $\gamma = [b_0, c_0] \in \mathcal{U}_0$ we have that

$$(\beta \gamma)^2 = [b + b_0, *]^2 = [0, (b + b_0)^{q+1}]$$

lies in \mathcal{U}_0 (because $\mathcal{V}^{q+1} \subseteq \mathcal{W}$). Now we claim that

$$\beta \cdot \mathcal{U}_0 = \mathcal{U}_0 \cdot \beta. \tag{3.10}$$

In order to prove this, consider the product $\beta \cdot \gamma$ with some $\gamma \in \mathcal{U}_0$. Since $\beta^4 = \gamma^4 = [0, 0]$ and all squares are in the center of $\mathcal{A}_1(P_\infty)$, we find that

$$\begin{split} \beta \gamma &= \beta \gamma (\beta \gamma^4 \beta^3) = (\beta \gamma)^2 \gamma^3 \beta^3 \\ &= \gamma^3 \cdot (\beta \gamma)^2 \cdot \beta^2 \cdot \beta \in \mathcal{U}_0 \cdot \mathcal{U}_0 \cdot \mathcal{U}_0 \cdot \beta = \mathcal{U}_0 \beta. \end{split}$$

This implies (3.10) and shows that $\mathcal{U} := \mathcal{U}_0 \cup \beta \cdot \mathcal{U}_0$ is a subgroup of $\mathcal{A}_1(P_\infty)$. It is easily checked that $\mathcal{V}_{\mathcal{U}} = \mathcal{V}$ and $\mathcal{W}_{\mathcal{U}} = \mathcal{W}$, as desired. \Box

COROLLARY 3.4. Let $q = 2^n$. Then we have

(i) If there exists a 2-subgroup $\mathcal{U} \subseteq \mathcal{A}$ such that the fixed field $H^{\mathcal{U}}$ has genus $g(H^{\mathcal{U}}) = 2^{n-\nu-1} \cdot (2^{n-\nu}-1) \neq 0$ then there is a 2-subgroup $\mathcal{U}' \subseteq \mathcal{A}$ with

$$g(H^{\mathcal{U}'}) = 2^{n-v'-1}(2^{n-w}-1), \text{ for all } v' \text{ with } 0 \leq v' \leq v.$$

- (ii) For all integers v, w with $0 \le v \le w < n$ there is a 2-subgroup $\mathcal{U} \subseteq \mathcal{A}$ such that $g(H^{\mathcal{U}}) = 2^{n-v-1}(2^{n-w} 1)$.
- (iii) Suppose that v and w satisfy the following conditions:

$$w|n, w|v, v|2n, 1 \leq v < n \text{ and } \frac{2^v - 1}{2^w - 1} | (2^n + 1).$$

Then there exists a 2-subgroup $\mathcal{U} \subseteq \mathcal{A}$ such that

$$g(H^{\mathcal{U}}) = 2^{n-\nu-1}(2^{n-\omega}-1).$$

Proof. (i) If $g(H^{\mathcal{U}}) = 2^{n-\nu-1}(2^{n-w}-1)$ then ord $\mathcal{V}_{\mathcal{U}} = 2^{\nu}$, ord $\mathcal{W}_{\mathcal{U}} = 2^{w}$ and $\mathcal{V}_{\mathcal{U}}^{q+1} \subseteq \mathcal{W}_{\mathcal{U}}$. For all $\nu' \leq \nu$ there is a subgroup $\mathcal{V}' \subseteq \mathcal{V}_{\mathcal{U}}$ of order $2^{\nu'}$, and clearly $(\mathcal{V}')^{q+1} \subseteq \mathcal{W}_{\mathcal{U}}$. By Theorem 3.3 there exists a 2-subgroup $\mathcal{U}' \subseteq \mathcal{A}$ with $g(H^{\mathcal{U}'}) = 2^{n-\nu'-1}(2^{n-w}-1)$.

(ii) First choose an additive subgroup $W \subseteq \mathbb{F}_q$ of order 2^w . As $b^{q+1} = b^2$ for all $b \in \mathbb{F}_q$, the mapping $b \mapsto b^{q+1}$ is an isomorphism of the additive group \mathbb{F}_q onto itself. Hence there is, for all $v \leq w$, a subgroup $V \subseteq \mathbb{F}_q$ of order 2^v with $V^{q+1} \subseteq W$. Now apply Theorem 3.3.

(iii) The conditions on v and w imply that $\mathbb{F}_{2^w} \subseteq \mathbb{F}_{2^v} \subseteq \mathbb{F}_{2^{2n}} = K$. The norm mapping $v: \mathbb{F}_{2^v} \to \mathbb{F}_{2^w}$ is given by $v(b) = b^{(2^v-1)/(2^w-1)}$, and the assumption $(2^v - 1)/(2^w - 1) \mid (2^n + 1)$ implies that $(\mathbb{F}_{2^v})^{2^n+1} \subseteq \mathbb{F}_{2^w}$. Now we can apply Theorem 3.3 with $\mathcal{V} = \mathbb{F}_{2^v}$ and $\mathcal{W} = \mathbb{F}_{2^w}$.

Remark 3.5. Here we want to indicate how hard it is to find a 2-subgroup $\mathcal{U} \subseteq \mathcal{A}$ with v > w. If w = 0, that means $\mathcal{W}_{\mathcal{U}} = \{0\}$, the condition $\mathcal{V}_{\mathcal{U}}^{q+1} \subseteq \mathcal{W}_{\mathcal{U}}$ implies v = 0.

Now suppose that w = 1, that means $\mathcal{W}_{\mathcal{U}} = \{0, \alpha\}$ for some $\alpha \in \mathbb{F}_q^*$. If v > 0 we then fix an element $b \in \mathcal{V}_{\mathcal{U}} \setminus \{0\}$. For another element $b_1 \in \mathcal{V}_{\mathcal{U}} \setminus \{0, b\}$, we have

$$(b+b_1)^{q+1} = b^{q+1} + b_1^{q+1} + b b_1^q + b^q b_1$$

Using the condition $\mathcal{V}_{\mathcal{U}}^{q+1} \subseteq \mathcal{W}_{\mathcal{U}} = \{0, \alpha\}$, we must have

$$\alpha = b \, b_1^q + b^q \, b_1. \tag{3.11}$$

We multiply Equation (3.11) by b and by b_1 , obtaining

$$b^2 b_1^q + \alpha b_1 = \alpha b$$
 and $\alpha b + b^q b_1^2 = \alpha b_1$.

Hence $b^q b_1^2 = b^2 b_1^q$ and $(b_1/b)^{q/2} = b_1/b$. We then conclude that $b_1/b \in \mathbb{F}_{q/2} \cap \mathbb{F}_{q^2} = \mathbb{F}_{2^d}$, with

$$d = \gcd(n-1, 2n) = \begin{cases} 1, & \text{if } n \text{ even} \\ 2, & \text{if } n \text{ odd.} \end{cases}$$

This shows that $v \leq 2$ and v = 2 occurs only if *n* is odd.

We have then shown that there is no 2-subgroup $\mathcal{U} \subseteq \mathcal{A}$ with genus as below.

$$g(H^{\mathcal{U}}) = \begin{cases} 2^{s}(2^{n}-1) & \text{with } 0 \leq s \leq n-2.\\ 2^{s}(2^{n-1}-1) & \text{with } n \text{ even and } 0 \leq s \leq n-3.\\ 2^{s}(2^{n-1}-1) & \text{with } n \text{ odd and } 0 \leq s \leq n-4. \end{cases}$$

4. The Fixed Fields of Subgroups of $\mathcal{A}(P_{\infty})$

As in Section 2, we denote by

$$\mathcal{A}(P_{\infty}) = \{ \sigma \in \mathcal{A} = \mathcal{A}ut(H/K) \mid \sigma P_{\infty} = P_{\infty} \}$$

the decomposition group of P_{∞} in the Galois extension $H/H^{\mathcal{A}}$. Any $\sigma \in \mathcal{A}(P_{\infty})$ acts as follows

$$\sigma(x) = ax + b, \qquad \sigma(y) = a^{q+1}y + ab^q x + c,$$
$$a \in K^{\times}, \quad b \in K, \qquad c^q + c = b^{q+1}.$$

For convenience we will indentify σ with this triple [a, b, c], so

$$\mathcal{A}(P_{\infty}) = \{ [a, b, c] \mid a \in K^{\times}, b \in K, c^{q} + c = b^{q+1} \}.$$

The group structure of $\mathcal{A}(P_{\infty})$ is given by

$$[a_1, b_1, c_1] \cdot [a_2, b_2, c_2] = [a_1a_2, a_2b_1 + b_2, a_2^{q+1}c_1 + a_2b_2^qb_1 + c_2].$$
(4.1)

The identity is the triple [1, 0, 0], the inverse of [a, b, c] is

$$[a, b, c]^{-1} = [a^{-1}, -a^{-1}b, a^{-(q+1)}c^q].$$
(4.2)

The unique *p*-Sylow subgroup of $\mathcal{A}(P_{\infty})$ is the group

$$\mathcal{A}_1(P_{\infty}) = \{ [1, b, c] \mid b \in K, c^q + c = b^{q+1} \}.$$

Our aim is to determine the genus of the fixed fields of *H* with respect to subgroups of $\mathcal{A}(P_{\infty})$. Let us fix some notation for the rest of this section.

 $\begin{aligned} \mathcal{G} &\subseteq \mathcal{A}(P_{\infty}) \text{ is a subgroup of } \mathcal{A}(P_{\infty}). \\ \mathcal{U}_{\mathcal{G}} &= \mathcal{G} \cap \mathcal{A}_{1}(P_{\infty}) \text{ is the unique } p\text{-Sylow subgroup of } \mathcal{G}. \\ \mathcal{V}_{\mathcal{G}} &= \{b \in K \mid \text{there is some } c \in K \text{ such that } [1, b, c] \in \mathcal{G}\}. \\ \mathcal{W}_{\mathcal{G}} &= \{c \in K \mid [1, 0, c] \in \mathcal{G}\}. \\ \text{ord } \mathcal{G} &= m \cdot p^{u} \text{ with } (m, p) = 1. \\ \text{ord } \mathcal{V}_{\mathcal{G}} &= p^{v}, \qquad \text{ord } \mathcal{W}_{\mathcal{G}} = p^{w}. \end{aligned}$ (4.3)

As we have considered p-groups already in Section 3, we will always assume in this Section that g is not a p-group, so

ord
$$\mathcal{G} = m \cdot p^u$$
 with $(m, p) = 1$, $m > 1$ and $u = v + w \ge 0$.

The Hurwitz genus formula (2.9) for the Galois extension H/H^{g} yields

$$q^{2} - q - 2 = \operatorname{ord} \mathcal{G} \cdot (2g(H^{\mathcal{G}}) - 2) + \sum_{P \in \mathbb{P}(H)} d_{\mathcal{G}}(P) \cdot \deg P,$$
 (4.4)

where $d_{g}(P)$ is the different exponent of P with respect to H/H^{g} .

The place P_{∞} is totally ramified in $H/H^{\mathfrak{g}}$. Using the transitivity of the different exponent in the extension $H^{\mathfrak{g}} \subseteq H^{\mathfrak{U}_{\mathfrak{g}}} \subseteq H$, we obtain from Equation (3.7) that

$$d_{\mathcal{G}}(P_{\infty}) = 2(p^{u} - 1) + q(p^{w} - 1) + p^{u}(m - 1)$$

= $p^{u}(m + 1) + q(p^{w} - 1) - 2$
= ord $\mathcal{G} + p^{u} + qp^{w} - q - 2.$ (4.5)

Let $S = \{P \in \mathbb{P}(H) \mid \deg P = 1 \text{ and } P \neq P_{\infty}\}$. It is easily seen that the only places $P \in \mathbb{P}(H) \setminus \{P_{\infty}\}$ which ramify in H/H^{g} are in *S*, and they are tamely ramified. Denoting by $e_{g}(P)$ the ramification index of *P* in H/H^{g} , we obtain from (4.4) and (4.5)

$$q(q - p^w) - p^u = \text{ord } \mathcal{G} \cdot (2g(H^{\mathcal{G}}) - 1) + \sum_{P \in S} (e_{\mathcal{G}}(P) - 1).$$
(4.6)

For tamely ramified places of degree one, ramification theory [St 1, III] yields

$$e_{\mathcal{G}}(P) - 1 = \#\{\sigma \in \mathcal{G} \setminus \{1\} \mid \sigma P = P\}.$$

Hence we obtain that

$$\sum_{P \in S} (e_{\mathcal{G}}(P) - 1) = \sum_{1 \neq \sigma \in \mathcal{G}} N_S(\sigma)$$
(4.7)

with $N_S(\sigma) := \#\{P \in S \mid \sigma P = P\}$, for $\sigma \in \mathcal{G} \setminus \{1\}$. Before we can determine $N_S(\sigma)$, we need some preparation. For $a \in K^{\times}$ denote by $\operatorname{ord}(a)$ the multiplicative order of *a*.

LEMMA 4.1. Let $\sigma = [a, b, c] \in \mathcal{A}(P_{\infty})$ with $a \neq 1$. Then we have (i) If $\operatorname{ord}(a)$ is not a divisor of q + 1, then $\operatorname{ord}(\sigma) = \operatorname{ord}(a)$.

(ii) If ord(a) divides q + 1, then

$$\operatorname{ord}(\sigma) = \begin{cases} \operatorname{ord}(a), & \text{if } c = ab^{q+1}/(a-1). \\ \\ p \cdot \operatorname{ord}(a), & \text{otherwise.} \end{cases}$$

Proof. Let $\tau := [1, e, f]$ with

$$e := b/(a-1)$$
 and $f^q + f = e^{q+1}$.

Then $\tau^{-1} = [1, -e, f^q]$, and one checks that

$$\tau^{-1}\sigma\tau = [a, 0, c^*]$$
 with $c^{*q} + c^* = 0$.

(i) If $\operatorname{ord}(a)$ does not divide q + 1, let $f^* := c^*/(a^{q+1} - 1)$. Then

$$f^{*q} + f^* = \frac{c^{*q}}{(a^{q+1} - 1)^q} + \frac{c^*}{a^{q+1} - 1} = \frac{1}{a^{q+1} - 1}(c^{*q} + c^*) = 0.$$

So $\tau^* := [1, 0, f^*]$ is in $A_1(P_{\infty})$, and

$$\begin{aligned} \tau^{*-1} \cdot [a, 0, c^*] \cdot \tau^* &= [a, 0, a^{q+1} f^{*q} + c^* + f^*] \\ &= [a, 0, -a^{q+1} f^* + f^* + c^*] = [a, 0, 0]. \end{aligned}$$

We have thus shown that σ is conjugate to the automorphism [a, 0, 0], hence

 $\operatorname{ord}(\sigma) = \operatorname{ord}([a, 0, 0]) = \operatorname{ord}(a).$

(ii) Now we assume that $a^{q+1} = 1$. With the same choice of $\tau = [1, e, f]$ as above we find that $\sigma^* := \tau^{-1}\sigma\tau = [a, 0, c^*]$ with

$$c^{*} = f^{q} + f + c - ab^{q}e - ae^{q+1} + e^{q}b$$

$$= e^{q+1} - ae^{q+1} - ab^{q}e + e^{q}b + c$$

$$= \frac{b^{q+1}}{(a-1)^{q+1}}(1-a) - ab^{q} \cdot \frac{b}{a-1} + b \cdot \frac{b^{q}}{(a-1)^{q}} + c$$

$$= \frac{-b^{q+1}}{a^{q}-1} - \frac{ab^{q+1}}{a-1} + \frac{b^{q+1}}{a^{q}-1} + c$$

$$= c - \frac{a}{a-1}b^{q+1}.$$

Hence $c^* = 0$ iff $c = ab^{q+1}/(a-1)$. One checks easily that the order of $\sigma^* = [a, 0, c^*]$ is

 $\operatorname{ord}(\sigma^*) = \begin{cases} \operatorname{ord}(a), & \text{if } c^* = 0, \\ p \cdot \operatorname{ord}(a), & \text{if } c^* \neq 0. \end{cases}$

Since $\operatorname{ord}(\sigma) = \operatorname{ord}(\sigma^*)$, Lemma 4.1 is completely proved.

LEMMA 4.2. Let $\sigma = [a, b, c] \in \mathcal{A}(P_{\infty})$ with $\sigma \neq 1$. Then

$$N_{S}(\sigma) = \begin{cases} 0, & \text{if } p \text{ divides } \operatorname{ord}(\sigma). \\ q, & \text{if } \operatorname{ord}(\sigma) \text{ divides } q+1. \\ 1, & \text{otherwise.} \end{cases}$$

Proof. (i) Suppose that $ord(\sigma)$ is divisible by p. As all $P \in S$ are tame in the extension $H/H^{\mathcal{A}(P_{\infty})}$, we conclude that $\sigma P \neq P$ for all $P \in S$, i.e. $N_S(\sigma) = 0$.

(ii) Suppose that $\sigma \neq 1$ and $\operatorname{ord}(\sigma)$ divides q + 1. The proof of Lemma 4.1 (ii) shows that σ is conjugate in $\mathcal{A}(P_{\infty})$ to $\sigma^* = [a, 0, 0]$ with $\operatorname{ord}(a) = \operatorname{ord}(\sigma)$ dividing q + 1. Then $N_S(\sigma) = N_S(\sigma^*)$, and $1 \neq \sigma^* \in \operatorname{Gal}(H/K(y))$. In the extension H/K(y) exactly q places $P \in S$ are ramified (namely the zeros of $y^q + y$), and they are totally ramified. Thus $N_S(\sigma^*) = q$.

(iii) Now we assume that $\operatorname{ord}(\sigma) = s$ with $s \mid (q^2 - 1)$ but s does not divide q+1. By Lemma 4.1(i), σ is conjugate in $\mathcal{A}(P_{\infty})$ to $\sigma^* = [a, 0, 0]$ with $\operatorname{ord}(a) = s$ (in particular $a^{q+1} \neq 1$). For $(\alpha, \beta) \in K \times K$ with $\beta^q + \beta = \alpha^{q+1}$ there is a unique place $P_{\alpha,\beta} \in S$ which is a common zero of $x - \alpha$ and $y - \beta$, and all places $P \in S$ can be described in this manner. We have

 $\sigma^*(P_{\alpha,\beta}) = P_{\alpha,\beta} \Leftrightarrow P_{\alpha,\beta}$ is a common zero of $\sigma^*(x-\alpha)$ and $\sigma^*(y-\beta)$.

Since $\sigma^*(x-\alpha) = ax - \alpha = a(x-\alpha) + \alpha(a-1)$ and $\sigma^*(y-\beta) = a^{q+1}y - \beta = a^{q+1}(y-\beta) + \beta(a^{q+1}-1)$, it follows that

$$\sigma^*(P_{\alpha,\beta}) = P_{\alpha,\beta} \iff \alpha(a-1) = \beta(a^{q+1}-1) = 0$$
$$\Leftrightarrow \alpha = \beta = 0.$$

Hence $N_S(\sigma) = N_S(\sigma^*) = 1$.

LEMMA 4.3. Notations as in (4.3). Let $a_0 \in K^{\times}$, $\operatorname{ord}(a_0) = s > 1$ and s|m.

- (i) If $s \nmid (q + 1)$, then there are exactly p^u elements $\sigma \in \mathcal{G}$ of the form $\sigma = [a_0, *, *]$ having order s.
- (ii) If $s \mid (q+1)$ then there are exactly p^{v} elements $\sigma \in \mathcal{G}$ of the form $\sigma = [a_{0}, *, *]$ having order s.

Proof. The mapping

$$\rho: \begin{cases} \mathcal{G} & \to K^{\times} \\ \sigma = [a, b, c] & \mapsto a \end{cases}$$

is a homomorphism, its kernel is the *p*-Sylow subgroup $\mathcal{U}_{\mathcal{G}}$ of \mathcal{G} of order p^{u} , its image is the unique subgroup of K^{\times} of order *m*. Since $\operatorname{ord}(a_{0}) = s$ is a divisor of *m*, there exists an automorphism $\sigma_{0} = [a_{0}, b_{0}, c_{0}] \in \mathcal{G}$. The coset $\sigma_{0} \cdot \mathcal{U}_{\mathcal{G}}$ is then

$$\sigma_0 \cdot \mathcal{U}_{\mathcal{G}} = \{ [a, b, c] \in \mathcal{G} \mid a = a_0 \}.$$

(i) Suppose that *s* is not a divisor of q + 1. It follows that all elements $\sigma \in \sigma_0 \cdot \mathcal{U}_g$ have order *s*, by Lemma 4.1(i).

(ii) Now we assume that *s* divides q+1. For each $b' \in \mathcal{V}_{g}$ we fix an element $c' \in K$ such that $[1, b', c'] \in \mathcal{G}$; then every $\sigma \in \sigma_0 \cdot \mathcal{U}_{g}$ can be uniquely represented as

 $\sigma = [a_0, b_0, c_0] \cdot [1, b', c'] \cdot [1, 0, c] = [a_0, b_0 + b', *],$

with $b' \in \mathcal{V}_{g}$ and $c \in \mathcal{W}_{g}$. By Lemma 4.1, there is at most one element $\sigma \in \mathcal{G}$ of order *s* with $\sigma = [a_0, b_0 + b', *]$ if a_0 and $b := b_0 + b'$ are given. The proof of Lemma 4.3(ii) will be finished when we show the following assertion:

CLAIM. Let $\sigma = [a_0, b, c'] \in \mathcal{G}$ and $\operatorname{ord}(a_0) = s$ be a divisor of q + 1. Then there exists an element $\tilde{\sigma} \in \mathcal{G}$ of order s such that $\tilde{\sigma} = [a_0, b, \tilde{c}]$.

Proof. If $\operatorname{ord}(\sigma) = s$ we take $\tilde{\sigma} = \sigma$. Otherwise, $\operatorname{ord}(\sigma) = p \cdot s$ by Lemma 4.1. For all $j \ge 1$ holds

$$[a_0, b, *]^j = \left[a_0^j, \frac{a_0^j - 1}{a_0 - 1} \cdot b, *\right].$$

Choose $t \ge 1$ with $p \cdot t \equiv 1 \mod s$. Then

$$\tilde{\sigma} := [a_0, b, *]^{pt} = \left[a_0, \frac{a_0 - 1}{a_0 - 1}b, *\right] = [a_0, b, *]$$

is an element of \mathcal{G} of order s whose first components are a_0 and b, as desired. \Box

THEOREM 4.4. Let $\mathcal{G} \subseteq \mathcal{A}(P_{\infty})$ be a subgroup of order $m \cdot p^{u}$ with m > 1, and define v, w as in (4.3). Let d := gcd(m, q + 1). Then the fixed field $H^{\mathcal{G}}$ has genus

$$g(H^{\mathcal{G}}) = \frac{p^n - p^w}{2mp^u}(p^n - (d-1)p^v).$$

Proof. There are exactly d - 1 elements $1 \neq a_0 \in K^{\times}$ with

 $ord(a_0) \mid m \text{ and } ord(a_0) \mid (q+1),$

and there are exactly m - d elements $a_0 \in K^{\times}$ with

$$ord(a_0) \mid m \text{ and } a_0^{q+1} \neq 1.$$

Now we obtain from Lemma 4.2 and Lemma 4.3

$$\sum_{1 \neq \sigma \in \mathcal{G}} N_S(\sigma) = (d-1)p^v q + (m-d)p^u$$
$$= \operatorname{ord} \mathcal{G} + d(qp^v - p^u) - qp^v$$

Formulas (4.6) and (4.7) imply that

$$q(q-p^w)-p^u=2g(H^{\mathcal{G}})\cdot mp^u+d(qp^v-p^u)-qp^v.$$

Substituting $q = p^n$ and u = v + w, the result follows.

Not for all choices of v, w and m with $0 \le w \le n, 0 \le v \le 2n$ and $m \mid (q^2 - 1)$ there exists a subgroup $\mathcal{G} \subseteq \mathcal{A}(P_{\infty})$ of order $m \cdot p^{v+w}$, with ord $\mathcal{V}_{\mathcal{G}} = p^v$ and ord $\mathcal{W}_{\mathcal{G}} = p^w$. For example if $d = \gcd(m, q + 1) > 1$, then there is no such a subgroup having v > n and w < n. We will not give necessary and sufficient conditions on v, w and m in the general case but we restrict ourselves to special cases. Let

$$\mathcal{G}_0 := \{ [a, 0, c] \mid a \in K^{\times} \text{ and } c^q + c = 0 \}.$$
 (4.8)

This is a subgroup of $\mathcal{A}(P_{\infty})$ of order $q(q^2 - 1)$, its fixed field is the rational function field $H^{g_0} = K(z)$ with $z = x^{q^2 - 1}$.

COROLLARY 4.5. Let $\mathcal{G} \subseteq \mathcal{G}_0$ be a subgroup of order ord $\mathcal{G} = m \cdot p^u$, with (m, p) = 1. Then the fixed field $H^{\mathcal{G}}$ has genus

$$g(H^{\mathcal{G}}) = \frac{1}{2m}(p^{n} + 1 - d)(p^{n-u} - 1),$$

where $d = \gcd(m, q + 1)$.

Proof. Note that $\mathcal{V}_{\mathfrak{G}} = 0$ for $\mathfrak{G} \subseteq \mathfrak{G}_0$, hence u = w and v = 0. The result follows immediately from Theorem 4.4.

PROPOSITION 4.6. Let $m \ge 1$, $d \ge 1$ and $0 \le u \le n$ be integers with the following properties.

(i) *m* | (*q*² − 1) and *d* = gcd(*m*, *q* + 1).
(ii) *s* := min {*r* ≥ 1 | *p^r* ≡ 1 mod (*m/d*)} is a divisor of *u*.

Then there exists a subgroup $\mathcal{G} \subseteq \mathcal{G}_0$ of order $m \cdot p^u$, and hence there exists a subfield $E \subseteq H$ with

$$g(E) = \frac{1}{2m}(p^n + 1 - d)(p^{n-u} - 1).$$

Proof. Let $a \in K^{\times}$ be an element with $a^m = 1$, and let $\alpha := a^{q+1}$. Then

 $\alpha^{m/d} = 1$, with $d = \operatorname{gcd}(m, q+1)$.

It follows that $\alpha \in \mathbb{F}_{p^s}$ where s is defined by (ii). Moreover we know that $q \equiv 1 \mod (m/d)$ (since $m \mid (q^2 - 1)$), hence $\mathbb{F}_{p^s} \subseteq \mathbb{F}_q$. The set $\mathcal{T} = \{c \in \mathcal{T} \mid (q^2 - 1)\}$

 $K | c^q + c = 0$ } is a one-dimensional \mathbb{F}_q -vector space, hence it is a vector space over \mathbb{F}_{p^s} of dimension n/s. Since $0 \leq u/s \leq n/s$, we can find an \mathbb{F}_{p^s} -subspace $W \subseteq \mathcal{T}$ of dimension u/s; then W is an additive subgroup of \mathcal{T} of order p^u . Let

$$\mathcal{G} := \{ [a, 0, c] \mid a^m = 1 \quad \text{and} \quad c \in \mathcal{W} \}.$$

Then \mathcal{G} is a subgroup of \mathcal{G}_0 : in fact, if $[a_1, 0, c_1]$ and $[a_2, 0, c_2]$ are elements of \mathcal{G} , then

$$[a_1, 0, c_1] \cdot [a_2, 0, c_2] = [a_1a_2, 0, a_2^{q+1}c_1 + c_2]$$

is in \mathcal{G} because $a_2^{q+1} \in \mathbb{F}_{p^s}$ and \mathcal{W} is an \mathbb{F}_{p^s} -module. The order of \mathcal{G} is obviously $m \cdot p^u$, as desired. \Box

Remark 4.7. One can show that all subgroups $\mathcal{G} \subseteq \mathcal{G}_0$ satisfy the numerical conditions of Proposition 4.6.

COROLLARY 4.8. Suppose that $m \mid (q+1)(p-1)$. Then for all u with $0 \leq u \leq n$ there exists a subgroup $\mathcal{G} \subseteq \mathcal{G}_0$ such that

$$g(H^{\mathcal{G}}) = \frac{1}{2m}(p^n + 1 - d)(p^{n-u} - 1),$$

where d = gcd(m, q + 1). In particular, if $m \mid (q + 1)$, then

$$g(H^{\mathcal{G}}) = \frac{1}{2} \left(\frac{p^n + 1}{m} - 1 \right) (p^{n-u} - 1).$$

Proof. The condition $m \mid (q+1)(p-1)$ implies that m/d is a divisor of p-1, hence s = 1 (with s as in Proposition 4.6(ii)). Now all assertions of Corollary 4.8 follow immediately.

The following special case of Proposition 4.6 is often useful.

COROLLARY 4.9. For any divisor m of $q^2 - 1$ there exists a subgroup $\mathcal{G} \subseteq \mathcal{G}_0$ such that

$$g(H^{\mathcal{G}}) = \frac{1}{2m}(p^n + 1 - d)(p^n - 1),$$

where $d = \gcd(m, q + 1)$.

Proof. Set u = 0 in Proposition 4.6.

5. The Fixed Fields of Some Tame Subgroups of A

We call a subgroup $\mathcal{G} \subseteq \mathcal{A}$ tame if the extension $H/H^{\mathcal{G}}$ is tame; i.e. the ramification index of any place $P \in \mathbb{P}(H)$ in the extension $H/H^{\mathcal{G}}$ is relatively prime to

the characteristic p of K. In particular, if p does not divide the order of \mathcal{G} then \mathcal{G} is tame.

In this section we will determine the genus $g(H^{g})$ for a large number of tame subgroups $g \subseteq A$. We start with

THEOREM 5.1. Let $\tilde{P} \in \mathbb{P}(H)$ be a place of degree 3, and let $\mathcal{B} \subseteq \mathcal{A}$ be the inertia group of \tilde{P} with respect to the field extension $H/H^{\mathcal{A}}$. The group \mathcal{B} is cyclic of order $q^2 - q + 1$, and for any integer $r \ge 1$ dividing $q^2 - q + 1$ there exists a unique subgroup $\mathcal{G} \subseteq \mathcal{B}$ of order ord $\mathcal{G} = r$. The genus of the fixed field $H^{\mathcal{G}}$ is then

$$g(H^{g}) = \frac{s-1}{2}$$
, with $s = \frac{q^2 - q + 1}{r}$

Proof. The group \mathcal{B} is cyclic of order $q^2 - q + 1$, and \tilde{P} is the only place of H that ramifies in the extension $H/H^{\mathcal{B}}$, see Corollary 2.3. Let $r \ge 1$ be a divisor of $q^2 - q + 1$ and $\mathcal{G} \subseteq \mathcal{B}$ denote the unique subgroup of \mathcal{B} of order r. Since \tilde{P} is totally ramified in $H/H^{\mathcal{G}}$, the different of $H/H^{\mathcal{G}}$ is

$$\operatorname{Diff}(H/H^{\mathcal{G}}) = (r-1) \cdot \tilde{P}.$$

The Hurwitz genus formula for H/H^{g} yields

$$q^2 - q - 2 = r(2g(H^{g}) - 2) + (r - 1) \cdot \deg \tilde{P}.$$

As deg $\tilde{P} = 3$, Theorem 5.1 follows immediately.

Next we prove a general formula for the genus $g(H^{g})$, where $g \subseteq A$ is any tame subgroup of A.

PROPOSITION 5.2. Let $\mathcal{G} \subseteq \mathcal{A}$ be a tame subgroup of \mathcal{A} satisfying the following hypothesis.

All
$$P \in \mathbb{P}(H)$$
 with deg $P > 1$ are unramified in $H/H^{\mathcal{G}}$. (*)

Then the genus of H^{g} is

$$g(H^{g}) = 1 + \frac{1}{2 \cdot \operatorname{ord} \mathfrak{G}} \cdot \left(q^{2} - q - 2 - \sum_{1 \neq \sigma \in \mathfrak{G}} N(\sigma) \right),$$

where $N(\sigma)$ is defined as

$$N(\sigma) := \#\{P \in \mathbb{P}(H) \mid \deg P = 1 \text{ and } \sigma P = P\}.$$
(5.1)

Proof. Denote by e(P) the ramification index of a place $P \in \mathbb{P}(H)$ in the extension $H/H^{\frac{6}{9}}$. By hypothesis (*), the degree of the different Diff $(H/H^{\frac{6}{9}})$ is

$$\begin{split} \deg \operatorname{Diff}(H/H^{\mathfrak{G}}) &= \sum_{P \in \mathbb{P}(H); \deg P = 1} (e(P) - 1) \\ &= \sum_{P \in \mathbb{P}(H); \deg P = 1} \sum_{1 \neq \sigma \in \mathfrak{G}; \sigma P = P} 1 = \sum_{1 \neq \sigma \in \mathfrak{G}} N(\sigma). \end{split}$$

Hence the Hurwitz genus formula (2.9) implies Proposition 5.2.

We will apply Proposition 5.2 to various tame subgroups $\mathcal{G} \subseteq \mathcal{A}$. First we will consider subgroups of the group $\mathcal{C} := \langle \epsilon, \omega \rangle \subseteq \mathcal{A}$ which is generated by the automorphims ϵ and ω given by (2.6) and (2.7):

$$\epsilon(x) = ax, \qquad \epsilon(y) = a^{q+1}y \text{ and } \omega(x) = x/y, \qquad \omega(y) = 1/y.$$

Here $a \in K$ is a primitive $(q^2 - 1)$ th root of unity. Any $\sigma \in \mathbb{C}$ is of the form

$$\sigma(x) = cx, \qquad \sigma(y) = c^{q+1}y \quad \text{with } c \in K^{\times},$$

or

$$\sigma(x) = c \cdot x/y, \qquad \sigma(y) = c^{q+1} \cdot 1/y \text{ with } c \in K^{\times}.$$

Hence $\operatorname{ord}(\mathfrak{C}) = 2(q^2 - 1)$, and \mathfrak{C} is tame if $\operatorname{char}(K) \neq 2$.

Moreover, hypothesis (*) from Proposition 5.2 holds for C (in order to prove this, consider ramification in the subextensions $H^{c} = K(y^{q-1} + y^{-(q-1)}) \subseteq K(y^{q-1}) \subseteq K(y) \subseteq H$).

LEMMA 5.3. Assume that $char(K) \neq 2$.

(i) Let
$$\sigma \in \mathcal{C}$$
 with $\sigma(x) = cx$, $\sigma(y) = c^{q+1}y$ and $1 \neq c \in K^{\times}$. Then

$$N(\sigma) = \begin{cases} 2, & \text{if } c^{q+1} \neq 1. \\ q+1, & \text{if } c^{q+1} = 1. \end{cases}$$

(ii) Let $\sigma \in \mathcal{C}$ with $\sigma(x) = c \cdot x/y$, $\sigma(y) = c^{q+1} \cdot 1/y$ and $c \in K^{\times}$. Then

$$N(\sigma) = \begin{cases} q+1, & \text{if } c \in \mathbb{F}_q \\ 0, & \text{if } c \notin \mathbb{F}_q \text{ and } c^{(q^2-1)/2} = 1. \\ 2, & \text{if } c \notin \mathbb{F}_q \text{ and } c^{(q^2-1)/2} = -1. \end{cases}$$

Proof. (i) This is a consequence of Lemma 4.2 (note that $N(\sigma) = 1 + N_S(\sigma)$, because $N_S(\sigma)$ does not count the place P_{∞}).

(ii) Now we determine $N(\sigma)$ for an automorphism $\sigma \in \mathcal{C}$ given by $\sigma(x) = c \cdot x/y$ and $\sigma(y) = c^{q+1} \cdot 1/y$, with $c \in K^{\times}$. The places $P \in \mathbb{P}(H)$ of degree one are $P = P_{\infty}$ and, for any pair $(\alpha, \beta) \in K \times K$ with $\beta^q + \beta = \alpha^{q+1}$, the unique common zero $P = P_{\alpha,\beta}$ of $x - \alpha$ and $y - \beta$. Obviously $\sigma(P_{\infty}) \neq P_{\infty}$ and $\sigma(P_{0,0}) \neq P_{0,0}$. For the remaining places $P_{\alpha,\beta}$ holds $\beta \neq 0$, and we have for such a place

$$\sigma(P_{\alpha,\beta}) = P_{\alpha,\beta} \iff \sigma(x)(P_{\alpha,\beta}) = \alpha \quad \text{and} \quad \sigma(y)(P_{\alpha,\beta}) = \beta$$
$$\Leftrightarrow \ c \cdot \alpha/\beta = \alpha \quad \text{and} \quad c^{q+1}/\beta = \beta$$
$$\Leftrightarrow \ \alpha(c\beta^{-1} - 1) = 0 \quad \text{and} \quad \beta^2 = c^{q+1}.$$

So we have to count all pairs $(\alpha, \beta) \in K \times K^{\times}$ satisfying

$$\beta^{q} + \beta = \alpha^{q+1}, \beta^{2} = c^{q+1} \text{ and } \alpha(c\beta^{-1} - 1) = 0$$
 (5.2)

One checks that (5.2) has precisely the following solutions $(\alpha, \beta) \in K \times K^{\times}$:

Case 1.
$$c \in \mathbb{F}_q$$
. Then $\beta = c$ and $\alpha^{q+1} = 2c$.

Case 2.
$$c \notin \mathbb{F}_q$$
 and $c^{(q^2-1)/2} = 1$. There are no solutions of (5.2).

Case 3.
$$c \notin \mathbb{F}_q$$
 and $c^{(q^2-1)/2} = -1$. Then $\alpha = 0$ and $\beta = \pm c^{(q+1)/2}$.

THEOREM 5.4. Assume that $char(K) \neq 2$. Let *m* be a divisor of $q^2 - 1$ and let $b \in K$ be an element of order *m*. Consider the group $\mathcal{G} := \langle \lambda, \omega \rangle \subseteq \mathbb{C}$ that is generated by the automorphisms λ and ω , where

 $\lambda(x) = bx,$ $\lambda(y) = b^{q+1}y$ and $\omega(x) = x/y,$ $\omega(y) = 1/y.$

Let $d := gcd(m, q + 1), \tilde{d} := gcd(m, q - 1)$ and

$$\delta := \begin{cases} 0, & \text{if } m \text{ divides } (q^2 - 1)/2, \\ m, & \text{otherwise.} \end{cases}$$

Then the fixed field H^{g} has genus

$$g(H^{g}) = \frac{1}{4m}((q+1)(q-1-d-\tilde{d})+2(m+d)-\delta).$$

Proof. The group \mathcal{G} has order 2m; it consists of the following automorphisms σ_c and τ_c where

$$\sigma_c(x) = cx, \qquad \sigma_c(y) = c^{q+1}y, \quad c^m = 1,$$

and

$$\tau_c(x) = c \cdot x/y, \qquad \tau_c(y) = c^{q+1} \cdot 1/y, \quad c^m = 1.$$

From Lemma 5.3(i) follows

$$\sum_{c^m = 1, c \neq 1} N(\sigma_c) = (q+1)(d-1) + 2(m-d).$$

The number of elements $c \in \mathbb{F}_q$ with $c^m = 1$ is $\tilde{d} = \gcd(m, q - 1)$. Now we distinguish two cases.

Case 1. m divides $(q^2 - 1)/2$. We see from Lemma 5.3 that in this case

$$\sum_{c^m=1} N(\tau_c) = \tilde{d}(q+1).$$

Case 2. m does not divide $(q^2 - 1)/2$. Now there are exactly m/2 elements $c \in K$ with $c^m = 1$ and $c^{(q^2-1)/2} = -1$, and all of them are in $K \setminus \mathbb{F}_q$. Hence Lemma 5.3 yields in this case

$$\sum_{c^m=1} N(\tau_c) = 2 \cdot m/2 + \tilde{d}(q+1) = \tilde{d}(q+1) + m.$$

In both cases we find that

$$\sum_{1\neq\sigma\in\mathfrak{G}}N(\sigma)=(q+1)(d+\tilde{d}-1)+2(m-d)+\delta,$$

with

$$\delta = \begin{cases} 0, & \text{if } m \text{ divides } (q^2 - 1)/2.\\ m, & \text{otherwise.} \end{cases}$$

Proposition 5.2 yields now the desired formula for the genus $g(H^{g})$.

EXAMPLE 5.5. $(char(K) \neq 2)$.

https://doi.org/10.1023/A:1001736016924 Published online by Cambridge University Press

(i) For any even divisor m of q - 1, there is a subfield $E \subseteq H$ of genus

$$g(E) = \frac{1}{4m}(q-1)(q-1-m).$$

(ii) For any odd divisor m of q - 1, there is a subfield $E \subseteq H$ of genus

$$g(E) = \frac{1}{4m}(q-1)(q-m).$$

(iii) For any even divisor m of q + 1, there is a subfield $E \subseteq H$ of genus

$$g(E) = \frac{1}{4m}(q-3)(q+1-m).$$

(iv) For any odd divisor m of q + 1, there is a subfield $E \subseteq H$ of genus

$$g(E) = \frac{1}{4m}((q-3)(q+1-m)+q+1).$$

Proof. We use notations as in Theorem 5.4.

(i) Let *m* be an even divisor of q - 1. Then d = gcd(m, q + 1) = 2, $\delta = 0$ and $\tilde{d} = \text{gcd}(m, q - 1) = m$. By Theorem 5.4 the genus of $E := H^{g}$ is

$$g(E) = \frac{1}{4m}((q+1)(q-1-2-m)+2(m+2)) = \frac{1}{4m}(q-1)(q-1-m)$$

(ii) If m is an odd divisor of q - 1, then d = gcd(m, q + 1) = 1, $\tilde{d} = \text{gcd}(m, q - 1) = m$ and $\delta = 0$. The genus of $E := H^{g}$ is in this case

$$g(E) = \frac{1}{4m}((q+1)(q-1-1-m) + 2(m+1)) = \frac{1}{4m}(q-1)(q-m).$$

The proofs of (iii) and (iv) are similar.

We consider another class of subgroups
$$\mathcal{G} \subseteq \mathcal{C}$$
 in the following example:

EXAMPLE 5.6. $(char(K) \neq 2)$. Let m be an even divisor (resp. odd divisor) of q - 1. Then there exists a subfield $E \subseteq H$ of genus

$$g(E) = \begin{cases} \frac{(q-1)^2}{4m} \left(resp. \frac{q(q-1)}{4m} \right), & \text{if } q \equiv 1 \mod 4, \\ \frac{(q-1)^2 + 2m}{4m} \left(resp. \frac{q(q-1) + 2m}{4m} \right), & \text{if } q \equiv 3 \mod 4. \end{cases}$$

Proof. Consider the following subgroup $\mathcal{G}_0 \subseteq \mathcal{A}$:

$$\mathcal{G}_0 := \{ \sigma \in \mathcal{A} \mid \sigma(x) = ax, \, \sigma(y) = a^{q+1}y \text{ with } a^m = 1 \}.$$

Choose an element $b \in K$ such that $b^{q-1} = -1$ and define an automorphism $\rho \in \mathcal{A}$ by

$$\rho(x) = b \cdot x/y, \qquad \rho(y) = b^{q+1} \cdot 1/y.$$

It is easily verified that $\mathcal{G} := \mathcal{G}_0 \cup \rho \mathcal{G}_0$ is a subgroup of \mathcal{C} of order ord $\mathcal{G} = 2m$. We get from Lemma 5.3(i):

$$\sum_{1 \neq \sigma \in \mathfrak{G}_0} N(\sigma) = (q+1) + (m-2) \cdot 2 = q - 3 + 2m, \text{ if } m \text{ is even, (resp.}$$
$$\sum_{1 \neq \sigma \in \mathfrak{G}_0} N(\sigma) = (m-1) \cdot 2, \text{ if } m \text{ is odd}.$$

The automorphisms $\tau \in \mathcal{G} \setminus \mathcal{G}_0$ are given by $\tau = \rho \circ \sigma$ with $\sigma \in \mathcal{G}_0$, hence

$$\tau(x) = ab \cdot x/y, \qquad \tau(y) = (ab)^{q+1} \cdot 1/y \text{ with } a^m = 1.$$

Since $ab \notin \mathbb{F}_q$ and

$$(ab)^{(q^2-1)/2} = (a^{q-1})^{(q+1)/2} \cdot (b^{q-1})^{(q+1)/2} = 1 \cdot (-1)^{(q+1)/2},$$

it follows from Lemma 5.3(ii) that

$$N(\tau) = \begin{cases} 0, \text{ for } q \equiv 3 \mod 4. \\ 2, \text{ for } q \equiv 1 \mod 4. \end{cases}$$

Therefore

$$\sum_{1 \neq \sigma \in \mathcal{G}} N(\sigma) = \begin{cases} q - 3 + 2m, \text{ (resp. } 2m - 2) \text{ for } q \equiv 3 \mod 4. \\ q - 3 + 4m, \text{ (resp. } 4m - 2) \text{ for } q \equiv 1 \mod 4. \end{cases}$$

Now we apply Proposition 5.2 and obtain the desired formula for the genus $g(H^{g})$.

Many other tame subgroups \mathcal{G} of \mathcal{A} can be constructed if we represent the Hermitian function field as in (2.15): H = K(u, v) with $u^{q+1} + v^{q+1} + 1 = 0$. All rational places $P \in \mathbb{P}(H)$ can then be described in the following manner.

(i)
$$P = Q_{\alpha,\beta}$$
 with $\alpha, \beta \in K$,
 $u(P) = \alpha, \quad v(P) = \beta \text{ and } \alpha^{q+1} + \beta^{q+1} + 1 = 0.$
(ii) $P = Q_{\alpha}$ with $\alpha \in K$,

$$u(P) = v(P) = \infty,$$
 $\left(\frac{u}{v}\right)(P) = \alpha$ and $\alpha^{q+1} + 1 = 0.$

Let $\zeta \in K$ be a primitive (q + 1)th root of unity and consider the automorphisms σ_1 and $\sigma_2 \in \mathcal{A}$ with

$$\sigma_1(u) = \zeta u, \qquad \sigma_1(v) = v, \quad \text{and} \quad \sigma_2(u) = u, \qquad \sigma_2(v) = \zeta v.$$

These maps generate a tame Abelian subgroup $\mathcal{D} = \langle \sigma_1, \sigma_2 \rangle \subseteq \mathcal{A}$,

$$\mathcal{D} = \{\sigma_1^i \sigma_2^j \mid i, j \in \mathbb{Z}/(q+1)\mathbb{Z}\},\tag{5.3}$$

which is isomorphic to $\mathbb{Z}/(q+1)\mathbb{Z} \times \mathbb{Z}/(q+1)\mathbb{Z}$. The fixed field $H^{\mathcal{D}}$ of \mathcal{D} is rational, namely $H^{\mathcal{D}} = K(u^{q+1}) = K(v^{q+1})$, and it is easily seen that only rational places of H are ramified in $H/H^{\mathcal{D}}$ (hence hypothesis (*) from Proposition 5.2 holds for all subgroups $\mathcal{G} \subseteq \mathcal{D}$).

LEMMA 5.7. Let $1 \neq \sigma = \sigma_1^i \sigma_2^j \in \mathcal{D}$ with $i, j \in \mathbb{Z}/(q+1)\mathbb{Z}$. Then

$$N(\sigma) = \begin{cases} q+1 & \text{if } i=0 \text{ or } j=0 \text{ or } i=j, \\ 0 & \text{otherwise.} \end{cases}$$

Proof. For i = 0 we have $\sigma = \sigma_2^j \in \text{Gal}(H/K(u))$. In the extension H/K(u) exactly the q + 1 zeros of v are ramified, hence $N(\sigma_2^j) = q + 1$. In a similar manner one shows that $N(\sigma_1^j) = N((\sigma_1\sigma_2)^j) = q + 1$ for $j \neq 0$ (observe that $(\sigma_1\sigma_2)^j \in \text{Gal}(H/K(u/v))$). Now let $\sigma = \sigma_1^i \sigma_2^j$ with $i, j \neq 0$ and $i \neq j$. We have to show that none of the places $P = Q_{\alpha,\beta}$ resp. $P = Q_{\alpha}$ is invariant under σ .

Case (i). $P = Q_{\alpha,\beta}$. Assume that $\sigma P = P$. Then $\alpha = u(P) = (\sigma u)(P) = \zeta^{i}\alpha$, hence $\alpha = 0$. Moreover $\beta = v(P) = (\sigma v)(P) = \zeta^{j}\beta$, hence $\beta = 0$. This conflicts with the condition $\alpha^{q+1} + \beta^{q+1} + 1 = 0$.

Case (ii). $P = Q_{\alpha}$. Assume that $\sigma P = P$. Then

$$\alpha = \left(\frac{u}{v}\right)(P) = \left(\frac{\sigma u}{\sigma v}\right)(P) = \zeta^{i-j}\alpha.$$

As $i \neq j$ it follows that $\alpha = 0$ which is a contradiction to $\alpha^{q+1} + 1 = 0$.

THEOREM 5.8. Let \mathcal{G} be a subgroup of \mathcal{D} (as defined in (5.3)). Then

$$g(H^{\mathcal{G}}) = 1 + \frac{(q+1)(q+1-r_1-r_2-r_3)}{2r}$$

with $r = \operatorname{ord}(\mathcal{G})$, $r_1 = \operatorname{ord}(\mathcal{G} \cap \langle \sigma_1 \rangle)$, $r_2 = \operatorname{ord}(\mathcal{G} \cap \langle \sigma_2 \rangle)$ and $r_3 = \operatorname{ord}(\mathcal{G} \cap \langle \sigma_1 \sigma_2 \rangle)$. *Proof.* Since $\langle \sigma_1 \rangle \cap \langle \sigma_2 \rangle = \langle \sigma_1 \rangle \cap \langle \sigma_1 \sigma_2 \rangle = \langle \sigma_2 \rangle \cap \langle \sigma_1 \sigma_2 \rangle = \{1\}$, we obtain

from Lemma 5.7 that

$$\sum_{1 \neq \sigma \in \mathcal{G}} N(\sigma) = ((r_1 - 1) + (r_2 - 1) + (r_3 - 1)) \cdot (q + 1).$$

The result follows now from Proposition 5.2.

EXAMPLE 5.9. Let a, b be integers. Define

$$d := \gcd(q + 1, a, b), \qquad d_1 := \gcd(q + 1, a),$$

$$d_2 := \gcd(q+1, b)$$
 and $d_3 := \gcd(q+1, a-b)$.

Then there exists a subgroup $\mathcal{G} \subseteq \mathcal{D}$ such that

$$g(H^{\mathcal{G}}) = 1 + \frac{1}{2}(d(q+1) - d_1 - d_2 - d_3).$$

Proof. We consider the cyclic group $\mathcal{G} \subseteq \mathcal{D}$ which is generated by the automorphism $\sigma := \sigma_1^a \sigma_2^b$. Then

ord(
$$\mathcal{G}_{1}$$
) = $(q+1)/d$, ord($\mathcal{G}_{1} \cap \langle \sigma_{1} \rangle$) = d_{2}/d ,
ord($\mathcal{G}_{1} \cap \langle \sigma_{2} \rangle$) = d_{1}/d and ord($\mathcal{G}_{1} \cap \langle \sigma_{1}\sigma_{2} \rangle$) = d_{3}/d .

The result now follows from Theorem 5.8.

EXAMPLE 5.10. Let $c \ge 1$ be an odd divisor (resp. even divisor) of (q + 1). Then there exists a subfield $H_0 \subseteq H$ such that H/H_0 is cyclic of degree $[H : H_0] = c$ and

$$g(H_0) = 1 + \frac{(q-2)(q+1)}{2c} \left(\text{resp. } g(H_0) = 1 + \frac{(q-3)(q+1)}{2c} \right).$$

Moreover the extension H/H_0 *is unramified if c is odd.*

Proof. Let $q + 1 = a \cdot c$ and b := 2a. With notations as in Example 5.9 (i.e., *g* is the cyclic group generated by $\sigma_1^a \sigma_2^{2a}$), we have

$$d = d_1 = d_2 = d_3 = a$$
, if c is odd,
 $d = d_1 = d_3 = a$; $d_2 = 2a$, if c is even.

The formula for the genus $g(H_0)$ now follows from Example 5.9. If *c* is an odd divisor of (q + 1) then H/H_0 is unramified because $d = d_1 = d_2 = d_3 = a$ in this case and hence

$$\mathcal{G} \cap \langle \sigma_1 \rangle = \mathcal{G} \cap \langle \sigma_2 \rangle = \mathcal{G} \cap \langle \sigma_1 \sigma_2 \rangle = \{1\}.$$

EXAMPLE 5.11. Let $a, b \ge 1$ be divisors of q + 1, and let d := gcd(a, b). Then there exists a subgroup $\mathcal{G} \subseteq \mathcal{D}$ such that $g(H^{\mathfrak{G}}) = 1 + \frac{1}{2}(ab - a - b - d)$.

Proof. In this case we choose the subgroup $\mathcal{G} \subseteq \mathcal{D}$ that is generated by σ_1^a and σ_2^b . Then

$$\operatorname{ord}(\mathcal{G}) = (q+1)^2/ab, \quad \operatorname{ord}(\mathcal{G} \cap \langle \sigma_1 \rangle) = (q+1)/a,$$

ON SUBFIELDS OF THE HERMITIAN FUNCTION FIELD

$$\operatorname{ord}(\mathcal{G} \cap \langle \sigma_2 \rangle) = (q+1)/b$$
 and $\operatorname{ord}(\mathcal{G} \cap \langle \sigma_1 \sigma_2 \rangle) = (q+1)/\operatorname{lcm}(a,b).$

The result follows from Theorem 5.8.

We give yet another example of a tame subgroup $\mathcal{E} \subseteq \mathcal{A}$. Let H = K(u, v) be generated as above, i.e. $u^{q+1} + v^{q+1} + 1 = 0$. Consider the automorphisms τ and $\rho \in \mathcal{A}$ given by

$$\tau(u) = v,$$
 $\tau(v) = u,$ and $\rho(u) = \frac{v}{u},$ $\rho(v) = \frac{1}{u}.$

Then $\tau^2 = \rho^3 = 1$ and $\tau^{-1}\rho\tau = \rho^2$, hence

$$\mathcal{E} := \langle \tau, \rho \rangle \tag{5.4}$$

is a group of order 6 isomorphic to the symmetric group \mathscr{S}_3 . For $p \neq 2, 3$ this is a tame subgroup of \mathscr{A} .

EXAMPLE 5.12. The genus of the fixed field of & is

$$g(H^{\mathcal{E}}) = \begin{cases} \frac{1}{12}(q^2 - 4q + 3) & \text{for } q \equiv 1 \mod 6, \\ \frac{1}{12}(q^2 - 4q + 7) & \text{for } q \equiv 5 \mod 6. \end{cases}$$

Proof. The automorphism τ fixes exactly the places $P = Q_{\alpha,\alpha}$ with $2\alpha^{q+1} + 1 = 0$, hence $N(\tau) = q + 1$. One checks easily that

$$N(\rho) = \begin{cases} 2 & \text{if } q \equiv 1 \mod 6, \\ 0 & \text{if } q \equiv 5 \mod 6. \end{cases}$$

As all elements of order 2 in \mathcal{E} are conjugate to τ , we obtain

$$\sum_{1 \neq \sigma \in \mathcal{E}} N(\sigma) = 3 \cdot N(\tau) + N(\rho) + N(\rho^2)$$
$$= 3(q+1) + 2N(\rho)$$
$$= \begin{cases} 3q+7 \text{ if } q \equiv 1 \mod 6, \\ 3q+3 \text{ if } q \equiv 5 \mod 6. \end{cases}$$

The claim follows now from Proposition 5.2.

6. Supplementary Remarks

In Section 1 we defined the set $\Gamma(q^2) = \{g \ge 0 \mid \text{there is a maximal function field over } \mathbb{F}_{q^2} \text{ of genus } g\}$, and we remarked that

$$g \in \Gamma(q^2) \Rightarrow g \leqslant \frac{(q-1)^2}{4} \quad \text{or } g = \frac{q(q-1)}{2}.$$
 (6.1)

The genera of subfields of the Hermitian function field H/\mathbb{F}_{q^2} are in $\Gamma(q^2)$. Combining (6.1) with the results of this paper, we obtain.

Remark 6.1. For $q \leq 16$ holds

$$\begin{split} &\Gamma(2^2) = \{0, 1\}, \qquad \Gamma(3^2) = \{0, 1, 3\}; \\ &\Gamma(4^2) = \{0, 1, 2, 6\}; \qquad \Gamma(5^2) = \{0, 1, 2, 3, 4, 10\}; \\ &\{0, 1, 2, 3, 5, 7, 9, 21\} \subseteq \Gamma(7^2) \subseteq [0, 9] \cup \{21\}; \\ &\{0, 1, 2, 3, 4, 6, 7, 9, 10, 12, 28\} \subseteq \Gamma(8^2) \subseteq [0, 12] \cup \{28\}; \\ &\{0, 1, 2, 3, 4, 6, 8, 9, 12, 16, 36\} \subseteq \Gamma(9^2) \subseteq [0, 16] \cup \{36\}; \\ &\{0, 1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 15, 18, 19, 25, 55\} \subseteq \Gamma(11^2) \\ &\subseteq [0, 25] \cup \{55\}; \\ &\{0, 2, 3, 6, 9, 12, 15, 18, 26, 36, 78\} \subseteq \Gamma(13^2) \subseteq [0, 36] \cup \{78\}; \end{split}$$

 $\{0, 1, 2, 4, 6, 8, 12, 24, 28, 40, 56, 120\} \subseteq \Gamma(16^2) \subseteq [0, 56] \cup \{120\}.$

Proof. We give the details only for q = 5 and q = 8; the other cases are similar.

q = 5: $\Gamma(5^2) \subseteq \{0, 1, 2, 3, 4, 10\}$ follows from (6.1). By Corollary 4.9 the Hermitian function field H/\mathbb{F}_{25} contains subfields of genus 0, 1, 2, 4 and 10, and Theorem 5.1 provides a subfield of genus 3.

q = 8: $\Gamma(8^2) \subseteq [0, 12] \cup \{28\}$ follows from (6.1). By Corollary 4.9 the Hermitian function field over \mathbb{F}_{64} contains subfields of genus 0, 1, 4, 7 and 28. Corollary 3.4 gives subfields of *H* of genus $g = 2^{2-\nu}(2^{3-\nu}-1)$ for $(\nu, w) = (0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)$ and (2, 1), so 1, 2, 3, 4, 6, 12, 28 are in $\Gamma(8^2)$. Theorem 5.1 provides a subfield of genus (19 - 1)/2 = 9, and Theorem 5.8 yields a subfield of genus 10 (taking r = 3 and $r_1 = r_2 = r_3 = 1$, with notations as in Theorem 5.8). □

All entries in the tables of Remark 6.1 come from subfields of the Hermitian function field. We can add the entry g = 1 for q = 13, since $1 \in \Gamma(q^2)$ for all q, see

[Se]. The results of Remark 6.1 for q = 2, 3, 4, 5 and 9 are known [Se], [X–St], [G–V 8]. For q = 8 the fact that $9 \in \Gamma(8^2)$ seems to be new [G–V 8].

It is known that $\{0, 1, 2\} \subseteq \Gamma(q^2)$ for all sufficiently large q, see [Se]. For an arbitrary integer $a \ge 0$ we can prove a weaker result

Remark 6.2. Given an integer $a \ge 0$, there exist infinitely many q with $a \in \Gamma(q^2)$.

Proof. Choose q such that $q \equiv -1 \mod (2a + 1)$ holds. Then $m := (q^2 - 1)/(2a + 1)$ is a divisor of $q^2 - 1$ and gcd (m, q + 1) = (q + 1)/(2a + 1). By Corollary 4.9 there is a subfield E of H of genus

$$g = \frac{1}{2m} \left(q + 1 - \frac{q+1}{2a+1} \right) (q-1) = a.$$

In many cases one can easily describe the fixed field $E = H^{\mathcal{G}}$ (for a group \mathcal{G} of automorphisms of the Hermitian function field H) in terms of generators of E. Here are some examples.

EXAMPLE 6.3 (cf. Corollary 4.9). Consider $H = \mathbb{F}_{q^2}(x, y)$ with $y^q + y = x^{q+1}$ and the automorphism ϵ of H/\mathbb{F}_{q^2} given by $\epsilon(x) = ax$, $\epsilon(y) = a^{q+1}y$, where a is a primitive $(q^2 - 1)$ th root of unity. Then $\operatorname{ord}(\epsilon) = q^2 - 1$, and for any $m \mid (q^2 - 1)$ there is a unique subgroup $\mathcal{G} \subseteq \langle \epsilon \rangle$ of order m. The fixed field $E = H^{\mathcal{G}}$ can be generated by two functions z, t satisfying the irreducible equation

 $z^n = t(t+1)^{q-1}$, with $n := (q^2 - 1)/m$.

Proof. Let $t := y^{q-1}$; then $H = \mathbb{F}_{q^2}(x, y) = \mathbb{F}_{q^2}(x, t)$ with

$$x^{q^2-1} = (y^q + y)^{q-1} = y^{q-1}(y^{q-1} + 1)^{q-1} = t(t+1)^{q-1}.$$

Setting $z := x^m$ we obtain $E = H^{\mathcal{G}} = \mathbb{F}_{q^2}(z, t)$ and $z^n = t(t+1)^{q-1}$. \Box

EXAMPLE 6.4 (cf. also [La] and [L, p. 40]). *Here we give equations for some other maximal curves. Let the Hermitian function field be represented by its Fermat equation:*

$$v^{q+1} = (-1) \cdot (u^{q+1} + 1). \tag{6.2}$$

We will consider two cases and in both cases we will have that u^{q+1} belongs to the function field of the maximal curve considered and hence Theorem 5.8 applies to both cases.

Case 1. Let $k \in \mathbb{N}$ and m|(q+1). Multiplying Equation (6.2) by u^{km} , we get

$$z^{m} + t^{k} \left(t^{\frac{q+1}{m}} + 1 \right) = 0, \tag{6.3}$$

where $z = u^k \cdot v^{\frac{q+1}{m}}$ and $t = u^m$.

Equation (6.3) is the equation of a maximal curve over \mathbb{F}_{q^2} with genus g given by (see [St 1, Prop. III.7.3])

$$2g = \frac{q+1}{m}(m-1) - (\delta_1 + \delta_2 - 2),$$

where $\delta_1 = \gcd(m, k)$ and $\delta_2 = \gcd\left(m, \frac{q+1}{m} + k\right)$.

The field K(z, t) is the fixed field of the group \mathcal{G} inside \mathcal{D} (notations as in (5.3)) of order q + 1 corresponding to pairs (i, j) with

$$i \equiv 0 \left(\mod \frac{q+1}{m} \right)$$
 and $\frac{mi}{q+1} \cdot k + j \equiv 0 \pmod{m}$.

Case 2: Let *k* and *b* be two natural numbers. Raising Equation (6.2) to the *k*th power and then multiplying by $u^{b(q+1)}$, we get

$$z^{m_1} = (-1)^k t^{bm} \cdot (t^m + 1)^k, \tag{6.4}$$

where m_1 and m are divisors of (q + 1), $z = (u^b v^k)^{\frac{q+1}{m_1}}$ and $t = u^{\frac{q+1}{m}}$.

Equation (6.4) is the equation of a maximal curve over \mathbb{F}_{q^2} with genus g given by (see [St 1, Prop. III.7.3]) $2g = m(m_1 - \delta_1) - (\delta_2 + \delta_3 - 2)$, where $\delta_1 = \gcd(m_1, k)$, $\delta_2 = \gcd(m_1, bm)$ and $\delta_3 = \gcd(m_1, (b + k)m)$.

In this case, the field K(z, t) is the fixed field of the group \mathcal{G} of the order $(q+1)^2/mm_1$ corresponding to pairs (i, j) with

$$i \equiv 0 \pmod{m}$$
 and $ib + jk \equiv 0 \pmod{m_1}$.

Remark 6.5. Defining equations for the fields H^{g} , where $g \subseteq A$ is a nonabelian tame subgroup of A as considered in Theorem 5.4, are related to Chebyshev polynomials; for details we refer to [G–S].

Remark 6.6. Subfields of the Hermitian function field cover almost all examples of maximal function fields that we found in the literature, see [D–H], [D–S–V], [G–V, 1–8], [I], [La], [M–K], [Se], [St 1], [W 1,2].

Except at the end of Section 5 and in Example 6.4 we have not used the fact that the Hermitian function field H can be given by a Fermat equation.

H = K(u, v) with $u^{q+1} + v^{q+1} + 1 = 0$.

There is a natural subgroup \mathcal{F} of the automorphism group \mathcal{A} to consider here. It consists of the elements $\sigma(u) = au + bv$ and $\sigma(v) = cu + dv$ satisfying:

$$a^{q+1} + c^{q+1} = 1$$
, $b^{q+1} + d^{q+1} = 1$ and $a^q b + c^q d = 0$.

https://doi.org/10.1023/A:1001736016924 Published online by Cambridge University Press

It can be shown that the order of this subgroup \mathcal{F} is equal to $(q^3 - q) \cdot (q + 1)$. It would be interesting to determine the genera of fixed fields of subgroups of this group \mathcal{F} . At the end of Section 5 we have considered subgroups with b = c = 0. Here we will consider two further examples:

EXAMPLE 6.7 (char $K \neq 2$). For two elements $b, c \in K$ with $b^{q+1} = c^{q+1} = 1$, let σ be the automorphism given by:

$$\sigma(u) = bv$$
 and $\sigma(v) = cu$.

We then have that

$$\sigma^{2n}(u) = (bc)^n \cdot u \quad and \quad \sigma^{2n}(v) = (bc)^n \cdot v;$$

$$\sigma^{2n+1}(u) = (bc)^n \cdot bv \quad and \quad \sigma^{2n+1}(v) = (bc)^n \cdot cu.$$

Denoting by M the multiplicative order of the element bc, we have that the cyclic subgroup of \mathcal{F} generated by σ has order equal to 2M. Since we assumed that char $K \neq 2$, the cyclic group $\langle \sigma \rangle$ is tame. Denoting by $N(\sigma_1)$ the number of fixed points of an automorphism $\sigma_1 \in \langle \sigma \rangle$, one can check that:

$$N(\sigma^{2n}) = q + 1, \text{ for } n = 1, 2, \dots, M - 1, \text{ and}$$
$$N(\sigma^{2n+1}) = \begin{cases} 2, & \text{if } (q+1)/M \text{ is odd,} \\ q+1, & \text{if } M \text{ is odd and } n = (M-1)/2, \\ 0, & \text{otherwise.} \end{cases}$$

Now it follows from Proposition 5.2 that the genus g of the fixed field of $\langle \sigma \rangle$ *is given by:*

 $4Mg = \begin{cases} (q+1)(q-1) - (q-1)M, & \text{if } (q+1)/M \text{ odd,} \\ (q+1)(q-1) - (q-3)M, & \text{if } (q+1)/M \text{ even and } M \text{ even,} \\ (q+1)(q-2) - (q-3)M, & \text{if } M \text{ odd.} \end{cases}$

If *M* is odd the genus formula above coincides with the one in Example 5.5(iv). If *M* is even and *M* is a proper divisor of (q + 1), then the genus formula above does not coincide with the one given in Example 5.5(iii).

EXAMPLE 6.8 (char $K \neq 2$). Let m be a divisor of (q + 1). We have m^2 automorphisms of H of the form below.

$$\sigma(u) = bv \quad and \quad \sigma(v) = cu, \quad with \ b^m = c^m = 1.$$
(6.5)

These automorphisms generate a subgroup \mathcal{G} of \mathcal{F} having $2m^2$ elements; the other m^2 elements being of the form below.

$$\tau(u) = bu \quad and \quad \tau(v) = cv, \quad with \ b^m = c^m = 1.$$
 (6.6)

Since char(K) $\neq 2$, we have that G is tame. The number of fixed points $N(\tau)$ for automorphisms τ as in (6.6) above is easily seen to satisfy (see Lemma 5.7):

$$N(\tau) = \begin{cases} q+1, & \text{if } b = 1 \text{ and } c \neq 1, \\ q+1, & \text{if } c = 1 \text{ and } b \neq 1, \\ q+1, & \text{if } b = c \neq 1, \\ 0, & \text{otherwise.} \end{cases}$$

Hence summing over τ as in (6.6), we get

$$\sum_{1 \neq \tau} N(\tau) = 3(m-1)(q+1).$$
(6.7)

It remains to determine $N(\sigma)$ for automorphisms σ as in (6.5) above. For these automorphisms we have:

$$N(\sigma) = \begin{cases} q+1, & \text{if } bc = 1.\\ 2, & \text{if } (bc)^{\frac{q+1}{2}} = -1\\ 0, & otherwise. \end{cases}$$

Hence summing over σ as in (6.5), we get

$$\sum_{\sigma} N(\sigma) = \begin{cases} m(q+1), & \text{if } (q+1)/m \text{ is even.} \\ m(q+1+m), & \text{if } (q+1)/m \text{ is odd.} \end{cases}$$
(6.8)

It now follows from (6.7), (6.8) and Proposition 5.2 that the genus $g = g(H^{\text{g}})$ is given by:

$$4m^{2}g = \begin{cases} 4m^{2} + (q+1)(q+1-4m), & \text{if } (q+1)/m \text{ is even.} \\ 3m^{2} + (q+1)(q+1-4m), & \text{if } (q+1)/m \text{ is odd.} \end{cases}$$

Particularly interesting is the case m = 2. In this case the group \mathcal{G} is the dihedral group with 8 elements and we have:

$$g = \begin{cases} (q-3)^2/16, & \text{if } q \equiv 3 \mod 4. \\ (q-1)(q-5)/16, & \text{if } q \equiv 1 \mod 4. \end{cases}$$

The following remark was communicated to us by J.-P. Serre:

Remark 6.9. The natural action of $\mathcal{A} = \mathcal{A}ut(H)$ on the *l*-adic Tate module of the Hermitian curve (where *l* is a prime number not dividing *q*) gives rise to a representation $\rho: \mathcal{A} \to \operatorname{GL}_{2g}(\mathbb{Q}_l)$. The corresponding character χ is irreducible and has values in \mathbb{Q} . For a subgroup $\mathcal{B} \subseteq \mathcal{A}$, the genus $g(H^{\mathcal{B}})$ is given by

$$2g(H^{\mathscr{B}}) = \frac{1}{\operatorname{ord}} \, \mathscr{B} \cdot \sum_{\sigma \in \mathscr{B}} \chi(\sigma).$$

This formula comes from the orthogonality relations for characters of irreducible representations, applied to the restriction $\chi|_{\mathcal{B}}$ and to the identity id_{\mathcal{B}}.

As an example, consider the case q = 8 and a subgroup $\mathcal{B} = \langle \sigma \rangle \subseteq \mathcal{A}$ of order 3. The values of the character χ can be found in the Atlas of finite groups [C, p. 64]. Depending on the type of σ one has $\chi(\sigma) = -7$ or $\chi(\sigma) = -1$ or $\chi(\sigma) = 2$. Hence

$$g(H^{\mathscr{B}}) = \frac{1}{6}(\chi(\mathrm{id}) + \chi(\sigma) + \chi(\sigma^2)) = \frac{1}{6}(56 + 2 \cdot \chi(\sigma)),$$

and therefore $g(H^{\mathcal{B}}) = 7$ or 9 or 10. The case $g(H^{\mathcal{B}}) = 9$ corresponds to our Theorem 5.1; the other cases are special cases of Example 5.11.

References

- [C] Conway, J. H. et al.: Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
- [D–H] Davenport, H. and Hasse, H.: Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math. 172 (1934), 151–182.
- [D–S–V] Duursma, I., Stichtenoth, H. and Voss, C.: Generalized Hamming weights for duals of BCH codes, and maximal algebraic function fields, In: R. Pellikaan, M. Perret, S. G. Vladut (eds), Arithmetic, Geometry and Coding Theory, Proceedings Luminy (1993), De Gruyter, Berlin, 1996, pp. 53–65.
- [F–T 1] Fuhrmann, R. and Torres, F.: The genus of curves over finite fields with many rational points, *Manuscr. Math.* 89 (1996), 103–106.
- [F–T 2] Fuhrmann, R. and Torres, F.: On curves over finite fields with many rational points. International Centre for Theoretical Physics Preprint IC/96/47, Trieste, 1996.
- [F–G–T] Fuhrmann, R., Garcia, A. and Torres, F.: On maximal curves, *J. Number Theory* **67** (1997), 29–51.
- [G–S] Garcia, A. and Stichtenoth, H.: On Chebyshev polynomials and maximal curves, Preprint 1998.
- [G–V 1] van der Geer, G. and van der Vlugt, M.: Weight distributions for a certain class of codes and maximal curves, *Discr. Math.* 106/107 (1992), 209–218.
- [G–V 2] van der Geer, G. and van der Vlugt, M.: Fibre products of Artin–Schreier curves and generalized Hamming weights of codes, *J. Comb. Theory A* **70** (1995), 337–348.
- [G–V 3] van der Geer, G. and van der Vlugt, M.: Curves over finite fields of characteristic 2 with many rational points, C.R. Acad. Sci. Paris, Ser. I 317 (1993), 693–597.
- [G–V 4] van der Geer, G. and van der Vlugt, M.: Generalized Hamming weights of codes and curves over finite fields with many points, in *Israel Math. Conf. Proc.* **9** (1996), 417–432.
- [G–V 5] van der Geer, G. and van der Vlugt, M.: Generalized Reed-Muller Codes and Curves with Many Points, Preprint 1997.
- [G-V 6] van der Geer, G. and van der Vlugt, M.: Quadratic forms, generalized Hamming weights of codes and curves with many points, J. Number Theory 59 (1966), 20–36.
- [G–V 7] van der Geer, G. and van der Vlugt, M.: How to construct curves over finite fields with many points, In: F. Cortona (ed.), *Arithmetic Geometry*, Cambridge Univ. Press, Cambridge, 1997, pp. 169–189.
- [G–V 8] van der Geer, G. and van der Vlugt, M.: Tables for the Function $N_q(g)$, Jan. 1998. ttp://www.wins.uva.nl/~geer.

[I]	Ibukiyama, T.: On rational points of curves of genus 3 over finite fields. <i>Tohoku Math. J.</i> 45 (1993) 311–329.
[L]	Lang, S.: Introduction to Algebraic and Abelian Functions, 2nd edn, Springer-Verlag, Berlin, Heidelberg, 1982.
[La]	Lachaud, G.: Sommes d'Eisenstein et nombre de points de certaines courbes algébriques sur les corps finis, <i>C.R. Acad. Sci. Paris</i> 305 (1987), 729–732.
[Le]	Leopoldt, H. W.: Über die Automorphismengruppe des Fermatkörpers, <i>J. Number Theory</i> 56 (1996), 256–282.
[M–K]	Miura, S. and Kamiya, N.: Geometric Goppa codes on some maximal curves and their minimum distance, <i>Proc. IEEE Workshop on Information Theory</i> , Susono-shi, Japan, June (1993), pp. 85–86.
[N–X]	Niederreiter, H. and Xing, C. P.: Drinfeld modules of rank 1 and algebraic curves with many rational points II, <i>Acta Arith.</i> 81 (1997), 81–100.
[R–St]	Rück, H. G. and Stichtenoth, H.: A Characterization of Hermitian Function Fields over Finite Fields, <i>J. Reine Angew. Math.</i> 457 (1994), 185–188.

ARNALDO GARCIA ET AL.

- [Se] Serre, J.-P.: Résumé des cours de 1983–1984, In: Ann. Collège de France, 1984, pp. 79–83.
- [St 1] Stichtenoth, H.: Algebraic Function Fields and Codes, Springer-Verlag, Berlin, 1993.
- Stichtenoth, H.: Algebraic-geometric codes associated to Artin-Schreier extensions of [St 2] $\mathbb{F}_q(z)$, In: Proc. 2nd Int. Workshop on Algebra and Combin. Coding Theory, Leningrad (1990), pp. 203–206.
- Stichtenoth, H.: Über die Automorphismengruppe eines algebraischen Funktionenkörpers [St 3] von Primzahlcharakteristik I, II, Arch. Math. 24 (1973), 524-544 and 615-631.
- Wolfmann, J.: Nombre de points rationnels de courbes algébriques sur des corps finis [W 1] associées à des codes cycliques, C.R. Acad. Sci. Paris, Sér. I 305 (1987), 345-348.
- Wolfmann, J.: The number of points on certain algebraic curves over finite fields, Comm. [W 2] Algebra 17 (1989), 2055-2060.
- Xing, C. P. and Stichtenoth, H.: The genus of maximal function fields over finite fields, [X–St] Manuscr. Math. 86 (1995), 217-224.