
J. Austral. Math. Soc. Ser. B 31(1989), 122-134

A CONJUGATE DIRECTION IMPLEMENTATION OF
THE BFGS ALGORITHM WITH AUTOMATIC SCALING

IAN D. COOPE1

(Received 20 March 1988; revised 28 August 1988)

Abstract

A new implementation of the BFGS algorithm for unconstrained optimisation is
reported which utilises a conjugate factorisation of the approximating Hessian ma-
trix. The implementation is especially useful when gradient information is esti-
mated by finite difference formulae and it is well suited to machines which are able
to exploit parallel processing.

1. Introduction

Quasi-Newton methods for the unconstrained minimisation of f(x), x e R",
are line search algorithms which use the basic iteration

JC(*+') = x (*) + Q (* y *) > k = i,2,..., (l . i)

to generate a sequence of approximations {xW ,k = 2 ,3 , . . .} to a stationary
point, x*, of f{x) from a given starting vector x(1).

Convergence of the iterative scheme (1.1) is normally achieved by choosing
the scalar a(*> > 0 to reduce the objective function, f{x), at each iteration
by satisfying a descent condition of the form

/(*(*+>)) < /(*<*>) + />a<Vfc)TV/(x(*>), p € (0,1/2), (1.2)

which is a little stronger than requiring /(x(fc+1)) < /(x(A:)).
The search direction, />(fc) e R", in equation (1.1) is determined by solving

a linear system of equations

-g(*>, (1.3)

1 Department of Mathematics, University of Canterbury, Christchurch, N.Z.
© Copyright Australian Mathematical Society 1989, Serial-fee code 0334-2700/89

122

https://doi.org/10.1017/S0334270000006524 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006524

[2] BFGS algorithm with automatic scaling 123

where B(k) is a positive definite approximation to the n x n Hessian matrix
of second derivatives, V2/(*(fc))> a n < i £(fc) e R" denotes the gradient vector
V/(x(fe)). Often the choice 5 (1) = / is made and we consider the case when
the highly successful BFGS formula (Broyden [2], Fletcher [4], Goldfarb [6],
Shanno [14]),

PTBp apry\

where y(<:) is the vector
y<*>= j(*+l> _£<*>, (1.5)

is used to update the matrix B<~k) e R"x".
Instead of working directly with the matrix B, or its inverse, most modern

implementations store and update the Choleski factors of B since this enables
the search direction p to be obtained in O{n2) floating point operations in
a numerically stable manner. Recently, however, Han [8], and Powell [11]
have considered updating factorisations of the inverse to the approximating
Hessian matrix. In order to describe their approach we introduce some extra
notation.

If S is a nonsingular nx n matrix satisfying

B~1=SST, (1.6)

then S is defined to be a conjugate factorisation of the matrix B, and we note
that the columns of 5, {5, , /= 1,2, . . . ,«} satisfy the conjugacy conditions
sjBsj = 0, 1' £ j . Clearly S is not defined uniquely by (1.6) because S
may be post-multiplied by any n x n orthogonal matrix without changing the
definition of B.

Now, the search vector, p = -B~lg, can be calculated in In1 operations
by first forming the vector

y = sTg, (1.7)

then p = -Sy. The vector y e R" has components

yt = sJVf, i = l , 2 , . . . , n , (1.8)

which are the directional derivatives of f(x) in the directions {si}". This
latter observation is important if gradient information is estimated by finite
difference formulae because it allows the possibility of calculating approxi-
mations to the vector y directly. Thus if forward differences are used then

Vi = {fix + h,s,) - f{x)) I hi + 0{hi). (1.9)

If, however, the more accurate central difference formula,

Vi = ifix + htst) - f{x - hiSi))/(2h,) + 0{hj), (1.10)

https://doi.org/10.1017/S0334270000006524 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006524

124 I. D. Coope [3]

is used, then there is an added bonus in that some second derivative terms
can be estimated without requiring any extra function evaluations since

sJ[V2f(x)]Si = {f{x + hiSi) - 2f{x) + f{x - h,s,))/hj + 0{hj). (1.11)

This estimated second derivative may be used immediately to rescale the
length of the vector s,, and we refer to this process as automatic scaling.
Note that a different differencing interval hi, i = 1,2,. . . , n, has been used
for each of the directions s,>, i = 1,2,. . . , n, in (1.9)-(1.11) since the lengths
of these vectors may be quite different.

In the next section we show how to rewrite the BFGS formula in terms
of the conjugate factorisation (1.6) in a way that allows automatic scaling to
be incorporated easily. Section 3 describes a particular implementation with
information on line searches, choices of finite difference intervals and precise
details of how automatic scaling is applied. Section 4 gives numerical results
for a FORTRAN program that has been successfully applied to several test
problems and the final section discusses some possible difficulties and further
developments.

2. The BFGS formula with automatic scaling

Brodlie, Gourlay and Greenstadt [1] show that (1.4) can be written in
product form and this is used by Han [8] to give an equivalent form of the
BFGS formula applied to update the conjugate factorisation of B^ directly
as

S+ = [I-pqT]S, (2.1)

where q is the vector

Q = y/{pT7) + g/{-pTgpT7/a)1'2, (2.2)

and where we now use the superscript + to denote items evaluated at iteration
{k + 1) and drop superscripts for items evaluated at iteration {k).

Equations (1.6), and (2.1) show that the BFGS algorithm is easily imple-
mented without storing the matrix B if, instead, the matrix S is stored and
updated. Han [8] favours the use of conjugate factorisations because it al-
lows the exploitation of parallel processors in a natural way. However, even
on serial machines, the results reported in Section 4 show that considerable
improvements in efficiency are possible. For reasons of numerical stability,
Powell [1] prefers first to post-multiply S by an appropriate orthogonal matrix
and his approach is easily incorporated in the scheme that we have in mind.
This is particularly important when \\S+\\ -C | |5 | | but we keep the notation
simpler by not considering this aspect.

https://doi.org/10.1017/S0334270000006524 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006524

[4] BFGS algorithm with automatic scaling 123

Interestingly, we note that the form of the BFGS formula suggested by (2.1)
is not new since it was used by Davidon [3] and by Osborne and Saunders [9]
more than ten years earlier than the work described in [8], [11]. This form
is still not suitable for our use because the vectors y and g are not directly
available. Therefore, we rewrite the updating formula using (1.3), (1.6) and
(1.7) to replace references to gradient vectors by directional derivatives. The
resulting formula is

S+ = S + pvT, (2.3)

where the vector v depends on the directional derivative vectors y = STg
and y = STg+ through the simple equation

v = z/(yTz) - y/(-yTyyTz/ay'2, (2.4)

where z is the vector difference

z = y-y. (2.5)

Finally we require the vector y+ = [S+]rg+ for the start of the next itera-
tion. This is obtained by updating the vector y to reflect the change of basis
directions using (1.7) and (2.3) as

y+ = y - (yTy)v. (2.6)

After applying the updating formulae (2.3) and (2.6) we now have all the
information required for the next iteration starting with the calculation of
the new search direction p+ = -S+y+.

This form of the BFGS algorithm allows automatic scaling to be imple-
mented easily. We simply rescale the columns of S using (1.11) to make the
current conjugate factorisation agree with the estimated second derivative
terms whenever the central difference formula (1.10) is used to estimate a
first directional derivative. This rescaling of the columns of S will also ne-
cessitate an adjustment in the first directional derivatives y and y but this is
a trivial change which is described in the next section. Once the rescaling is
performed the BFGS formula is applied exactly as before using (2.3)-(2.6).

Of course rescaling can also be incorporated when analytic gradients are
used but this requires extra function or gradient evaluations and is, therefore,
less attractive since it may be argued that these extra evaluations would be
better spent in a more direct attempt at reducing / . It may still be useful,
however, in circumstances where speed is important and a parallel processing

https://doi.org/10.1017/S0334270000006524 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006524

126 I. D. Coope [5]

machine is available because automatic scaling can significantly reduce the
number of iterations required.

3. A conjugate direction implementation

We consider in reasonable detail a computational algorithm implement-
ing the ideas outlined in the previous section. The algorithm uses function
values only, employing the finite difference formula (1.9) or (1.10) to es-
timate first directional derivatives when required. First we summarise the
basic algorithm. We assume that S, x and y are available at the start of each
iteration. For the first iteration these values must be given or estimated. For
example, S = I, the identity matrix, x an initial guess and y = STVf(x), or
a calculated estimate based on (1.9) or (1.10) are suitable values. Then the
following steps complete an iteration.

(1) Calculate the search direction: p = -Sy.
(2) Determine a satisfying: f(x + ap) < f(x).
(3) Form the new estimate: x+ = x + ap.
(4) Estimate the vector p of directional derivatives at x+ with respect to

the current basis directions S using either (1.9) or (1.10).
(5) If (1.10) was used in step (4) rescale S, y and y using (1.11) to

estimate second directional derivatives at x+.
(6) If yTy > yTy calculate S+ and y+ from (2.3)-(2.6). Otherwise, set

S+ = S,y+ = y.

It should be clear that the basic algorithm cannot be implemented until the
line search procedure (step (2)) is defined and the procedures for estimat-
ing directional derivatives and rescaling are made precise (steps (4) and (5)
above). Strictly, we should also consider a terminating criterion but we take
the view that a terminating criterion should only influence the number of
points an algorithm generates and not the essential nature of the points. Al-
though this view may not be universally upheld it is, nevertheless, a simple
matter to incorporate different stopping rules and so we do not consider this
aspect in detail here. (This is not to say that the terminating rule is unim-
portant!)

3.1 Derivative estimation.
A simple approach would be to use the central difference formula (1.10)

at every iteration. This has the advantage of also allowing automatic scal-
ing to be applied at every iteration. Preliminary tests indicated that this
approximately halved the number of iterations required to reduce the objec-
tive function to below a prespecified threshold value. The disadvantage is

https://doi.org/10.1017/S0334270000006524 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006524

[6] BFGS algorithm with automatic scaling 127

that twice as many function evaluations are required compared to the use of
(1.9) which does not permit automatic scaling. Thus if only low accuracy is
required then there is little to be gained by using the central formula exclu-
sively. If high accuracy is required then central differences must always be
used in the later iterations and then the extra second derivative information
provided by (1.10) can profitably be incorporated in the matrix S.

The decision on when to switch from forward to central differences is a
delicate one; switching too soon is clearly inefficient, but delaying too long
results in gross errors due to cancellation. These errors are inherited by S and
it may take many iterations to recover a good conjugate factorisation matrix.
For the results reported in Section 4, this decision was based on the relative
size of the differencing interval hi, i — 1 , . . . , n, compared to the components
of the displacement vector x+ -x — -aSy. Specifically, the central difference
formula (1.10) was used to estimate y, if

lewl < 10*,. (3.1)

It was clear from initial tests, however, that automatic scaling was also de-
sirable in the early iterations so central differences were used every fourth
iteration even if the test (3.1) failed. Thus for the results presented in Table
4.2 automatic scaling was applied at least every fourth iteration and ulti-
mately on every iteration as the directional derivatives {>>,} tend to zero.
The default values for the differencing intervals were set to

* , = 1 0 - 6 / l t o l l , I = 1 , . . . , / I , (3 .2)
although there is provision to adjust these values in the FORTRAN pro-
gram. These values were also used in the Harwell library routing VA10AD,
(Fletcher's [4] implementation of a finite difference, quasi-Newton algorithm),
which was used as a basis for comparison on some problems. It should be
noted that the efficiency of optimisation algorithms which make use of finite
difference estimates of derivatives can be affected seriously by inappropriate
choice of differencing intervals. The choice (3.2) was made after prelimi-
nary testing of values of A, in the range [e1/4,e' /2]/ | |s, | | where e denotes the
machine precision (approximately 10~16 for the machines used). Of course
the values (3.2) should not be used if the current value of ||JC|| is very large
or very small. Special precautions were taken in such cases to ensure that
£1/4IMI < hi\\Si\\ < e^2\\x\\. Details can be found in the FORTRAN pro-
gram. Finally we note that a good discussion on choosing finite difference
intervals is given in Gill et al [5].

3.2 Automatic scaling.
Post-multiplying S by a diagonal matrix, D = diag[d\,... ,dn], scales the

columns of S and this affects the values of the directional derivatives y and

https://doi.org/10.1017/S0334270000006524 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006524

128 I. D. Coope [7]

p by the same scaling factors. Therefore, automatic scaling is achieved by
simply replacing S, y and y by SD, Dy and Dy for a suitably chosen diagonal
matrix D. The values used for di, i = 1,... ,«, are usually

dt = hi/[f(x+ + h,Si) - 2f(x+) + f(x+ - hiSi)}
1'2, (3.3)

but if the second derivative estimate is negative (and hence di complex) or
if the computed value of (3.3) is greater than y/lO then we set d, = VTO
to prevent the component of the search direction due to Si from becoming
too large too quickly. Thus if negative curvature is detected, the effect is to
increase the components of the search vector in the directions of negative
curvature by a factor of 10 at each iteration until either positive curvature is
encountered or the objective function is deemed to be unbounded below. The
factor 10 was chosen arbitrarily. This strategy is easily implemented but we
note that many other possibilities exist. In particular, directions of negative
curvature could be searched as soon as discovered until positive curvature
estimates are retrieved.

3.3 The line search.
In this implementation a very simple line search was used. At each it-

eration an attempt is made to satisfy (1.2) with p = A, except that avail-
able estimated derivative information is used to replace the gradient value.
Specifically, if a = 1 satisfies (1.2) then the line search terminates immedi-
ately. Otherwise a is replaced by max(. 1, ft) where p minimises the quadratic
function which interpolates the values f(x) and f(x + ap) and whose deriva-
tive at a = 0 agrees with the estimated derivative information. Thus a new
value of a is obtained and the test for acceptability reapplied. This process
is repeated at most ten times, after which the value of a yielding the smallest
function value is accepted. If the accepted value is zero then the algorithm
terminates with a diagnostic advising the user that accuracy is limited through
the machine precision or through the choice of inappropriate finite differenc-
ing intervals. Usually an acceptable value for a is obtained in one or two
trials.

3.4 Maintaining positive definiteness.
A well-known property of the BFGS formula (1.4) is that the matrix 5</c+1)

is positive definite provided that B^ is positive definite and

(pr7){k) > 0. (3.4)

Thus, when gradient information is available, positive definiteness is easily
maintained by imposing (3.4) in addition to (1.2) in the test for acceptability
of a(fc) in the line search. In the present context, this condition can be shown
to be equivalent to requiring yJz < 0, or equivalently,

yry > yry- (3.5)

https://doi.org/10.1017/S0334270000006524 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006524

[8] BFGS algorithm with automatic scaling 129

Of course, conditions (1.2) and (3.5) may not be achievable when rounding
errors are present and y is estimated by finite difference formulae. Therefore,
we prefer to keep the simple form of the line search described in Section 3.3
and choose not to apply the BFGS update if (3.5) is not satisfied. This
decision is reflected in step (6) of the algorithm summary above. Again,
there are alternative strategies (see for example Powell [10]) that could be
adopted here but we note that even if the BFGS formula is not used because
of negative curvature information, automatic scaling may still be applied to
give an improvement in the conjugate factorisation matrix.

4. Numerical results

The algorithm described in the previous sections has been programmed in
FORTRAN77 and is available in the Harwell subroutine library under the
name VF04AD. Preliminary results indicate that it is a significant improve-
ment on more standard implementations that do not incorporate automatic
scaling but caution must be exercised when making comparisons between dif-
ferent algorithms. Because we were interested in establishing that the tech-
nique of automatic scaling was in itself a valuable addition to an optimisa-
tion algorithm, it was important to rule out differences due to other aspects
of the implementation, for example differences in line searches and differ-
ences due to the choice of finite difference intervals and the representation of
second derivative information. Therefore, at each stage in the development
of the new algorithm a comparison was made with the Harwell library rou-
tine VA13AD [12] which is a gradient version of a quasi-Newton algorithm
employing the BFGS formula to update the Choleski factors of the approx-
imating Hessian matrix. VA13AD was gradually transformed into VF04AD
by a sequence of small changes which allowed a direct comparison between
the two algorithms at each stage. Thus, although the final version of VF04AD
had very little in common with VA13AD it was possible to identify precisely
which of the changes contributed most to improved performance. The test
program used for validation of VA13AD for the Harwell library was also
used extensively in the development of VF04AD. This program contains a
subroutine defining a function of 55 variables, (see Appendix), which is large
enough to demonstrate the effects of automatic scaling quite conclusively; we
refer to this function as F55.

The first stage was to implement the conjugate factorisation of B without
automatic scaling instead of the Choleski factors of B while keeping all other
aspects of the two algorithms identical. This resulted in virtually no change in
the results for problem F55; VA13AD and the modified code each required

https://doi.org/10.1017/S0334270000006524 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006524

130 I. D. Coope [9]

70 iterations to achieve 14 significant figures in the optimal value of the
objective function (note that this is close to the limit of the machine accuracy
in double precision). In exact arithmetic the results would, of course, be
indistinguishable.

The next stage gave more interesting results because automatic scaling was
introduced at every iteration in the modified code as described in Section
3.2 above. Analytic gradients were still used in the calculation of the search
direction and the line search algorithm of VA13AD was unchanged. The ef-
fect of automatic scaling on VA13AD is considerable; the results of Table 4.1
show that more than twice as many iterations are required without automatic
scaling for full accuracy in f(x*).

TABLE 4.1

Iterations of VA13AD on F55

no scaling

0

10

20

30

40

50

60

70

76

with scaling

0

12

16

21

22

26

28

30

31

Accuracy

104.1214111280980

1.197264928395396

0.160549957009795

0.132662338268089

0.132480234631059

0.132470104997354

0.132470103795027

0.132470103792991

0.132470103792989

The entries in column three of Table 4.1 represent the actual value of
f(x) attained by the unmodified version of VA13AD after the number of
iterations indicated in column one. The entries in column two represent the
number of iterations to give at least the same accuracy with the modified
algorithm which incorporates automatic scaling at every iteration. Notice,
however, that automatic scaling has not given an improvement in the first
ten iterations for this problem. The highly nonlinear terms of this function
cause the second derivative information to change rapidly in the first few it-
erations and there is little difference in the two algorithms in the early stages.
As soon as the objective function can be adequately modelled by a quadratic
the improvement in the modified algorithm is quite striking. It is unusual
to see a quasi-Newton algorithm achieve such high accuracy in less than n

https://doi.org/10.1017/S0334270000006524 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006524

[10] BFGS algorithm with automatic scaling 131

iterations but it should be remembered that, with automatic scaling, twice as
much information is being used to modify the estimated second derivative
information at each iteration. Of course, In extra function evaluations must
be made at every iteration in order to estimate the second derivative infor-
mation and we have already pointed out that this is wasteful unless these
evaluations are necessarily made when estimating the first directional deriva-
tives using (1.10). Therefore, the final stage in the construction of the new
algorithm was to implement the remaining features as described in Section 3.
The results on some standard (and well known) test functions are presented
in Table 4.2 which gives the number of iterations and evaluations of fix)
required to obtain an accuracy f(x) - f(x*) < 10~14.

The Harwell library routine VA10AD was also applied to the same test
problems and results are included in parentheses in Table 4.2. VA10AD is
also a finite difference quasi-Newton algorithm but second derivative infor-
mation is represented by Choleski factors and sometimes the DFP updating
scheme is used instead of the BFGS scheme [4]. This algorithm uses a more
accurate line search than VF04AD and uses a different strategy to choose
between forward and central difference formulae.

TABLE 4.2

Results

Problem

Rosenbrock

Helix

Hilbert

Wood

Powell

F55

forVF04AD(VA10AD)

n

2

3

5

4

4

55

Iterations

25 (36)

27 (28)

13(20)

73 (50)

34 (37)

23(51)

Evaluations

142(177)

146(164)

264 (220)

548 (347)

249 (313)

1868(4139)

The results for Table 4.1 were obtained on the IBM 3084Q mainframe
computer at Harwell and those in Table 4.2 were obtained on a SUN 3/160
micro-computer system at the author's own institution.

5. Discussion

The algorithm implementation described in this paper could be further
enhanced if a true parallel processing machine (MIMD machine, see [13]

https://doi.org/10.1017/S0334270000006524 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006524

132 I. D. Coope [11]

for example) were available. Each processor could be directed to the task
of determining a finite difference estimate along each of the directions s,,
/ = 1,.. . ,«, in parallel; indeed line searches could be performed in paral-
lel or the conjugate subspace approach described by Han [8] could easily be
adopted. Clearly there is much scope for further investigation here. How-
ever, the results of the previous section show that even for the simplest of
implementations the conjugate direction approach can give considerable ad-
vantages even on serial machines.

The work described here could also be extended to handle constrained min-
imisation problems. Suitable approaches to the linearly constrained problem
have been discussed by Davidon [3] and by Powell [11]. However, the con-
jugate factorisation approach can also be adapted to handle nonlinear con-
straints. Indeed subroutine VF04AD has already been extended to handle
nonlinear constraints using simple penalty function ideas in an algorithm de-
signed to be easy to use. We do not consider the details here because the
author believes that it would be more efficient to make use of sequential
quadratic programming techniques. The quadratic programming algorithm
of Goldfarb and Idnani [7] is particularly attractive here because it requires
a conjugate factorisation of the appropriate Hessian matrix. These ideas are
currently being investigated by the author and will be reported at a later date.

Acknowledgement

This research was supported by the U. K. Atomic Energy Research Estab-
lishment.

Appendix
Test program used to validate VA13AD

DOUBLE PRECISION F,G,SCALE,W,X,XD,YD

COMMON/VA13BD/IPRINT,LP,MAXFUN,MODE,NFUN

COMMON/XXX/XD.YD

DIMENSION XD(51),YD(51),X(55),G(55),SCALE(55),W(1870)

EXTERNAL F55

DO1 1=1,51

SCALE(l)=0.1D0

XD(l)=0.125664D0*DBLE(l-1)

YD(I)=SIN(XD(I))

X(l)=(1.0D0+0.5D0*YD(l))*XD(l)

https://doi.org/10.1017/S0334270000006524 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006524

[12] BFGS algorithm with automatic scaling 133

DO 2 1=52,55

SCALE(l)=0.1D0

2 X(l)=0.0D0

IPRINT=1

MAXFUN=100

ACC=1.0D-14

CALL VA13AD(F55,55,X,F,G,SCALE,ACC,W)

STOP

END

SUBROUTINE F55(N,X,F,G)

DOUBLE PRECISION C,F,G,X,XD,YD

COMMON/XXX/XD.YD

DIMENSION XD(51),YD(51),X(55),G(55)

F=0.0D0

DO 1 1=52,55

1 G(l)=0.0DO

DO 2 1=1,51

C=X(52)+X(I)*(X(53)+X(I)*(X(54)+X(I)*X(55)))-YD(I)
F=F+C*C+(X(I)-XD(I))**2

G(l)=2.0D0*((X(53)+X(l)*(2.0O0*X(54)+3.0D0*X(l)*X(55)))*C+X(l)-XD(l))
DO 2 J=52,55

G(J)=G(J)+2.0D0*C
2 C=C*X(I)

RETURN
END

References

[1] K. W. Brodlie, A. R. Gourlay and J. Greenstadt, "Rank-one and rank-two corrections to
positive definite matrices expressed in product form", J. Inst. Maths. Applies. 11 (1973)
73-82.

[2] C. G. Broyden, "The convergence of a class of double rank minimization algorithms. 2.
The new algorithm", J. Inst. Maths. Applies. 6 (1970) 222-231.

[3] W. C. Davidon, "Optimally conditioned optimization algorithms without line searches",
Math. Prog. 9 (\975) 1-30.

[4] R. Fletcher, "A new approach to variable metric algorithms", Computer Journal 13 (1970)
317-322.

[5] P. E. Gill, W. Murray, M. H. Wright, Practical Optimization (Academic Press, London,
1982).

[6] D. Goldfarb, "A family of variable metric methods derived by variational means", Maths
of Comp. 24 (1970) 23-26.

https://doi.org/10.1017/S0334270000006524 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006524

134 I. D. Coope [13]

[7] D. Goldfarb and A. Idnani, "A numerical stable dual method for solving strictly convex
quadratic programs", Math. Prog. 21 (1983) 1-33.

[8] S-P. Han, "Optimization by updated conjugate subspaces", in Numerical Analysis (eds.
D. F. Griffiths and G. A. Waton), (Pitman Research Notes in Mathematics Series 140,
Longman Scientific & Technical, Burnt Mill, England, 1986) 82-97.

[9] M. R. Osborne and M. A. Saunders, "Descent methods for minimization", in Optimization
(eds. R. S. Anderssen, L. S. Jennings, D. M. Ryan), (University of Queensland Press, St.
Lucia, 1972) 221-237.

[10] M. J. D. Powell, "A fast algorithm for nonlinearly constrained optimization calculations",
in Numerical Analysis, Lecture Notes in Mathematics 630 (ed. G. A. Watson), (Springer-
Verlag, 1978) 144-157.

[11] M. J. D. Powell, "Updating conjugate directions by the BFGS formula", Math. Prog. 38
(1987) 29-46.

[12] M. J. D. Powell, "Subroutine VA13AD", Harwell Subroutine Library (1975) U. K. Atomic
Energy Research Establishment.

[13] U. Schendel, Introduction to numerical methods for parallel computers (Ellis Horwood,
Chichester, 1984).

[14] D. F. Shanno, "Conditioning of quasi-Newton methods for function minimization", Maths
ofComp. 24 (1970) 647-656.

https://doi.org/10.1017/S0334270000006524 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006524

