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Stieltjes interlacing of the zeros of jn
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Abstract. Let jn be the modular function obtained by applying the nth Hecke operator on the classical
j-invariant. For n > m ≥ 2, we prove that between any two zeros of jm on the unit circle of the
fundamental domain, there is a zero of jn .

1 Introduction

Let j(z) be the classical elliptic modular invariant that can be defined as

j(z) = 1728 E3
4(z)

E3
4(z) − E2

6(z) ,

where z is in the upper half plane, and Ek(z) denotes the normalized Eisenstein series
of weight k for the modular group SL2(Z). It is well known that j(z) is holomorphic
on the upper half plane with a simple pole at infinity and is invariant under the action
of SL2(Z). For each n ≥ 1 recall that the nth Hecke operator Tn of weight 0 acts on a
modular function f (z) through the formula

Tn( f )(z) ∶= n−1 ∑
ad=n ,

0≤b≤d−1

f ( az + b
d

) .

We define

jn(z) ∶= nTn( j(z) − 744).

See [1, 3] for more details and applications of the modular functions jn(z). One
interesting aspect of jn(z) is that each function can be written as a monic polynomial
in j(z) of degree n, denoted φn . That is,

jn(z) = φn( j(z)).

The first three φn are

φ1( j) = j − 744,
φ2( j) = j2 − 1488 j + 159768,
φ3( j) = j3 − 2232 j2 + 1069956 j − 36866976.
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Stieltjes interlacing of the zeros of jn 977

The zeros of modular functions in the fundamental domain of SL2(Z) have been
studied by various authors. Rankin and Swinnerton-Dyer proved in [13] that all the
zeros of Eisenstein series Ek in the fundamental domain of SL2(Z) lie on the unit
circle. By extending the work of [13] Nozaki [11] showed that the zeros of Ek and Ek+12
interlace on the unit circle, which was first observed by Gekeler [6]. Griffin et al. [8]
further refined the method of [11] to present a necessary and sufficient condition for
the zeros of Ek and Ek+a to interlace.

In a different scenario, Asai et al. [1] showed that all the zeros of the modular
function jn(z) in the fundamental domain are simple and lie on the unit circle. By
improving their work, Jermann [10] proved that for n ≥ 1 the zeros of jn(z) and
jn+1(z) interlace on the unit circle of the fundamental domain.

On the other hand, inspired by the analogy between the zeros of Eisenstein series
and orthogonal polynomials, the authors [5] proved the following Stieltjes interlacing
property between the zeros of Eisenstein series.

Theorem 1.1 ([5, Theorem 1.2]) Let n > m ≥ 24 and m ≠ 26, then between every two
zeros of Em(z) on the unit circle of the fundamental domain there is a zero of En(z).

This interlacing property was first observed by Stieltjes [14, Theorem 3.3.3] for the
zeros of orthogonal polynomials and has received continuous attention in the area of
numerical analysis and approximation theory, see for example [2, 4, 7]. Our goal is to
investigate the Stieltjes interlacing property in the context of modular functions. With
this goal and Theorem 1.1 in mind, it is natural to ask whether the Stieltjes interlacing
property holds for the zeros of jn . In this paper, we will adopt the method and results
from [5] to show that the Stieltjes interlacing property also holds in this situation.
More precisely, we will prove the following result.

Theorem 1.2 Let n > m ≥ 2 be positive integers. Then on the unit circle in the funda-
mental domain, between every two zeros of jm(z), there exists a zero of jn(z).

Let us briefly describe the basic idea used in the works of [1, 10]. Suppose that
0 ≤ x ≤ 1/2, and let z = x + iy be over the unit circle between i and eπi/3. Both works
were based on studying the function

Fn(x) ∶= jn (x + i
√

1 − x2) e−2πn
√

1−x2 = jn(z)e−2πny ,

which is a real function over this interval. Clearly, Fn(x) = 0 if and only if
jn(z) = 0. Furthermore, the function Fn(x) is closely approximated by 2 cos(2πnx).
A nice bound on the remainder ([1, Key Lemma] and [10, Lemma 2.1])

Tn(x) ∶= Fn(x) − 2 cos(2πnx),

then enabled the authors of both papers to prove the desired results on the location
of zeros of Fn or jn . This idea in a certain sense implies that if a separation property
holds for the zeros of 2 cos(2πnx), then the same property will likely hold for the
zeros of Fn . In this aspect, the following result serves as the starting point as well as a
motivation for Theorem 1.2.
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Proposition 1.3 Let n > m ≥ 2 be positive integers. Then on the interval [0, 1
2 ],

between any two zeros of 2 cos(2πmx), there exists a zero of 2 cos(2πnx).

We will prove this proposition after some preparation in Section 2.
We give an outline of the paper. This paper follows a similar structure to our

previous paper [5], and many lemmas and propositions have similar proofs. In
Section 2, we give some preliminary definitions and lemmas. In particular, we will
prove Proposition 1.3, which serves as a prototype of the proof for Theorem 1.2 and
the Stieltjes interlacing property in general. We then split the proof of Theorem 1.2
into multiple cases. In Section 3, we consider the easier case when n

m is relatively
large. When n

m is relatively small, we follow the method in [10] and divide the interval
[0, 1

2 ] into two subintervals; we consider the zeros on the subinterval [0, 1
2 −

log m
5m ]

in Section 4 and zeros on [ 1
2 −

log m
2m , 1

2 ] in Section 5. In Section 6, we combine all
of the cases to complete the proof of Theorem 1.2 and discuss an application on the
polynomials φn .

2 Notation and preliminary lemmas

In this section, we will set up some necessary notation and prove some lemmas for
later applications.

Recall from Section 1 that for z = x + iy on the unit circle between i and eπi/3 and
x ∈ [0, 1

2 ],

Fm(x) = jm(z)e−2πmy

and

Tm(x) = Fm(x) − 2 cos(2πmx).

Definition 2.1 ([10, (12)]) For 0 ≤ k ≤ m − 1, let xm ,k be the kth zero of cos(2πmx)
on [0, 1

2 ], counting from 1
2 . More precisely,

xm ,k =
1
2
− k

2m
− 1

4m
= 1

2
− 2k + 1

4m
.

Definition 2.2 [10] For 0 ≤ k ≤ m − 1, let um ,k be the real part of the kth zero of
jm(z) on the unit circle between i and eπi/3, counting from eπi/3. Equivalently, um ,k
is the kth zero of Fm(x) on [0, 1

2 ], counting from 1
2 . Thus, um ,k < um ,k−1 for all 1 ≤ k ≤

m − 1. Throughout the paper, we simply refer to um ,k as the zeros of jm(z).

Remark We typically use k for an index for the zeros of jm(z) and � as an index for
the zeros of jn(z).

A good upper bound for the distance between xm ,k and um ,k plays a fundamental
role in studying the location of zeros of jm . Jermann developed the following upper
bound in [10].
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Lemma 2.3 ([10, Lemma 2.3]) Let m ≥ 4. Then

∣um ,k − xm ,k ∣ <
1

11m
.

Borrowing an idea from [8, Lemma 3.5], we will present a stronger upper bound
for the distance ∣um ,k − xm ,k ∣.

Note that [10, Corollary 2.2] gives the bound

∣Tm(x)∣ ≤ e−2πm( 1
2−x) + e−

√
3

2 πm m < 1.1.

The improved upper bound for ∣um ,k − xm ,k ∣ is stated as follows.

Lemma 2.4 Let δm ,k = 1
2 −

k
2m = xm ,k + 1

4m and

γm ,k =
1

11.919m
(e−2πm( 1

2−δm ,k) + e−
√

3
2 πm m) = 1

11.919m
(e−kπ + e−

√
3

2 πm m) .

Then for m ≥ 1 and k ≥ 0,

∣um ,k − xm ,k ∣ < γm ,k =
1

11.919m
(e−kπ + e−

√
3

2 πm m) .

As a corollary, we have the following slight improvement of Lemma 2.3:

∣um ,k − xm ,k ∣ ≤ γm ,0 <
1

11.139m
.

Proof We have computationally verified both upper bounds are valid for m < 4.
For m ≥ 4, we follow the methods of [10, Lemma 2.3] and [8, Lemma 3.5]. First note
that

Fm(xm ,k ± γm ,k) = 2 cos(2πm(xm ,k ± γm ,k)) + Tm(xm ,k ± γm ,k)
= ±(−1)m+k2 sin(2πmγm ,k) + Tn(xm ,k ± γm ,k).

On the interval ∣x − xm ,k ∣ ≤ 1
4m , one has ∣Tm(x)∣ ≤ e−2πm( 1

2−δm ,k) + e−
√

3
2 πm m,

according to [10, Corollary 2.2]. Also,

0 < 2πm ∣γm ,k ∣ <
π
6
(1.07),

because for m ≥ 1, one has e0 + e−
√

3
2 πm m < 1.07.

Using the fact that sin(θ) > sin( π
6 (1.07))θ

( π
6 (1.07)) when 0 < θ < π(1.07)/6, we get that

∣2 sin(2πmγm ,k)∣ >
24 sin( π(1.07)

6 )
1.07

mγm ,k > 11.919mγm ,k

= e−2πm( 1
2−δm ,k) + e−

√
3

2 πm m ≥ ∣Tm(xm ,k ± γm ,k)∣.

This implies that Fm(xm ,k + γm ,k)Fm(xm ,k − γm ,k) < 0, and thus we have the desired
bound. ∎
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In the next result, we derive a condition on the values of m, n, k, and � in order for
the Stieltjes interlacing to happen.

Lemma 2.5 Let n > m ≥ 2, 0 ≤ k ≤ m − 1, and 0 ≤ � ≤ n − 1. Then xm ,k > xn ,� >
xm ,k+1 if and only if

2� + 1
2k + 3

< n
m
< 2� + 1

2k + 1
.

Proof By Definition 2.1,

1
2
− 2k + 1

4m
> 1

2
− 2� + 1

4n
> 1

2
− 2k + 3

4m
happens if and only if

2� + 1
2k + 3

< n
m
< 2� + 1

2k + 1
,

as desired. ∎

Corollary 2.6 If n > m and xm ,k > xn ,� > xm ,k+1, then � > k.

Proof Suppose on the contrary that � ≤ k. Then by Lemma 2.5,

n
m
< 2� + 1

2k + 1
≤ 1,

contradicting the assumption that n > m. Thus, � > k, as desired. ∎

To show the Stieltjes interlacing property, special attention is needed for the
behavior of the zeros of Fn (or 2 cos(2πnx)) closest to the endpoints 0 or 1

2 .
Lemma 2.7 compares the zeros of 2 cos(2πnx) and 2 cos(2πmx) closest to 1

2 .

Lemma 2.7 If n > m ≥ 2, then xn ,0 > xm ,0.

Proof By Definition 2.1,

xn ,0 − xm ,0 = (
1
2
− 1

4n
) − ( 1

2
− 1

4m
) = 1

4m
− 1

4n
> 0,

which completes the proof. ∎

The next lemma compares the zeros of Fn and Fm closest to 1
2 . It is a direct corollary

of the interlacing property in [10, Theorem 3.1].

Lemma 2.8 ([10, Theorem 3.1]) If n > m ≥ 2, then un ,0 > um ,0.

Lemma 2.9 compares the zeros of 2 cos(2πnx) and 2 cos(2πmx) closest to 0.

Lemma 2.9 If n > m ≥ 2, then xm ,m−1 > xn ,n−1.
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Proof By Definition 2.1, since n > m,

xm ,m−1 − xn ,n−1 =
2(n − 1) + 1

4n
− 2(m − 1) + 1

4m
= 1

4m
− 1

4n
> 0,

hence the claim. ∎

The next lemma compares the zeros of Fn and Fm closest to 0. It is again a corollary
of the interlacing property in [10, Theorem 3.1].

Lemma 2.10 ([10, Theorem 3.1]) If n > m ≥ 2, then um ,m−1 > un ,n−1.

We now prove Proposition 1.3. This will illustrate how Lemmas 2.7–2.10 are applied
to show Stieltjes interlacing. Similar to the proof of [5, Proposition 1.5], the main part
of the proof is simple, but extra care must be taken to ensure there are no problems
with the zeros closest to 0 and 1

2 . Similar work will be carried out in later sections as
well.

Proof of Proposition 1.3 It suffices to prove the proposition for consecutive zeros
of 2 cos(2πmx). By Definition 2.1, the distance between two consecutive zeros of
2 cos(2πmx) is 1

2m , and similarly, the distance between two consecutive zeros of
2 cos(2πnx) is 1

2n . Since m < n, 1
2n <

1
2m , which means that the distance between

any two consecutive zeros of 2 cos(2πnx) is smaller than the distance between any
two consecutive zeros of 2 cos(2πmx). This, combined with Lemmas 2.7 and 2.9,
concludes the proof. ∎

For ease of notation, define

Im ,k ,n ,� =
⎡⎢⎢⎢⎢⎢⎣

2� + 1 − 4
11.919 (e−�π + e−

√
3

2 πn n)

2k + 1 + 4
11.919 (e−kπ + e−

√
3

2 πm m)
,

2� + 1 + 4
11.919 (e−�π + e−

√
3

2 πn n)

2k + 1 − 4
11.919 (e−kπ + e−

√
3

2 πm m)

⎤⎥⎥⎥⎥⎥⎦
.

Lemma 2.11 ([5, Lemma 2.4]) If (xm ,k − xn ,�)(um ,k − un ,�) ≤ 0, then
n
m
∈ Im ,k ,n ,�.

Proof Following the proof of [5, Lemma 2.4], we note that if (xm ,k − xn ,�)(um ,k −
un ,�) ≤ 0, then

∣xm ,k − xn ,�∣ ≤ ∣xm ,k − um ,k ∣ + ∣xn ,� − un ,�∣ .

By Lemma 2.4, we conclude that

∣2� + 1
4n

− 2k + 1
4m

∣ < 1
11.919m

(e−kπ + e−
√

3
2 πm m) + 1

11.919n
(e−�π + e−

√
3

2 πn n) ,

or equivalently,

∣(2� + 1) − (2k + 1) n
m
∣ < n

m
⋅ 4

11.919
(e−kπ + e−

√
3

2 πm m) + 4
11.919

(e−�π + e−
√

3
2 πn n) .
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If n
m ≤ 2�+1

2k+1 , then

(2� + 1) − (2k + 1) n
m
< n

m
⋅ 4

11.919
(e−kπ + e−

√
3

2 πm m) + 4
11.919

(e−�π + e−
√

3
2 πn n) ,

so

2� + 1 − 4
11.919(e−�π + e−

√
3

2 πn n)

2k + 1 + 4
11.919(e−kπ + e−

√
3

2 πm m)
< n

m
≤ 2� + 1

2k + 1
<

2� + 1 + 4
11.919(e−�π + e−

√
3

2 πn n)

2k + 1 − 4
11.919(e−kπ + e−

√
3

2 πm m)
,

as desired.
Otherwise, if n

m > 2�+1
2k+1 , then

(2k + 1) n
m
− (2� + 1) < n

m
⋅ 4

11.919
(e−kπ + e−

√
3

2 πm m) + 4
11.919

(e−�π + e−
√

3
2 πn n) ,

so

2� + 1 − 4
11.919(e−�π + e−

√
3

2 πn n)

2k + 1 + 4
11.919(e−kπ + e−

√
3

2 πm m)
< 2� + 1

2k + 1
< n

m
<

2� + 1 + 4
11.919(e−�π + e−

√
3

2 πn n)

2k + 1 − 4
11.919(e−kπ + e−

√
3

2 πm m)
,

as desired. ∎

The next lemma will give a sufficient condition for the zeros of Fn to interlace.

Lemma 2.12 ([5, Lemma 2.11]) Suppose n > m ≥ 2. If n
m lies in the gap between

Im ,k+1,n ,� and Im ,k ,n ,�, or equivalently,

2� + 1 + 4
11.919 (e−�π + e−

√
3

2 πn n)

2k + 3 − 4
11.919 (e−(k+1)π + e−

√
3

2 πm m)
< n

m
<

2� + 1 − 4
11.919 (e−�π + e−

√
3

2 πn n)

2k + 1 + 4
11.919 (e−kπ + e−

√
3

2 πm m)
,

then um ,k > un ,� > um ,k+1.

Proof The proof follows similarly to [5, Lemma 2.11]. Since

2� + 1
2k + 3

<
2� + 1 + 4

11.919 (e−�π + e−
√

3
2 πn n)

2k + 3 − 4
11.919 (e−(k+1)π + e−

√
3

2 πm m)

and

2� + 1 − 4
11.919 (e−�π + e−

√
3

2 πn n)

2k + 1 + 4
11.919 (e−kπ + e−

√
3

2 πm m)
< 2� + 1

2k + 1
,

we know that xm ,k > xn ,� > xm ,k+1 by Lemma 2.5. Moreover, since n
m /∈ Im ,k ,n ,� and

n
m /∈ Im ,k+1,n ,�, by Lemma 2.11, we conclude that um ,k > un ,� > um ,k+1, as desired.
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We now check to make sure that the interval is nonempty to ensure that the lemma
is nontrivial. Using the bound e0 + e−

√
3

2 πm m < 1.07 for m ≥ 1, note that

(2� + 1 − 4
11.919

(e−�π + e−
√

3
2 πn n))(2k + 3 − 4

11.919
(e−(k+1)π + e−

√
3

2 πm m))

− (2� + 1 + 4
11.919

(e−�π + e−
√

3
2 πn n))(2k + 1 + 4

11.919
(e−kπ + e−

√
3

2 πm m))

> (2� + 1 − 4
11.919

1.07)(2k + 3 − 4
11.919

1.07)

− (2� + 1 + 4
11.919

1.07)(2k + 1 + 4
11.919

1.07)

> (2� + 0.64) (2k + 2.64) − (2� + 1.36) (2k + 1.36)
= 2.56� − 1.44k − 0.16
> 0,

since � > k by Corollary 2.6. ∎

3 n
m is large

Throughout the rest of this paper, improving on the estimate in [10, Corollary 2.2], we
use the bounds

e−kπ + e−
√

3
2 πm m < 1.01 and e−(k+1)π + e−

√
3

2 πm m < 0.052

for k ≥ 0 and m ≥ 2.
This section treats the case when n is large relative to m.

Proposition 3.1 Let 2 ≤ m < n be positive integers such that n
m > 1.434. Then between

every two zeros of Fm(x), there exists a zero of Fn(x).

Proof By Definition 2.1 and Lemma 2.4, for each 0 ≤ k ≤ m − 1 and 0 ≤ � ≤ n − 1,

um ,k − um ,k+1 ≥ xm ,k − xm ,k+1 − ∣xm ,k − um ,k ∣ − ∣xm ,k+1 − um ,k+1∣

> 1
2m

− 1
11.919m

(e−kπ + e−
√

3
2 πm m) − 1

11.919m
(e−(k+1)π + e−

√
3

2 πm m)

> 1
2m

− 1
11.919m

(1.062)

> 1
2n

+ 1
11.919n

(1.062)

> 1
2n

+ 1
11.919n

(e−�π + e−
√

3
2 πn n) + 1

11.919n
(e−(�+1)π + e−

√
3

2 πn n)

> xn ,� − xn ,�+1 + ∣xn ,� − un ,�∣ + ∣xn ,�+1 − un ,�+1∣
≥ un ,� − un ,�+1 ,

where the fourth inequality follows since n
m > 1.434.

Combined with Lemmas 2.8 and 2.10, the proof is complete. ∎

https://doi.org/10.4153/S0008439522000054 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000054


984 W. Frendreiss, J. Gao, A. Lei, A. Woodall, H. Xue, and D. Zhu

4 Zeros close to 0

In this section, we investigate the behavior of zeros of jn and jm close to the endpoint
0 when n

m is relatively small.
First, we correct a minor mistake in [10]. Jermann claims in [10, (26)] that if xm ,k ∈

[0, 1
2 −

log m
5m ], then k ≥ log m

3 . However, this is not true for 10 < m < 1809. In fact, if
xm ,k ∈ [0, 1

2 −
log m

5m ] and 10 < m < 1809, then one can only get k ≥ 2 log m
5 − 1

2 . Thus, we
need to modify [10, Lemma 3.3] and its proof slightly; we also give a weaker version
of [10, Lemma 3.3] that is more applicable to us.

Lemma 4.1 ([10, Lemma 3.3]) For m ≥ 191 and k ≥ 2 log m
5 − 1

2 ,

∣xm ,k − um ,k ∣ <
1

10m(m + 1) .

Moreover, for m ≥ 30 and k ≥ 2 log m
5 − 1

2 ,

∣xm ,k − um ,k ∣ <
1

6m(m + 1) .

Proof We will follow the proof of [10, Lemma 3.3] closely here with necessary
modifications to take care of the aforementioned mistake.

Assume on the contrary that

1
4m

> ∣xm ,k − um ,k ∣ ≥
1

cm(m + 1) .

Here, we write c in place of 6 or 10. Then by the Taylor approximation for sin(x),

∣2 cos(2πmum ,k)∣ = ∣2 sin(2πm(xm ,k − um ,k))∣ ≥ 2 sin( 2πm
cm(m + 1))

≥ 4π
c(m + 1) −

8π3

3c3(m + 1)3 .

On the other hand, for k ≥ 2 log m
5 − 1

2 , estimates by taking the derivative and
[10, Corollary 2.2] gives that

∣2 cos(2πmum ,k)∣ ≤ e−πk + e−πm
√

3
2 m

≤ e
π
2 m−

2π
5 + e−πm

√
3

2 m < 4π
c(m + 1) −

8π3

3c3(m + 1)3

for m ≥ 30 when c = 6 and m ≥ 191 when c = 10, which gives a contradiction. ∎

The correctness of [10, Theorem 3.1] thus relies on making sure that jn and jn+1
interlace for 11 ≤ n ≤ 190. We have computationally verified that they do.
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We may now prove the main result of this section.

Proposition 4.2 Let 30 ≤ m < n be positive integers such that n
m ≤ 1.434. Let r be the

smallest value for k such that xm ,k lies in the interval [0, 1
2 −

log m
5m ]. Then for r ≤ k ≤

m − 2, between um ,k and um ,k+1, there exists a zero of Fn(x).

Proof This proof follows similarly to [5, Proposition 4.2]. By [10, Theorem 3.1], we
are done if n = m + 1. Thus, we assume that n ≥ m + 2.

We know that if xm ,k ∈ [0, 1
2 −

log m
5m ], then by Definition 2.1, k ≥ 2 log m

5 − 1
2 . Sim-

ilarly, if xn ,� ∈ [0, 1
2 −

log n
5n ], then � ≥ 2 log n

5 − 1
2 . Since m < n, 1

2 −
log m

5m < 1
2 −

log n
5n , so

if xn ,� ∈ [0, 1
2 −

log m
5m ], then � ≥ 2 log n

5 − 1
2 .

Also,

1
3n(n + 1) +

1
3m(m + 1) <

2
3m(m + 1) <

1
1.434m2 ≤

1
mn

≤ (n − m)
2mn

= 1
2m

− 1
2n

.

(4.1)

Thus, by Lemma 4.1, for k and � such that xm ,k , xm ,k+1 , xn ,� , and xn ,�+1 lie in the
interval [0, 1

2 −
log m

5m ],

um ,k − um ,k+1 ≥ xm ,k − xm ,k+1 − ∣xm ,k − um ,k ∣ − ∣xm ,k+1 − um ,k+1∣

> 1
2m

− 1
3m(m + 1)

> 1
2n

+ 1
3n(n + 1)

≥ xn ,� − xn ,�+1 + ∣xn ,� − un ,�∣ + ∣xn ,�+1 − un ,�+1∣
≥ un ,� − un ,�+1 ,(4.2)

where the the third inequality is due to (4.1).
We note that k and � such that xm ,k , xm ,k+1 , xn ,� , and xn ,�+1 lie in the interval [0, 1

2 −
log m

5m ] exists because 10 < m < n and Proposition 1.3.
By the distance inequality (4.2), to show the Stieltjes interlacing on the interval

[0, 1
2 −

log m
5m ], we only need to check the zeros closest to the endpoints. The two zeros

closest to 0 are covered by Lemma 2.10, so it remains to verify that there is a zero of
Fn between um ,r and um ,r+1. Let un ,�+1 be the closest zero of Fn smaller than um ,r+1.
By Lemma 4.1 and (4.1),

xn ,� = xn ,�+1 +
1

2n

≤ un ,�+1 + ∣xn ,�+1 − un ,�+1∣ +
1

2n

< um ,r+1 + ∣xn ,�+1 − un ,�+1∣ +
1

2n

≤ xm ,r+1 + ∣xn ,�+1 − un ,�+1∣ + ∣xm ,r+1 − um ,r+1∣ +
1

2n
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= xm ,r +
1

2n
− 1

2m
+ ∣xn ,�+1 − un ,�+1∣ + ∣xm ,r+1 − um ,r+1∣

< xm ,r +
1

2n
− 1

2m
+ 1

6n(n + 1) +
1

6m(m + 1)
< xm ,r .

Then (4.2) applies, so

un ,� < un ,�+1 + um ,r − um ,r+1 < um ,r .

By the choice of un ,�+1, we conclude that un ,� lies between um ,r and um ,r+1, as
desired. ∎

5 Zeros close to 1
2

In this section, we study the case when n
m is relatively small and the zeros involved

are close to the endpoint 1
2 . This case is difficult because the distance inequality

un ,� − un ,�+1 < um ,k − um ,k+1 that was used in the previous cases is hard to establish.
To overcome this difficulty we will follow the treatment in Section 5 of [5] closely. Our
goal is to prove the following result.

Proposition 5.1 Let 10 < m < n be positive integers such that n
m ≤ 1.434. Then on the

interval [ 1
2 −

log m
2m , 1

2 ], between any two zeros of Fm , there exists a zero of Fn .

Proposition 5.1 is implied by Proposition 1.3 and the following two lemmas whose
proofs will occupy the remaining section.

Lemma 5.2 Let 10 < m < n be positive integers such that n
m ≤ 1.434. Suppose that 1

2 ≥
xm ,k > xn ,� > xm ,k+1 ≥ 1

2 −
log m

2m and un ,� ≥ um ,k . Then um ,k > un ,�+1 > um ,k+1.

Lemma 5.3 Let 10 < m < n be positive integers such that n
m ≤ 1.434. Suppose that 1

2 ≥
xm ,k > xn ,� > xm ,k+1 ≥ 1

2 −
log m

2m and un ,� ≤ um ,k+1. Then um ,k > un ,�−1 > um ,k+1.

5.1 Proof of Lemma 5.2

Proof of Lemma 5.2 By the assumptions, we know that n
m ∈ Im ,k ,n ,� by Lemma 2.11.

We wish to show that

2� + 3 + 4
11.919 (e−(�+1)π + e−

√
3

2 πn n)

2k + 3 − 4
11.919 (e−(k+1)π + e−

√
3

2 πm m)
<

2� + 1 − 4
11.919 (e−�π + e−

√
3

2 πn n)

2k + 1 + 4
11.919 (e−kπ + e−

√
3

2 πm m)
(5.1)

and

2� + 1 + 4
11.919 (e−�π + e−

√
3

2 πn n)

2k + 1 − 4
11.919 (e−kπ + e−

√
3

2 πm m)
<

2� + 3 − 4
11.919 (e−(�+1)π + e−

√
3

2 πn n)

2k + 1 + 4
11.919 (e−kπ + e−

√
3

2 πm m)
,(5.2)
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so n
m ∈ Im ,k ,n ,� implies that um ,k > un ,�+1 > um ,k+1 by Proposition 2.12.
Again by our assumptions, we know that � > k by Corollary 2.6, 10 < m < n, and by

Lemma 2.5, 2�+1
2k+3 <

n
m ≤ 1.434. Moreover, since we are on the interval [ 1

2 −
log m

2m , 1
2 ],

as mentioned in [10, (27)], k ≤ log m. Thus, (5.1) holds by Lemma 5.4, and (5.2) holds
by Lemma 5.5. ∎

The proofs of Lemmas 5.4 and 5.5, which were needed above, are now shown.

Lemma 5.4 If � > k are non-negative integers and 10 < m < n are positive integers
such that k ≤ log m, then (5.1) holds.

Proof Note that the function f (m) ∶= e−
√

3
2 πm m is decreasing in m for m ≥ 1. Thus,

since � > k, m < n, and k ≤ log m (or equivalently, ek ≤ m),

(2� + 1 − 4
11.919

(e−�π + e−
√

3
2 πn n))(2k + 3 − 4

11.919
(e−(k+1)π + e−

√
3

2 πm m))

− (2� + 3 + 4
11.919

(e−(�+1)π + e−
√

3
2 πn n))(2k + 1 + 4

11.919
(e−kπ + e−

√
3

2 πm m))

= 4(� − k) − 4
11.919

(2k + 3) (e−�π + e−
√

3
2 πn n)

− 4
11.919

(2� + 1) (e−(k+1)π + e−
√

3
2 πm m)

− 4
11.919

(2k + 1) (e−(�+1)π + e−
√

3
2 πn n) − 4

11.919
(2� + 3) (e−kπ + e−

√
3

2 πm m)

+ ( 4
11.919

)
2
(e−�π + e−

√
3

2 πn n)(e−(k+1)π + e−
√

3
2 πm m)

− ( 4
11.919

)
2
(e−(�+1)π + e−

√
3

2 πn n)(e−kπ + e−
√

3
2 πm m)

> 4(� − k) − 16
11.919

(� − k) − 4
11.919

(2k + 3) (e−kπ + e−
√

3
2 πm m)

− 4
11.919

(2k + 1) (e−(k+1)π + e−
√

3
2 πm m)

− 4
11.919

(2k + 1) (e−(k+1)π + e−
√

3
2 πm m)

− 4
11.919

(2k + 3) (e−kπ + e−
√

3
2 πm m) − ( 4

11.919
)

2
(1.01)2

> 2.54 − 8
11.919

(2k + 3) (e−kπ + e−
√

3
2 πe k

ek)

− 8
11.919

(2k + 1) (e−(k+1)π + e−
√

3
2 πe k

ek) .

Moreover,

g(k) ∶= 8
11.919

(2k + 3) (e−kπ + e−
√

3
2 πe k

ek) + 8
11.919

(2k + 1) (e−(k+1)π + e−
√

3
2 πe k

ek)

is decreasing for k ≥ 0, and g(0) < 2.54. Thus, for k ≥ 0, (5.1) holds. ∎
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Lemma 5.5 Let k, � be non-negative integers such that 2�+1
2k+3 < 1.434. Moreover, if k ≤

1, suppose that � > k and un ,� ≥ um ,k . If m and n are positive integers greater than 10
such that n

m ≤ 1.434, then (5.2) holds.

Proof First, suppose k ≥ 2. Then

(2� + 3 − 4
11.919

(e−(�+1)π + e−
√

3
2 πn n))(2k + 1 − 4

11.919
(e−kπ + e−

√
3

2 πm m))

− (2� + 1 + 4
11.919

(e−�π + e−
√

3
2 πn n))(2k + 1 + 4

11.919
(e−kπ + e−

√
3

2 πm m))

= 2(2k + 1) − 4
11.919

(2k + 1) (e−(�+1)π + e−
√

3
2 πn n + e−�π + e−

√
3

2 πn n)

− 4
11.919

(2� + 3) (e−kπ + e−
√

3
2 πm m) − 4

11.919
(2� + 1) (e−kπ + e−

√
3

2 πm m)

+ ( 4
11.919

)
2
(e−(�+1)π + e−

√
3

2 πn n)(e−kπ + e−
√

3
2 πm m)

− ( 4
11.919

)
2
(e−�π + e−

√
3

2 πn n)(e−kπ + e−
√

3
2 πm m)

> 2(2k + 1) − 4(1.062)
11.919

(2k + 1) − 16
11.919

(� + 1)(1.01) − ( 4
11.919

)
2
(1.01)2

= (2k + 3)

⎛
⎜
⎝
(2 − 4(1.062)

11.919
) − 8(1.01)

11.919
2� + 1
2k + 3

−
( 4

11.919)
2 (1.01)2 + 2 (2 − 4(1.062)

11.919 ) + 8(1.01)
11.919

2k + 3

⎞
⎟
⎠

> (2k + 3)

⎛
⎜
⎝
(2 − 4(1.062)

11.919
) − 8(1.01)

11.919
1.434 −

( 4
11.919)

2 (1.01)2 + 2 (2 − 4(1.062)
11.919 ) + 8(1.01)

11.919

7

⎞
⎟
⎠

> 0,

as desired. We are now left with the cases for k = 0, 1. Since � > k and 2�+1
2k+3 < 1.434, we

are able to explicitly write the three cases that are possible.
Case 1: k = 0.
We must have � = 1. Then since n

m ≤ 1.434, by Definition 2.1,

xm ,0 − xn ,1 =
3

4n
− 1

4m

> 1.01
11.919m

+ 0.052
11.919n

> 1
11.919m

(1 + e−
√

3
2 πm m) + 1

11.919n
(e−π + e−

√
3

2 πn n)

> ∣xm ,0 − um ,0∣ + ∣xn ,1 − un ,1∣,

so um ,0 > un ,1, contradicting the assumption that un ,1 ≥ um ,0. Thus, this case is not
possible.
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Case 2: k = 1, � = 2.
Since n

m ≤ 1.434, by Definition 2.1,

xm ,1 − xn ,2 =
5

4n
− 3

4m

> 0.052
11.919m

+ 0.002
11.919n

> 1
11.919m

(e−π + e−
√

3
2 πm m) + 1

11.919n
(e−2π + e−

√
3

2 πn n)

> ∣xm ,1 − um ,1∣ + ∣xn ,2 − un ,2∣,
so um ,1 > un ,2, contradicting the assumption that un ,2 ≥ um ,1. Thus, this case is not
possible.

Case 3: k = 1, � = 3.
Since n

m ≤ 1.434, by Definition 2.1,

xm ,1 − xn ,3 =
7

4n
− 3

4m

> 0.052
11.919m

+ 0.001
11.919n

> 1
11.919m

(e−π + e−
√

3
2 πm m) + 1

11.919n
(e−3π + e−

√
3

2 πn n)

> ∣xm ,1 − um ,1∣ + ∣xn ,3 − un ,3∣,
so um ,1 > un ,3, contradicting the assumption that un ,3 ≥ um ,1. Thus, this case is not
possible.

We have covered all possible cases, and thus conclude the proof of Lemma 5.5.

We now prove the second lemma necessary for Proposition 5.1.

5.2 Proof of Lemma 5.3

Proof of Lemma 5.3 By the assumptions, we have that n
m ∈ Im ,k+1,n ,� by Lemma

2.11. Moreover, recall that � > k ≥ 0 by Corollary 2.6. We wish to show that

2� − 1 + 4
11.919 (e−(�−1)π + e−

√
3

2 πn n)

2k + 3 − 4
11.919 (e−(k+1)π + e−

√
3

2 πm)
<

2� + 1 − 4
11.919 (e−�π + e−

√
3

2 πn)

2k + 3 + 4
11.919 (e−(k+1)π + e−

√
3

2 πm m)
(5.3)

and

2� + 1 + 4
11.919 (e−�π + e−

√
3

2 πn n)

2k + 3 − 4
11.919 (e−(k+1)π + e−

√
3

2 πm m)
<

2� − 1 − 4
11.919 (e−(�−1)π + e−

√
3

2 πn n)

2k + 1 + 4
11.919 (e−kπ + e−

√
3

2 πm m)
,(5.4)

so n
m ∈ Im ,k+1,n ,� implies that um ,k > un ,�−1 > um ,k+1 by Lemma 2.12.
Note that by letting k = k′ − 1 and � = �′ + 1, (5.3) is the same as (5.2), which was

proven in Lemma 5.5, but with k′ and �′ instead of k and �. We see that 2�′+1
2k′+3 ≤

2�+1
2k+3 <n

m ≤ 1.434 by Lemma 2.5. Moreover, if k ≥ 1, then k′ ≥ 2, so (5.3) holds by Lemma 5.5.
Thus, it remains to consider the case when k = 0.
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Similarly, by letting � = �′ + 1 and leaving k unchanged, (5.4) is the same as (5.1),
which was proven in Lemma 5.4, but with �′ instead of �. Since we are on the interval
[ 1

2 −
log m

2m , 1
2 ], as mentioned in [10, (27)], k ≤ log m. Then if � > k + 1, (5.4) holds by

Lemma 5.4. Thus, it remains to consider the case where � = k + 1.
Thus, Lemma 5.3 holds in all cases except when k = 0 and � ≥ 2, or when � = k + 1.

We now show that each of these cases cannot happen.
Case 1: k = 0 and � ≥ 2.
Recall that xm ,0 > xn ,� > xm ,1 by our assumptions. By Lemma 2.5, we have that

n
m
> 2� + 1

2k + 3
≥ 5

3
> 1.434,

contradicting the assumption that n
m ≤ 1.434. Thus, this case is not possible.

Case 2: � = k + 1. Recall that xm ,k > xn ,k+1 > xm ,k+1 by our assumptions. Since we
are on the interval [ 1

2 −
log m

2m , 1
2 ], we know that k + 1 ≤ log m < log n by [10, (27)]. Let

x̂n ,k be as defined in [10, Section 3]. Then by [10, Lemma 3.4],

x̂n ,k+1 − xn ,k+1 =
wk+1

n
and x̂m ,k+1 − xm ,k+1 =

wk+1

m
,

where wk is independent of n (or m) and ∣wk ∣ ≤ 1
12 for all k ≤ log m. Following the

method of [10, Lemma 3.5] and applying Definition 2.1,

x̂n ,k+1 − x̂m ,k+1 = xn ,k+1 − xm ,k+1 −wk+1 (
1
m
− 1

n
)

≥ 2k + 3
4

( 1
m
− 1

n
) − 1

12
( 1

m
− 1

n
)

= 3k + 4
6

(n − m
mn

) > 0.

Moreover, by [10, Lemma 3.6],

∣x̂n ,k+1 − un ,k+1∣ <
1

20n(n + 1) and ∣x̂m ,k+1 − um ,k+1∣ <
1

20m(m + 1) .

Since n
m ≤ 1.434, we get

∣x̂n ,k+1 − un ,k+1∣ + ∣x̂m ,k+1 − um ,k+1∣ <
1

20n(n + 1) +
1

20m(m + 1)

< 1
10m(m + 1)

< 4
6 ⋅ 1.434m2

≤ 3k + 4
6

(n − m
nm

)

< x̂n ,k+1 − x̂m ,k+1 ,
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so un ,k+1 > um ,k+1. This contradicts our initial assumption that un ,k+1 ≤ um ,k+1, so we
conclude that this case is not possible.

We have exhausted all cases, so the proof of Lemma 5.3 is complete. ∎

6 Proof of Theorem 1.2 and discussion

Proof of Theorem 1.2 It suffices to show the theorem for consecutive zeros of Fm .
By Proposition 3.1, the theorem is proved for 2 ≤ m < n such that n

m > 1.434. For m ≥
30, as the length of the intersection interval

[ 1
2
− log m

2m
, 1

2
− log m

5m
] = [0, 1

2
− log m

5m
] ∩ [ 1

2
− log m

2m
, 1

2
]

is
1
2
− log m

5m
− 1

2
+ log m

2m
= 3 log m

10
1
m
≥ 3 log 30

10
1
m
> 1

2m
+ 2

11m
,

by Lemma 2.3 there is at least one zero (not two zeros as incorrectly and unnecessarily
claimed in the proof of [10, Theorem 3.1]) of Fm in this interval. Thus, by Propositions
4.2 and 5.1, we conclude that for 30 ≤ m < n such that n

m ≤ 1.434, the theorem is
proven. It remains to check the case when 2 ≤ m ≤ 29 and n

m ≤ 1.434, which has been
verified computationally and by using [10, Theorem 3.1].

As a corollary we obtain the following indivisibility among the polynomials φn in
Section 1.

Corollary 6.1 If 2 ≤ m < n ≤ 2m, then φm ∤ φn .

Proof Suppose on the contrary that φm ∣ φn .
By Theorem 1.2, there are at least m − 1 zeros of φn that are not shared by φm .

There are m more zeros of φn from φm , and two extra zeros of φn closest to the two
endpoints by Lemmas 2.8 and 2.10. Thus, the total number of zeros of φn is at least
m + (m − 1) + 2 = 2m + 1, which is a contradiction. ∎

We end the paper with the following well-known conjecture due to Ono [12,
Problem 4.30]. It has been verified by us using SAGE for n ≤ 500, see also [9] for a
partial result towards the conjecture. Clearly this conjecture implies Corollary 6.1.

Conjecture 6.2 Each polynomial φn for n ≥ 1 is irreducible over Q.

APPENDIX A: Data

In this appendix, we supply the relevant data for n ≤ 10. In Table A.1, the real parts
of zeros of jn(z) in the fundamental domain are calculated using Mathematica. For
comparison, the zeros of cos(2πnx) in the interval (0, 0.5) are given in Table A.2.
Note that these data are ordered decreasingly according to the convention in this
paper. In Figure A.1, we plot the real parts of zeros of jn(z) to help visualize the
statement of Theorem 1.2.

https://doi.org/10.4153/S0008439522000054 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000054


992 W. Frendreiss, J. Gao, A. Lei, A. Woodall, H. Xue, and D. Zhu

Table A.1. Real parts of zeros of jn(z).
n = 1 0.2311
n = 2 0.3713 0.1252
n = 3 0.4145 0.2501 0.0833
n = 4 0.4360 0.3125 0.1875 0.0625
n = 5 0.4488 0.3500 0.2450 0.1500 0.0450
n = 6 0.4574 0.3750 0.2917 0.2083 0.1250 0.0417
n = 7 0.4635 0.3927 0.3214 0.2500 0.1786 0.1071 0.0357
n = 8 0.4680 0.4063 0.3437 0.2813 0.2187 0.1563 0.0938 0.0313
n = 9 0.4716 0.4167 0.3611 0.3056 0.2450 0.1944 0.1389 0.0833 0.0278
n = 10 0.4744 0.4250 0.3750 0.3250 0.2745 0.2250 0.1750 0.1250 0.0750 0.0250

Table A.2. Zeros of cos(2πnx) in (0, 1
2 ).

n = 1 1/4
n = 2 3/8 1/8
n = 3 5/12 1/4 1/12
n = 4 7/16 5/16 3/16 1/16
n = 5 9/20 7/20 1/4 3/20 1/20
n = 6 11/24 3/8 7/24 5/24 1/8 1/24
n = 7 13/28 11/28 9/28 1/4 5/28 3/28 1/28
n = 8 15/32 13/32 11/32 9/32 7/32 5/32 3/32 1/32
n = 9 17/36 5/12 13/36 11/36 1/4 7/36 5/36 1/12 1/36
n = 10 19/40 17/40 3/8 13/40 11/40 9/40 7/40 1/8 3/40 1/40

n = 1 :
n = 2 :
n = 3 :
n = 4 :
n = 5 :
n = 6 :
n = 7 :
n = 8 :
n = 9 :

n = 10 :
0 0.5

Figure A.1: Real parts of zeros of jn(z).
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