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1. In many problems of physics, even in widely different branches
of the subject, the relation satisfied by the variables is expressible
by means of a linear differential equation of the second order. In
general, "initial" conditions have also to be satisfied. If the equation
truly represents the physical conditions in, for example, some case
of motion, and if no state of instability exists, the solution must be
unique. But it is impossible in any case to say with absolute
certainty that the representation is strict. The possible error
depends on the error which may be made in observation or
experiment, and on the number of independent observations or
experiments the results of which have been used as the basis of
the "law" expressed by the equation. The probable accuracy of
any statement as to the non-existence of instability is also dependent
on the rigour and extent of the observational or experimental
groundwork. The physicist therefore frequently assumes a form
of solution which suits his conditions, and does not trouble himself
to enquire whether or not other solutions exist if he finds that the
one which he has obtained corresponds sufficiently closely to his
facts. This procedure is thoroughly justifiable, seeing that he is as
sure of the accuracy of his result as he is of the accuracy of his
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original equation, while on the other hand a proof of uniqueness
may not be easy to obtain. Even if other solutions were found to
exist he would be justified in retaining his own and asserting that
constraints, whose action did not appear in the differential equation,
prevented the manifestation of instability and so prevented the
applicability of the other solutions. A t least he would be so
justified except in the event of such a solution suiting his facts
better than his own did. Yet the fact that such a better solution
may be found makes the farther investigation of the question
desirable, and the proof of the existence of uniqueness adds, when the
accuracy of the solution is verified by experiment, to the probability
of the accuracy of the differential equation as a description of .facts.

2. A well-known example in which uniqueness of solution is
proved is furnished by Laplace's Equation in the theory of potential.
The proof is obtained by an application of Green's Theorem. Another
example occurs in the theory of the conduction of heat (Thomson
and Tait's Treatise on Natural Philosophy), Green's Theorem being
extended so as to apply.

A similar use of 4Jreen's Theorem is made by Picard in his
Traitd d'Analyse. He proves that the solution of the equation

d2u (fu dhi du du
a— + 26—— + c — + 2d— + 2e~ +/u = 0

(Xc dxdy (ty r.r Cy

is unique if b- - ac be negative while u has a given succession of
values along a sufficiently small closed contour in the x, y plane.
The coefficients are any continuous functions of x and y, and a and c
are alike in sign.

In the case in which f has a sign opposite to that of a and c,
the limitation as to smallness of the contour is not required, but
the proof is based on the assumption that the coefficients are
analytic functions.

Paraf (Ann. de la Faculte des Sciences de Toulouse, 1892) gives a
proof of the uniqueness of the solution when ac > b\ apart from any
assumption as to the nature of the quantities, when f is zero or of
opposite sign to a and c.

The object of the present investigation is to obtain a criterion
by means of which we can investigate the problem when f is not of
opposite sign to a and c. That restriction, however, is replaced by
another.
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Equating coefficients we get

If the As be all of one sign, (3) can only be satisfied by

v=o, ^=o, |Y=0.
ex dy

Therefore, since V may be supposed to be the difference of two
functions each of which is assumed, if possible, to satisfy (1), there
cannot be more than one solution of the linear equation (1).subject
to the condition that the function shall have a given succession of
values along given contours.

4. The condition that the ks shall be of one sign necessitates

a and c being of one sign, which we may consider to be positive along

with those of the ks. And the relations among the coefficients give

8«-(a-*I)(c-*1)>

while a<fc£i, c<£k2, so that, as in Picard's cases, we have

ac - 62<t°-

;"). From the conditions
da db 36,
— + Z- —• + Zp = r,
ox dy ay

— + r = K,
dx dy

we find

dx dy dx* "dxdy dy* '

so that the value of r is known, and therefore that of

a-l
is known.
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The quantity r must essentially be positive, and

c

We see therefore that the solution of
dV dV
ir + Q^r + 2 R V =
d d

binr + 4 r + ?ir + Q̂ r
dxdy dif dx dy

is unique if the contours upon which V is given do not extend to

the negative sides of the curves
ac-6 2 = 0, (4)

+ £ 3
ox dy ox dxoy

^ da
cy} I dy ox

6. The two latter conditions become identical when

3P oQ d-a . &b 32c .

and the condition then is that R shall be negative—a special case of
Paraf's result.

If the first two conditions are satisfied, the problem reduces to
that of the possibility of determining 6, and £3 so as to satisfy the
third. The extreme cases occur when k3 = a and k^^W. If k} = a
we have kr = 0, p = 0, and the third condition becomes

o[ f (R + r)dy +f(x)

If k3c = bi it becomes

c[ f (R + r)dx

The solution is unique when f{x) or <f>(y) can be chosen so as to suit
the inequality.

The curve (6) is a boundary flexible within limits, such that, if it
be capable of deformation so as to have the given contours entirely
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on its positive side, the solution is unique. In determining whether
or not sufficient deformation be possible it might be convenient to
assign to q an arbitrary value and use (6) in the form

.., L dx dy r v y / )dy\ dy
4 ( 6 )

where >p ' s arbitrary. But we shall find that it is possible to
dispense with (6).

7. It is possible to explore the x, y plane further, even where
the value of r is negative. For this purpose an artifice, similarly
employed by Picard, may be used. He remarks that, if B and B'
be any two continuous functions of x and y, we have

since V is zero on the contours when we suppose it to represent the
difference of two functions satisfying (1). Thus (2) can be written

3vr (T /ov B^V _,av av /av B'_y „ ,_av n _3v
a(—+—Vl+26— — + C I _ + _ V ) +2pV— +2qV—

j J L \ ox a J ox oy \oy c f ox dy
3B SB B'
— +
ox oy a

Equating coefficients we have

, _ , l / t
q n ox dy kx k2 *'

c =k2 + v-fc:l,

We may assume B = - p, B' = - q, and hence we find that when the
contours mi which V is given do not lie, in whole or in part, on the
negative side of the curve

2(r-R) = _ + _ _ _ _ 2 _ - _ - 4 R = 0,

the solution is unique. Thus, provided that the value of R do not
exceed that of r, we know that the solution is unique even when
R is positive.
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If we choose p = 0, B' = - q, we get
« B _ B '
al ""£•*"

and can consider the case where r - R is negative. Let - A2/Aj be
its greatest negative value, and take kt = A2/A, - (R - r), A, being
assumed constant. These conditions give

B = A tan-=-(cB + a).
A,

By suitable choice of a, we have B remaining continuous throughout
any strip of the x, y plane, parallel to the y axis, whose breadth is
less than irkJA; that is, less than

5r(a0c0 - 60")
—c~~K—'

ac -&2 2A2c
where the least value of is taken, and ^ is the greatest

positive value of
32a Vb 92c oP oQ
8a;3 dxdy dy* ox dy

If at<c0 we would take q-0, B= -p and so get a0 instead of c0 in
the denominator of S.
If we refer to a new set of rectangular axes, the new x-axis being
selected parallel to the least breadth of a given closed contour on
which V has a given succession of values, we can determine whether
or not we can assert that uniqueness of solution exists under the
given condition.

Since 8 is never zero, the solution of (1) is always unique, as
Picard shows, when the contour is sufficiently small.

Another test is given by taking B —p = 0, B' = [$(x) - l]q. We
then get

•is

(r - R) + (r + R)+(x) = i— + A,
A2

Otherwise we may take B' = q = 0, B = \4>(y) - l]p, which gives

If the disposable quantities can be chosen to satisfy either condition,
the solution is unique.
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9. We may extend the investigation to regions where r is
negative by means of the method used in §7, a being constant.
The equation becomes

OX Ct/

Putting p = 0, B' — -q, we find

?B B-
rr- = T - + 4̂ - (R + r) + 2ra.

Taking kt = Arjkx - (R + r) + 'Ira., where A"/&i is the greatest positive
value of R + r(l - 2a), k^ being constant, we see that B can be made
continuous throughout any strip, parallel to the y axis, whose breadth
does not exceed

4-
When R is positive and r negative, the value of a which makes this
quantity a maximum should be chosen. As the least value of ks is
b"jca, the greatest value of kt is (oca- - b")/ca. The largest constant
value which A, can be given cannot exceed the smallest value which
(aca" - b'2)/ca can take when a is tixed.

By putting

B = j> = 0, B' = Mx) - \)q, or B' = q = 0, B = (</,(</) - ] )p,

respectively, we get

2r« + Wx) - 1 )(R + r) = i-j- + *4,

or 2w + (<l>(y) - 1)(R + r) = = ^ + kt,

instead of the conditions given at the end of § 7, the positive con-
stant a being now at disposal in addition to the other quantities.

If we put B = - p, B' = - q, the condition, with a constant,
becomes
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Hence we see that, even if R be positive and r be negative, the
solution is unique provided that 2r(a - 1 ) > R , a < l .

10. There is no limitation on the size of the contours over which
V is given, where r and R have the same sign.

By change of the variables an equation may often be put into
a form in which one or other of the conditions R negative, or
r positive, holds.

The methods above used may be extended to the case of more
than two independent variables.
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